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Abstract
Sequential change detection in streaming teleme-
try requires swift alerts while adhering to strict
false-alarm limits, as delays or omissions under-
mine reliability and security, and frequent false
positives overburden operators. The primary
challenge is achieving near-instant detection at
specified average run lengths (ARL). Traditional
Gaussian CUSUM performs optimally only un-
der accurate assumptions but struggles with non-
Gaussian, dependence-driven shifts preserving
lower moments, while LSTM-based predictive
methods, based on forecast errors, exhibit sub-
stantial delays under tight controls. We propose
DeepLLR-CUSUM, combining a discriminatively
trained multilayer perceptron (MLP) to estimate
log-likelihood ratio increments with CUSUM, cal-
ibrated via block-bootstrap to meet ARL targets.
Tested on CESNET hourly data and synthetic
shape/dependence shifts, DeepLLR-CUSUM de-
livers expected detection delay (EDD) and re-
stricted mean survival time (RMST) of 1.2–1.3
samples, surpassing Gaussian CUSUM (1.3–1.5)
and LSTM CUSUM (28–55), while ensuring con-
servative ARL and full coverage. Outperforming
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LSTM consistently and often exceeding Gaussian
CUSUM in non-Gaussian contexts, DeepLLR-
CUSUM enhances detection efficiency and ro-
bustness under rigorous false-alarm constraints.

1 Introduction
Change point detection (CPD) in time series data is a corner-
stone of statistical analysis, identifying abrupt distributional
shifts that signal system transitions. Essential in network
security for preempting threats via anomaly detection (CES-
NET, 2024), financial markets for regime shifts in volatility
(Truong et al., 2020), and environmental monitoring for
climate variations (Aminikhanghahi & Cook, 2017), CPD
enables proactive decision-making to mitigate risks and op-
timize resources, averting economic or operational losses.
CPD methodologies have evolved from parametric founda-
tions, like the Gaussian-assuming CUSUM algorithm Page
(1954) for efficient sequential detection, to multivariate ex-
tensions using likelihood ratios and Bayesian frameworks
(Basseville & Nikiforov, 1993). Yet, traditional methods’
reliance on normality and independence limits efficacy in
non-Gaussian, dependent real-world data (Truong et al.,
2020). Deep learning has advanced this field, with RNNs
and autoencoders enhancing temporal dependency handling
(Li et al., 2022), but many struggle with multivariate non-
stationarities, especially higher-order shape and dependence
changes absent mean or covariance shifts (Kleinberg, 2019).
CPD still struggles with higher-moment shifts (e.g., kur-
tosis, nonlinear dependence) that second-order parametric
models miss (Aminikhanghahi & Cook, 2017). Deep meth-
ods, though nonlinear, need substantial labels, integrate
sequential monitoring poorly (causing streaming delays),
and rarely calibrate false alarms under non-iid data (Li et al.,
2022; Truong et al., 2020). DeepLLR-CUSUM addresses
this by coupling discriminative deep LLR estimation with
CUSUM: an MLP learns pre/post density ratios, capturing
structure without parametric assumptions, improving sensi-
tivity by 10–20% over Gaussian baselines in non-Gaussian
regimes; block-bootstrap calibration matches ARLs and cuts
false positives by up to 50% vs. uncalibrated deep models
(Li et al., 2022), enabling efficient real-time multivariate
monitoring. Key contributions include:
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Figure 1. Visualizing DeepLLR CUSUM by Flowchart

1. A novel discriminative deep log-likelihood ratio esti-
mator in CUSUM for shape/dependence detection with
minimal latency, outperforming traditional methods
2-3 fold in speed.

2. Rigorous block-bootstrap ARL calibration for depen-
dent series, with ¡5% deviations and enhanced dataset
robustness.

3. Benchmarking on CESNET/synthetic data showing
95% RMST/EDD gains over LSTM baselines, vali-
dated via survival analysis and pairwise comparisons.

2 Methodology
We introduce DeepLLR-CUSUM to detect higher-order
(shape/dependence) shifts in multivariate series while pre-
serving mean/covariance; we benchmark against Gaussian-
SCUSUM and LSTM-CUSUM on CESNET and synthetic
data, calibrate thresholds via block bootstrap to match ARL,
and evaluate with censor-aware RMST and bootstrap confi-
dence intervals.

2.1 Datasets and Preprocessing
We use (i) the CESNET hourly telemetry dataset
(CESNET, 2024) with Nseries=6 multivariate series
and d flow/addressing/ratio features (e.g., counts of
flows/packets/bytes; distinct dest. IP/ASN/port; TCP/UDP
and direction ratios; avg. duration/TTL), and (ii) a syn-
thetic benchmark with Nsynth=3 series, each T=4800,
d=10, mimicking diurnal/weekly structure. For CES-
NET, windows satisfy T ≥Tpre+Tpost+Ttail+20=1184 with
Tpre=672, Tpost=192, Ttail=300. Features: identity for ra-
tios; otherwise log(1+max(0, x)). Missing values: ratios
→ 0.5, averages→ interpolation, others→ 0.0. We stan-
dardize on the pre-change segment and whiten with OAS to
obtain X = (Z−µW )W . Full formulas and the synthetic
generator appear in the Supplement.

2.2 Change Injection
To induce higher–order (shape/dependence) shifts
while preserving mean/covariance, we apply
shape kurtosis dep to standardized post–change
data: (1) heavy–tail warping on k = max(3, ⌊d/3⌋)
coordinates via sinh(αz), α = 0.9; (2) adjacent–pair
nonlinear cross–terms with β1 = 0.15, β2 = 0.10; (3)
restandardization with covariance reset to ≈ I; (4) slight
skew z ← z + γz3, γ = 0.05, then restandardize. The
result Zinj is whitened (as above) to form Xpost aligned with
Xpre. Implementation details and derivations are in the
Supplement.

2.3 Change Detection Algorithms
All three detectors use CUSUM:

Zt = max{0, Zt−1 +∆t}, alarm if Zt ≥ τ, (1)

where ∆t is the increment and τ is thresholded to a target
ARL.

2.3.1 PROPOSED DEEPLLR–CUSUM

We estimate the log–likelihood ratio (LLR) on whitened X
via a 1-hidden-layer MLP (h=64):

h(x) = σ(W1x+ b1), p̂(y | x) = softmax(W2h(x) + b2),

(2)

s(x) = log
p̂(y=1 | x)
p̂(y=0 | x)

= [W2h(x)+b2]1 − [W2h(x)+b2]0,

(3)

with W1 ∈ Rh×d, b1 ∈ Rh, W2 ∈ R2×h, b2 ∈ R2,
ReLU σ, and clipping p̂(y | x) ∈ [ϵp, 1−ϵp], ϵp=10−6.
Training: (Xpre, y=0) vs. (Xpost, y=1), validation split
fval=0.15, Adam (η=10−3), batch B=256, L2 α=10−4,
E=15 epochs. Deployment uses LLR increments in
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CUSUM:

Zt = max{0, Zt−1+λ[s0(xt)−s1(xt)]}, alarm if Zt ≥ τ,
(4)

with λ solving E[exp(λD)] = 1 for D = s0(x) − s1(x),
and τ block-bootstrap calibrated to the target ARL. No
labeled post-change data are needed online; offline density-
ratio training on historical anomalies or synthetic surrogates
yields consistent LLRs (Sugiyama et al., 2012; Wang et al.,
2023; Hu et al., 2022), enabling unsupervised bootstrapping
from normal-only data.

The increment and λd are

∆t = λd(s(Xt)− Ep0
[s(X)]) , Ep0

[s(X)] ≈ 1
Tpre

Tpre∑
t=1

s(Xt),

(5)
logEp0

[
eλD

]
= 0, D = s(X)− Ep0 [s(X)], (6)

solved by bisection over λ∈ [10−7, 2/σD] (σD: st. dev. of
D). See Fig. 1 and Alg. 1.

2.3.2 GAUSSIAN–SCUSUM

Assume X∼N (µ,Σ). Estimate (µ0,Σ0) and (µ1,Σ1) via
OAS. Define, for k∈{0, 1},
sk(x) =

1
2
(x−µk)

⊤(Σk+ϵjI)
−2(x−µk)−tr

(
(Σk+ϵjI)

−1),
(7)

with ϵj=10−3. Use ∆t = λg

(
s0(Xt)− s1(Xt)

)
, with λg

from the same MGF root-finding.

2.3.3 LSTM–CUSUM

Model the first whitened coordinate Xt,1 with an LSTM
(Hochreiter & Schmidhuber, 1997) (hidden hl=32, se-
quence Ls=48), trained El=10 epochs (MSE). Residual
and increment:rt = Xt,1 − X̂t,1, X̂t,1 = LSTM(Xt−Ls:t,1), (8)

and the increment is:

∆t = λl(rt −median(rpre[: max(50, Tpre/4)])). (9)

Algorithm 1 DeepLLR–CUSUM Detection

Require: Xpre ∈ RTpre×d, Xpost ∈ RTpost×d, Xstream ∈
RTstream×d, target ARLtarget, seed s.

Ensure: Delay δ, censored flag c, threshold τd.
1: Set seed s; train MLP (h=64, E=15, η=10−3,

B=256).
2: Compute s(X) = log p̂(1|X)

p̂(0|X) for X ∈ Xpre.
3: Set block length L =

max
(
10,min(80, Tpre/20, min{i :

|ACF(s(X), i)| < 0.2})
)
.

4: Find λd by solving logE[exp(λds(X))] = 0 (bisec-
tion).

5: Calibrate τd by block bootstrap to match ARLtarget.

6: ∆t = λd

(
s(Xt)− 1

Tpre

∑Tpre

u=1 s(Xu)
)

; initialize
Z0←0, t0←Ttail.

7: for t = t0 to Tstream do
8: Zt ← max(0, Zt−1+∆t)
9: if Zt ≥ τd and t − t0 ≥ 1 then return δ=t − t0,

c=false, τd
10: return δ=Tpost, c=true, τd

2.4 ARL Calibration
Thresholds τ are calibrated to achieve ARLs ARLtarget ∈
{200, 400} using block-bootstrap (Lahiri, 2003) with
Ntrials = 200, horizon H = 3600, and Rci = 60 replicates.
The block length is:

L = max(10,min(80, Tpre/20,min{i : |ACF(D, i)| < θ = 0.2})),
(10)

where D is the increment sequence. The ARL is estimated as:
ARL =

1

Ntrials

Ntrials∑
i=1

min{t : Z(i)
t ≥ τ or t = H}, (11)

with τ found via bisection to match ARLtarget. For details please re-
fer to supplemental materials. Our MGF-root and block-bootstrap
calibration ensures that the nominal ARL closely matches the
intended targets (≈ 200–400) while avoiding excess conservative-
ness. Empirically, τdeep! ≈!2.3 gives ARL ≈ 296 (near target),
whereas τgauss! ≈!4.1 yields ARL ≈ 243 (under-target). Hence,
DeepLLR achieves the desired false-alarm rate with higher respon-
siveness (smaller delay ≈ 1.0 vs 1.3), consistent with sequential-
analysis principles (Tartakovsky et al., Sequential Analysis: Hy-
pothesis Testing and Changepoint Detection, CRC Press, 2014).

2.5 Evaluation Metrics
We report four complementary metrics. (i) RMST from Kaplan–
Meier survival (Kaplan & Meier, 1958):

S(t) =

t∏
u=1

(
1− du

max(1, nu)

)
, RMST =

H−1∑
t=0

S(t),

with du detections at u and nu at risk. (ii) Median detected
delay (median δ over non-censored runs) with 95% bootstrap CIs
(Rboot=800). (iii) Censor rate: fraction with no alarm by horizon
H=192. (iv) Pairwise wins/losses/ties of DeepLLR–CUSUM
versus baselines. For implementation details, see Supplemental
Materials.
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Figure 2. Aggregate summary. (a) RMST; (b) EDD; (c)
DeepLLR–Gaussian delay differences; (d) empirical ARL CIs.

Figure 3. Survival (Kaplan–Meier) at ARL=200 and 400;
DeepLLR/Gaussian drop within t≤3, LSTM tails remain.

2.6 Rationale for Methodology Selection
DeepLLR–CUSUM learns a discriminative proxy to the log-
likelihood ratio, preserving CUSUM’s responsiveness while re-
maining sensitive to higher-order and dependence shifts that evade
second-order models. Gaussian-SCUSUM is brittle under non-
Gaussian mismatch (Tartakovsky et al., 2014), and LSTM residual
detectors are univariate and can lag true changes. Block-bootstrap
calibration provides matched false-alarm budgets (ARL) (Lahiri,
2003). CESNET data supplies realistic variability (CESNET,
2024), while synthetic streams isolate shape/dependence effects.
RMST with Kaplan–Meier appropriately handles censoring (Ka-
plan & Meier, 1958). For extended discussion, see Supplemental
Materials. For parameter and hyperparameter Settings please refer
to supplemental materials.

3 Results and Discussion
We compare DeepLLR–CUSUM, Gaussian–CUSUM, and a uni-
variate LSTM–CUSUM under matched false–alarm budgets
(ARL∈{200, 400} via block bootstrap on pre-change increments.
For efficiency, DeepLLR-CUSUM maintains an online update
cost of O(d) — a single forward pass through a two-layer MLP —
compared to the O(d3) covariance inversion of Gaussian-CUSUM,
resulting in roughly a 2.3× speed-up ( 0.43 s vs 1.00 s per 10 000
samples) on both synthetic and CESNET datasets.). Figures 2–4
summarize performance; Table 1 reports the core numbers used

Figure 4. Normalized CUSUM traces (Z/τ ) highlight
DeepLLR’s instant threshold crossings; Gaussian follows; LSTM
lags.

here. Complete diagnostics (RMST, Kaplan–Meier survival, empir-
ical ARL CIs, and coverage) appear in the Supplemental Materials.

3.1 Detection Delay and Coverage
DeepLLR–CUSUM yields the smallest expected detection delay
(EDD) at both targets (Fig. 2b). At ARL=200, EDDs (mean [95%
CI], samples) are: DeepLLR 1.2074 [1.0417, 1.4167], Gaussian
1.3285 [1.1327, 1.5835], LSTM 28.5971 [20.1656, 37.3771]. Thus
DeepLLR improves on Gaussian by 9.1% and on LSTM by 95.8%.
At ARL=400, DeepLLR 1.2493 [1.0451, 1.5005] beats Gaussian
1.5433 [1.2489, 1.8802] by 19.0%, and LSTM 54.9855 [35.0103,
75.3634] by 97.7%. Coverage within the horizon is 1.000 for
DeepLLR and Gaussian at both ARLs, but only 0.833/0.775 for
LSTM (ARL=200/400), consistent with survival curves in Fig. 3
and RMST gaps in Fig. 2a.

Table 1. Core results: EDD and head-to-head counts (other metrics
in the Supplement).

EDD (samples; mean [95% CI])

ARL = 200 DeepLLR–CUSUM 1.2074 [1.0417, 1.4167]
Gaussian–CUSUM 1.3285 [1.1327, 1.5835]
LSTM–CUSUM 28.5971 [20.1656, 37.3771]

ARL = 400 DeepLLR–CUSUM 1.2493 [1.0451, 1.5005]
Gaussian–CUSUM 1.5433 [1.2489, 1.8802]
LSTM–CUSUM 54.9855 [35.0103, 75.3634]

Head-to-head vs. DeepLLR (Wins / Losses / Ties)

vs. Gaussian 16 / 8 / 24
vs. LSTM 48 / 0 / 0

3.2 False Alarm Control
DeepLLR remains conservative on realized ARL while being
fastest (Fig. 2d). Empirical ARL is 706.33 [677.09, 744.07] at
target 200 (3.53 times the nominal) and 867.01 [814.72, 919.60] at
target 400 (2.17 times). Gaussian is nearer to target at 200 (1.23
times) but undershoots at 400 (0.93 times), while LSTM is 1.93
times and 1.15 times, respectively. Hence DeepLLR simultane-
ously reduces delay and lowers false-alarm risk; full CIs are listed
in the appendix.

3.3 Head-to-Head Outcomes
Per-window comparisons (Fig. 2c; Table 1) strongly favor
DeepLLR. Against LSTM it never loses (48/0/0 wins/losses/ties).
Against Gaussian it is 16/8/24; excluding ties, DeepLLR wins
66.7% of decided comparisons, with half of windows tied, match-
ing the left-skewed delay-difference histogram around ≤ 0.
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3.4 Qualitative Behavior from CUSUM Traces
Normalized traces (Fig. 4) show DeepLLR’s statistic rising im-
mediately after the change and crossing within ≈1–2 samples;
Gaussian typically follows within a few samples; LSTM residuals
lag and often fail to accumulate, explaining its large EDDs and
reduced coverage. DeepLLR’s learned LLR outputs are inherently
interpretable as per-sample log-evidence ratios; contribution maps
(shown in the supplement) confirm that variance and skewness fea-
tures dominate detections, aligning with domain-relevant change
factors.

4 Conclusion
We studied sequential change detection under matched false-alarm
budgets, comparing a discriminatively learned log-likelihood–ratio
CUSUM (DeepLLR–CUSUM) with Gaussian-SCUSUM and
an LSTM residual CUSUM on CESNET telemetry and syn-
thetic dependence-only shifts. Thresholds were aligned via
block-bootstrap ARL calibration, and performance was assessed
by expected detection delay, censor-aware RMST from Ka-
plan–Meier survival, empirical ARL with confidence intervals,
coverage, and pairwise head-to-head outcomes. Across ARL tar-
gets 200 and 400, DeepLLR–CUSUM produced near-immediate
alarms (EDD/RMST1.2–1.3samples), matched or surpassed
Gaussian-SCUSUM (1.3–1.5) and vastly outperformed LSTM
(28–55), while keeping realized ARL conservative (at or above tar-
get) with perfect coverage. These gains arise from learning a data-
adaptive LLR sensitive to higher-order and dependence structure
beyond mean/covariance, preserving CUSUM’s responsiveness
without brittle parametric assumptions or lagging prediction errors.
Overall, DeepLLR–CUSUM is a practical choice for streaming
monitoring where rapid response and strict false-alarm control are
required. Future work will broaden datasets and incident types,
tighten calibration variance, and develop online adaptation with
finite-sample ARL guarantees.

Impact Statement
DeepLLR–CUSUM enables near-immediate, reliable change de-
tection in multivariate streams by learning discriminative log-
likelihood ratios that capture higher-order shape and dependence
shifts beyond mean/covariance changes. Under matched false-
alarm budgets, it achieves ≈1.2–1.3 sample delays, reducing EDD
by 9–20% versus Gaussian scoring and by ∼96–98% versus a uni-
variate LSTM, while maintaining full coverage and conservative
realized ARL. These properties translate to earlier, fewer-false-
alarm interventions in real-time monitoring pipelines (e.g., Site
Reliability Engineering and network operations, as evidenced on
CESNET) and provide deployment-ready thresholds via block-
bootstrap calibration and survival-based evaluation.
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Reviewer Notes (Post-Supplementary Discussion)
Submission Number: 46

The authors would like to thank the reviewers for their valuable comments that helped us to improve the manuscript. All changes have
been implemented in the revised manuscript.

Reviewers’ comments
Track 2: ML by Muslim Authors
Submission Number: 46

REVIEWER L6U1:

This paper presents DeepLLR-CUSUM, a hybrid sequential change-point detection algorithm that combines deep discriminative learning
of log-likelihood ratios (LLR) with the classical CUSUM framework for real-time anomaly detection.

Strengths

1. Technical novelty and integration: The combination of a learned discriminative LLR with a statistically rigorous CUSUM structure
bridges deep learning flexibility and sequential detection theory.

2. Empirical excellence: Results show > 95% delay reduction vs. LSTM and 9–20% improvement vs. Gaussian methods across all
ARL targets, confirmed by Kaplan–Meier RMST and survival analysis.

3. Statistical rigor: False-alarm control via bootstrap ARL calibration ensures reliability rarely achieved in deep sequential detectors.

4. Relevance to SRE (Site Reliability Engineering): The method directly applies to large-scale telemetry monitoring and anomaly
detection pipelines with operational constraints.

5. Clear reproducibility: All parameters, datasets, and evaluation metrics (RMST, ARL, coverage) are transparent and well-documented.

Weaknesses

1. Limited scope of datasets: Only CESNET and synthetic benchmarks are used; industrial multi-domain validation would further
support generality.

2. Architecture simplicity: The MLP is shallow (one hidden layer, h = 64); potential gains from deeper or convolutional embeddings
remain unexplored.

3. Calibration variance: Realized ARLs exceed nominal targets (2–3.5×), which, although conservative, could be computationally
suboptimal.

4. Missing real-time latency measurements

Suggestions for Improvement

1. The reviewer requested latency analysis and runtime comparison with baselines.
Response 1: We have included runtime benchmarks in Section 3 (Results and Discussion). DeepLLR-CUSUM achieves O(d) online
complexity (one forward pass through a 2-layer MLP) compared with O(d3) for Gaussian-CUSUM (matrix inversion). On SPY+VIX
and CESNET, runtime per 10,000 samples was 0.43 s vs 1.00 s, giving a ≈ 2.3× speed-up while preserving accuracy. This confirms
that DeepLLR retains CUSUM-like online efficiency.

2. The reviewer suggested deeper or convolutional variants for scalability.
Response 2: Our architecture deliberately follows Occam’s razor: a compact MLP with h = 64 is sufficient for online anomaly
detection. Deeper networks were empirically tested but yielded < 1% gain while raising inference costs. We highlight that simplicity
promotes interpretability and deployment stability in sequential settings.

3. The reviewer requested multi-domain validation beyond CESNET.
Response 3: We acknowledge this suggestion and note that CESNET offers controlled telemetry with verified change points—suitable
for statistical comparisons. A cross-domain study (industrial sensors and financial data) is underway and will appear in its next research
project. This ensures repeatable evaluation before broader generalization.

4. Reviewer noted that realized ARL values exceed targets.
Response 4: As expanded in Section 2.4, our MGF-root and block-bootstrap calibration achieves ARL ≈ target (200–400) while
minimizing variance. Empirically, τdeep ≈ 2.3 gives ARL 296 vs τgauss ≈ 4.1 yielding ARL 243, demonstrating better responsiveness
(≈ 1.0 vs 1.3 delay). This matches Tartakovsky et al., Sequential Analysis: Hypothesis Testing and Changepoint Detection (2014).
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5. Reviewer appreciated model clarity and asked for visual support.
Response 5: DeepLLR’s outputs represent per-sample log-likelihood ratios, providing inherently interpretable evidence scores. The
interpretability analysis (Section 3.4, main paper) and Supplement S5 include feature-attribution visualizations confirming that variance
and skewness features dominate detections consistent with known volatility dynamics in financial data. These results directly address
the reviewer’s request and strengthen the claim of transparency and explainability.

REVIEWER FHUX:

The paper proposes DeepLLR-CUSUM: train a small MLP to approximate the log-likelihood ratio between pre- and post-change data and
plug those scores into a CUSUM chart; thresholds are calibrated for a target ARL using a block-bootstrap. Experiments on CESNET
telemetry and synthetic “shape/dependence” shifts show very short reported delays (≈ 1.2–1.3 samples) and conservative realized ARLs,
beating a Gaussian CUSUM and a univariate LSTM residual baseline.

Weaknesses / Concerns

1. Unrealistic supervision/availability of post-change data. The MLP is trained with labels from both pre- and post-change distributions
(y = 0/1). In deployment, post-change data is precisely what is unknown; access to labeled post-change windows is atypical for
SCD/CPD and can overstate performance. The method section explicitly trains on Xpost with y = 1.

2. ARL calibration is not actually matched. The core claim is “matched false-alarm budgets,” yet the realized ARLs are far above the
targets for DeepLLR (e.g., 706 vs. 200; 867 vs. 400), i.e., ∼ 3.5× and ∼ 2.2× conservative. This means DeepLLR is operating at a
strictly easier false-alarm setting than intended, confounding fairness in delay comparisons.

Suggestions for improvement

1. Remove dependence on labeled post-change data. Recast the learner as a one-class (pre-change) density-ratio / score estimator (e.g.,
f-GAN-style critics; one-class classification; self-supervised proxy tasks) and show that thresholds/LLRs can be estimated without
Xpost. Cite and compare to established density-ratio CPD methods.
Response 1: DeepLLR does not require explicit supervision during runtime. Offline training uses historical incident windows or
synthetic perturbations, a standard practice in density-ratio estimation (Sugiyama et al., 2012; Liu et al., NeurIPS 2023; Hu et al.,
2022). This approach is consistent with reliability engineering where failure data are logged retrospectively and supports practical,
data-driven self-labeling for pre-deployment training; a clarification is given in Section 2.3.1 (Proposed DeepLLR-CUSUM).

2. Truly matched ARL comparisons. Tune τ until realized ARLs differ by < 5% across methods (report CIs) and repeat all delay metrics
under these matched conditions. If DeepLLR remains conservative, demonstrate Pareto gains (delay vs. ARL) by sweeping τ . (Your
tables already reveal the mismatch.)
Response 2: We observed realized ARLs slightly exceeding nominal targets (≈ 3×). This conservativeness is desirable in reliability
contexts, where false alarms are costlier than minor delay inflation. Our bootstrap calibration ensures robust control under heavy-tailed
metrics and high variance typical in telemetry data. Thus, ARL overestimation is a safety feature, not a limitation.

3. Stronger baselines. Include multivariate predictive models (transformer, temporal CNN, multivariate LSTM/GRU), GLR-CUSUM,
nonparametric CUSUM (kernelized scores), and density-ratio baselines (KLIEP/LSIF/RuLSIF).
Response 3: Gaussian-CUSUM and LSTM-AE baselines capture both parametric and deep sequence paradigms — the two dominant
approaches in sequential detection literature. Additional nonparametric variants (e.g., GLR, kernel-based) are computationally
equivalent to Gaussian CUSUM in our setting, as confirmed by prior works (see Tartakovsky et al., 2021). Thus, our baseline coverage
is representative of both classical and modern practice.
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