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ABSTRACT

External information may improve predictive accuracy and uncertainty in medi-
cal image recognition. For example in oral lesion recognition, some lesion types
are implausible to occur at certain anatomical locations. We propose a strategy
to induce prior knowledge about such correlations using an additional loss term
that optimizes for plausible lesion types given an anatomical location. Our results
suggest an improvement in model calibration, a reduction in the predicted num-
ber of implausible classes, and improved uncertainty estimation for implausible
predictions.

1 INTRODUCTION

Expert clinicians use prior knowledge on the distribution of lesion types to diagnose oral lesions in
addition to the visual features of a case. One such crucial information is the anatomical location of
the lesion. There are certain lesion types that rarely occur in certain anatomical locations. In limited
data settings, the observed class distribution does not reflect the real-life distribution and thus the
observed correlation structure between anatomical site and lesion type is biased. This leads deep
learning models to predict implausible classes, or never predict some lesions for some anatomical
site.

The current work focuses on methods to incorporate expert knowledge about the correlation structure
between anatomical locations and lesion types into the model. Specifically, the extreme case where
certain lesion types are implausible to occur at certain anatomical locations (See Fig. 2 in appendix).
Furthermore, we investigate the implication of the prediction uncertainty using the approximate
Bayesian method, Monte Carlo DropConnect (MC-DropConnect) (Mobiny et al., 2021).

Contributions of this work is a general method to incorporate expert knowledge during training.
The proposed method has been shown to effectively reduce the number of implausible predictions
and improve different metrics compared to the baseline method. Furthermore, our experiments
demonstrate that the method yields better uncertainty estimates for implausible predictions.

2 METHOD

The MC-DropConnect setting approximates Bayesian inference by activating dropout and its variant
DropConnect layers at training and inference time. As a result, a different subset θt of the network’s
weights is activated at each forward pass in the network and allows to sample the model posterior
distribution for uncertainty quantification.

Given a dataset D = (x,y) where x and y represent the input image and corresponding target vector,
respectively. We define a neural network M that predicts output probabilities ŷ = Mθt(x). To
account for anatomical constraints, we construct a set of implausible lesions ω given the anatomical
site of the lesion present in the image based on the prior external knowledge shown in Fig. 2. To
train the model, in addition to the cross-entropy loss (CE), we add a penalization term that computes
mean squared error (MSE) between the output probabilities ŷ and one-hot encoded target-vector y
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Figure 1: Reliability plot comparing our method and the baseline. The left panel is the confidence
histogram, the right panel is the calibration curve along with Expected Calibration Error (ECE). We
observe that ECE is substantially reduced for our method.

only for implausible lesion types given in ω. The penalization term is defined as:

LMSE =
1

N

N∑
i=1

C∑
c=1

(yi,c − ŷi,c)
2 ∗ 1(c∈ωi),

where C is the number of classes and N is the number of samples. We note that the set of implausible
lesion ω changes per sample based on the anatomical location of the lesion. Finally, the loss function
of our model can be written L = LCE + λLMSE where λ is the weight factor.

3 EXPERIMENTS AND RESULTS

Dataset The dataset includes 2700 images featuring 16 distinct oral lesion types, each tagged with
an anatomical location label. A matrix of plausible anatomical locations for each class was created
by consulting with oral pathologists and literature shown in Fig. 2. It can be seen that most lesion
types can occur at multiple anatomical sites, and three of them are linked to a unique anatomical
site. Unfortunately, we have chosen not to release the dataset publicly due to privacy concerns.

Discussion of results Table1 shows a comparison between a baseline model and four versions of
the proposed method with different loss weights λ ∈ (5, 10, 30, 50). One hundred stochastic for-
ward passes were considered to sample the model posterior and compute different metrics for each
experiment. Implausible predictions represent the number of predictions of a lesion type incoherent
with the anatomical site visible in the image. The number of implausible predictions is mainly de-
creased, and calibration is improved for high weights associated with the penalization term. Mutual
information can be interpreted as a measure of model uncertainty, one should note the higher mutual
information values for implausible predictions by our method compared to the baseline. It shows an
improved quality of uncertainty estimation induced by the penalization term. Finally, Fig. 1 shows
a significant improvement in the model calibration averaged over all the classes.

Table 1: Comparison of baseline and our methods with different values of λ. MI stands for Mutual
Information, SBS for Scaled Brier Score and ECE stands for Expected Calibration Error. The details
about different metrics can be found in Appendix A.7.

Methods Implausible preds (↓) MI for implausible preds (↑) SBS (↑) ECE (↓)

Baseline (λ = 0) 13/622 0.10 0.690 0.23
Ours (λ = 5) 11/622 0.16 0.696 0.19
Ours (λ = 10) 8/622 0.15 0.715 0.20
Ours (λ = 30) 11/622 0.13 0.718 0.15
Ours (λ = 50) 8/622 0.15 0.711 0.18

4 CONCLUSION

In this work, we presented a method to incorporate expert knowledge into deep learning models
through a penalization term. We demonstrate that it can improve model performance by decreasing
the number of predictions incoherent with external domain knowledge. Additionally, our method
seems to have a beneficial effect on the training by improving uncertainty estimation and calibra-
tion for oral lesion recognition tasks. This approach can be extended to other tasks where similar
correlation structures are observed.
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A APPENDIX

A.1 THE RELATIONSHIP BETWEEN MC-DROPCONNECT AND OUR METHOD

It is important to note that using MC-DropConnect is not necessary for our method. The main
purpose of employing the approximated Bayesian method is to quantify uncertainty in lesion classi-
fication and be able to see the effect of our proposed method on uncertainty quantification. To serve
this purpose, other uncertainty quantification methods can also be used with our method. The re-
duction of implausible predictions is directly associated with high certainty within plausible classes
given an anatomical site of the lesion.

A.2 CHOICE OF METRICS AND POTENTIAL ALTERNATIVES

The metrics chosen in our paper aim to show an improvement in uncertainty quantification in the
model, rather than one in accuracy. This is because reducing the number of implausible predictions
may not necessarily result in increased accuracy, since some wrong predictions are still possible
among the plausible classes given an anatomical site. Due to space constraints, we only report the
most relevant metrics, but it is also important to monitor accuracy and other classification metrics to
fully assess the method and the effect of the λ hyperparameter on the model’s performance.

The Expected Calibration Error was picked as a relevant metric for its strong connection with uncer-
tainty quantification and interpretability of the model. A lower ECE indicates higher confidence in
the model’s predictions. In a study by Maier-Hein et al. (2022), the medical community expressed
the need for additional calibration metrics to be included in scientific literature. Moreover, the Scaled
Brier Score (SBS) is presented as a means to evaluate the balance between the discrimination power
and calibration of a classifier. Discrimination power refers to the classifier’s ability to accurately
distinguish between different lesions, while calibration measures how well its predicted probabili-
ties align with the observed probabilities. The SBS provides insights into this balance, allowing for
a comprehensive evaluation of the classifier’s performance in terms of accurate classification and
well-calibrated probability estimates.

A.3 EFFECTS OF MODIFYING THE λ PARAMETER

The sensitivity analysis conducted on the λ parameter aims to determine the ideal balance between
the cross-entropy and mean squared error (MSE) losses. For instance, if λ values are too large, the
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neural network may primarily focus on avoiding implausible predictions without adequately learning
lesion classification.

In Table. 1, it is evident that the number of implausible predictions does not follow a linear relation-
ship with the λ parameter. It’s important to keep in mind that the count of implausible predictions
only considers the highest probability among all classes, without taking into account the reduced
softmax scores for implausible classes. On the other hand, SBS is directly calculated using the soft-
max scores and is optimal when λ is set to 30. This finding aligns with the imposed constraint and
strikes a good balance between discrimination and calibration for the classifier.

A.4 DATA COLLECTION AND SPECIFICS

The dataset was collected by oral pathologists as part of the routine clinical examination of patients
with oral lesions and is a part of their electronic health record. The images were captured using a
digital camera of varying quality, under dental clinic lighting. The ground truth labels are obtained
from pathology reports following the gold-standard diagnosis technique of biopsy or expert clini-
cian’s diagnosis. Due to the limitation of access to the oral cavity, images of specific anatomical
locations (e.g. palate) can only be taken in a limited number of ways. Further, images may contain
identifiable information about the patient (e.g., parts of eyes, skin color, dentition) and hence we,
unfortunately, are not able to provide an open dataset. Our protocol was approved by Institutional
Review Board.

Data leakage One of the key challenges in oral lesion classification is the issue of data leakage,
which occurs when the algorithm learns by using information from the data that should not be used
for the task at hand such as the shape of teeth etc. This can lead to overfitting and poor generalization
of the model. To avoid data leakage, we created clusters of images such that the images of the
same patient are kept in the same cluster. We make use of EXIF data from the images and other
information such as patient names, lesion types, and anatomical sites to make clusters of images.
We assign these clusters to either training or test sets to avoid data leakage.

A.5 CONSTRUCTION OF EXPERT KNOWLEDGE MATRIX OF IMPLAUSIBLE LESIONS (ωi)

An initial matrix was constructed after a comprehensive review of the literature on the reported oc-
currence of each type of oral lesion. The literature included peer-reviewed publications, pedagogical
textbooks, and other reports. This initial matrix was reviewed for correctness and completeness by
oral pathology experts. The final matrix is presented in Fig. 2. For each training and test sample, the
column of this matrix corresponding to the anatomical location of the lesion in the image is chosen
as the ωi.

A.6 TRAINING DETAILS

For all our experiments, we use an ImageNet Deng et al. (2009) pretrained efficientnet-b5 Tan &
Le (2019). We finetune the full network weights for 400 epochs using RMSprop optimizer with an
initial learning rate of 10−3. We use a dropout and dropconnect rate of 0.5.

A.7 METRICS

Brier score (Brier et al., 1950) is equivalent to an MSE between the predicted vector and the one-hot
encoded ground truth. The Scaled Brier Score (SBS) is a skill score that allows comparison with
a reference Brier score (BSref ) such as SBS = 1 − BS

BSref
. The reference was chosen to be a

non-informative model that outputs the marginal proportion of classes for every sample. The scaled
Brier score has the added advantage that it is not affected by the marginal distribution of the true
class.

Expected Calibration Error: Evaluating calibration consists of measuring the statistical consis-
tency between the predictive distribution and the observed proportion i.e. the accuracy of the pre-
dictive distribution. Expected Calibration Error is a binning method where the predictive probability
ypredi is computed and grouped into M bins b1, ..., bM . Then, calibration of the single bins is eval-
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uated by setting the average bin predictive probability:

pp(bm) =
1

|bm|
∑
s∈bm

ypreds

in relation with the observed proportions:

op(bm) =
1

|bm|
∑
s∈bm

1(argmax(ypreds) = argmax(ys))

The model is calibrated when pp(bm) = op(bm), the Expected Calibration Error gives a quantitative
evaluation defined by:

ECE =

M∑
m=1

|bm|
N

|pp(bm)− op(bm)|

Mutual Information (MI) is defined by the amount of information gained about the model param-
eters by receiving a test sample x and its corresponding true label y.

I(y, θ|x,D) = H(y|x,D)− Ep(θ|D)H(p(y|x, θ))

where H is the predictive entropy that can be approximated by Bayesian approximation using Monte
Carlo sampling

H(y|x,D) = −
∑
c

p(y = c|x,D) log p(y = c|x,D) ≈ −
∑
c

pMC(y = c|x) log pMC(y = c|x)

where pMC is the average of the predictive probability over T Monte Carlo forward passes. It yields

I(y, θ|x,D) ≈ H(y|x,D)−
∑
c

1

T

T∑
t=1

p(y = c|x, θt) log p(y = c|x, θt)

A.8 ADDITIONAL RESULTS

We show reliability plots for each anatomical site in Fig. 3 to 10. We observe that the expected
calibration error (ECE) is decreased for almost all anatomical sites except retromolar trigone as
shown in Fig. 9. It is known that ECE is sensible to the number of samples considered, which is
low for retromolar trigone location.
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Figure 2: Anatomical site and lesion occurrence plausibility. The black square represents the implau-
sibility of the lesion type to occur on the anatomical site. The white square represents plausibility.

Figure 3: Reliability plot for the buccal-mucosa anatomical site.
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Figure 4: Reliability plot for the floor of mouth anatomical site.

Figure 5: Reliability plot for gingiva anatomical site.

Figure 6: Reliability plot for the inner-lip anatomical site.

Figure 7: Reliability plot for the outer-lip anatomical site.
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Figure 8: Reliability plot for palate anatomical site.

Figure 9: Reliability plot for retromolar trigone anatomical site.

Figure 10: Reliability plot for tongue anatomical site.
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