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Abstract. Transfer learning has witnessed a recent surge of interest
after proving successful in multiple applications. However, it highly re-
lies on the quantity of annotated data. Constrained by the labor cost
and expertise, it is hard to annotate sufficient organs and tumors at
voxel level for medical image segmentation. Consequently, most bench-
mark datasets were collected for the segmentation of only one type of
organs and/or tumors, and all task-irrelevant organs and tumors were
annotated as the background. We aim to make use of these partially
but plentifully labeled datasets to boost the segmentation performance
of annotation-limited KiTS21 segmentation task. To this end, we first
construct a general medical image segmentation model that learns to
segment these partially labeled organs or tumors. Then we transfer its
pretrained weights to a specific downstream task, i.e., KiTS21. The pri-
mary experiments demonstrate the effectiveness of the proposed transfer
learning strategy.
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1 Introduction

Automatic kidney tumor segmentation in computed tomography images is one
of the most important tasks in the computer-aided diagnosis of kidney diseases.
Although deep learning has achieved great success in many medical applications,
kidney tumor segmentation still remains challenging due to its limited annota-
tions, which is a common issue for the most of medical image segmentation
tasks. Fortunately, there are more and more open-source benchmarks available
for the development of medical image segmentation algorithms. However, most
of them suffers from the partially labeled issue due to the intensive cost of an-
notations. To address this issue, zhang et al [7] proposed a dynamic on-demand
network (DoDNet) that learns to segment multiple organs and tumors by using
partially labeled datasets. This makes it more convenient to learn a single seg-
mentation network from the diverse labeled datasets. In this paper, we attempt
to transfer the weights pre-trained on partially labeled datasets to downstream
task. We conduct experiments on the KiTS21 dataset. The primary results have
demonstrated the effectiveness of the proposed transfer learning strategy.
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2 Methods

Our Method is heavily based on DoDNet [7] and nnUNet [5], the pipeline consist
of two part: first, we use dynamic head pre-train our backbone on Multi-Organ
and Tumor Segmentation (MOTS) [7] dataset, then transfer the pre-trained
weight on KiTS21 task, we illustrate the structure of our model in Fig.1. In the
downstream task, we don’t use dynamic filter generating and replace dynamic
head with a convolution layer.

Pre-trained on MOTS

Dynamic Filter
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I Dynamic Head

Transfer to KiTS21

Fig. 1. Pipeline of our proposed method. We use dynamic head pretrain a segmentation
network on several partially labeled datasets, and then transfer weight to KiTS21 task.

2.1 Training and Validation Data

MOTS is composed of seven partially labeled sub-datasets, involving seven organ
and tumor segmentation tasks (including LiTS19 [1], KiTS19 [4], and Medical
Segmentation Decathlon [6]). There are 1155 3D abdominal CT scans collected
from various clinical sites around the world, including 920 scans for training and
235 for test.

Because KiTS21 dataset contain KiTS19 dataset, so MOTS has overlapped
with KiTS21, therefore, we only use 210 cases have been used in MOTS pre-
train for fine-tune, according to MOTS, we choose 168 images for training and
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42 for validation. Notice, our final submission model are fine-tuned on all official
KiTS21 training set.

2.2 Preprocessing

Our pre-processing strategy is following nnUNet [5], we resample all cases to a
common voxel spacing of 0.78126 x 0.78125 x 0.78125, and train the network
with a patch size 128 x 128 x 128. The data augmentation methods include
scaling, rotations, brightness, contrast, gamma and Gaussian noise augmenta-
tions.

2.3 Proposed Method
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Fig. 2. Detailed network architecture, number on the blocks represent the channel size
of the outputs.

Network Architecture The main component of our framework is Residual 3D
U-Net. It use 3D convolutions, LeakyReLU nonlinearities and instance normal-
ization. Upsampling is performed via transposed convolution and downsampling
is performed with strided convolutions. The residual blocks of encoder are com-
posed of Conv-instnorm-Conv-instnorm-Conv-instnorm-LeakyReLLU. As shown
in Fig.2, the encoder have 4 stages, in each stage, we perform downsample at the
first residual block, then repeat this basic residual blocks (without downsample)
2, 3, 5 and 2 times, respectively. Inspire by [2], we use ASPP to capture objects
as well as useful image context at multiple scales. Different from encoder, The
residual blocks of decoder are composed of Conv-instnorm-LeakyReL.U-Conv-
instnorm, which are similar to [3]. These residual blocks implemented in every
stages of decoder only once.
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Loss Function We train the model with the combination of dice loss and
cross entropy loss. For the two Hierarchical Evaluation Classes (HECs) Kidney
and Masses and Kidney Mass, we design a HECs-based cross entropy loss to
optimize it. We consider HECs as the foreground and the rest as the background,
then calculating the cross entropy loss for Kidney and Masses and Kidney
Mass respectively. Finally, these two kind of HECs-based cross entropy loss was
multiplied by the weights of 0.1 and 0.3 then added to the original cross entropy
loss.

Strategy The stochastic gradient descent (SGD) algorithm with a momentum
of 0.99 was adopted as the optimizer. In order to reduce the time consumed in
the ablation experiment, all result we reported are training 100 epochs using
the nnUNet framework. The learning rate was initialized to 0.01 and decayed
according to a polynomial policy Ir = Iry,; x (1 — £)%9, where the maximum
epoch K was set to 100. Our final submitted model will use 5-fold cross-validation

and train 1000 epochs.

3 Results

Table 1. Performance of different methods. ’SD’ means Surface Dice. Kidney, masses
and tumor represent HECs Kidney and Masses, Kidney Mass and Tumor, re-
spectively. Notice, all methods are training on nnUNet framework with 100 epochs.

‘ Dice_kidney ‘ Dice_masses ‘ Dice_tumor ‘ SD _kidney ‘ SD_masses ‘ SD_tumor
0.9405 ‘ 0.7454 ‘ 0.7162 ‘ 0.8898 ‘ 0.6026 ‘ 0.5821

nnUNet

Ours 0.9513 0.7953 0.7663 0.9178 0.6901 | 0.6592

We use KiTS21’s official code to generate 'groups’ of sampled segmentation
and evaluate our predictions. The volumetric Dice coefficient and the Surface
Dice are uses for evaluation. Table 1 demonstrated the superior performance of
our method over nnUNet baseline, and some examples of our prediction results
is depicted in Fig. 3.

4 Discussion and Conclusion

In this paper, we described a two-stage semantic segmentation pipeline for kid-
ney and tumor segmentation by using dynamic filter generating and multiple
partially labeled datasets pre-train. Experiment results demonstrated the value
of DoDNet and the MOTS dataset by successfully transferring the weights pre-
trained on MOTS to KiTS21 tasks. It suggests that the a pre-trained 3D network
is conducive to other small-sample 3D medical image segmentation tasks.
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Fig. 3. Visualization of segmentation results of case 151 (the first row) and 175 (the
second row)
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