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ABSTRACT

This paper proposes a new regularization algorithm referred to as
a macro-block dropout. The overfitting issue has been a difficult
problem in training large neural network models. The dropout tech-
nique has proven to be simple yet very effective for regularization
by preventing complex co-adaptations on training data. In this work,
we observe that among hidden outputs, the correlations between
geometrically close elements are usually stronger than those be-
tween distant elements. Motivated by this observation, we define
a macro-block that contains multiple elements of the hidden output
layer in order to reduce co-adaptations more effectively. Rather
than applying dropout to each element, we apply random dropout
to each macro-block. In our experiments using Recurrent Neural
Network-Transducer (RNN-T) and Attention-based Encoder De-
coder (AED) models, this simple algorithm has shown relatively
4.33 % and 5.99 % Word Error Rate (WER) improvements over the
conventional dropout approach on LibriSpeech test-clean and
test-other. The Keras layer implementation of this algorithm
will be released as open-source.
Index Terms: neural-network, regularization, macro-block, dropout,
end-to-end speech recognition

1. INTRODUCTION

Deep learning technologies have significantly improved speech
recognition accuracy recently [1]. There have been series of re-
markable changes in speech recognition algorithms during the past
decade. These improvements have been obtained by the shift from
Gaussian Mixture Model (GMM) to the Feed-Forward Deep Neu-
ral Networks (FF-DNNs), FF-DNNs to Recurrent Neural Network
(RNN) such as the Long Short-Term Memory (LSTM) networks [2].
Thanks to these advances, voice assistant devices such as Google
Home [3], Amazon Alexa and Samsung Bixby are widely used at
home environments.

Recently tremendous amount of research has been conducted for
switching from a conventional speech recognition system consisting
of an Acoustic Model (AM), a Language Model (LM), and a decoder
based on a Weighted Finite State Transducer (WFST) to a complete
end-to-end all-neural speech recognition system [4]. A large num-
ber of these end-to-end speech recognition systems are based on the
Attention-based Encoder Decoder (AED) [4] and the Recurrent Neu-
ral Network-Transducer (RNN-T) [5] algorithms. These complete
end-to-end systems have started outperforming conventional WFST-
based decoders for large vocabulary speech recognition tasks [6].
Further improvements in these end-to-end speech recognition sys-
tems have been possible thanks to a better choice of target units such

as Byte Pair Encoded (BPE) and unigram language model [7] sub-
word units, and an improved training methodologies such as Mini-
mum Word Error Rate (MWER) training [8].

In training such all neural network structures, overfitting has
been a major issue. For improved regularization in training, various
approaches have been proposed [9]. Data-augmentation has been
also proved to be useful in improving model training [3, 10, 11]. The
dropout approach [12] has been applied to overcome this issue in
which both the input and the hidden units are randomly dropped out
to regularize the network. In the case of the input dropout, the input
feature elements are masked with a certain fixed probability of p, and
the remaining input feature elements are scaled up by 1.0/(1.0−p).
This dropout approach has inspired a number of related approaches
[13, 14, 15]. In DropBlock [16], it has been argued that dropping out
at random is not effective in removing semantic information in input
images because nearby activations contain closely related informa-
tion. Motivated by this, they apply a square mask centered around
each zero position.

In this paper, we present a new regularization algorithm referred
to as macro-block dropout We conjecture that in the hidden out-
puts of neural network layers, the correlations between geometri-
cally close elements are stronger than those between distant ele-
ments. We define a macro-block that contains multiple elements of
the hidden output layer in order to reduce co-adaptations more ef-
fectively. Rather than applying dropout to each element, we apply
random dropout to each macro-block.

Our macro-block dropout approach is motivated by an idea sim-
ilar to DropBlock [16]. However, our macro-block dropout is unique
in the following aspects. First, DropBlock is only targeted for Convo-
lutional Neural Networks (CNNs). They have not considered apply-
ing their algorithm to the output of RNNs. In our work, we focus on
improving end-to-end speech recognition models based-on RNNs.
As will be discussed Sec. 5, we observe that the effect of Macro-
block dropout is slightly better if the macro-block dropout pattern is
kept the same across the time. This masking pattern is illustrated
in Fig. 2b. To the best of our knowledge, our work is the first in
applying bigger chunks of masks consisting of multiple elements to
RNNs. Second, instead of applying the scaling approach used in the
original dropout in (1) or the scaling method based on the count of
masks of ”one” values in DropBlock, we scale the output using the
equation (5). As will be discussed in Sec. 3.2, this scaling approach
is more effective than other scaling approaches for the macro-block
dropout case. In our experiments using an RNN-T [5] in Sec. 5, this
simple algorithm has shown a quite significant improvement over the
conventional dropout approach.
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Fig. 1: The relationship between a 3-dimensional tensor
represented by a space, its elements, and macro-blocks: This tensor

has the shape of dx = (15, 9, 6). After re-partitioning by
macro-blocks, it has the shape of d(par) = (3, 3, 3). The shape of

each macro-block is (5, 3, 2). Macro-blocks to be dropped out are
marked in blue color.

2. RELATED WORKS

Dropout is a simple regularization technique to alleviate the overfit-
ting problem by preventing co-adaptations [12]. When the shape of
the output of a neural network layer is dx, we create a random mask
tensor m with the same shape dx. Each elementm ∈m follows the
Bernoulli distributionm ∼ Bernoulli(1− p), where p is the dropout
rate. Given an input x, the dropout output xout is obtained by the fol-
lowing equation:

xout =
x�m

1− p , (1)

where � is a Hadamard product. The scaling by 1
1−p

is applied to
keep the sum of elements the same through this masking process.
Dropout has been turned out to be especially useful in improving
the training of dense network models for image classification [17],
speech recognition [18], and so on. This dropout approach inspired
many other related approaches such as DropConnect [13], drop-
path [14], shake-shake [15], ShakeDrop [19], and DropBlock [16]
regularizations.

The DropBlock approach described in [16] has similar motiva-
tion to our macro-block dropout approach. In [16], they observe that
dropping out a tensor containing an input image at random is not
effective in removing semantic information because nearby activa-
tions contain closely related information. They conjecture that the
same reasoning is valid for hidden layers. In DropBlock, the zero
position is selected in the same way as the DropOut. However, for
each zero position, a spatial square mask with the center at that zero
position is created. It has been reported that DropBlock significantly
outperforms the baseline dropout.

3. MACRO-BLOCK DROPOUT

In this section, we rigorously define macro-blocks in different di-
mensions in Sec. 3.1. We describe the macro-block dropout algo-
rithm in detail in Sec. 3.2.
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(a) Application of Two-dimensional macro-block dropout
to the output of an RNN.
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(b) Application of One-dimensional macro-block dropout
to the output of an RNN.

Fig. 2: The macro-block dropout approach applied to the output of
a Recurrent Neural Network (RNN) layer: (2a) Two-dimensional
and (2b) One-dimensional macro-block dropout cases. Each tiny
rectangle defined by the grid corresponds to each element of the

RNN output. Larger rectangular chunks are macro-blocks. Region
in the light blue color represent macro-blocks to be dropped out.

3.1. Definition of a macro-block

Let us consider a D-dimensional tensor x that is output activations
of a neural-network layer. Suppose that the shape of x is given by:

dx = (N1, N2, · · · , ND). (2)

Macro-blocks are constructed by equally partitioning this space de-
fined by (2) along each dimension into the following shape:

d(par) = (P1, P2, · · · , PD), (3)

with the following constraint:

Pd ≤ Nd. for 1 ≤ d ≤ D. (4)

Fig. 1 shows an example of a three-dimensional case. In this exam-
ple, the shape of x is dx = (15, 9, 6). The region defined by each
grid corresponds to each element of a tensor x. After re-partitioning
this space defined by dx into macro-blocks, we observe that d(par) =
(3, 3, 3) as shown in Fig. 1. The shape of each macro block is
(6, 3, 2) in this example.

This macro-block concept can also be applied to Recurrent Neu-
ral Networks (RNNs). Fig. 2 illustrates macro-blocks applied to
the output of an RNN. The output of an RNN layer has the shape
of (unit size, number of time steps). Fig. 2a shows the case when
this two-dimensional region is partitioned by d(par) = (4, 4). We
may apply this two-dimensional macro-blocks to RNNs. However,
as observed with the baseline dropout [20], we observe that speech
recognition accuracy is better if mask patterns remain the same
along the time axis. If the macro-block masks do not change along
the time axis, the mask pattern becomes a one-dimensional case
as shown in Fig. 2b. The WERs using an RNN-T model with
the one-dimensional and the two-dimensional macro-block dropout
approaches are summarized in Table 1. The RNN-T model and
experimental configuration for obtaining these WERs are described



Algorithm 1 Macro-block Dropout

1: Input: output activations of a layer: x, the shape after partitioning: d(par), dropout rate p, mode
2: if mode == Inference then
3: return x
4: end if
5: Creates a random tensor r with a shape of d(par):
6: For each element r of r, r ∼ Bernoulli(1− p).
7: Creates a masking tensor m by resizing r using the nearest-neighbour method to match the dimension of x.
8: Applies the mask:
9: xm = x�m.

10: Obtains the output xout by scaling xm :
11: xout =

∣∣∣ ∑
all elements x∑

all elements x�m

∣∣∣xm.

in detail in Sec. 5. From this result, we conclude that the one-
dimensional macro-block dropout approach is more effective than
two-dimensional approach for RNNs. In obtaining this result, we
choose the partition shape of d(par) = (4) for the one-dimensional
case and d(par) = (4, 4) for the two-dimensional case. These parti-
tion shapes result in the best WERs for one- and two- dimensional
macro-block dropout cases respectively in our experiments on the
LibriSpeech corpus experiments.

Table 1: Word Error Rates (WERs) with the RNN-T model shown
in Fig. 3a using the one-dimensional macro-block dropout of
d(par) = (4), and the two-dimensional macro-block dropout of

d(par) = (4, 4). In these experiments, the dropout rate of 0.2 is used
since the best WER in each case is obtained at this rate.

Test Set
Baseline

Dropout

Macro-Block Dropout

1-D

d(par) = (4)

2-D

d(par) = (4, 4)

test-clean 3.95 % 3.78 % 3.92 %

test-other 12.23 % 11.48 % 11.50 %

Average 8.09 % 7.63 % 7.71 %

3.2. Application of dropout to macro-blocks

Having defined the required terms in Sec. 3.1, we proceed to explain
the algorithm in detail in this section. The entire algorithm is sum-
marized in Algorithm 1. During the inference time, macro-block
dropout is not applied as the original dropout. During the training
time, we create a random tensor r whose shape is d(par). This tensor
is created from the Bernoulli distribution with the probability of one
given by 1 − p, where p is the dropout probability. This r is then
resized to match the shape of the input x. For simplicity, this resize
operation is performed using the nearest-neighborbood approach.

The scaling factor r is given by the following equation:

r =

∣∣∣∣ ∑
all elements x∑

all elements x�m

∣∣∣∣ . (5)

We apply the absolute value operation in (5), because the sign of the
numerator and the denominator of (5) may be different when x is the
output of an RNN such as an LSTM or a GRU. More specifically, the
hidden output of an LSTM is given by the following equation [2, 21]:

h[m] = o[m] � σh(c[m]), (6)

where m is a time index, � is the Hadamard product, σh(·) is the
hyperbolic tangent function, o[m] is the output-gate value, and c[m]

is the cell value, respectively. From (6), it is obvious that h[m] may
have both positive and negative values, since the range of of σh is be-
tween -1 and 1. In our speech recognition experiments, it is observed
that performance is slightly worse if this absolute value operation is
not applied in (5).

We observe that the scaling in (5) is more effective than a simple
scaling of 1

1−p
used in the baseline dropout in (1). Table 2 summa-

rizes WERs obtained with the conventional scaling of 1
1−p

and the
scaling in (5) on the LibriSpeech test-clean and test-other
sets. We use an RNN-T model that will be described in Sec. 5.
For macro-block dropout, we employ the one-dimensional approach
with the partition shape of d(par) = (4). The experimental configu-
ration in obtaining these results will be described in Sec. 5.

Table 2: Word Error Rates (WERs) with the RNN-T model shown
in Fig. 3a using the scaling suggested by (5) and 1

1−p
. The dropout

rate is 0.2 and the partition shape for the 1-dimensional
macro-block dropout is d(par) = (4).

Test Set
Baseline

Dropout

1-D Macro-Block Dropout

Scaling

using (5)

Scaling

using 1
1−p

test-clean 3.95 % 3.78 % 4.04 %

test-other 12.23 % 11.48 % 11.50 %

Average 8.09 % 7.63 % 7.77 %

4. SPEECH RECOGNITION MODEL

Speech recognition is a task of finding the sequence-to-sequence
mapping from an input sequence of acoustic features to a output se-
quence of labels [22]. Let us denote the input and output sequences
by x[0:M ] and y0:L as shown below:

x[0:M ] =
[
x[0], x[1], x[2], · · · , x[M−1]

]
, (7a)

y0:L =
[
y0, y1, y2, · · · , yL−1

]
, (7b)

where M and L are the lengths of the input acoustic feature se-
quence and the output label sequence, respectively. The sequence
notation adopted in this paper including (7) follows the Python ar-
ray slice notation. In this paper, by convention, we use a bracket to
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Fig. 3: The structures of (3a) the Recurrent Neural
Network-Transducer (RNN-T) speech recognizer and (3b) the

Attention-based Encoder Decoder (AED) speech recognizer used in
this work.

represent a periodically sampled sequence such as the acoustic fea-
ture, and use a subscript to represent a non-periodic sequence such
as the output label.

4.1. RNN-T and AED models

For speech recognition experiments, we employed an RNN-T speech
recognizer and an Attention-based Encoder Decoder (AED), whose
structures are shown in Fig. 3a and 3b, respectively. Our speech
recognition system is built in-house using Keras models [23] im-
plemented for Tensorflow 2.3 [24]. The RNN-T structures have
three major components: an encoder (also known as a transcrip-
tion network), a prediction network, and a joint network. In our
implementation, the encoder consists of six layers of bi-directional

LSTMs interleaved with 2:1 max-pooling layers [25] in the bottom
three layers. Thus, the overall temporal sub-sampling factor is 8:1
because of these three 2:1 max-pooling layers. The prediction net-
work consists of two layers of uni-directional LSTMs. The unit size
of all these LSTM layers is 1024. Macro-block dropout is applied to
the output of each LSTM layer in the encoder except the top-most
layer and to the output of each LSTM layer in the prediction net-
work. y(embed)

l−1 [m] is a linear embedding vector with the dimension of
621 obtained from the output and fed back into the prediction net-
work. The AED model has three components as shown in Fig. 3b: an
encoder, a decoder, and an attention block. In our implementation,
the encoder of the AED model is identical to the encoder structure
of the RNN-T model explained above. We use a single layer of uni-
directional LSTM whose unit size is 1024.

The loss employed for training the RNN-T model is a combi-
nation of the Connectionist Temporal Classification (CTC) loss [26]
applied to the encoder output and the RNN-T loss [5] applied to the
full network that is represented by the following:

LCTC-RNN-T = LCTC + LRNN-T, (8)

which is inspired by the work in [27]. We refer this loss in (8) to as
the joint CTC-RNN-T loss. For the AED model, we employ the joint
CTC-CE loss, which is given by:

LCTC-CE = LCTC + LCE, (9)

which has been also used in our previous works [28, 22]. For a
better stability during the training, we use the gradient clipping by
global norm [29], which is implemented in Tensorflow [24] as the
tf.clip by global norm API.

4.2. Improved shallow-fusion with a language model

End-to-end speech recognition models in Sec. 4.1 are trained us-
ing only paired speech-text data. Compared to traditional AM-LM
approaches where an LM is often trained using a much larger text
corpus possibly containing billions of sentences [30], the end-to-
end speech recognition model sees much limited number of word
sequences during the training phase. To get further performance
improvement, various techniques of incorporating external lan-
guage models such as shallow-fusion [31], deep-fusion [32], and
cold-fusion [33] have been proposed. Among them, in spite of its
simplicity, shallow-fusion seems to be more effective than other
approaches [34]. In shallow-fusion, the log probability from the
end-to-end speech recognition model is linearly interpolated with
the probability from the language model as follows:

log psf
(
yl
∣∣x[0:m]

)
= log p

(
yl
∣∣x[0:m], ŷ0:l

)
+ λ log plm

(
yl
∣∣ŷ0:l) , (10)

where plm
(
yl
∣∣ŷ0:l) is the probability of predicting the label yl from

the LM, and the p
(
yl
∣∣x[0:m]

)
is the posterior probability obtained

from the end-to-end speech recognition model.
In [11], we proposed an improved version of this shallow fusion.

In this approach, we introduce another term to subtract the log prior
probability of each label obtained from the training database for the
speech recognition model. The motivation is that this prior proba-
bility might give too much bias in predicting the next label. This
improved shallow fusion is given by the following equation:

log psf
(
yl
∣∣x[0:m]

)
= log p

(
yl
∣∣x[0:m], ŷ0:l

)
− λp log pprior (yl) + λlm log plm

(
yl
∣∣ŷ0:l) ,

(11)



Table 3: Word Error Rates (WERs) with the RNN-T model shown in Fig. 3a using the baseline dropout and the one-dimensional
maro-block dropout approaches. In these experiments, the dropout rate of 0.2 is used since the best WER in each case is obtained at this rate.

Test Set
Baseline

Dropout

One-Dimensional Macro-Block Dropout

Number of Blocks

3 4 5 10

test-clean 3.95 % 4.11 % 3.78 % 3.88 % 3.94 %

test-other 12.23 % 11.57 % 11.48 % 11.52 % 11.50 %

Average 8.09 % 7.84 % 7.63 % 7.70 % 7.72 %

Table 4: Word Error Rates (WERs) with the Attention-based Encoder Decoder (AED) model shown in Fig. 3b using the baseline dropout
and the one-dimensional maro-block dropout approaches. In these experiments, the dropout rate of 0.2 is used since the best WER in each

case is obtained at this rate.

Test Set
Baseline

Dropout

One-Dimensional Macro-Block Dropout

Number of Blocks

3 4 5 10

test-clean 3.67 % 3.66 % 3.51 % 3.54 % 3.61 %

test-other 11.62 % 11.20 % 10.94 % 10.98 % 11.07 %

Average 7.65 % 7.43 % 7.23 % 7.26 % 7.34 %

where we have an additional term λp log pprior (yl) for subtracting
the prior bias that the model has learned from the speech recognition
training corpus. In our experiments, we use λp of 0.002 and λlm of
0.48 respectively.

5. EXPERIMENTAL RESULTS

Table 5: Word Error Rates (WERs) with the Attention-based
Encoder Decoder model shown in Fig. 3b with an improved

shallow fusion in (11) with a Transformer LM [35, 36].

Test Set
Baseline

Dropout

Macro-Block

Dropout

test-clean 2.44 % 2.37 %

test-other 7.87 % 7.42 %

Average 5.16 % 4.90 %

In this section, we explain experimental results using the macro-
block dropout approach with the RNN-T and the AED model de-
scribed in Sec. 4. For training, we used the entire 960 hours Lib-
riSpeech [37] training set consisting of 281,241 utterances. For eval-
uation, we used the official 5.4 hours test-clean and 5.1 hours
test-other sets consisting of 2,620 and 2,939 utterances respec-
tively. The pre-training stage has some similarities to our previous
work in [38]. In this pre-training stage, the number of LSTM lay-
ers in the encoder increased at every 10,000-steps starting from two
LSTM layers up to six layers. We use an Adam optimizer [39] with
the initial learning rate of 0.0003, which is maintained for the entire
pre-training state and one full epoch after finishing the pre-training

stage. After this step, this learning rate decreases exponentially with
a decay rate of 0.5 for each epoch. x[m] and yl are the input power-
mel filterbank feature of size 40 and the output label, respectively.
m is the input frame index and l is the decoder output step index.
We use the power-mel filterbank feature instead of the more com-
monly used log-mel filterbank feature based on our previous results
[38, 11]. For better regularization in training, we apply the SpecAug-
ment as a data-augmentation technique in all the experiments in the
paper [10].

In our experiments, we observe that with both the conven-
tional and the macro-block dropout approaches, the best Word
Error Rates (WERs) are obtained when the dropout rate p is close
to 0.2. Table 3 summarizes the experimental results with con-
ventional dropout and macro-block dropout approaches using the
RNN-T model. In the case of the macro-block dropout approach,
we conducted experiments with four different partition sizes with
the one-dimensional masking pattern as shown in Fig. 2b. For the
LibriSpeech test-other set, the best WER is obtained when
the number of blocks is four, even though there is not much vari-
ation in WERs depending on the number of blocks. As shown in
this table, macro-block dropout algorithm has shown relatively 4.30
% and 6.13 % Word Error Rate (WER) improvements over the
conventional dropout approach on LibriSpeech test-clean and
test-other. Table 4 shows the results with conventional dropout
and macro-block approaches using the AED model. We observe that
the performance improvement using the AED model in Table 4 is
similar to that using the RNN-T model in Table 3. We obtain 4.36
% and 5.85 % relative WER improvements on the same LibriSpeech
test-clean and test-other sets.

Finally, we apply the improved shallow fusion in 11 to further
improve the performance. Table 5 shows WERs obtained with the
AED model using the improved shallow fusion in (11) with a Trans-
former LM [35, 36]. As shown in this Table, macro-block dropout



shows 2.86 % and 5.72 % relative WER improvement on the Lib-
riSpeech test-clean and test-other sets.

6. CONCLUSIONS

In this paper, we described a new regularization algorithm referred
to as macro-block dropout. In this approach, rather than apply-
ing dropout to each element, we apply random mask to a bigger
chunk referred to as a macro-block. The scaling after masking is
also improved for better performance. In our experiments using
a Recurrent Neural Network- Transducer (RNN-T), this simple al-
gorithm has shown relatively 4.30 % and 6.13 % Word Error Rate
(WER) improvements over the conventional dropout approach on
LibriSpeech test-clean and test-other, which is even sig-
nificantly larger than the relative WER improvements of the conven-
tional dropout approach over the no-dropout case. In experiments us-
ing an Attention-based Encoder Decoder (AED) model, this macro-
block dropout approach shows relatively 4.36 % and 5.85 % Word
Error Rate (WER) improvements over the conventional dropout ap-
proach on the same LibriSpeech test-clean and test-other
sets. The Keras layer implementation of this algorithm will be re-
leased as open-source.
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