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Abstract

In recent years, deep reinforcement learning (RL) has shown its effectiveness in1

solving complex continuous control tasks like locomotion and dexterous manipula-2

tion. However, this comes at the cost of an enormous amount of experience required3

for training, exacerbated by the sensitivity of learning efficiency and the policy4

performance to hyperparameter selection, which often requires numerous trials of5

time-consuming experiments. This work introduces a Population-Based Reinforce-6

ment Learning (PBRL) approach that exploits a GPU-accelerated physics simulator7

to enhance the exploration capabilities of RL by concurrently training multiple8

policies in parallel. The PBRL framework is applied to three state-of-the-art RL9

algorithms – PPO, SAC, and DDPG – dynamically adjusting hyperparameters10

based on the performance of learning agents. The experiments are performed on11

four challenging tasks in Isaac Gym – Anymal Terrain, Shadow Hand, Humanoid,12

Franka Nut Pick – by analyzing the effect of population size and mutation mecha-13

nisms for hyperparameters. The results demonstrate that PBRL agents outperform14

non-evolutionary baseline agents across tasks essential for humanoid robots, such15

as bipedal locomotion, manipulation, and grasping in unstructured environments.16

The trained agents are finally deployed in the real world for the Franka Nut Pick17

manipulation task. To our knowledge, this is the first sim-to-real attempt for suc-18

cessfully deploying PBRL agents on real hardware. Code and videos of the learned19

policies are available on our project website.20

(a) Anymal Terrain (b) Shadow Hand (c) Humanoid (d) Franka Nut Pick

Figure 1: Simulated experiments are performed on four Isaac Gym benchmark tasks: (a) Anymal
Terrain, to teach a quadruped robot to navigate uneven terrain; (b) Shadow Hand, which involves
manipulating a cube to a desired orientation with a robot hand; (c) Humanoid, for bipedal locomotion;
and (d) Franka Nut Pick, where the goal is to grasp and lift a nut from a random location on a work
surface.
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1 Introduction21

Many domains have seen tremendous advancements of reinforcement learning (RL) applications in22

recent years, ranging from playing challenging games [31, 5] to learning high-dimensional continuous23

control in robotics [30, 24, 29]. Tasks such as dexterous manipulation [4], legged locomotion [22],24

and mobile navigation [16] have been learned using deep RL. A primary challenge in training RL25

policies is the need for large amounts of training data. RL methods rely on effective exploration to26

discover control policies, which can be particularly challenging when operating in high-dimensional27

continuous spaces [35]. Moreover, the performance of the learned policy is highly dependent on the28

tedious tuning of hyperparameters. Hyperparameter tuning can be a very time-consuming process,29

often requiring many manual trials to determine the best values for the specific task and the learning30

environment. One way to deal with the problem of data inefficiency is to train in simulation before31

transferring to reality [32, 2, 23]. However, the time required to train the policy in simulation increases32

significantly with the task complexity. For example, in [2], learning a block re-orientation task with a33

robot hand took around 14 days and enormous computing resources. In addition, policies trained34

in simulation often fail to perform on a real system due to discrepancies between the simulation35

and the real world. Recent advances in GPU-accelerated simulation, such as Isaac Gym [21, 11],36

have made it possible to run thousands of parallel environments on a single GPU, which reduces the37

training times significantly. However, successfully training RL policies still requires carefully tuned38

hyperparameters to explore efficiently.39

1.1 Related Works40

1.1.1 Massively Parallel Simulation41

The advent of GPU-based simulation has significantly improved simulation throughput by incor-42

porating massive parallelism on a single GPU [21, 19]. A number of recent works have exploited43

this parallelism to demonstrate impressive performance on challenging control problems using RL44

[11, 3, 27]. However, almost all recent works use the same algorithm, i.e. Proximal Policy Optimiza-45

tion (PPO) [28] to train RL policies; other common approaches include off-policy techniques, e.g.46

Soft Actor-Critic (SAC) [10] and Deep Deterministic Policy Gradient (DDPG) [20]. While simple47

and effective, all these algorithms require a range of hyperparameters that need to be tuned for each48

task to ensure sufficient exploration and stabilize training.49

1.1.2 Population-Based Reinforcement Learning50

Population-based approaches offer a promising solution to deal with exploration and hyperparameter51

tuning by training a set of policies as opposed to a single policy. Multiple agents can be used to52

collect diverse experiences that improve robustness and stabilize training by dynamically adapting the53

hyperparameters. Some prior works have shown remarkable results in employing these approaches54

to train deep RL policies in domains like strategy games and multi-agent interaction [34, 14, 9].55

However, there is almost no existing research investigating PBRL methods for robotics. This is due56

to the fact that the computational complexity and training time of these approaches increase linearly57

with the number of agents on CPU-based simulators like MuJoCo [33], requiring multiple worker58

machines with separate simulation instances to speed up data collection. Isaac Gym allows simulating59

thousands of robots in parallel, giving access to a vast amount of experience data, rendering it suitable60

to efficiently train a population of RL agents.61

Training various RL agents provides a mechanism for meta-optimization, utilizing the potential of62

both learning and evolution [1]. One successful example of PBRL methods is population-based63

training (PBT) [15], which allows training multiple policies concurrently to enhance the exploration64

capabilities of the agents in generating diverse behaviors. PBT trains a population of agents with65

different hyperparameters and uses a genetic algorithm to update the population periodically. Recently,66

DexPBT, a decentralized PBRL approach has been proposed to learn dynamic manipulation between67

two hand-arm systems using parallel simulations [26]. The authors developed a decentralized68

implementation to evolve agents in distributed computing environments using on-policy RL, achieving69

impressive results in dexterous manipulation. However, sim-to-real transfer has not been performed,70

highlighting the complexity of deploying policies on real systems.71

In contrast, this work targets a broader range of real-world tasks including locomotion and manip-72

ulation, and transfers the policy onto a real robot without any adaptation phase. In addition, the73
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Figure 2: PBRL framework used to learn robotic manipulation tasks through a combination of RL,
evolutionary selection, and GPU-based parallel simulations.

PBRL framework is successfully applied to both off-policy (SAC, DDPG) and on-policy (PPO) RL74

algorithms, analyzing the implications of critical design choices, i.e., the number of agents and the75

mutation mechanisms.76

1.1.3 Sim-to-Real Transfer77

Despite the calibration efforts to model the physical system accurately, simulation is still a rough78

approximation. The differences between the dynamics of simulated and real systems cause a “reality79

gap” that makes it unlikely for a simulation-trained policy to successfully transfer to a physical80

system. In literature, researchers have put a significant effort into diminishing this gap: to this aim,81

most of the approaches leverage domain randomization [24, 4, 3, 27, 8, 7] to expose the policy to82

a wide range of observation distributions in simulation, thus improving generalization onto a real83

system. Nevertheless, naive domain randomization might not be sufficient to completely attenuate84

the dynamics gap: for instance, [13] employs a specific network to mimic the real actuation system.85

Another technique in this context is policy-level action integrator (PLAI) [32], a simple yet effective86

algorithm aimed at compensating the sim-to-real dynamic discrepancies with an integral action,87

which proved to be paramount for a successful transfer.88

In this paper, we employ sim-to-real strategies to deploy a policy on a real system; to the best of89

the authors’ knowledge, this work represents the first instance of deploying PBRL agents on real90

hardware.91

1.2 Contribution92

This paper investigates a population-based reinforcement learning (PBRL) framework in robotics that93

allows the training of a population of agents by exploiting GPU-based massively parallel simulation94

to dynamically adjust the hyperparameters during training. We evaluate the PBRL framework on four95

complex tasks that require learning essential skills for humanoid robots: Anymal Terrain, Humanoid,96

Shadow Hand, and Franka Nut Pick (Figure 1), available in Isaac Gym [21]. The results show that97

better performance is achieved when training a population of agents compared to a single-agent98

baseline on all tasks. The comparison is provided across 3 RL algorithms (PPO, SAC, and DDPG),99

varying the number of agents in a population, and across different hyperparameter mutation schemes.100

Finally, the PBRL agents are deployed on a real Franka Panda robot for a Franka Nut Pick task,101

without any policy adaptation phase on the physical system. In summary, the main contributions of102

this work are:103

• a population-based RL framework that utilizes GPU-accelerated simulation to train robotic104

manipulation tasks by adaptively optimizing the set of hyperparameters during training;105

• simulations demonstrating the effectiveness of the PBRL approach on 4 tasks using 3 RL106

algorithms, including both on-policy and off-policy methods, investigating the performance107

w.r.t. the number of agents and mutation mechanisms;108

• sim-to-real transfer of PBRL policies onto a real Franka Panda robot;109
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• an open-source codebase to train policies using the PBRL algorithm.110

2 Methods111

This section describes the core concepts involved in the PBRL framework. The overall approach,112

illustrated in Figure 2, can be viewed as a multi-layered training process consisting of an inner113

optimization loop with RL and an outer loop of online evolutionary selection with population-based114

training. During training, the parameters of the agent’s policy are updated at a higher rate using RL115

than the hyperparameters defining the RL procedure.116

2.1 Reinforcement Learning117

The RL problem is modeled as a Markov Decision Process (MDP), where an agent interacts with118

the environment in order to maximize the expected sum of episodic rewards. Specifically, an MDP119

is defined as (S,A, T ,R, γ), where S is the set of states, A is the set of actions, T is the transition120

dynamics, i.e., T : S ×A → P(S), where P(S) defines the set of a probability distribution over S,121

R : S × A → R is the reward function, and γ ∈ [0, 1] represents the discount factor. The goal is122

formulated as learning a policy, either stochastic, πθ : S → DA, or deterministic, πθ : S → A, where123

DA represents a probability distribution over A and θ encapsulates the policy parameters, whose124

cardinality depends on the selected algorithm and network architecture. In this work, the policy is125

learned using the on-policy method PPO, or either of the off-policy methods SAC or DDPG. All126

these algorithms use an actor-critic architecture simultaneously learning the policy (actor) and the127

value function approximators (critics) Q : S ×A → R. The implementation of critics in SAC and128

DDPG relies on double Q-learning and n-step returns.129

To train the policy with PPO, a learning rate (LR) adaptation procedure is used based on a Kull-130

back–Leibler (KL) divergence starting from an initial value η0 [21]. At the end of each update131

iteration, the LR is increased by a factor of Kη when the KL divergence between the current policy132

and the old policy is below the specified threshold, or reduced by Kη if the KL divergence exceeds133

the threshold.134

In DDPG, the common practice involves adding a small noise to the deterministic actions of the policy135

to enable exploration. In this work, the noise is added following a mixed exploration strategy [18],136

where the general idea is akin to adding a different noise level for each environment when training in137

a massively parallel regime. For the i-th environment out of N ∈ Z+ environments, a zero mean and138

uncorrelated Gaussian noise is given as: N (0, σi), where σi = σmin + i−1
N−1 (σmax − σmin).139

2.2 Population-Based Training140

In standard RL, the agent aims to learn an optimal policy by interacting with an environment and141

iteratively updating the policy through some kind of optimization method. In contrast, PBRL uses a142

population of n agents P , each interacting with the environment independently to collect experience143

and learn its own policy. Using evolutionary selection, the population is periodically evaluated144

based on a fitness metric, and best-performing members replace the worst-performing members, i.e.,145

weights of the best agents are copied over, along with the mutated hyperparameters.146

In this work, a specific PBRL approach, population-based training (PBT), is employed as an outer147

optimization loop to enable diverse exploration and dynamically adapt the hyperparameters in high-148

dimensional continuous control tasks. Each agent π(θi, hi) ∈ P is characterized by a vector θi and149

the set of hyperparameters hi, where θi contains the parameters of the policy, and hi contains the150

hyperparameters that are optimized during training. To represent the whole population P , we denote151

with Θ ≜
⋃n

i=1 θi, h ≜ [h1, h2, . . . , hn] and Π ≜ {π(θi, hi)}ni=1 the sets of all the parameters,152

hyperparameters and policies respectively.153

Algorithm 1 provides pseudocode for the PBRL. The training process runs in iterations, where all154

agents are first independently trained by performing updates to the vector θi. After a certain number155

of policy updates Nevo (each agent having been trained for some steps), the agents are evaluated and156

sorted based on the average returnRmean obtained over all of the previous episodes. The agents in157

Pbottom 25% get replaced by randomly-sampled agents in Ptop 25% with mutated hyperparameters,158

while the rest of the agents in Pmid 50% and Ptop 25% continue training.159
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PPO PBRL-PPO 4 agents PBRL-PPO 8 agents PBRL-PPO 16 agents

Figure 3: Training results of baseline PPO and PBRL-PPO for |P| ∈ {4, 8, 16}. The shaded area
represents the performance between the best and the worst agent in P , or among 4 different seeds in
a non-evolutionary baseline.

To generate the mutated hyperparameters, 3 mutation mechanisms are considered (see line 14 of160

Algorithm 1): (i) random perturbation is applied to the hyperparameters of the parent agent(s)161

through perturbation factors in Table 5; (ii) new hyperparameters are sampled from a prior uniform162

distribution with bounds specified in Table 3 and 4; (iii) according to the DexPBT mutation scheme163

[26], hyperparameters are multiplied or divided by a random number µ sampled from a uniform164

distribution, i.e., µ ∼ U(µmin, µmax) with probability βmut ∈ [0, 1]. Section 3.2.4 compares all 3165

mutation schemes. After beginning the training, evolution is enabled after Nstart ∈ Z+ steps as in166

[14] to allow for initial exploration and promote population diversity.167

3 Experiments168

3.1 Environments169

The PBRL framework is evaluated on some of the most challenging benchmark tasks available in170

Isaac Gym, including Anymal Terrain, Shadow Hand, Humanoid and Franka Nut Pick (Figure 1).171

The experiments are conducted on a workstation with a single NVIDIA RTX 4090 GPU and 32GB172

of RAM. Parallelizing the data collection across the GPU, Isaac Gym’s PhysX engine can simulate173

thousands of environments using the above hardware.174

3.2 Results175

The experiments focus on optimizing the hyperparameters of the RL agents in a population and176

comparing the results against non-evolutionary baseline agents. For each case of baseline agents,177

4 experiments are run with different seeds. Tables 3 and 4 list the hyperparameters for on-policy178

and off-policy algorithms, including the sampling ranges of those optimized through the PBRL179

Algorithm 1. The initial values for each agent are uniformly sampled from a prior distribution with a180

given range.181

3.2.1 PBRL-PPO182

For the PPO agents, the tuned hyperparameters are the KL divergence threshold for an adaptive183

LR, the entropy loss coefficient, and the variance of action selection. These parameters are crucial184

in ensuring sufficient exploration of the environment. Figure 3 shows the learning curves for the185

single-agent PPO baseline and PBRL-PPO for |P| ∈ {4, 8, 16}. The results demonstrate that PBRL-186

PPO outperforms PPO on 3 out of 4 tasks, yielding a higher return, with significant improvement187

seen in Anymal Terrain, which involves traversing increasingly challenging terrain. For Franka Nut188

Pick, PBRL agents achieve comparable performance to the baseline PPO agents. This is because, in189

this relatively straightforward task, randomization alone suffices for a thorough exploration of the190

state/action space.191

3.2.2 PBRL-SAC192

In PBRL-SAC, the optimized hyperparameters include the LR of the actor-critic networks and the193

target entropy factor. Entropy is key in SAC agents as the policy is trained to maximize the trade-194
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off between the expected return and exploration. Experiments are run with a population size of195

|P| ∈ {4, 8}. Due to higher memory needs for replay buffers in off-policy methods, the maximum196

population size is limited to 8. The training performance of SAC and PBRL-SAC is shown in197

Figure 4. PBRL-SAC improves the training performance compared to non-evolutionary SAC on 3198

out of 4 tasks, yielding a remarkable improvement on both Shadow Hand and Franka Nut Pick, while199

comparable results are achieved on Humanoid, probably due to the limited task complexity.200

SAC PBRL-SAC 4 agents PBRL-SAC 8 agents

Figure 4: Training results of baseline SAC and PBRL-SAC for |P| ∈ {4, 8}. The shaded area
displays the performance between the best and the worst agent in P , or among 4 different seeds in a
non-evolutionary baseline.

3.2.3 PBRL-DDPG201

In DDPG, exploration noise is added to the output of the deterministic actor. As mentioned in202

Section 2.1, different noise levels are added for different environments uniformly within the range203

[σmin, σmax]. Both these parameters are crucial in controlling the amount of exploration in DDPG204

agents. In PBRL-DDPG, the hyperparameters optimized during training include the minimum and205

the maximum bounds for noise levels, i.e., σmin, σmax, and the LRs of the actor and the critic. As206

in PBRL-SAC, the maximum population size in PBRL-DDPG is set to 8 due to the presence of207

independent replay buffers and GPU memory limitations. Figure 5 shows that PBRL-DDPG achieves208

significantly better training performance than DDPG on all 4 benchmark tasks.209

DDPG PBRL-DDPG 4 agents PBRL-DDPG 8 agents

Figure 5: Training results of baseline DDPG and PBRL-DDPG for |P| ∈ {4, 8}. The shaded area
displays the performance between the best and the worst agent in P , or among 4 different seeds in a
non-evolutionary baseline.

3.2.4 Mutation Comparison210

Figure 6 shows the results using 3 different mutation schemes for PBRL-PPO and PBRL-DDPG. As211

mentioned in Section 2.2, the hyperparameters for under-performing agents are generated either by212

sampling from an original prior distribution, by perturbing the parent’s values through perturbation213

factors given in Table 5, or through the DexPBT mutation scheme presented in [26]. In the latter,214

the hyperparameters have a βmut := 0.5 probability of getting multiplied or divided by a random215

number sampled from the uniform distribution, µ ∼ U(1.1, 1.5). The results show that the perturbed216

agents either exceed or are on par with the performance of other mutation schemes in 6 out of 8217

experiments. The DexPBT mutation scheme performs better with PBRL-DDPG on Humanoid and218

Franka Nut Pick tasks, which are less challenging compared to others. The combination of two219
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Perturbation Uniform-Sampling DexPBT [26]

Figure 6: Comparison of different mutation schemes for PBRL-PPO (top) and PBRL-DDPG (bottom)
with |P| = 4.

mutation schemes might discover better exploration strategies for a wider range of tasks. Analyzing220

the potential synergies between the two remains a prospect for future investigation.221

3.3 Sim-to-Real Transfer222

In the real experiments, we replicate the Franka Nut Pick task [24] by deploying a PBRL-PPO policy,223

without any real-world adaptation, executing the actions with PLAI [32]. The robot detects the nuts224

utilizing Mask-RCNN [12], fine-tuned on real-world images captured with a wrist-mounted Intel225

RealSense D435 camera, using the IndustRealLib codebase [32]. Compared to the original task226

[24], we applied the following changes to make the simulated environment resemble real setup:227

(i) employing a Task-Space Impedance (TSI) controller [6] instead of an Operational-Space motion228

Controller (OSC) [17] to comply with the actual low-level controller1; (ii) randomizing the nut’s229

initial position to reflect the actual robot workspace; (iii) changing the observation space to include230

the 7-DOF joint configuration, the measured end-effector pose, and the estimated nut pose. The231

parameters used in the simulated environment and the real controller are reported in Table 2.232

During experiments, the following policies were deployed, performing 30 real-world trials of Franka233

Nut Pick task for each policy: (i) 2 agents from a population of 8, trained with PBRL-PPO, specifically234

the “best” and the “worst” agent; (ii) the “best” agent trained with baseline PPO. With “best” and235

“worst” we indicate the agents achieving the highest and lowest success rate in simulation, where236

success is defined as reaching, grasping, and lifting the nut, without losing contact during the lifting237

phase. PBRL-PPO with |P| = 8 achieved the highest success rate. Remarkably, we found out that238

even the success rate of the worst agent in P was higher than that of the best PPO agent.239

Deploying both PPO and PBRL-PPO agents onto a real robot leads to task completion (shown in240

Figure 7), yet with different success rates, as summarized in Table 1. Particularly, both PBRL-PPO241

1The control laws are specified in [24] and in reference works [6, 17]

Table 1: Success rate deploying the best and the worst of 8 agents trained with PBRL-PPO and the
best PPO baseline agent on the Franka Nut Pick task with the real robot

Algorithm Agent Successful trials Success rate
PBRL-PPO Best 27/30 90%
PBRL-PPO Worst 21/30 70%

PPO Best 19/30 63.33%
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Figure 7: Snapshots of the Franka Nut Pick experiment on the real robot: full video on our project
website.

agents yield higher success rates than PPO, with the “best” agent performing better than the “worst”242

one, indeed confirming the ranking attained in simulation. Unlike the baseline PPO agent, which243

continued to produce small movements after reaching the target, PBRL-PPO agents remained more244

stable, leading to a higher success rate. This demonstrates that PBRL agents, while achieving similar245

rewards to a single agent, learn behaviors that exhibit greater robustness to environment variability246

due to the diversity in agent populations. Informally, the best PBRL-PPO agent also exhibited247

recovery behavior during task execution after perturbation by the human.248

3.4 Discussion249

While the PBRL agents perform better than the non-evolutionary agents in almost all the experiments,250

the impact of population size across RL algorithms and tasks shows no consistent pattern. One251

may hypothesize that larger and more diverse populations might lead to a better final performance.252

However, the results in this work indicate that using a larger population size does not necessarily yield253

substantial benefits for every task. This is in contrast to the common belief that population-based254

methods rely on larger population sizes to effectively explore the hyperparameter space [15, 25]. The255

optimal population size, instead, depends on various factors, including task complexity, RL algorithm,256

and interaction dynamics among agents. While larger populations offer increased exploration257

potential, they also suffer from diminished exploitation capabilities due to increased competition,258

leading to lower performance in less challenging tasks where smaller populations suffice. Larger259

population sizes seem to perform better when the task complexity gradually increases requiring260

extensive exploration as in Anymal Terrain, which implements curriculum learning.261

Additionally, the performance of PBRL may be lower than non-evolutionary agents on relatively262

simpler tasks where optimal hyperparameters are known a priori. This can be noticed on a Humanoid263

task trained with SAC in Figure 4: indeed, baseline policies achieve a higher reward than PBRL-SAC264

with 4 agents; nevertheless, 8 agents are capable of outperforming the baseline. Thus, the benefits265

provided by PBRL will become more apparent for new tasks where ideal hyperparameter ranges are266

not known in advance. In this sense, PBRL can be thought of as an exploratory approach to search267

for unknown optimal configurations of newly designed tasks.268

4 Conclusion269

In this paper, a PBRL framework has been employed to train a population of RL agents by making use270

of high-throughput GPU-accelerated simulation. The first simulation results of PBRL using on-policy271

and off-policy methods are provided on a series of locomotion and manipulation benchmark tasks272

proposed in [21] by investigating the effect of population size and different mutation schemes. The273

results showed the effectiveness of PBRL in improving final performance through online adaptation of274

hyperparameters. PBRL agents have been deployed on real hardware for the first time, demonstrating275

smooth and successful transfer, without any policy adaptation or fine-tuning. Finally, we released276

the codebase to train PBRL agents and hope that it will empower researchers to further explore and277

extend the capabilities of PBRL algorithms.278
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A Algorithm379

Algorithm 1 PBRL algorithm

Require: Initial population P of agents (Θ random, h sampled from a uniform distribution)
1: Niter = 0
2: while not end of training do
3: θ ← Train(Π(Θ,h)) ▷ Train all agents in P
4: Niter = Niter + 1
5: if Niter > Nstart and Niter % Nevo = 0 then
6: for each agent π(θ, h) ∈ P do
7: Rmean ← Eval(π(θ, h))
8: Sort π(θ, h) based onRmean

9: end for
10: Partition P into Ptop 25%, Pmid 50%, Pbottom 25%

11: Sample π∗(θ∗, h∗) from Ptop 25% at random
12: for each agent π(θ, h) ∈ Pbottom 25% do
13: π(θ)← π∗(θ∗)
14: h← Mutate(h∗)
15: end for
16: end if
17: end while

B Domain Randomization for Franka Nut Pick Task380

In this section, we include the settings used for domain randomization in experiments with the Franka381

robotic arm for simulated environment and real setup. The robot initial pose is randomized according382

to a Gaussian distributionN , while the nut initial position is uniformly chosen in the specified range.

Table 2: Simulated environment and real control configuration parameters used in Franka Nut Pick
during training and deployment respectively.

Parameter Value
Franka initial position N ([0.0,−0.2, 0.2], [0.2, 0.2, 0.1])
Franka initial rotation N ([π, 0, π], [0.3, 0.3, 1])

Nut initial position [0.42, 0.27, 0.02] ± [0.18, 0.13, 0.01]
TSI proportional gains [1000, 1000, 1000, 50, 50, 50]

TSI derivative gains [63.25, 63.25, 63.25, 1.414, 1.414, 1.414]
Action scale 0.0001

383

C Hyperparameters384

Table 3: Hyperparameters setup for PPO and PBRL-PPO across all the tasks.
Hyperparameter PPO PBRL-PPO

Anymal Terrain Shadow Hand &
Humanoid Franka Nut Pick Anymal Terrain Shadow Hand &

Humanoid Franka Nut Pick

Environments per agent 4096 16384 128 1024 4096 128
MLP hidden units [512, 256, 128] [512, 256, 128] [256, 128, 64] [512, 256, 128] [512, 256, 128] [256, 128, 64]

Horizon 32 16 120 32 16 120
Batch size 8192 32768 512 8192 8192 512

Actor variance 0.5 1 1 0.3 – 1 0.3 – 1 0.3 – 1
KL threshold 0.016 0.016 0.016 0.08 – 0.016 0.08 – 0.016 0.08 – 0.016

Entropy loss coefficient 0.001 0.001 0 0.0001 – 0.001 0.0001 – 0.001 0.0001 – 0.001
Epochs 8 4 8 8 4 8

Discount factor γ 0.99 0.99 0.99 0.99 0.99 0.99
GAE lambda 0.95 0.95 0.95 0.95 0.95 0.95

PPO clip ϵ 0.2 0.2 0.2 0.2 0.2 0.2
Initial LR η0 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4

LR adaptation gain Kη 1.5 1.5 1.5 1.5 1.5 1.5
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Table 4: Hyperparameters setup for off-policy algorithms on all four tasks. *For Franka Nut Pick
these parameters are, respectively: 128, [256, 128, 64], 512.

Hyperparameter SAC &
DDPG

PBRL-SAC &
PBRL-DDPG

Environments per agent* 2048 2048
MLP hidden units* [512, 256, 128] [512, 256, 128]

Batch size* 4096 4096
Horizon 1 1

Target update rate τ 5× 10−2 5× 10−2

Actor learning rate 0.0001 0.0001 – 0.001
Critic learning rate 0.0001 0.0001 – 0.001

DDPG exploration σmin 0.01 0.01 – 0.1
DDPG exploration σmax 1 0.5 – 1

SAC target entropy -20 -20 – -10
Replay buffer size 1× 106 1× 106

Epochs 4 4
n-step returns 3 3

Table 5: Parameter setup for PBRL

Parameter Value
Franka Nut Pick Others

Evolution start Nstart 2× 105 steps 1× 107 steps
Evolution frequency Nevo 1× 105 steps 2× 106 steps
Perturbation factor (min.) 0.8 0.8
Perturbation factor (max.) 1.2 1.2
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