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Abstract

We study model reusability evaluation (MRE) for source pre-trained models: eval-
uating their transfer learning performance to new target tasks. In special, we focus
on the setting under which the target training datasets are small, making it diffi-
cult to produce reliable MRE scores using them. Under this situation, we propose
synergistic learning for building the task-model metric, which can be realized by
collecting a set of pre-trained models and asking a group of data providers to par-
ticipate. We provide theoretical guarantees to show that the learned task-model
metric distances can serve as trustworthy MRE scores, and propose synergistic
learning algorithms and models for general learning tasks. Experiments show that
the MRE models learned by synergistic learning can generate significantly more
reliable MRE scores than existing approaches for small-data transfer learning.

1 Introduction

Reusing pre-trained models have played essential roles in modern learning pipelines for decreasing
training cost, alleviating the requirement of big datasets, and reducing the danger of catastrophic
forgetting. The growing number of pre-trained models promotes the birth of large pre-trained model
700s, making it closer towards the future learnware market [Zhou and Tan, P027]. When selecting a
model from these model zoos for doing model transfer, one has to do model reusability evaluation
(MRE) first: evaluating the transfer learning performance of the models to the target task and iden-
tifying the best model. The role of MRE is crucial since no matter how good the transfer learning
strategy is, incorrect MRE would still lead to the danger of negative transfer. MRE has received
growing attention in recent years [Achille’ef"al], POTY, Mran"ef all, POTY, Nguyen et all, 2020, Wi
ef-all, P020, Ding and Zhou, 2020, You_ef-all, PO7T]. But most existing studies focus on large-data
MRE, under which the target dataset is sufficiently large.

In this work, we focus on small-data MRE, under which the target training datasets are small.
Reusing pre-trained models is essential under the small-data scenario since learning from scratch
is difficult. Unfortunately, large-data MRE approaches are usually invalid for small data since they
usually focus more on simplicity and efficiency, but not generalization and robustness, which are
essential for small-data MRE. It is indeed challenging to obtain reliable MRE results under the
small-data scenario due to the fundamental burden set by the laws of statistics.
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Figure 1: The illustration of the proposed approach. The left figure illustrates the overall procedure,
in which the left part illustrates the synergistic learning stage and the right part illustrate the testing
MRE stage. The right figure illustrates Algorithm 0. The arrows started from the data providers
denote the queries, in which the solid purple ones are SQUERY and the dashed orange one is MQUERY.

Our solution is based on two observations. First, model reusability usually depends on the task-
model relationship other than the task-independent property of any specific small sample. We could
grasp this relationship by meta-learning an MRE function among tasks and models. Second, this
learning process is often realizable in practice, in special for large model zoo platforms where suffi-
cient pre-trained models and data providers are available. Based on these observations, we conduct
the following studies in this paper:

Problem formuation. We provide the formulation of small-data MRE and synergistic learning to
learn the MRE function by metric learning. Synergisitc learning works for general learning scenar-
i0os beyond classification, on which most previous MRE approaches focus.

Theoretical analysis. We propose access risk analysis showing that the MRE model learned by syn-
ergistic learning guarantees to generate reliable MRE scores. The theory not only provides guarantee
even for using non-convex deep networks as the MRE model, but also motivates feature pre-training
in synergistic learning.

Algorithm and model design. We propose synergistic learning algorithms and MRE model struc-
tures for general learning tasks, which have the auxiliary advantage of protecting data privacy. Mean-
while, we propose a more elaborate MRE model strucuture for classification.

Experimental verification. Experimental results show that synergistic learning can generate signif-
icantly more reliable MRE scores for small-data transfer learning than existing MRE approaches.

2 Problem Setup

In this section, we provide the formal definition of small-data MRE and synergistic learning.

2.1 Small-Data MRE

Denote by Z2 = X x )Y the observation space, in which X, ) are the input and output spaces
respectively. A target learning task u can be represented by a probability measure? p(z,y) over
some Z, C Z. Furthermore, we assume that all ;¢ are drawn from the task environment 7, a
probability measure over the space of all target tasks.

In small-data MRE, target tasks p are drawn from 7. For each (i, the objective is to learn a prediction
rule f,, such that for any observation (x,y) ~ u, f,(x) is close to y. The learner of 1 will be given
a target training dataset .S,,, a set of pre-trained models H, a model transfer strategy m and an MRE
function v,. S, = {z1 = (a, yr) | is a sample drawn from p such that the sample size K
is a small number. H is the pre-trained model set in which each model h € H is drawn from
the model environment M, a probability measure over the space of all pre-trained models. We
assume that the models in H are sampled independently from p while different H can be given
for different p1. (S, h) is a transfer learning strategy which can be used to transfer a pre-trained
model h into f, using S,,. We do not restrict the choice of 7, but assume that  is fixed for any
target task. The MRE function v, (S),, h) is a real-valued function taking .S,, and h as the inputs

'We will use p to denote both a task and its probability measure below when there is no ambiguity.



and outputing the transferability score. Below we use v instead of v, to simplify notations. Without
loss of generality, among all possible v, we define v* as the optimal MRE function such that for any
1y Sy by ha, v°(Sy, hi) < v*(Su, he) if and only if hy has better transfer learning performance
with S, than hy. Thus we assume that the MRE score is monotonically decreasing w.r.t. transfer
performance. If no special properties exist for v*, estimating v* would be extremely difficult for
small-data MRE. Fortunately, in general, we could assume that model reusability usually depends
on the task-model relationship other than the task-independent property of any specific small sample,
as discussed in Section [. Therefore, we assume that the ground-truth model transferability depends
only on the target task p but does not depend on the random draw of S,, from p, i.e. VS, SL ~
s v*(Sy) = v*(S},). Thus we can use the notation v*(, h) instead of v*(Sy, k) for any Sy, h.
How this assumption can be relaxed is discussed in Section [2.

2.2 Synergistic Learning

Synergistic learning is the preparation stage for learning an MRE function ¢ that accurately approxi-
mate v* before any MRE problem defined in Section T starts. A synergistic learning process works
with the following three prerequisites:

* A set of pre-trained models Hgynr.carn = {hk}g;”l drawn from M are given. Note that the
models in this set could be different from models given in any future MRE problems;

* A set of data providers D = {Z,}2_, participate in learning, such that each data provider
represents an observation subspace Z; C Z. Furthermore, UZ; = Z. We define the
closure of any task u ~ T as Z,, = minp{Z4,, Za,, ... Za, } st. Z, CUE | Z4,.

* A validation MRE function v,4;;4 is provided for synergistic learning. v,41;4 is unbiased
between any task and model®: Y, b, vyaria(p, h) = Es,, ~ul[vvatia(Su, h)] = v*(u, h).

The basic idea of synergistic learning is to establish a metric 0(S,,, h) between the target training
datasets and the models so that the metric distance could be used as the MRE score. In Section H,
we will show that learning ¥ only requires the data providers to answer two kinds of queries:

* SQUERY(¢s, Zq4, ut, M): a single data provider Z; is queried to sample M observations
from a given probability measure y over Z4, and return the output of 15 ({z; }}4,), a func-
tion of the observations.

* MQUERY (¢, {Zdi}iQ::U {ui}inl, {Mz}ZQzl) multiple data providers { Zy, }?:1 are queried
jointly. Each data provider Z,, sample M, observations from a given probability measure
Wi over Zg,. Aggregating the sampled observations from all data providers, the output

of Y ({z1,; }?4:11, {22, }?4:21, {20, };Vin) a function of all observations, is returned.
Furthermore, ,,, cannot be realized by aggregating multiple SQUERY.

The main difference between these two queries lies in the scope of involved data providers, which is
important when the data privacy is sensitive. SQUERY is answered by a single data provider. How this
kind of queries can be answered in privacy-guaranteed ways has received many studies [Zinkevich
ef_all, DOT0, Konecny et all, POTA]. In contrast, MQUERY needs to be answered by multiple data
providers jointly. Protecting data privacy is much harder in this situation since their data need to be
aggregated. Therefore, we set an auxiliary target of reducing the number of times to use MQUERY.

Finally, for learning ¢, we assume that ¢ is formed by three parts: (1) g,,(S,), the task feature
backbone; (2) gn,(h), the combination of the model specification gf:neratorEi and the model feature
backbone; (3) dg(c, cx), the metric module, in which ¢, is the output of g,,(S,,), ¢y, is the output of
gn(h), and @ is the learnable parameter of dg(c,,,cp). g, and g transfer target training dataset S,
and pre-trained model A into their representations c,, and cj,. The metric module then calculates the
metric distance between c,, and c; as the MRE score. The details are introduced in Section 2.

2Even though v,qsq is unbiased, it may have high variance when S, is small. Thus vyq1i4 can not be used
directly for small-data MRE.
3Please refer to Section [ for details about model specifications.



3 Theoretical Analysis

In this section, we discuss the theoretical foundation of synergistic learning. Readers who are inter-
ested more on algorithmic ideas can skip this section without affecting understanding significantly.
In the analysis, we assume that g, and gy, are fixed and focus on learning the metric module. Thus
the learnable parameter for ¢ is 6.

For metric-based synergistic learning, we assume that [V,, pre-trained models {hk}kNgl sam-
pled from M, N; tasks {u;}2*, sampled from 7 and Ng target training datasets {Sui,j};\]jl
sampled from each task p; are used for training. We also assume that for any pair of h;
and S, x, the ground-truth MRE score v*(j;, hy) are given. Define 7,+(S,, Sy, h, h';0) as
LA (g, ' B < OL[As(Sy, Sy, hyh') > 0] in which Ay« (p, ', b, B') = v*(p, h) —
v (' 1), Ay (Sy, Sy ho ') = 9(Su, h) — 9(Su, k'), and T is the indicator function. Since v*
is the ground-truth MRE function, a desirable v should minimize

R(ﬁ) = ]E[TU* (S,UJ S,U/a h7 hla ﬁ)}a

where the expectation is taken over S, ~ p, S, ~ p',pu, 1’ ~ T,h,h' ~ M. While for the
convenience of optimization and analysis, we define our objective using the triplet surrogate loss.
Define 7). (S,,, S, h, h';0) as I[Ay« (p, /', b, B') < 0][A5(S,,, Sy, by ') + 4]+ in which [z]4 =
max{z,0} and v > 0. When v > 1, r. upper bounds 7. Meanwhile, 7. is consistent with -
since 7. (S, Sy, h, ';0) = 0 indicates that r,- (S, S/, h, h';0) = 0. Therefore, we define our
goal as minimizing the following expected risk

RY(0) = E[r).(Su, Sy, h, h'50)]. (D
A possible way to achieve this goal is to minimize the following empirical risk
- 1
~ _ "Y o N
R0 = (e 2o [ (s Sirshs hus )] @

where the summation is taken over all models, tasks and datasets used for training. We want to know
whether minimizing the empirical risk RW(ﬁ) indeed leads to the minimization of the expected risk
R7(0). Denote by O the parameter space for 6 and use 0y to denote the ¢ with learnable parameter
6. We provide an access risk bound showing the effectiveness of minimizing the above empirical
risk. Use G(S,,, Sy, h, h') to denote [As,(Sy, Sy, h, ') + ~]+. Additionally, we assume that
VIGo(Sy, S, h,h')] = 0 when Go(S,, S, b, ') = 0. Furthermore, let
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in which the summation is taken over all tasks, datasets and models used for training and we
have V=[S, Sy, hy B = I[Ay-(p, ', h, h') < 0]V[Gg(Sy, Sy, b, h')]. Meanwhile, we denote
V = max;e(n, Es,, ~p: [c?(S,.,)]- Now we are ready to state the following theorem whose proof is
provided in the appendix (Section &).

VI[R(Gy)] =

Theorem 3.1. Under Assumption B, there exist optimal parameter 0* € © and constant > 0,
V60 € O, the following event

R (i) — R (g+) < B[V[R(Go)] + A(N¢, N, Ns)|
holds with high probability, in which A(N;, Ny, Ng) = O(1/v/Ny,1/v/Nm, V/v/Ns,1/Ng).

Theorem B shows several interesting insights. First, V[R(Gy)] is the gradient norm of the metric
distance gaps from the training data. The bound shows that the access risk will be small when
the gradient norm tends to zero, even when the global minimum of the empirical risk has not been
reached. This makes the bound informative when non-convex models, such as DNNs, are used.
Second, the bound has the normal O(1/+/Ny), O(1/+/N,,) sample complexity dependence for both
tasks and models. This is in agreement with our intuition such that lacking any of the tasks and
models would lead to the failure of learning. Finally, the most interesting take-away is the sample
complexity for target datasets in each task, which has a dependence of the feature variance V. If V
is small, the order becomes O(1/Ns) instead of O(1/1/Ns), a significant drop for the number of
the training datasets. In Section B, we show that this result inspires us to include feature variance
reduction in the synergistic learning process, which would significantly reduce using MQUERY.



Algorithm 1 Synergistic Learning

—_

: Given: model set Hsyn1.carn, data providers D.
if Feature Pre-Training then
repeat
Ldecom(Zd) — SQUER’Y(Zd)7 d= 1a cee >D; UPDATE(gM; E(?:l Ldecom(Zd));
until reach end.
end if
repeat
Task & Model Sampling: (11,2 ..., piy ~ T, hi,ho ... hy ~ M,
Reusability Validation: g(p;, Z4, hi) < SQUERY(Z,),
V¥ (j13, hi) < COMBINE[{(s1s, Za, i) V%4 ], i € [1), & € [m], d € [2,,;

10:  Target Dataset Generation: S,,, <~ MQUERY(Z,,),i =1,...,t;
11:  UPDATE(9; {S,,, Yooy, {ha iy, {v* (i, Pie) Yo i) to minimize Equation B
12: until reach end.

R A A

4 Learning Method

In this section, we introduce the synergistic learning algorithm and the MRE model.

4.1 Synergistic Learning Algorithm

The realization of synergistic learning is illustrated in Algorithm [Il. In this section, besides the metric
learning step of minimizing Equation I (Line 11), we discuss other crucial steps below in general.
We consider two general synergistic learning settings. One is named isolated closure setting, which
indicates that any task closure includes a single data provider. Otherwise, we name it grouped
closure setting, which indicates that there exist multi-data-provider task closures.

Task and model sampling (Line 8). To generate the training data for synergistic learning, tasks
and models are needed be sampled. At this stage, no interaction to the data providers is needed.

Reusability validation (Line 9). The objective for reusability validation is to acquire value of v*
between any pairs of task and model that are sampled. In general, this can be done by sending
models to the data providers and estimate v* using v,q4;;4. Under the isolated closure setting, only
SQUERY is needed obviously. We could ask the data providers to use sufficiently large data, making
Uyalid aN accurate estimator. But the key challenge appears under the grouped closure setting since
the statistics used for calculating v,4;;¢ should be obtained from multiple providers at the same
time. To achieve this by SQUERY, we require v,q4;;4 to have a special structure. Specifically, for
task p, let S, (Z4) be a sample generated from the marginal distribution of p over Z4, a member of
its task closure. We require vyqzid(p, h) = COMBINE[{¢) (1, Z4, h) le:“l‘}, in which ¥ (u, Z4,h) =
Es, (z))~u(zq) [V (Su(Za), h)]. In this construction, 1(S,.(Z4),h) is a function over single data
providers and COMBINE is an aggregation function decided by specific MRE function, thus only
SQUERY is needed for calculation.

Target dataset generation (Line 10). For isolated closure setting, this step can be done by sampling
from a data provider using SQUERY. However, for grouped closure setting, MQUERY is necessary for
this step since the target datasets must include the raw data. This issue can be relieved by the insight
brought from Theorem B7T: For each task, the number of the target data needed is closely related to
the data variance. A feature pre-training stage can be introduced to reduce using MQUERY.

Feature pre-training (Line 2-6). Feature pre-training is the preparation stage for synergistic learn-
ing. It is participated by all data providers, aiming at learning a feature extractor g, which could
output low-variance features for the raw data. Once g,, is learned, it would be integrated into the
MRE model. As a result, in synergstic learning, the data providers only need to use much fewer
data for answering MQUERY. On the other hand, the feature pre-training stage itself should be done
by using only SQUERY. We argue that this can be realized by using learning objectives which are de-
composable w.r.t. the data providers. More specifically, a decomposable objective is the summation

of individual objectives, such that each individual objective Lgewm only takes the data from a single
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Figure 2: The models proposed for synergistic learning. (a) illustrates the basic model. (b) and
(c) illustrate the task and model transform modules (TMs) used in classification. (d) illustrates the
model ensembler. The components within the dashed box of the same color are the same.

data provider Z, as its input. Then the purpose of the queries reduces to calculating each L%, . |
which can be done by SQUERY as expected.

Due to space limitation, we provide more details on how to implement the above synergistic learning
steps to different learning scenarios in Section Bl.

4.2 MRE Model

First, we introduce the basic structure of the MRE model defined in Section B, which is illustrated
in (a) of Figure D. In this model, the target data is first processed by the task feature backbone to
generate the feature c,. Afterwards, a task transform module is responsible to generate the task
representation ¢,, which aggregates all the information from the target dataset. For isolated closure
setting, the task transform module can be simply an instance-wise averaging operation. In corre-
spondence, before the model feature backbone, a model specification generator is introduced which
can be any function that transforms a model into a vector. The model feature ¢y, is then transformed
into the model representation ¢y, using the model transform module. For isolated closure setting, the
model transform module can usually be omitted, i.e. ¢;, = ¢p,.

For many learning scenarios, using more elaborate MRE model structure is useful, such as classifi-
cation. Below we consider small-data transfer learning for classification with supervised pre-trained
models. A target task p has Ly classes {y;} lL:Tl to distinguish, in which all the classes belong to the
task class universe Yr. Meanwhile, for a pre-trained L j,-way classification model h, we denote by
{g)l/}lL, M, the classes that the models are trained on. We assume that all the model classes belong
to the model class universe )V, which could be different from ). Similar to [[lran_ef_all, 2OTY9,
Nguyen et al., 2020, [Yon_ef-all, Z02T], we assume that any transfer strategy for this scenario, such
as global fine-tuning and head re-training, can be used. While according to our experience, head re-
training, in which the feature backbones of the pre-trained models are frozen and only the prediction
heads are re-trained, is more proper than global fine-tuning for small-data transfer learning.

The overall structure of the MRE model for classification follows the basic model, but the task and
model transform modules have more complex structures. For the task transform module ((b) of
Figure D), we take care of modeling the relationship among task classes. On one hand, instead of
directly generating the feature representation of the whole task ¢,,, the module generates the features

{(bL}IL:Tl for all task classes first, and then aggregate them to form ¢,. Any set-to-set transform
module, such as Deep Sets [Zaheer ef all, D0T7/] and Transformer [Vaswani ef all, DOT7, Ye efall,
20710], can be used. What is essential here is to generate the feature for one task class based on the
context information from all other task classes.

More importantly, we propose an attention-based model transform module. This module is moti-
vated by our observations during studying MRE: there is a close connection between p(y;, §;) and
model reusability for classification, which is also pointed out by recent studies [[Tran_ef-all, POTY,
Nguyen et al., P020]. The module is illustrated in (c) of Figure D First, the module takes both the
model and task class features {c}, }/*, {c!,}/7, as its inputs and transform them into the model-

attention-aware task class features {¢!, lL:Tl. Subsequently, {¢}, lL:Tl are aggregated to form the



model feature ¢;,. The core component of this module is the model ensembler ((d) of Figure ). For
a pair of model and task classes y;, §;/, the model ensembler calculates the attention weight of y; to
9ir, which is w7, with the inner-product attention. And then, the model class features are linearly
combined by the attention weights to form gbﬁl which represents the selected model class information
on y;. We require w; i to be closely related to p(y;, §/) to make it represent the correlation between
y; and . Therefore, besides the metric loss defined in Equation D, we introduce an additional atten-
tion supervision loss to supervise the learning of attention weights. For w; ;-, we treat it as the output
probability of a binary classifier. The training labels are generated from p(y;, 9i-). To be specific,
we set the label to be one if p(y;|gir) > 71, (Y |y1) > 72 and zero otherwise, in which ~yq, v are
two thresholds. And then, the attention supervision loss is calculated from the logistic loss. Finally,
the overall training loss is formulated as

Lall = Lmetm’c + wattLatta (3)

in which L,,c¢ric 1s the small-batch version of the metric loss defined in Equation D, L, is the
attention supervision loss defined above, and wg;; is the weight for L.

S Experiments

In the experiments, we first do metric visualization to verify whether synergistic learning can learn
meaningful metric space. Furthermore, we conduct experiments for both in-dataset and cross-dataset
MRE to verify the performance of synergistic learning. All experiments are conducted on servers
with NVIDIA Tesla V100 GPUs. The code? is implemented with TensorFlow [Abadi_ef-all, POT6]
(Apache 2.0 License). More details of the experimental setups are discussed in Section 0 and more
experimental results are included in Section D.

5.1 Metric Visualization

We adopt two ten-class datasets MNIST [CeCunef-al’, T998] and CIFAR-10 [Krizhevsky, P009] to
visualize the task-model metric learned by synergistic learning. For each dataset, we randomly gen-
erated 20 five-class pre-trained models, as well as 20 data providers with the same class assignments,
for synergistic learning, and another 20 models for testing. We treat each model as five detectors
for the corresponding classes and try to use synergistic learning to obtain the detector-data metric.
We consider two settings of synergistic learning. The first is learning with full data: all training sets
are used for metric learning and there is no feature pre-training stage. The second is learning with
part data: 10% of the training set for each class is used for metric learning, and there is a feature
pre-training stage involved using the full training set. Figure B illustrates the t-SNE [Maafen and
Hinfon, P00R] visualizations of the learned metric, which is calculated from the testing models and
instances. We can see that meaningful metric distance spaces are learned for both learning with full
and part data: synergistic learning makes the instances and detectors with the same classes closer.
These results provide preliminary proofs for the effectiveness of synergistic learning.

5.2 In-Dataset MRE

Next, we use the dSprites dataset [Matthey et all, 20T7] for testing in-dataset MRE. dSprites consists
of images generated from six latent factors. We select three factors, shape, scale, orientation, to
form the task domains. Another two real-valued factors, position X and Y, are used as the prediction
targets. There are 720 domains and 1024 instances under each domain in total. For each domain, we
randomly select 800 instances as the training set which are used to obtain 720 pre-trained models.
The remaining 224 instances are used as the testing set. We randomly select 503 domains as the
in-distribution domains and the remaining 217 domains as the out-distribution domains. Under this
setting, we treat each in-distribution domain as a data provider, thus there are 503 data providers
in total. For synergistic learning, we only use the training sets and models from the in-distribution
domains. vya14(p, h) is set according to the mean squared error (MSE). We set training K = 10,
but testing K = 1 for verifying the performance under the extremely challenging situation. During
testing, we generate testing tasks using the testing sets from either the in-distribution domains or the
out-distribution domains. For in-distribution domains, the models used for testing consist of only

“The code is available on https:// github.com/candytalking/SynLearn.
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Figure 3: t-SNE visualization of the learned metric on MNIST and CIFAR-10. (a) and (c) show the
results learned with full data. (b) and (d) show the results learned with feature pre-training and part
data. The class names for the data clusters (dot markers) are annotated. The detection models (cross
markers) have the same color to their corresponding classes (better view in color mode).
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Figure 4: Performance comparison on dSprites: the MRE score rank vs. the true performance rank
for MSE (left subfigure) and synergistic learning (right subfigure). (a-c) show in-distribution results
on three random domains, and (d-f) show out-distribution results accordingly. The subfigure titles
are the indexes of the domain factors. Please refer to Section D for more results.

in-distribution models. The out-distribution domains follow the similar rule. Figure B shows the
ranking performance comparison between using MSE directly on the target datasets and synergistic
learning (SynLearn). It can be observed that the synergistic learning ourperforms the naive MSE
prediction significantly: under the extreme situation where testing K = 1, MSE almost fails totally
in generating useful rankings, while synergistic learning can still perform desirably.

5.3 Cross-Dataset MRE

Finally, we use CIFAR-100 [Krizhevskyl, P009] and MinilmageNet [[Vinyals et all, Z016] for cross-
dataset MRE experiments. Results on more datasets are included in Section D. We consider two
settings for experiments: Reuse CIFAR-100 pre-trained models on MinilmageNet target tasks and
the opposite. For each setting, we pre-train 200 20-class models on the source dataset, in which 100
models are used for synergistic learning and the other 100 for testing. We use head re-training as the
transfer strategy. For the target dataset, its pre-defined training set is used for synergistic learning
and its pre-defined testing set is used for testing. All training and testing tasks are fixed to be five-
way classification. For synergistic learning, we randomly generate 100 data providers, each of which
holds the data of five target dataset classes. Full training set is used for metric pre-training and 10%
of the training set is used for metric learning. For each testing task, 50 instances are sampled from
each class to test accuracy. For performance evaluation, we use Kendall’s 7-coefficient [ken] to
measure the rank correlation between the MRE scores and the testing accuracy. For emphasizing
the performance on top-performed models, we also employ the weighted version of Kendall’s 7-
coefficient, 7,,, for which an exchange between elements with rank 7 and s (starting from zero) has
weight 1/(r+1)+1/(s+1) [Vigna, 20T5]. We compare synergistic learning (SynLearn) with three
state-of-the-art MRE methods: NCE [[ran"ef"all, P01Y], LEEP [Nguyen et all, 2020] and LogME



Table 1: Results for the classification experiments. For CIFAR-100 — MinilmageNet, the input

shape is 32 x 32 x 3. For MinilmageNet — CIFAR-100, the input shape is 84 x 84 x 3. T

and 7, indicate the Kendall’s 7-coefficient and its weighted version calculated from 100 randomly

generated five-class target tasks. The results are mean+95% confidence interval calculated from five

random seeds. K indicates the number of training instances per class for each of the testing tasks.
K=5 K =10 K =15 K =20

T Tw T Tw T Tw T Tw

Setting Method

LogME 0.13940.070  0.180£0.187  0.200+0.079  0.359+0.231 0.243+0.056  0.420+0.217  0.255+0.042  0.41840.270

CIFAR-100 NCE 0.19740.020  0.393£0.129  0.300+0.015  0.568+£0.097  0.3654+0.015  0.645+£0.076  0.39740.008  0.661+0.057

MiniIr;:\geNet LEEP 0.2824+0.032  0.532£0.096  0.3674+0.016  0.649+£0.064  0.4174+0.017  0.70040.051 0.44140.011 0.703+0.046
SynLearn  0.45910.022  0.714£0.032  0.482+0.018  0.735+0.016  0.497+£0.018  0.7401+0.016  0.502+0.011  0.750+0.021

MinilmageNet LogME 0.166+0.044  0.312£0.176  0.2443+0.083  0.413£0.164  0.28840.087  0.478+£0.163  0.3104+0.078  0.479+£0.189
%g NCE 0.173+0.009  0.382£0.105  0.257+0.020  0.496+0.054  0.306£0.014  0.55610.081 0.345+£0.017  0.58540.076
CIFAR-100 LEEP 0.2354+0.009  0.471£0.065  0.3234+0.023  0.559+0.066  0.3624+0.019  0.619+0.063  0.3944-0.022  0.631+0.076

SynLearn  0.419+0.033  0.620+0.102  0.426+0.027  0.642+0.102  0.4284+0.019  0.638+0.076  0.43110.022  0.639+0.073

[You'efal', DO2T]]. The results are illustrated in Table [I. It can be observed that synergistic learning
significantly outperforms other methods for small-data MRE. Note that for results in Table [, we
fix K = 10 during synergistic learning, while we observe significantly more robust performance of
SynLearn over other approaches when the testing K varies. We conduct ablation studies to verify
the effectiveness of the attention supervision, the feature pre-training, and the choice of the training
K. The results are provided in Section D.

6 Related Work

Direct approaches for MRE. The direct approaches are based on the statistics calculated on the
target training datasets as the MRE scores. The direct approaches involve only simple statistics cal-
culation, meanwhile no auxiliary information is used, thus are usually quite simple and efficient. The
representative studies of the direct approaches are [[Iran_ef-all, P0TY9, Nguyen et all, 2020]. In [ran
ef_all, Z0OTY], the negative conditional entropy (NCE) score is proposed, which is an information-
theoretic quantity measuring the entropy for p(y|¢). In [Nguyen et all, 2020], the log expected
empirical prediction (LEEP) score is proposed, which can be regarded as an improvement of NCE.
The LEEP score also closely related to p(y|g). But it uses the soft prediction probability in calcu-
lation, to take the place of the hard label assignment calculation in NCE. Thus LEEP uses more
information of prediction uncertainty. However, as shown in our experiments, both NCE and LEEP
suffer from significant performance degeneration for small-data MRE. This is not surprising since
the statistics calculated from small data usually have higher variance.

Learning approaches for MRE. The learning approaches conducts learning for MRE. Similar to
the existing specification-based approaches, the testing-stage models and tasks are used for learning.
In comparison, no testing tasks and models are necessary for synergistic learning. The representative
approaches are [You_ef-all, P02, Achille”ef al’, POTY]. In [You“ef-all, DO2T], the logarithm of
maximum evidence (LogME) approach is proposed. Different from NCE and LEEP which aim at
finding the correlation between the source model predictions and the target outputs, LogME builds
the correlation between source model features and the target outputs. Training using target data
is necessary for LogME. The advantage of LogME is its wide applicability for different learning
problems. While its performance degenerates more significantly than NCE and LEEP under the
small-data scenario. This is likely caused by the necessity of learning on the target data which
would lead to stronger over-fitting. In [[Achille’ef-al’, POTY], the Model2Vec approach is proposed.
Model2Vec uses metric learning to build task-model metric, which is similar to synergistic learning.
But Model2Vec focuses on generating the metric distances for a fixed set of models, thus is a learning
approach for MRE. In comparison, synergistic learning generates the task-model metric for future
MRE problems in which the models are unseen during synergistic learning.

Few-shot learning. In few-shot learning (FSL) [[Vinyals et all, POTH, Ha"efall, D017, Snell"ef all,
D017, Finnef-all, DOT7], a meta-model is learned to solve future small-data learning tasks. Usually,
FSL does not assume to use pre-trained models except for a few cases [Chowdhury et all, ZO7T].
For MRE, its relationship to FSL is similar to that to transfer learning: MRE can serve as a good
preparation step for any FSL task that is allowed to use a pool of pre-trained models.



7 Limitations and Future Work

In this work, we proposed the synergistic learning approach for the small-data model reusability
evaluation (MRE) problem. In this section, we discuss the limitations of synergistic learning, as
well as possible future research directions.

The task-independent assumption. Synergistic learning is based on the assumption that the model
transferability has little relationship with the task-independent properties of the small sample. But
in real problems, bad samples indeed exist whose task-independent properties affect transfer perfor-
mance. We believe that fundamental limits exist for dealing with these samples, thus the relaxation
of this assumption is challenging. Note that Theorem BT does not rely on this assumption, thus
synergistic learning can be done even when it is not held. While lacking this special property could
possibly degenerate the performance. Exploring how to tackle this challenge would be an important
future research topic.

Effectiveness on more learning scenarios. Due to the resource limitation, we only conduct exper-
iments for supervised pre-trained models. In recent years, reusing unsupervised pre-trained models
has been increasingly popular. MRE for unsupervised pre-trained models is a very meaningful topic,
on which the research is still missing as far as we know. Note that synergistic learning does not
restrict the type of pre-trained models: it can be used whenever a ground-truth MRE function is
defined. Thus it can also work for unsupervised pre-trained models in principle. We plan to ver-
ify this point in our future researches. Furthermore, in this paper, we only use image datasets for
experiments. Applying synergistic learning on application in other modalities is also interesting.

MRE in learnware. Learnware [Zhou and Tan, P077] is a growing research topic about reusing
pre-trained models accommodated in a learnware market, which holds various machine learning
models submitted by developers all over the world, to enable future user, who knows nothing about
the models in the learnware market in advance, no need to build their own machine learning models
from scratch. One of the key ingredient of learnware is model specification, which enable the models
to be efficiently and adequately identified and reused, given the constraint that neither the training
data of model developers nor that of users are leaked to the market. Once a set of potentially helpful
learnwares have been identified for user, there can be various ways to reuse them to help address
users own task. This paper can be viewed as providing a new way to reuse the identified learnwares.
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