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Audio-Driven Identity Manipulation for Face Inpainting
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ABSTRACT
Recent advances in multimodal artificial intelligence have greatly
improved the integration of vision-language-audio cues to enrich
the content creation process. Inspired by these developments, in
this paper, we first integrate audio into the face inpainting task
to facilitate identity manipulation. Our main insight is that a per-
son’s voice carries distinct identity markers, such as age and gen-
der, which provide an essential supplement for identity-aware face
inpainting. By extracting identity information from audio as guid-
ance, our method can naturally support tasks of identity preser-
vation and identity swapping in face inpainting. Specifically, we
introduce a dual-stream network architecture comprising a face
branch and an audio branch.The face branch is taskedwith extract-
ing deterministic information from the visible parts of the input
masked face, while the audio branch is designed to capture heuris-
tic identity priors from the speaker’s voice.The identity codes from
two streams are integrated using amulti-layer perceptron (MLP) to
create a virtual unified identity embedding that represennts com-
prehensive identity features. In addition, to explicitly exploit the
information from audio, we introduce an audio-face generator to
generate an ‘fake’ audio face directly from audio and fuse themulti-
scale intermediate features from the audio-face generator into face
inpainting network through an audio-visual feature fusion (AVFF)
module. Extensive experiments demonstrate the positive impact of
extracting identity information from audio on face inpainting task,
especially in identity preservation.

CCS CONCEPTS
• Human-centered computing → Interaction design; • Com-
puting methodologies → Image and video acquisition; Ani-
mation; Image manipulation; Computer vision tasks.

KEYWORDS
face inpainting, audio, multi-modal

1 INTRODUCTION
Audio and image are the two most common modes that people use
to perceive theworld[10].They are closely related, especially when
it comes to recognizing other people or sensing their emotional
states[35]. People are often able to build a mental model of what
a person looks like based on a voice, because vocal and visual sig-
nals are highly correlated[19, 42]. A large number of studies have
proved that a person’s biophysical parameters, such as gender, age,
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……

Cross-modal Fusion

Audio guided Face inpainting

Figure 1: Illustration of our pipeline. We extract a high-
dimensional implicit identity embedding from audio and
generate an audio face to fully exploit the identity informa-
tion in audio.This information contains identity clues, such
as age and gender, which can serve as guidance for the face
inpainting network.

health status, etc, can be inferred from the voice[32, 37]. What’s
more, by modeling the relationship between audio and image, re-
searchers have drawn faces directly from speech clips[35, 47]. Al-
though the imageswere not clear enough, they proved to be closely
related to a person’s identity.

There is a relationship between a person’s voice and his facial
structure[47]. On the one hand, the underlying skeletal and ar-
ticulator structure of the face directly affects the shape, size and
other acoustic characteristics of the vocal tract, resulting in differ-
ent voices that people make[33, 41]. On the other hand, objective
factors such as gender, age, environment, etc, are all important
components of voice characteristics[21]. In fact, it turns out that
each of these factors can be inferred independently from voices or
faces[22, 23]. Thus, by associating key facial attributes with impor-
tant features of voices, the audio information may assist in gener-
ating a more restored face when removing face occlusion or repair-
ing faces.

Face inpainting is an important work, which is widely used in
many fields, such as blemish restoration[1], occlusion removal[5,
24], face makeup[9], blink repair[8, 49], etc. In recent years, deep-
learning based face inpaintingmethods have achieved good results[11,
30, 44].Thanks to thewidespread use of GAN[14] and Transformer[45],
they can generate realistic looking faces without maintaining the
face identity. Different from natural images, faces are more struc-
tured and have their own unique identity characteristics. Face in-
painting tasks can be oriented to more practical needs and comple-
ment other face tasks, such as face recognition[13], face detection[17],
facial attribute classification[7], etc, which have high requirements
for the preservation of face identity.

In order to preserve or complete the face identity, some meth-
ods try to introduce external prior knowledge. [18, 52] constraint
identity consistency by calculating semantic feature losses on the
output and ground truth, which is more like feature regulariza-
tion than completion. Some other methods [8, 25, 40] assume that

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Identity Preserving Identity Swapping

Input

GT

Young Woman Young Man

Ours 1 Ours 2 Ours 3
GT 

√
Audio Face

Ours : 0.1682 MISF : 0.2545

VQFR : 0.1976
Input : CosFace↓

GT Ours : 0.1444 MISF : 0.1812

VQFR : 0.1730
Female×Male

Input : CosFace↓
√

Audio Face
Female

√Male Female×

Male×

√Female Male×FemaleMale

Young Man Elder Man

Figure 2: Visual results of our methods in identity preserving and identity swapping. When the input audio and face are from
the same person, our method uses the reference face generated from audio to achieve better identity preservation than recent
methods. They mistakenly generate a male face for the input female face or a female face for the input male face. We use a
face recognition network CosFace [46] to measure the identity distance, which is lower for better. On the other hand, when
the input audio and face are from different people, our method can be used to perform an audio-control identity swapping.
Given an audio of a young woman, a youngman or an elder man, ourmethod can generate a face with corresponding features.

reference images are available when making inferences. They ex-
tract key identity attributes, such as eyes, from reference images to
compensate for the loss of identity. [28] design a cross-modal dis-
entanling network to extract identity information both from text
and reference images for eyeglasses removal. While these methods
demonstrate the advantages of reference images and text for iden-
tity preservation, these references are not readily available in prac-
tical applications such as surveillance analysis. With the develop-
ment of multimedia, it is easy to obtain a face that is speaking from
videos, which may be covered by a mask and need to be repaired.
Therefore, we propose an audio-driven face inpainting approach,
which infers face identity from audio to achieve high-fidelity face
generation.

In general, our method is a dual-stream network including a
face branch and an audio branch, as shown in Figure 1. In the face
branch, we encode the masked faces into a high-dimensional face
embedding representing deterministic identity prior derived from
the unmasked regions. In the audio branch, we use a pre-trained
audio embedding network to extract the audio identity embedding,
which is a heuristic prior that implicitly expresses identity infor-
mation about the face. Then, we fuse the two codes and obtain a
complete identity code through anMLP.We also introduce an iden-
tity embedding loss for constraining the complete identity features
with the face identity labels. Although our method can integrate
the identity information of the audio in this way, it is difficult for
a single face decoder to decode this implicit representation. There-
fore, we introduce an additional audio face decoder to reconstruct
faces from audio identity embedding, through which we pass the
intermediate multi-scale feature maps to the face decoder as low-
level semantic complements. We fuse features from two decoder
with an audio-visual feature fusion (AVFF) module and generate a
final face. In the end, we apply an identity consistency loss to con-
straint the final face and the audio face. We show some identity
preservation and swapping results in Figure 2.

In general, this paper has the following main contributions:

• For the first time, we introduce audio into face inpainting
for face identity preservation and leverage implicit repre-
sentation and explicit features for identity reasoning.

• We design an audio-visual feature fusion (AVFF) module to
fuse multi-scale features from the face and audio decoder.
He learns an attention map containing global and local in-
formation for better feature fusion.

• We introduce an identity embedding loss and an identity
consistency loss. Identity embedding loss is used to generate
completed identity features, and identity consistency loss is
used to constrain the feature consistency between the final
face and audio face.

• We pre-process the previous audio-face dataset to obtain
a high-quality audio-face paired dataset and demonstrate
that our method performs better in generating high-fidelity
faces than state-of-the-art methods.

2 RELATEDWORK
Face Inpainting. Image inpainting aims to reconstruct the miss-
ing areas of the input images. Most of the existing image inpaint-
ing methods [11, 44] reasonably infer the missing pixel through
the information around the hole. Compared with natural images,
face images have stronger topological structure and local coher-
ence. Therefore, it is of great significance to effectively predict
the structure of faces by using the information around the hole.
CSA [29] proposes a coherent semantic attention layer that bet-
ter retains the missing structural information of the images. By
recurrent feature reasoning, RFR [26] continuously fuses reason-
able pixels around the hole to produce clear results. MISF [27] fo-
cuses on the smoothness between adjacent pixels of the images,
which can realize high-fidelity image restoration. ICT [44] intro-
duces transformer into the image inpainting task for the first time,
which is used to reconstruct the structural priors of the images.
VQFR [15] realizes high-quality blind face restoration based on the
vector quantization dictionary and parallel decoders.
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Figure 3: Pipeline Overview. Our methods is a dual-stream network with a face branch and an audio branch. In the face
branch, we extract identity features from face and audio, respectively, which is described as 𝐼𝑖 and 𝐼𝑎 . Then, we concat these
two implicit codes and obtain one completed face identity code 𝐼𝑐 through an MLP. After that, we fuse multi-scale features
from two decoders in the proposed Audio-Visual Feature Fusion module and sent to the coarse face decoder to generate a
coarse face.

Although these methods try to reconstruct the face structures,
they do not consider the identity knowledge of the faces. A per-
son’s voice has a strong correlation with his face structure. Thus,
the voice may help restore the topology of faces, and the rich face
identity information contained in voicesmay be conducive tomain-
taining the original attributes of faces.
Identity from audio Inferring speaker identity from audio is a
long-standing task. Earlywork [20, 38] designed some hand-crafted
features to map audio into a compact low-dimensional identity
space for speaker identification. In recent years, some methods
[4, 34] extend the representation to a much higher dimension to
adequately extract speaker-discriminating features by deep learn-
ing network. More explicitly, some methods [12, 16, 50] predict
specific identity attributes, such as age, gender, etc., directly from
audio. These methods demonstrate that audio can provide a rich
identity information supplement for face inpainting.
Face reconstruction from audio Reconstructing faces from au-
dio has received much attention in recent years. A few methods
directly learn an audio-face mapping from large data without any
face prior. YWen [48] et al. use GAN to train a face generator, using
one discriminator to determine real or fake faces and another to dis-
criminate identities. Similarly, Speech2Face [35] trained a highly
capable decoder on a million spectra-face data pairs to generate
audio-visual identity-consistent faces. Nevertheless, these twometh-
ods can only generate relatively low-quality faces. On the other
hand, talking face [3, 53, 54] has become a hot topic of recent re-
search. It aims at generatingmouth-synchronized faces from audio,
so it focuses more on the content of the audio than on the identity.
In contrast, our method aims to extract the speakers’ identity and
ignores the audio’s content.

3 APPROACH
Given a person’s masked face and an audio recording, our method
aims to infer identity characters from audio and generate an identity-
preserving face. The overview of our method is shown in Figure
3. We masked a face 𝑥 ∈ R𝐻×𝑊 ×3 with a large rectangle mask
m ∈ {0, 1}𝐻×𝑊 ×1 indicating the pixels need to be inpainted (with
value 1) or not (with value 0).The audio recording is processed into
a log Mel spectrogram with a fixed size. The masked face and the
log mel-spectrogram are denoted as 𝑥𝑚 and 𝑎 ∈ Rℎ×𝑤 .

Our method includes a face branch and an audio branch. In the
face branch, we send 𝑥𝑚 into a face identity encoder to extract an
identity embedding 𝐼𝑓 from the remaining area of the input face.
Similarly, in the audio branch, an audio identity embedding 𝐼𝑎 is
generated from audio using a pre-trained speaker recognition net-
work. 𝐼𝑓 and 𝐼𝑎 are first concatenated to generate a completed face
identity embedding 𝐼𝑐 , then fed into different decoders reconstruct-
ing a inpainted face 𝑥 𝑓 and an audio face 𝑥𝑎 . In addition to implicit
identity embedding fusion, multi-scale features from two decoders
are reasonably fused in an audio-visual feature fusion (AVFF) mod-
ule. We describe the fusion process in Section 3.1. We also intro-
duce an identity embedding loss and an identity consistency loss
(described in Section 3.2 ) to constrain the completed identity em-
bedding and the consistency between the final face 𝑥 𝑓 and audio
face 𝑥𝑎 .

3.1 Audio-Visual Identity Fusion
Identity Embedding Fusion. The face identity embedding 𝐼𝑓
from the face branch can be considered a deterministic prior learned
from the visible areas of the face. In contrast, the audio identity
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Figure 4: Audio-Visual Feature Fusion Module. Since the in-
put features 𝑓 𝑖𝑣 and 𝑓 𝑖𝑎 are misaligned, we fuse them with an
attentionmap generated from a local and global branch.We
concatenate two features in the local branch and extract lo-
cal information with several convolution layers, while the
global branch adds two features and uses a global average
pooling to extract global information. Finally, we fuse them
into an integrated feature map 𝑓 𝑖𝑐 .

embedding 𝐼𝑎 from the audio branch is a heuristic prior to indi-
cating implicit facial identity descriptions such as age, gender, etc.
As 𝐼𝑓 is uncompleted, we take 𝐼𝑎 as an additional inference cue
to achieve identity completion. As both 𝐼𝑓 ∈ R𝐶 and 𝐼𝑎 ∈ R𝐶

′

(𝐶 = 512,𝐶
′
= 64) are 1D vectors, we directly concatenate them

along channel dimension and pass them through a linear layer to
generate an intermediate feature 𝑓 ∈ R𝐶×1×1 sending into the face
decoder. In addition, we take an MLP as a modulator mapping 𝑓
into a high-dimensional space (set to 2048 by default ) represented
as the completed face identity 𝐼𝑐 .
Audio Face Decoder. Although the intermediate features 𝑓 in-
clude identity information from both face and audio, it is difficult
to reconstruct an audio-visual consistent face from a single face de-
coder 𝐷 𝑓 . An immediate consequence is no difference in the gen-
erated faces when the audio changes. To address this problem, we
introduce an audio face decoder 𝐷𝑎 generating face directly from
audio identity embedding 𝐼𝑎 . The middle features in this decoder
explicitly describe audio identity at the pixel level.

However, reconstructing faces from audio is not easy work be-
cause the network needs to learn the mapping relationship be-
tween audio and faces from a large amount of data. Although early
work [48] has been attempted, the faces they generate are at a very
low resolution (64 × 64), making them unsuitable for generating
high-quality faces. Instead of applying their method directly, we
retrain it in a collected high-quality audio-face dataset. We also
add several upsampling layers to fit a high resolution (256 × 256).
In the end, our audio face decoder takes audio identity embedding
𝐼𝑎 as input to generate an audio face 𝑥𝑎 ∈ R𝐻×𝑊 ×3.
Audio-Visual Feature Fusion. The feature from audio face de-
coder 𝐷𝑎 explicitly describe the identity information from audio.
We extract mutli-scale feature vectors 𝑓 𝑖𝑣 , 𝑓 𝑖𝑎 ∈ R𝐻

𝑟 ×𝑊
𝑟 ×𝐶𝑖 (𝑟 = 2𝑖

and 𝑖 ∈ {1, 2, 3, 4}) from the face decoder 𝐷 𝑓 and the audio face
decoder 𝐷𝑎 . Due to the pixel misalignment between input face
and audio face, it is not reasonable to concatenate two features
directly. In constrast, we propose an audio-visual feature fusion

Datasets VoxCeleb-ID FaceForensics++ HDTF TotalTrain Test Train Test Train Test
Identities 763 190 611 150 287 71 2,072
Faces 5,697 1,383 6,110 1,500 2,870 710 18,270
Standard Faces 5,697 1,383 1107 231 556 143 9114
Audio Segments 14,364 3,563 1,814 429 9,992 2,253 32,415

Table 1: Three pre-processed audio-face paired datasets.
Standard Faces mean faces without lip movement.

(AVFF) module to integrate two face features, shown in Figure 4.
For the i th level, given two feature vectors 𝑓 𝑖𝑣 and 𝑓 𝑖𝑎 , AVFF extract
local and global information through two branches.The fusion pro-
cess can be described as:

𝑚 = Sigmoid(𝜉𝑙 (𝑐𝑎𝑡 (𝑓 𝑖𝑣 , 𝑓 𝑖𝑎 )) + 𝜉𝑔 (𝐺 (𝑓 𝑖𝑣 + 𝑓 𝑖𝑎 ))),
𝑓 𝑖𝑟 =𝑚 ∗ 𝑓 𝑖𝑣 + (1 −𝑚) ∗ 𝑓 𝑖𝑎 .

(1)

where 𝑐𝑎𝑡 denotes concatenate operation, 𝐺 denotes global aver-
age pooling. 𝜉𝑙 (·) and 𝜉𝑔 (·) indicate convolution, batch normaliza-
tion, and ReLU in the local and global branches. The add operation
is proved to be better than the concatenate operation in the global
branch.𝑚 is an attention map representing the region of the two
features focus on. After this process, we obtain an integrated fea-
ture graph 𝑓 𝑖𝑐 , which is subsequently sent to the face decoder and
enter the next level.

3.2 Loss Functions.
Given a masked face 𝑥𝑚 and a audio recording 𝑎, our method can
generate an final face 𝑥 𝑓 and an audio face 𝑥𝑎 , which are identity-
consistent. The ground truth face and mask is denoted as 𝑥 andm.
We train our method with the following losses.
Identity Embedding Loss. In the process of identity embedding
fusion, we integrate the face identity embedding 𝐼𝑓 from the face
encoder and the audio identity embedding from the audio encoder
and generate an identity embedding 𝐼𝑐 through anMLP. 𝐼𝑐 includes
a definitive description of the unmasked face and inference of the
identity attributes in audio so that it can be considered a complete
identity description. In order to constrain this embedding consis-
tent with the identity of ground truth face 𝑥 , we extract its identity
using a face identification network𝜓 pre-trained on VGGFace2 [2]
and calculate an L1 distance. We explain the identity embedding
loss as follows:

L𝑖𝑑𝑒 = ∥𝐼𝑐 −𝜓 (𝑥)∥1 (2)
Identity Consistency Loss. In addition to supervising that the
predicted identity embedding and the real embedding are consis-
tent, we find it necessary to supervise the identity consistency of
the final face and the audio face, described in the following:

L𝑖𝑑𝑐 = ∥𝜓 (𝑥 𝑓 ) −𝜓 (𝑥𝑎)∥1 (3)
In this way, we explicitly constrain that the final face refers to

the identity properties of the audio face during the generation.
Reconstruction Loss. To maintain the similarity between the
generated face and the real face, we calculate a L1 distance between
the ground truth face and the final face, audio face respectively.
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Figure 5: Qualitative results in three datasets. The image in the first row is from FaceForensics++, the second row is from
HDTF, and the last two rows are from VoxCeleb-ID. We report the CosFace[46] distance blow the image. Previous methods
may incorrectly inpaint a female face as a male, while our method can generate results that are most consistent with the
ground truth face.

L𝑐 = ∥𝑥 𝑓 − 𝑥 ∥1,L𝑎 = ∥𝑥𝑎 − 𝑥 ∥1 (4)
To be noticed, L𝑎 can be considered as a regularization for audio
face, and does not destroy the ability of pre-trained audio decoder
to reason about the identity of the audio.
GAN Loss. Follow [29], we also introduce a GAN loss in to make
the final image look more realistic. It is defined as:

L𝑔𝑎𝑛 = E[𝑙𝑜𝑔(1 − 𝐷𝑤 (𝑥 𝑓 ))] + E[𝑙𝑜𝑔𝐷𝑤 (𝑥)] (5)
where D is the discriminator parameterized by𝑤 . We optimize our
method with the global loss function:

L = 𝜆𝑖𝑑𝑒L𝑖𝑑𝑒 + 𝜆𝑖𝑑𝑐L𝑖𝑑𝑐 + 𝜆𝑐L𝑐 + 𝜆𝑎L𝑎 + 𝜆𝑔𝑎𝑛L𝑔𝑎𝑛 (6)
We set the loss weights as 𝜆𝑖𝑒 = 0.001, 𝜆𝑎𝑣 = 1, 𝜆𝑐 = 1, 𝜆𝑎 = 0.01,

𝜆𝑔𝑎𝑛 = 0.002.

4 EXPERIMENTS
4.1 Experimental Settings
DataPreparation. Faces in Previous audio-face datasets like VoxCeleb[34]
are low resolution and blurred, which are unsuitable for generat-
ing high-quality faces. The face quality in the Celeb-ID [8] dataset

CSA MISF VQFR Ours GTInput

3.1143 2.7188 2.6343 2.5133ArcFace

ArcFace 3.1279 2.7346 3.2427 2.3228

3.7092 3.1993 3.6237 3.1253ArcFace

Figure 6: Qualitative results under three different sizes of
irregular masks.

is much higher (with a resolution of 300x300), but it lacks audio
recordings. Fortunately, both two datasets share some same iden-
tity labels. Therefore, to obtain high-quality face-audio pairs, we
match faces in the Celeb-ID dataset and the audio recordings in
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Methods FaceForensics++ HDTF VoxCeleb-ID
↑ PSNR ↑ SSIM ↓ LPIPS ↓ L1 ↓ Landmark ↑ PSNR ↑ SSIM ↓ LPIPS ↓ L1 ↓ Landmark ↑ PSNR ↑ SSIM ↓ LPIPS ↓ L1 ↓ Landmark

CSA [29] 28.1927 0.9154 0.0469 3.4886 5.9768 28.4556 0.9095 0.0522 3.5058 5.6826 25.8819 0.8947 0.0556 4.5279 8.7129
RFR [26] 25.8501 0.8957 0.0502 5.7996 6.1140 26.4366 0.8908 0.0530 5.5917 5.8179 25.3452 0.8879 0.0475 4.8986 8.7881
ICT [44] 23.6068 0.8379 0.0864 8.6667 13.1200 24.0702 0.8343 0.0780 8.2305 11.0897 22.6278 0.8436 0.0709 8.9450 12.6871
MISF [27] 27.8053 0.9120 0.0494 4.8085 5.7474 27.6142 0.8967 0.0540 5.1096 6.2175 25.3178 0.8873 0.0534 6.6094 8.4738
VQFR [15] 26.6317 0.8932 0.0535 5.3938 6.2453 26.4841 0.8767 0.0610 5.7760 6.2454 24.0869 0.8617 0.0598 7.4186 9.7937
Ours 28.2354 0.9166 0.0463 3.4811 5.9931 28.7509 0.9156 0.0514 3.3944 5.3709 25.9633 0.8963 0.0544 4.4863 8.7056

Table 2:Quantitative comparisonwith othermethods in three datasets.We show best results in bold. Ourmethod outperforms
other methods in most metrics.

Methods FaceForensics++ HDTF VoxCeleb-ID
HOG VGGFace SphereFace CosFace ArcFace HOG VGGFace SphereFace CosFace ArcFace HOG VGGFace SphereFace CosFace ArcFace

CSA [29] 2.1427 3.3881 0.3400 0.2318 3.8964 2.1607 3.1305 0.3574 0.2291 3.9095 2.1198 3.7891 0.3808 0.2168 3.6800
RFR [26] 2.2879 3.4696 0.4088 0.2434 3.9519 2.2763 3.1413 0.4154 0.2356 3.8526 2.0187 3.7602 0.3883 0.2148 3.5969
ICT [44] 2.7772 3.8382 0.4995 0.3328 4.2270 2.6783 3.4850 0.4950 0.3220 4.0722 2.3617 4.1360 0.4800 0.2820 3.8584
MISF [27] 2.3211 3.3633 0.3428 0.2349 3.8630 2.3384 3.1250 0.3779 0.2354 3.8342 2.1902 3.7318 0.3770 0.2132 3.5702
VQFR [15] 2.3838 3.4023 0.3800 0.2481 3.9027 2.4199 3.0511 0.3982 0.2503 3.8199 2.2896 3.8031 0.4248 0.2316 3.7070
Ours 2.1262 3.3405 0.3314 0.2278 3.7988 2.0899 2.9035 0.3523 0.2184 3.6453 2.0796 3.7534 0.3768 0.2122 3.6084

Table 3: Quantitative comparison for face fidelity. We use several face recognition networks to calulate identity distance be-
tween the generated face and ground truth face, which are used to measure face fidelity. Our method performs better in most
metrics.

VoxCeleb with the same identity called VoxCeleb-ID. In addition,
we collected two high-quality talking video datasets: FaceForen-
sics++ [39], and HDTF[51]. They are collected from YouTube with
a resolution of 720p or 1080p, most of which are clear front-face
talking videos. We collect 761 and 358 videos from the URL pro-
vided by two datasets, then recognize and crop faces from video
frames.

For face images, we align them along the eye area and resize
all faces to 256 x 256. For the audio recordings, we crop all au-
dio recordings into 6 seconds segments. If the audio length is not
long enough, we repeat the audio to make it at least 6 seconds.
The audio sampling rate is 16KHz, and the channel number is one.
Following[48], we remove silence regions of each segment with a
voice activity detector and extract a log mel-spectrogram using a
Hann window of 25mm, 10ms hop, and 1024 FFT frequency bands.
Finally, we get a 64x1000 dimensional vector for each audio seg-
ment.

Since the number of audio recordings is much more than faces
in VoxeCeleb-ID, we randomly sample at most 20 audio segments
for each identity. In FaceForensics and HDTF, we randomly sam-
ple 10 faces as they are similar from different video frames. More-
over, since our method does not focus on audio content, we ignore
the lips change in FaceForensics++ and HDTF and manually select
the standard faces which are frontal and lips change-free. For each
standard face, We calculate a VGG-Face feature from a ResNet-50
pre-trained in the VGGFace2 [2] dataset as the face identity label
that is used to calculate identity embedding loss. After all that,
we got three pre-processed high-quality audio face-paired datasets,
shown in Table 1.
Model Pretraining. We follow the idea from [48] for reconstruct-
ing faces from audio. However, since their method is trained in a
low-resolution (64 × 64) audio-face dataset, they can not generate
high-quality faces. Therefore, we only borrow part of its parame-
ters and add several upsampling layers to fit our high-resolution

Methods Acc@1 Acc@5 Acc@8 Acc@10
CSA [29] 17.37 34.21 41.05 45.26
RFR [26] 17.89 31.58 43.16 46.84
MISF [27] 17.37 38.95 42.11 46.84
VQFR [15] 14.21 31.58 39.47 40.53
Ours 20.53 35.79 46.84 49.47

Table 4: Face retrieval performance. We measure retrieval
performance by accuracy at K (Acc@K, in %), which indi-
cates the chance of retrieving the same person’s faces within
the top-K results while using the reconstruction faces of dif-
ferent methods.

dataset (256× 256). We train the audio face decoder with faces and
audio segments in FaceForensics++ and HDTF. During training,
we randomly select one face and one audio segment from the sam-
ple identity. The maximum training iteration is 100k.
Training. Since our method does not focus on the audio content
and lips change, we train and evaluate our method with standard
faces in three datasets. Given a face, we randomly select an audio
segment and a face identity embedding of the same person. During
training, we chose a rectangle mask with the size of 128× 128 and
set the learning rate as 2e-4 and batch size as 4.We chose ADAM as
the optimizer with 𝛽1 = 0.5, 𝛽2 = 0.999 and train all the networks
on an NVIDIA RTX 3090. More details of our method can be found
in the supplementary material.

4.2 Results and Comparison
We evaluate our method and recent face inpainting methods with
the standard faces on three datasets. PSNR, SSIM, LPIPS, L1 dis-
tance are used in our experiments to measure the pixel-level simi-
larity between our result and ground truth face, and we also calcu-
late a Landmark distance conducted by dlib to measure the struc-
tural similarity of faces. In order to evaluate the face fidelity, we
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employ HOG, VGGFace[36], SphereFace [31], CosFace [46] and Ar-
cFace [6] to measure the identity distance. The smaller the identity
distance, the higher the face fidelity.
Comparison with state-of-the-arts. We compare our method
with five recent face inpainting methods, CSA [29], RFR [26], ICT
[44], MISF [27], and VQFR [15], in which ICT focus on pluralistic
image completion, and VQFR focuses on blind face restoration. All
methods are retrained in the same dataset for a fair comparison.
We report the pixel and structural similarity comparison results in
Table 2. Our method performs better than other methods in most
metrics for all three datasets demonstrating its strength in generat-
ing high-quality faces. For identity preservation, we show quanti-
tative results in Table 3. In FaceForensics++ andHDTF, ourmethod
outperforms all methods in all metrics and is slightly worse than
MISF [27] in VoxCeleb-ID, which indicates the advantages of our
approach in generating high-quality faces and face identity preser-
vation.

We also show some qualitative results in Figure 5. Previousmeth-
odsmay generate face contentswithmistaken identitieswhen faces
are missing in large areas. For example, in the first row of Figure
5, when the input face is mostly masked and the remaining area
does not provide an identity reference, previous methods incor-
rectly generates a male face. In contrast, in our method, audio face
learns an identity prior from sound, reconstructs a female face, and
correctly guides our face decoder to generate identity-consistent
female face. In addition, we show some results under three differ-
ent sizes of irregular masks in Figure 6 to verify the universality of
our method.
Face Retrieval. To verify that our method can generate results
which are more closely related to the original facial features, we
measure retrieval performance by accuracy at K (Acc@K, in %),
which indicates the chance of retrieving the same person’s faces
within the top-K results while using the reconstruction faces of
different methods as input. We used the test set of VoxCeleb-ID
for this experiment, with 190 face images of different identities for
retrieval and others for gallery. We query the face images by com-
paring the Euclidean distance of ArcFace face features between
the reconstruction faces of different methods and the faces in the
gallery. Table 4 shows the face retrieval performance. The experi-
mental results show that our method can preserve the identity of
faces more adequately.

4.3 Identity Swapping with Audio.
Although our method focuses on audio-driven identity preserva-
tion, it can also perform identity swapping with different reference
audios. Since our face decoder is influenced by the audio embed-
ding and intermediate features in the audio decoder, we can get
a face with different identities if we change the input audio. We
show the visualization results in Figure 7. For the same input face,
if we input a youngwoman’s voice, ourmethodwill generate a face
with female features. On the other hand, if we change to the voice
of a young man, the final result will be more like a male face. We
also show some pluralistic results of ICT [44], which generates dif-
ferent faces without control. In contrast, our method can explicitly
change the identity through audio and perform an audio-guided
controllable face inpainting.

Young WomanYoung Woman Young ManYoung ManInput

GT Ours 1 Ours 2

ICT 1 ICT 2 ICT 3

Figure 7: Our method support the audio-control face in-
painting. Given the audio of a young woman or a man, our
method will generate a face with female or male features,
respectively.

4.4 Ablation Study
We conduct careful ablation study on VoxCeleb-ID dataset. Our
baseline builds on a UNet. To validate the effectiveness of each
component in our method, we add them in baseline one by one to
observe how the result changes.

Quantitative and qualitative results are shown in Table 5 and
Figure 8. When we only employ one audio embedding network
to exploit the high-dimensional identity, the identity distance de-
creases while PSNR decreases. The reason is that a single decoder
is challenging to reconstruct high-quality faces from the identity
code, leading to face distortion and blur, shown in the third column
in Figure 8. Since the features from the face decoder and audio face
decoder are not pixel-aligned, directly concatenating two features
will hurt the performance in all aspects. Although our AVFF mod-
ule causes a decrease in PSNR and SSIM, it further reduces the
identity distance compared to audio embedding, proving its effec-
tiveness in identity preservation. We attribute the decline in PSNR
and SSIM to the fact that the intermediate features of the audio
decoder contain not only identity information but also other noise.
We solve this problem by introducing identity consistency loss.The
identity embedding loss constrains the space of the completed iden-
tity embedding with ground truth identity, which improves image
quality and fidelity.

To demonstrate the role of audio for identity preservation, we
extract the identity embeddings from the images generated by base-
line model and our method, and visualize thems by t-SNE [43],
shown in Figure 9. Our method achieves better clustering than
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Base +AudioEmbInput +AVFF + + Audio Face GTBase +AudioEmbInput +AVFF + + Audio Face GT
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Figure 8: Quantitative results of ablation study. CosFace[46] distance are blow the image. Our full method achieves a high-
fidelity face.

Methods VoxCeleb-ID
↑ PSNR ↑ SSIM ↓ LPIPS ↓ CosFace ↓ ArcFace

Base 25.9169 0.8942 0.0592 0.2176 3.6722
Base + AudioEmb 25.8960 0.8947 0.0574 0.2164 3.6477
Base + AudioDec + Concat 25.8909 0.8944 0.0577 0.2167 3.6461
Base + AudioDec + AVFF 25.8292 0.8938 0.0548 0.2156 3.6446
Base + AudioDec + AVFF + L𝑖𝑒 25.9368 0.8956 0.0568 0.2137 3.6291
Base + AudioDec + AVFF + L𝑖𝑒 + L𝑖𝑐 25.9633 0.8963 0.0544 0.2122 3.6084

Table 5: Quantitative results of ablation study on VoxCeleb-
ID. Each of the components we propose is effective in reduc-
ing identity distance and improving fidelity.

Base Final

Figure 9: t-SNE [43] visualization of identity embeddings
from some inpainted faces by baseline and our method (de-
noted as Final). Our method achieves better aggregation de-
gree.

baseline indicating that audio is useful to provide discriminative
identity information.

5 DISCUSSION
Potential Social Impact.Our method can achieve controlled face
inpainting through changing audio. On the one hand, the encoding
of facial identity may cause privacy leakage. On the other hand,
face swapping produces fake face images, which may deceive the

face recognition systems.Thus, this technique should be used with
caution.
Limitation. Our method realizes the generation of high fidelity
faces by interacting with audio features. The results are affected
by the quality of audio faces. Although our method can produce
real-looking audio faces, the facial details need to be enhanced.
Due to the limitation of identity number in our datasets, our model
can only express several simple attributes, such as age and gender.
What audio can bring to face inpainting needs more exploration.

6 CONCLUSION
This paper first verifies the critical role of audio in face inpainting.
We propose an audio-driven high-fidelity face inpainting method.
It captures implicit and explicit identity representations from audio
and learns deterministic priors from input faces via a dual-stream
network. We design an audio-visual feature fusion module that
can effectively integrate multi-scale deep features of cross-modal
data.We also introduce two identity losses for preserving face iden-
tity. Experiments show that voice can help generate face structure
and identity prior, and our method can generate high-fidelity faces
with audio guidance.
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