
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LRANKER: LLM RANKER FOR MASSIVE CANDIDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently shown strong potential for ranking
by capturing semantic relevance and adapting across diverse domains, yet existing
methods remain constrained by limited context length and high computational
costs, restricting their applicability to real-world scenarios where candidate pools
often scale to millions. To address this challenge, we propose LRanker, a frame-
work tailored for large-candidate ranking. LRanker incorporates a candidate
aggregation encoder that leverages K-means clustering to explicitly model global
candidate information, and a graph-based test-time scaling mechanism that parti-
tions candidates into subsets, generates multiple query embeddings, and integrates
them through an ensemble procedure. By aggregating diverse embeddings instead
of relying on a single representation, this mechanism enhances robustness and
expressiveness, leading to more accurate ranking over massive candidate pools.
We evaluate LRanker on seven tasks across three scenarios in RBench with
different candidate scales. Experimental results show that LRanker achieves
over 30% gains in the RBench-Small scenario, improves by 3–9% in MRR in the
RBench-Large scenario, and sustains scalability with 20–30% improvements in the
RBench-Ultra scenario with more than 6.8M candidates. Ablation studies further
verify the effectiveness of its key components. Together, these findings demonstrate
the robustness, scalability, and effectiveness of LRanker for massive-candidate
ranking.

1 INTRODUCTION

Using large language models (LLMs) for ranking has already demonstrated remarkable potential
(Li et al., 2023b; Lin et al., 2024; Jiang et al., 2023), showing strong capabilities in capturing
semantic relevance, adapting to diverse domains, and achieving competitive performance compared
to traditional retrieval and ranking methods. However, constraints such as limited context length
(Rashid et al., 2024; Liu et al., 2024b) and prohibitive computational costs (Chen et al., 2025b) restrict
current LLM-based ranking methods to small candidate sets, limiting their applicability to real-world
scenarios like search and recommendation, where candidate pools often scale to millions. Therefore,
our paper aims to raise attention to this pressing research question: How can we build an efficient
LLM ranker for large candidate ranking?

Existing LLM-based rankers can be broadly distinguished by their input and output formats as shown
in Table 1. In terms of input, prior approaches typically adopt one of four strategies: (1) query only
(Li et al., 2023a), (2) query combined with a single candidate (Ma et al., 2024), (3) query–candidate
pairs (Qin et al., 2023), or (4) the full candidate list (Pradeep et al., 2023; Feng et al., 2025; Sun et al.,
2023a). While the last option quickly becomes infeasible due to the limited context length of LLMs,
the first three fail to incorporate global candidate-level information, introducing systematic biases
into the ranking process. On the output side, most methods directly generate ranking results in the
token space, which couples ranking quality with the LLM’s decoding latency and restricts scalability.

Based on the above discussion, we argue that an effective LLM framework for massive-candidate rank-
ing must model global candidate information in the input and perform ranking through embedding-
based outputs. Nevertheless, constructing such LLM rankers faces two key challenges. First, when
the number of candidates is large, the limited context length of LLMs makes it difficult to model the
global candidate information, which can lead to ranking inaccuracies. Second, relying on a single
embedding to rank all candidates limits the expressive capacity of the model, thereby constraining its
overall potential.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of LRanker with existing LLM-based rankers across four dimensions: in-
put, output, ranking latency, and maximum candidate scale. Unlike prior approaches, LRanker
leverages aggregated candidate centroids within an efficient LLM-based ranking architecture, making
its computation independent of candidate size and enabling efficient processing of the information of
large-scale candidate sets.

LLM-based Ranker Input Output Ranking Latency Largest Candidate Scale
PRP (Qin et al., 2023) Query+ Candidate Pair Token High 100
RankGPT (Sun et al., 2023a) Query + Candidate List Token Moderate 100
IRanker (Feng et al., 2025) Query + Partial Candidate List Token Moderate 20
RankLLaMA (Ma et al., 2024) Query+Single Candidate Embedding High 200

LRanker Query + Aggregated Candidate info Embedding Low 6.81M

To address the limitations of existing LLM rankers, we propose LRanker, a framework tailored
for large-candidate ranking. At the input stage, LRanker employs a candidate aggregation encoder
that clusters candidate embeddings via K-means and summarizes them into compact centroids,
ensuring that global candidate information is explicitly modeled within the prompt. At the inference
stage, LRanker introduces a graph-based test-time scaling mechanism that iteratively partitions
candidates, generates multiple query embeddings under different candidate subsets, and integrates
them through an ensemble procedure. This design enriches the representation of the query by
aggregating multiple perspectives rather than relying on a single embedding, thereby enhancing
robustness and discriminative power for ranking, and enabling more accurate matching across massive
candidate pools.

We evaluate LRanker on seven tasks across three scenarios in RBench with different candidate scales.
In the RBench-Small setting, LRanker achieves over 30% relative gains compared with existing
rankers. In the RBench-Large setting, it outperforms existing approaches by about 3–9% in MRR.
Even in the challenging RBench-Ultra scenario with more than 6.8M candidates, LRanker sustains
scalability and delivers 20–30% improvements. Ablation studies further confirm that global candidate
aggregation, test-time ensemble, and LoRA adaptation all contribute to these gains, demonstrating
the robustness of our design.

2 PROBLEM FORMULATION

Given a query q, the objective of a ranking task (Liu et al., 2009; Li, 2011; Cao et al., 2007) is to
train a ranker f that orders a candidate set D = {c1, c2, . . . , cn} of size n. Typically, D can be
separated into a positive subset Dp (items that the user truly interacted with, e.g., products actually
purchased) and a negative subset Dn (items not chosen). To assess how accurately the ranker retrieves
the positives, its performance is evaluated with ranking metrics E, such as Normalized Discounted
Cumulative Gain (nDCG) (Järvelin & Kekäläinen, 2002) or Mean Reciprocal Rank (MRR) (Voorhees
et al., 1999; Cremonesi et al., 2010).

Formally, a ranker π maps the pair (q,D) into an ordered sequence

π : (q,D) 7→ O = {cr11 , cr22 , . . . , crnn }, O ∈ Sn, (1)

where ri denotes the position assigned to candidate ci, and Sn is the space of all permutations over n
elements. The learning objective is then to identify the optimal ranker π∗ within a hypothesis class F
that maximizes the expected evaluation score under the data distribution Z:

π∗ = argmax
f∈F

E(q,D)∼Z [E(π(q,D))] . (2)

3 LRANKER : LLM RANKER FOR MASSIVE CANDIDATES

Building on the limitations of existing LLM rankers summarized in Figure 1, we introduce
LRanker, an encoder–decoder framework designed to handle large-candidate ranking more ef-
fectively. LRanker improves ranking performance through two complementary components. First,
a candidate aggregation encoder applies K-means clustering to offline candidate embeddings and
uses a learnable projector to inject the resulting aggregated vector into the LLM as a soft prompt,
enabling the model to condition on global candidate information when forming query and candidate
representations (Figure 1(b)). Second, a graph-based test-time scaling strategy iteratively partitions
and prunes the candidate set, recomputes partition-specific query embeddings, and aggregates them

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(b) Training of LRanker

What is the
longest river
in the world
and where

does it start?

User query Q

...

1.

2.

n.

Candidates

(i) Q

Rank

①

②

...

1.

n.

2.ⓝ

LLM LLM

ALL Candidate
Embeddings

Score

(a) Existing LLM rankers

Input(ii) Q+

(iii) Q+

(iv) Q+ ...

Output

Splited Candidates

K-Means

Centroid
Embeddings

User
Qeury Q

1.

j.

n.

...
...

1.

j.

...

3.

j.

......

Random
Split

Ground
Truth

Stage 2. TrainingStage 1. Data Preparation

LRanker

...

1.

2.

n.

Rank

...

Retain
Top

LRanker

... ...

Partition
Embedding

...

+
Average

Updated Query
Embedding

Retained
Candidates

Update d
Rounds

...

d-th depth Query Embeddings Final Rank

①

②

...

1.

n.

2.ⓝ

RankAverage
Original Query
Embedding

 +Q

Candidates
Embeddings

LRanker

Step 1. Get Query
Embedding

Step 4. Obtain Final Ranking Step 3. Update
Query Embedding

Step 2. Get Partition
Embedding

(c) Testing of LRanker

Query
Embedding

1.

j.

n.

...
... ...

...

LLM

Offline Candidate
Embeddings

...

j.

Splited Candidates
Embeddings

...

🔥

Projector
🔥❄️

Figure 1: Compared with existing LLM rankers on large-candidate tasks, LRanker incorpo-
rates advanced designs in both the representation of candidate information and the inference
strategies used during testing. Note that the spark icon denotes models that require fine-tuning,
while the snowflake icon denotes models with frozen weights. (a) Existing LLM rankers generally
adopt four input formats (highlighted in the red box): (i) query only, (ii) query with a single candidate,
(iii) query with candidate pairs, and (iv) query with the complete candidate list. The (iv) setting is
fundamentally constrained by the limited context length of LLMs in massive-candidate scenarios,
while the first three fail to incorporate global candidate-level information, leading to systematic
biases in ranking. (b) LRanker ’s training pipeline. In Stage 1 (data preparation), offline candi-
date embeddings are randomly split and clustered by K-means to obtain centroid embeddings. In
Stage 2 (training), these centroids are passed through the learnable projector and injected into the
LLM decoder via a special placeholder token, yielding query embeddings that already condition
on global candidate information and are optimized with a ranking loss. (c) Graph-based test-time
scaling. Step 1 obtains an initial query embedding E

(0)
q on the full candidate set. Step 2 uses E(0)

q

to retain top-ranked candidates within each partition and recompute partition-specific embeddings.
Step 3 updates the query embedding by averaging embeddings from multiple partitions and repeating
this elimination-and-update process for d rounds, producing {E(t)

q }dt=0. Step 4 averages the scores
computed from these embeddings to obtain the final ranking, enabling robust performance across
diverse candidate scales.

across multiple candidate scales to enhance inference robustness (Figure 1(c)). We also describe
the training procedure, including random partition sampling for robust query representations, and
provide a motivating example to illustrate how these components work together.

3.1 FRAMEWORK OF LRANKER

We design LRanker as an encoder–decoder framework consisting of two trainable components:
a candidate aggregation encoder and an LLM decoder. The overall goal is to learn query-aware
embeddings that integrate both user intent and global candidate information, thereby enabling more
accurate passage ranking. Formally, let Pϕ denote the projection network (with parameters ϕ) and let
fθ denote the LLM decoder (with parameters θ). Both ϕ and θ are optimized under the ranking loss
described in Section 3.2. The overall pipeline corresponds to Stages 1 and 2 in Figure 1(b).

Candidate Aggregation Encoder. Following Stage 1 (Data Preparation) in Figure 1(b), we
first construct a compact representation of the global candidate set. Given a candidate set
C = {c1, c2, . . . , cN} of size N , we obtain offline base encoder embeddings e(ci) for each can-
didate ci and cache them for reuse during training and testing. To capture the global distributional
structure of candidates, we then apply K-means clustering on these embeddings:

{G1,G2, . . . ,GK} = KMeans({e(c1), . . . , e(cN)}), (3)
where Gk represents the k-th cluster. Each cluster centroid is computed as

gk =
1

|Gk|
∑
ci∈Gk

e(ci). (4)

The K centroids are concatenated and then projected into the LLM embedding space by a learnable
projector:

g = [g1;g2; . . . ;gK], g̃ = Pϕ(g), (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where Pϕ is implemented as a small MLP whose parameters ϕ are trained jointly with the LLM pa-
rameters θ. In Figure 1(b), this corresponds to the red-boxed “Centroid Embeddings” and “Projector”
modules that transform offline candidate embeddings into a single aggregated vector.

LLM as a Decoder. The LLM fθ serves as a decoder that jointly encodes the query and the
aggregated candidate information. We design an input prompt that integrates the user query q with
the projected aggregated candidate embedding g̃, as shown in Appendix A and Stage 2 of Figure 1(b).
Concretely, we construct a discrete token sequence the in-context input (x1, x2, . . . , xL) that includes
system instructions, the textual query q, and a special placeholder token <|embedding|> at a fixed
position p. Let Etok be the LLM token embedding matrix. We first map all tokens to embeddings and
then replace the embedding at position p by the continuous vector g̃:

xt =

{
Etok(xt), t ̸= p,

g̃, t = p.
(6)

The resulting sequence of input embeddings X0 = (x1, . . . ,xL) is then fed into the LLM, producing
the hidden representations (z1, . . . , zL) = fθ(X0), where zt denotes the final-layer hidden state
at position t. Operationally, this is equivalent to using a single-token soft prompt: the placeholder
position is occupied by a continuous vector g̃ rather than a discrete token embedding, and gradients
flow back to both Pϕ and fθ. No additional modifications to intermediate layers are required.

To define a query embedding, we explicitly append an end-of-sequence token <eos> to the prompt.
For clarity, we use <eos> as a generic notation for the model-specific end-of-text token (e.g., the
end-of-sequence token in Qwen-3). For a query q with Tq textual tokens, the full sequence thus
contains the Tq query tokens plus the <eos> token. Let zq,t denote the hidden state of the t-th query
token and zq,eos the hidden state at the <eos> position returned by fθ. Because the <eos> position
is used by the LLM to predict the next token, we refer to zq,eos as the “next-token” hidden state in the
sequel. The final query embedding is obtained by averaging over all query-token hidden states and
this next-token state:

hq =
1

Tq + 1

zq,eos +

Tq∑
t=1

zq,t

 . (7)

Similarly, for each candidate ci with length |ci|, we obtain an off-line candidate embedding by feeding
its text (plus an <eos> token) into the same LLM fθ.1 Let zci,j and zci,eos denote the hidden states
of the j-th candidate token and the <eos> position, respectively. We define

hci =
1

|ci|+ 1

zci,eos +

|ci|∑
j=1

zci,j

 . (8)

Note that hq and hci are produced by the same LLM fθ, with the only difference that hq additionally
conditions on the injected global candidate vector g̃ at the placeholder position.

Finally, we compute relevance scores and rank the candidates by inner product:

s(q, ci) = ⟨hq,hci⟩, π(q) = argsort
(
{s(q, ci)}Ni=1

)
, (9)

where ⟨·, ·⟩ denotes the inner product and π(q) represents the ordered sequence of candidates. This
encoder–decoder design (visualized in Figure 1(b)) makes it explicit that both the projector Pϕ and
the LLM fθ are trainable, and clarifies how the continuous aggregated embedding g̃ is injected into
the discrete token sequence to obtain query and candidate representations.

3.2 TRAINING LRANKER

The overall training pipeline in Figure 1(b) contains two stages. Stage 1 (Data Preparation) constructs
offline candidate embeddings and their K-means centroids, while Stage 2 (Training) feeds the
aggregated vector into the LLM decoder together with the user query. During this stage, we optimize
all trainable parameters Θ = {θ, ϕ} of the LLM decoder fθ and the projector Pϕ under a ranking
objective with both positive and negative samples. For each query q, let c+ denote the ground-truth

1For efficiency, this step can be precomputed and cached.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Detailed summarization of tasks used in our ranking experiments with varying candi-
date scales. We summarize the scenarios, task names, candidate sizes, and the number of queries.

Scenario Task Candidate Size # Query Num
RBench-Small

Rec-Music Recommendation 20 12,483
Routing-Balance Routing 20 1,620

RBench-Large
Rec-Movie Recommendation 3,884 4,167

Rec-Toy Recommendation 11,925 19,413
Rec-Video Recommendation 25,600 94,800

Rec-Software Recommendation 17,600 146,400
MS MARCO Passage ranking 24,697 3,038

ESCI Product searching 4,000 3,999

RBench-Ultra
Rec-Clothing Recommendation 6,805,462 185,925

relevant candidate and C− = {c−1 , . . . , c
−
M} the set of sampled negative candidates. Given the

relevance score s(q, c; Θ) defined in Eq. (7), the model is trained to assign a higher score to c+ than to
any negative candidate c− ∈ C−. Concretely, the loss function is defined as a softmax cross-entropy:

L(q, c+, C−; Θ) = − log
exp(s(q, c+; Θ))

exp(s(q, c+; Θ)) +
∑

c−∈C− exp(s(q, c−; Θ))
, (10)

where s(q, c; Θ) is the inner-product score between the query and candidate embeddings produced by
LRanker.

Random partition sampling. In Figure 1(b), the “Random Split” module reflects a key design for
robust training: random partition sampling. To improve the robustness of the aggregated candidate
representation and prepare the model for test-time scaling, we introduce this strategy during training.
For each training instance with candidate set C = {c1, . . . , cN}, we first randomly split C into M
disjoint subsets:

C = C(1) ∪ · · · ∪ C(M), C(m) ∩ C(m′) = ∅ for m ̸= m′. (11)

At each optimization step, we then uniformly sample one index r ∈ {1, . . . ,M} and compute the
aggregated candidate vector

g̃(r) = Pϕ

(
Aggregate(C(r))

)
, (12)

where Aggregate(·) denotes the K-means-based centroid extraction described in Section 3.1. The
sampled vector g̃(r) is injected into the prompt via the special placeholder token (Eqs. (4)–(5)), and the
LLM decoder fθ produces the query embedding h

(r)
q and candidate embeddings. These embeddings

are then used to compute scores s(q, c; Θ) and update the parameters via the loss L(q, c+, C−; Θ).

This random partition sampling serves as a form of data augmentation over candidate contexts:
the query representation is trained to be stable with respect to different subsets of candidates and
varying candidate scales. As a result, the “Query Embedding” output in Figure 1(b) is already robust
to changes in the candidate context. Consequently, at test time, LRanker can naturally leverage
multiple candidate partitions of different sizes and aggregate their contributions for improved ranking
performance, as discussed in Section 3.3.

3.3 GRAPH-BASED TEST-TIME SCALING

Motivated by the principle of ensemble learning (Zhou, 2025; Breiman, 1996; Freund & Schapire,
1997; Wolpert, 1992)—where combining multiple classifiers outperforms relying on a single one—we
extend this idea to ranking by aggregating multiple query embeddings produced under different
candidate partitions. The procedure is summarized in Figure 1(c), which decomposes our test-time
strategy into four steps (Step 1–Step 4). The key intuition is that a single query embedding may be
biased by the initial candidate context, while combining embeddings obtained from diverse partitions
can lead to more robust ranking performance.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Concretely, for a ranking task with N candidates, we first obtain an initial query embedding E
(0)
q

using the proposed encoder–decoder framework applied to the full candidate set (Step 1 in Figure 1(c)).
Based on E

(0)
q , we perform an elimination step (Step 2): the candidates are partitioned into k disjoint

subsets of size approximately N/k, and within each subset we retain only the top-ranked candidates
according to E

(0)
q . This yields a reduced candidate pool C(1) that is still diverse but more focused on

promising items.

For each of the k subsets in this reduced pool, we recompute the aggregated candidate information
(via the same K-means-based encoder in Section 3.1) and obtain a new query embedding conditioned
on that subset (Step 3). This yields k embeddings, which are then averaged with the original E(0)

q to
produce an updated embedding E

(1)
q :

E(1)
q =

1

k + 1

(
E(0)

q +

k∑
m=1

E(0)
q,m

)
, (13)

where E
(0)
q,m denotes the embedding obtained from the m-th partition in the first elimination round.

Intuitively, E(1)
q aggregates information from multiple “views” of the candidate set.

This elimination-and-update process can be repeated for multiple iterations, producing a sequence of
embeddings E(0)

q , E
(1)
q , . . . , E

(d)
q . At test time (Step 4), the final ranking score for a candidate c is

computed by averaging its scores across all embeddings in the sequence:

sfinal(q, c) =
1

d+ 1

d∑
t=0

s
E

(t)
q
(q, c), (14)

where s
E

(t)
q
(q, c) is the score computed with embedding E

(t)
q using the same inner-product function

as in Eq. (7).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

100->1

50->1

25->1

Average Embed

Average Embed
Query Embed (different scales)
Ground Truth
Similarity distance

Figure 2: The graph-based test-time ensemble pro-
duces richer query representations than a single
embedding. t-SNE visualizations show that averaged
embeddings from LRanker tend to lie closer to the
ground-truth item.

We refer to k (the number of partitions per
elimination step) as the width of test-time
scaling, and to d (the number of embedding
update iterations) as its depth. Together,
this forms a graph-based scaling procedure,
where embeddings propagate along a graph
of candidate partitions to refine query repre-
sentations iteratively, as illustrated in Fig-
ure 1(c). In practice, both width k and
depth d are selected based on validation per-
formance, and the best hyperparameters are
directly applied at inference time.

3.4 QUALITATIVE ILLUSTRATION

We provide a qualitative illustration in Fig-
ure 2 to show how LRanker ’s test-time
scaling mechanism leverages multiple query
embeddings to enhance representation qual-
ity compared to using a single embedding
in a dual-tower setup. On a recommenda-
tion dataset with 100 candidates, we apply
t-SNE to visualize candidate embeddings, the ground-truth item embedding, and the query embed-
dings produced at different N→1 scales. The plots indicate that the averaged query embedding from
test-time ensemble integrates complementary strengths from individual embeddings and qualitatively
appears closer to the ground-truth, providing intuitive evidence for its potential to improve ranking
performance.

4 EXPERIMENTS

To explore the capability of LLMs for large-candidate ranking, we conduct a comprehensive training
and evaluation of the proposed LRanker across seven interdisciplinary tasks in LLM ranking bench

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(RBench) with varying candidate scales. We then compare its performance against both general
ranking baselines and domain-specific methods. We begin by introducing the tasks within the LLM
ranking framework.

Task description. The details of the tasks are summarized across three scenarios in Table 2.

• RBench-Large. For the large-candidate ranking scenario, we employ four widely used datasets,
where the number of candidates ranges from several thousand to over ten thousand as shown in
Table 2. We begin our experiments with two sequential recommendation datasets, MovieLens
ml-1m (Rec-Movie) (Hou et al., 2024b) and Amazon Toys (Rec-Toy) (McAuley et al., 2015; Ni
et al., 2019). For both tasks, following prior studies (Geng et al., 2022; Hua et al., 2023), we
construct each sample by extracting 20 consecutive interactions as the historical sequence, while
designating the 21st interaction as the ground-truth item. For evaluation, we adopt the widely used
leave-one-out strategy. In addition, we adopt datasets from passage ranking and product search
tasks, namely MS MARCO (Bajaj et al., 2016) and ESCI (Reddy et al., 2022), respectively. For
both datasets, we assign one positive sample to each query and construct the negative sample set
for each query by aggregating the negative samples from all queries. We split the data into training,
validation, and test sets using an 8:1:1 ratio.

• RBench-Ultra. This scenario is designed to investigate the capability limits of the LLM-based
LRanker in addressing ultra-large ranking tasks with candidate pools at the million scale. To
this end, we employ the sequential recommendation dataset Amazon Clothing (Rec-Clothing)
(McAuley et al., 2015; Ni et al., 2019), which contains nearly 7 million candidate items as shown in
Table 2. For this task, we follow the same setting as in the RBench-Large setup, namely extracting
20 consecutive interactions as the historical sequence and designating the 21st interaction as the
ground-truth item. Evaluation is also conducted using the widely adopted leave-one-out strategy.

• RBench-Small. We design this scenario to explore the capability of LRanker in ranking scenarios
with relatively small candidate sets, such as the re-ranking stage in recommender systems. To this
end, following prior work (Feng et al., 2025; 2024), we adopt the sequential recommendation task
Rec-Music and the LLM routing task Routing-Balance, both with 20 candidates as shown in Table
2, which is fully consistent with the setting in (Feng et al., 2025).

Baselines and metrics. We evaluate a variety of baseline methods across three scenarios. The
baselines are categorized into two groups: (a) General baselines that apply across tasks, and (b)
Task-specific baselines tailored to each task. For all methods, we primarily use Mean Reciprocal
Rank (MRR) (Voorhees et al., 1999; Cremonesi et al., 2010) and Normalized Discounted Cumulative
Gain (NDCG@K) (Järvelin & Kekäläinen, 2002; Burges et al., 2005; Liu et al., 2009) with K = 10 to
evaluate ranking performance in the main text.

• General baselines. We consider two categories of general baselines: retrieval-based methods
and LLM-based methods. In retrieval-based methods, user queries or histories are treated as the
query, while candidates are regarded as the corpus. We employ both a classical probabilistic
retrieval model and a modern dense retrieval model: 1) BM25 (Robertson et al., 2009), a traditional
probabilistic retrieval function that leverages term frequency, inverse document frequency, and
document length normalization. 2) Contriever (Izacard et al., 2021), a state-of-the-art dense
retrieval model trained with contrastive learning and hard negatives.

• Task-specific baselines. For the recommendation tasks in scenarios of RBench-Large and
RBench-Ultra, following prior work on large-scale recommendation (Rajput et al., 2023), we
implemented five sequential recommendation baselines: 1) FM (Rendle, 2010): A general pre-
dictive model that efficiently captures all pairwise feature interactions, widely used as a strong
baseline for recommendation and CTR prediction. 2) BERT4Rec (Sun et al., 2019): A sequen-
tial recommender that applies the bidirectional Transformer (BERT) architecture to user–item
sequences, enabling effective modeling of complex item dependencies. 3) GRU4Rec (Hidasi et al.,
2015): A session-based recommendation model that leverages gated recurrent units (GRUs) to
capture sequential dependencies in user interaction data. 4) SASRec (Kang & McAuley, 2018): A
Transformer-based sequential recommender that employs self-attention to model both short- and
long-term user preferences. 5) Tiger (Rajput et al., 2023): A state-of-the-art generative retrieval
framework designed for large-scale recommendation, which encodes items into semantic IDs and
autoregressively generates them for efficient ranking under massive candidate sets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Model performance comparison with general ranking baselines and task-specific
baselines across four scenarios on NDCG@10 and MRR. Left: Rec-Movie and Rec-Toy. Right:
MS MARCO and ESCI. Bold and underline denote the best and second-best results.

Rec-Movie Rec-Toy

Model NDCG@10 MRR NDCG@10 MRR

General Ranking Baselines

BM25 0.18 0.54 0.37 0.42
Contriever 0.24 0.43 0.84 1.11

Task-specific Baselines

FM 2.35 2.01 0.95 0.98
BERT4Rec 4.08 3.56 1.26 1.31
GRU4Rec 4.12 3.59 1.59 1.46
SASRec 4.36 3.84 1.65 1.52

Tiger 7.37 6.12 2.99 2.33

LRanker 8.02 7.80 3.21 2.42

MS MARCO ESCI

Model NDCG@10 MRR NDCG@10 MRR

General Ranking Baselines

BM25 34.77 26.28 33.70 23.77
Contriever 44.36 33.29 29.41 26.17

Task-specific Baselines

RankBERT-110M 42.26 28.59 42.39 31.45
Multilingual-E5-560M 53.73 46.49 53.17 48.43

KaLM-mini-instruct-0.5B 50.57 40.07 55.21 50.28
BGE-Rerank-v2-m3-568M 53.43 47.74 52.02 48.10

RankLLaMA 8B 52.22 48.83 55.78 52.37

LRanker 54.80 49.28 58.80 57.01

For the recommendation tasks in RBench-Small scenario, we follow the baseline setup in (Feng
et al., 2025) and adopt three representative methods: 1) SASRec (Kang & McAuley, 2018): A
self-attention-based sequential recommender that models users’ sequential behavioral patterns
using a Transformer architecture. 2) BPR (Rendle et al., 2012): A pairwise ranking method
that optimizes sequential recommendation by encouraging observed items to be ranked higher
than unobserved ones. 3) R1-Rec (Lin et al., 2025): A reinforcement learning-based framework
that directly optimizes retrieval-augmented LLMs for recommendation tasks using downstream
feedback. As for the routing task, we compared three representative routers: 1) RouterKNN (Hu
et al., 2024): A simple yet effective routing baseline that assigns queries to models by retrieving
similar examples and applying majority voting. 2) RouterBERT (Ong et al., 2024): A lightweight
BERT model fine-tuned for routing decisions using classification over task labels. 3) GraphRouter
(Feng et al., 2024): A state-of-the-art graph-based router that balances performance and cost
through structural modeling.

Finally, for the passage ranking and product search tasks, we implemented three specialized
ranking baselines: 1) RankBERT-110M (Nogueira & Cho, 2019): A BERT-based passage reranker
fine-tuned on MS MARCO relevance judgments, treating ranking as a binary classification problem.
2) Multilingual-E5-560M (Wang et al., 2022): A multilingual embedding model optimized for
retrieval and ranking tasks, trained with contrastive learning objectives to generate semantically
meaningful embeddings across languages. 3) KaLM-mini-instruct-0.5B (Hu et al., 2025): A
0.5B-parameter multilingual embedding model, instruction-tuned for retrieval and ranking tasks.
4) BGE-Rerank-v2-m3-568M (Xiao et al., 2024): A state-of-the-art reranker from the BGE series,
fine-tuned on large-scale relevance datasets to enhance cross-encoder-based ranking performance.
5) RankLLama-8B (Ma et al., 2024): A ranking-specialized version of Llama-2-8B fine-tuned for
passage ranking using pairwise and listwise objectives.

4.1 LRANKER OUTPERFORMS GENERAL RANKING METHODS AND TASK-SPECIFIC
BASELINES

In the RBench-Large scenario, we compare the 0.6B-sized LRanker with both general ranking
baselines and task-specific baselines across four tasks—Rec-Movie, Rec-Toy, MS MARCO, and
ESCI—as shown in Table C.3. Across all four tasks, LRanker consistently outperforms the strongest
existing baselines by relative margins ranging from about 3% to nearly 9% in MRR, establishing
clear SoTA performance. In the recommendation setting (Rec-Movie, Rec-Toy), where specialized
sequential models such as Tiger dominate, LRanker still secures 7–9% relative improvements,
showing that its centroid-based design provides complementary advantages even when strong tempo-
ral signals are available. In the retrieval setting (MS MARCO, ESCI), where large-scale candidate
pools pose significant efficiency and quality challenges, LRanker achieves 3–9% relative gains
over the best LLM rerankers (e.g., RankLLaMA, BGE-Rerank). Notably, the larger improvement
on ESCI highlights LRanker’s robustness in multilingual and noisy e-commerce search scenarios.
Together, these results confirm that LRanker not only scales effectively across candidate sizes but
also generalizes well across both recommendation and retrieval domains, consistently surpassing
both traditional IR methods and task-specific LLM-based rankers.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Rec-Music Routing-Balance Rec-Clothing
Task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

ti
ve

 P
er

fo
rm

an
ce

 (
LR

an
ke

r
=

 1
)

22.0%
21.7%

0.26%
23.7%

22.0%

0.25%
17.2%

29.6%

0.29%

29.2% 24.4% 0.37%

37.0% 31.4% 0.47%
SoTA-1 SoTA-2 SoTA-3 SoTA-4 LRanker

Figure 3: Compared with state-of-the-art domain-specific baselines, LRanker consistently
outperforms them across both ultra-long and ultra-short scenarios. We compared the perfor-
mance of LRanker against four representative SOTA methods across three tasks. Among them,
Rec-Music and Routing-Balance are tasks in the RBench-Small scenario, while Rec-Clothing is a
task in the RBench-Ultra scenario. Specifically, SOTA-1, SOTA-2, SOTA-3, and SOTA-4 correspond
to SASRec (Kang & McAuley, 2018), BPR (Rendle et al., 2012), R1-Rec (Lin et al., 2025), and
IRanker (Feng et al., 2025) in the Rec-Music task; GraphRouter (Feng et al., 2024), RouterBert (Ong
et al., 2024), RouterKNN (Hu et al., 2024), and IRanker (Feng et al., 2025) in the Routing-Balance
task; BERT4Rec (Kang & McAuley, 2018), GRU4Rec (Hidasi et al., 2015), SASRec (Nogueira et al.,
2020), and Tiger (Rajput et al., 2023) in the Rec-Clothing task.

Rec-Movie Rec-Toy MS MARCO ESCI
Task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

ti
ve

 P
er

fo
rm

an
ce

 (
LR

an
ke

r
=

 1
)

6.9% 2.1% 43.5% 50.3%
7.6% 2.3% 47.7% 55.2%7.4% 2.3% 46.9% 54.0%

7.8% 2.4% 49.3% 57.0%
w/o global info w/o test-time ensemble w/o lora LRanker

Figure 4: Ablation studies confirm that each component of LRanker contributes positively to
the overall performance. To further examine their roles, we evaluate three ablated settings: (i) w/o
global info removes aggregated candidate information, excluding the clustered embedding input and
its projector; (ii) w/o test-time ensemble disables the ensemble mechanism, relying only on the initial
embedding from the LLM; and (iii) w/o LoRA freezes LLM parameters during training and only
fine-tunes the projector. As shown across Rec-Movie, Rec-Toy, MS MARCO, and ESCI, removing
any component consistently leads to performance degradation.

4.2 LRANKER ACHIEVES SUPERIOR RESULTS IN BOTH RBENCH-ULTRA AND
RBENCH-SMALL SCENARIOS

In the RBench-Small and RBench-Ultra scenarios, we compare the 0.6B-sized LRanker with repre-
sentative state-of-the-art domain-specific baselines across three tasks—Rec-Music, Routing-Balance,
and Rec-Clothing—as illustrated in Figure 3. LRanker consistently establishes superior perfor-
mance over all baselines. On RBench-Small, LRanker achieves substantial relative improvements,
with gains of up to 37% on Rec-Music and over 30% on Routing-Balance compared with the strongest
sequential and routing-specific baselines. These results highlight that even in short-context ranking
settings with small candidate pools, LRanker delivers clear benefits beyond specialized architec-
tures such as SASRec, IRanker, and GraphRouter. On RBench-Ultra, where Rec-Clothing involves
over 6.8M candidates, LRanker still surpasses highly optimized sequential recommenders (e.g.,
BERT4Rec, GRU4Rec, Tiger) by 20–30% in relative performance, underscoring its scalability to
extreme candidate sizes. Overall, these findings confirm that LRanker not only excels in ultra-short
candidate scenarios but also scales effectively to ultra-large tasks, demonstrating versatility across
diverse ranking regimes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDIES CONFIRM THE EFFECTIVENESS OF LRANKER ’S KEY COMPONENTS

To provide a comprehensive understanding of the key components of LRanker, we conduct a series
of experiments to investigate the effect of different components.

• w/o global info: Evaluates the contribution of incorporating global candidate information. This
variant removes the clustered embedding input and its associated projector from the LRanker
framework.

• w/o test-time ensemble: Assesses the impact of the test-time ensemble mechanism. In this setting,
LRanker performs ranking solely using the initial embedding generated by the LLM.

• w/o LoRA: Examines the role of LoRA-based training. Here, the LLM parameters are frozen
during training, and only the projector is fine-tuned.

We report the evaluation results on Rec-Movie, Rec-Toy, MS MARCO, and ESCI datasets in
Figure 4. It can be observed that removing global candidate information causes a clear degradation
across all tasks. Without clustered embeddings and the corresponding projector, the model fails to
capture global context, which limits its ability to discriminate among candidates and lowers ranking
accuracy. Removing the test-time ensemble mechanism also leads to reduced performance. Without
the ensemble, the model relies solely on a single embedding from the LLM, which weakens its
adaptability to task-specific variations and reduces robustness. Nevertheless, the results without this
mechanism remain reasonably strong, suggesting that the ensemble mainly serves as a performance
booster. This indicates that while test-time ensemble can further improve ranking quality, users who
prioritize inference efficiency may choose to omit it with only a modest loss in performance. This
highlights the flexibility of LRanker in accommodating different application needs. Eliminating
LoRA-based training likewise results in a performance drop. Freezing the LLM parameters and only
fine-tuning the projector prevents the model from learning task-specific adaptations, making it harder
to fully exploit the LLM’s representational capacity.

5 ADDITIONAL RELATED WORK

Recent works have explored leveraging large language models (LLMs) for ranking under different
paradigms. Token-space ranking methods treat LLMs as text rankers by converting queries and
candidates into textual prompts, either through iterative elimination (IRanker (Feng et al., 2025), PRP
(Qin et al., 2023)) or one-shot generation (DRanker (Feng et al., 2025), RankVicuna (Pradeep et al.,
2023)). However, these approaches face efficiency and context length limitations for large candidate
sets. Embedding-based paradigms address this: single-tower methods (RankLLaMA (Ma et al.,
2024)) use neural scoring heads but require independent candidate scoring, while dual-tower methods
improve efficiency through pre-computed embeddings but limit expressiveness with single query
embeddings. Generative LLM approaches have shown strong performance across diverse ranking
tasks (Liu et al., 2024a; Sun et al., 2023b; Yoon et al., 2024; Chen et al., 2025a; Hou et al., 2024c).
Prompting-based methods (PRP (Qin et al., 2023), LLM4Rec (Hou et al., 2024b)) leverage LLM
generalization with minimal modification, while instruction tuning approaches (GPT4Rec (Li et al.,
2023a), RankRAG (Yu et al., 2024)) fine-tune models for domain-specific ranking signals. These
works highlight LLMs’ potential as general-purpose rankers while exposing limitations in efficiency,
scalability, and complex reasoning.

6 CONCLUSION

We propose LRanker, a framework designed to address the challenges of large-candidate ranking
with LLMs by integrating candidate aggregation and graph-based test-time scaling. Extensive
experiments across three scenarios in RBench demonstrate that LRanker consistently outperforms
existing approaches, achieving substantial improvements from small-scale to million-level candidate
pools. Ablation studies further validate the effectiveness of its key components. In future work, we
plan to extend LRanker to a broader range of ranking tasks, further exploring its generality and
applicability in real-world settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors of this paper have read and adhered to the ICLR Code of Ethics. Our work does not
involve human subjects, personal data, or sensitive attributes. We followed best practices for data
usage, ensured compliance with licensing terms, and considered potential risks of bias or misuse.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Details of the model archi-
tecture, training settings, and hyperparameters are described in Section 4. All datasets we used are
publicly available. The training scripts and evaluation code will be released upon publication to
facilitate replication.

REFERENCES

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated
machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd international
conference on Machine learning, pp. 89–96, 2005.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pp. 129–136, 2007.

Yang Chen, Min Zhang, Yiqun Wu, and Yanyan Liu. Rank-r1: Enhancing reasoning in llm-based
document reranking. arXiv preprint arXiv:2503.06034, 2025a.

Yiqun Chen, Qi Liu, Yi Zhang, Weiwei Sun, Xinyu Ma, Wei Yang, Daiting Shi, Jiaxin Mao, and
Dawei Yin. Tourrank: Utilizing large language models for documents ranking with a tournament-
inspired strategy. In Proceedings of the ACM on Web Conference 2025, pp. 1638–1652, 2025b.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algorithms on
top-n recommendation tasks. In Proceedings of the fourth ACM conference on Recommender
systems, pp. 39–46. ACM, 2010.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
arXiv preprint arXiv:2410.03834, 2024.

Tao Feng, Zhigang Hua, Zijie Lei, Yan Xie, Shuang Yang, Bo Long, and Jiaxuan You. Iranker:
Towards ranking foundation model. arXiv preprint arXiv:2506.21638, 2025.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as
language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In
Proceedings of the 16th ACM conference on recommender systems, pp. 299–315, 2022.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. Bridging language
and items for retrieval and recommendation. arXiv preprint arXiv:2403.03952, 2024a.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. Large language models are zero-shot rankers for recommender systems. In European
Conference on Information Retrieval, pp. 364–381. Springer, 2024b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. Large language models are zero-shot rankers for recommender systems. In Advances
in Information Retrieval: 46th European Conference on IR Research, ECIR 2024, Glasgow,
UK, March 24–28, 2024, Proceedings, Part II, volume 14685 of Lecture Notes in Computer
Science, pp. 364–381. Springer, 2024c. doi: 10.1007/978-3-031-56060-6\ 24. URL https:
//arxiv.org/abs/2305.08845.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv preprint arXiv:2403.12031, 2024.

Xinshuo Hu, Zifei Shan, Xinping Zhao, Zetian Sun, Zhenyu Liu, Dongfang Li, Shaolin Ye, Xinyuan
Wei, Qian Chen, Baotian Hu, et al. Kalm-embedding: Superior training data brings a stronger
embedding model. arXiv preprint arXiv:2501.01028, 2025.

Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. How to index item ids for recom-
mendation foundation models. In Proceedings of the Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval in the Asia Pacific Region, pp. 195–204,
2023.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
arXiv preprint arXiv:2112.09118, 2021.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018.

Hang Li. A short introduction to learning to rank. IEICE TRANSACTIONS on Information and
Systems, 94(10):1854–1862, 2011.

Jinming Li, Wentao Zhang, Tian Wang, Guanglei Xiong, Alan Lu, and Gerard Medioni. Gpt4rec: A
generative framework for personalized recommendation and user interests interpretation. arXiv
preprint arXiv:2304.03879, 2023a.

Lei Li, Yongfeng Zhang, and Li Chen. Prompt distillation for efficient llm-based recommendation. In
Proceedings of the 32nd ACM international conference on information and knowledge management,
pp. 1348–1357, 2023b.

Jiacheng Lin, Tian Wang, and Kun Qian. Rec-r1: Bridging generative large language models and user-
centric recommendation systems via reinforcement learning. arXiv preprint arXiv:2503.24289,
2025.

Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng Chua. Data-
efficient fine-tuning for llm-based recommendation. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 365–374, 2024.

Qidong Liu, Xian Wu, Wanyu Wang, et al. Llmemb: Large language model can be a good embedding
generator for sequential recommendation. arXiv preprint arXiv:2409.19925, 2024a.

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Information
Retrieval, 3(3):225–331, 2009.

Wenhan Liu, Xinyu Ma, Yutao Zhu, Ziliang Zhao, Shuaiqiang Wang, Dawei Yin, and Zhicheng Dou.
Sliding windows are not the end: Exploring full ranking with long-context large language models.
arXiv preprint arXiv:2412.14574, 2024b.

12

https://arxiv.org/abs/2305.08845
https://arxiv.org/abs/2305.08845

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2421–2425, 2024.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43–52, 2015.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188–197, 2019.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL), 2019. URL https://arxiv.org/abs/1901.04085.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Document ranking with a pretrained sequence-to-
sequence model. arXiv preprint arXiv:2003.06713, 2020.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms from preference data. In The
Thirteenth International Conference on Learning Representations, 2024.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankvicuna: Zero-shot listwise document
reranking with open-source large language models. arXiv preprint arXiv:2309.15088, 2023.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu,
Jialu Liu, Donald Metzler, et al. Large language models are effective text rankers with pairwise
ranking prompting. arXiv preprint arXiv:2306.17563, 2023.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems with generative
retrieval. Advances in Neural Information Processing Systems, 36:10299–10315, 2023.

Muhammad Shihab Rashid, Jannat Ara Meem, Yue Dong, and Vagelis Hristidis. Ecorank: Budget-
constrained text re-ranking using large language models. arXiv preprint arXiv:2402.10866, 2024.

Chandan K Reddy, Lluı́s Màrquez, Fran Valero, Nikhil Rao, Hugo Zaragoza, Sambaran Bandyopad-
hyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. Shopping queries dataset: A large-scale
esci benchmark for improving product search. arXiv preprint arXiv:2206.06588, 2022.

Steffen Rendle. Factorization machines. In 2010 IEEE International conference on data mining, pp.
995–1000. IEEE, 2010.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings of the
28th ACM international conference on information and knowledge management, pp. 1441–1450,
2019.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents. arXiv preprint arXiv:2304.09542, 2023a.

Yixin Sun, Yiqun Zhang, Jiaxin Ma, Yanyan Liu, Yanyan Shao, and Shaoping Zhou. Rankgpt:
Enhancing zero-shot ranking with instruction-finetuned large language models. arXiv preprint
arXiv:2304.09542, 2023b.

13

https://arxiv.org/abs/1901.04085

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ellen M Voorhees et al. The trec-8 question answering track report. In Trec, volume 99, pp. 77–82,
1999.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 641–649, 2024.

Jinhyuk Yoon, Minbyul Jeong, Chan Kim, and Minjoon Seo. Listt5: Listwise reranking with
fusion-in-decoder. arXiv preprint arXiv:2402.15838, 2024.

Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
Bryan Catanzaro. Rankrag: Unifying context ranking with retrieval-augmented generation in llms.
Advances in Neural Information Processing Systems, 37:121156–121184, 2024.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
reranking through foundation models. arXiv preprint arXiv:2506.05176, 2025.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PROMPT USAGE

To unify the input format across different tasks, we design prompt templates that integrate the user
query with the aggregated candidate information through the special token <|embedding|>. These
templates guide the model to attend not only to the query but also to the global context of candidate
representations. Specifically, we construct task-specific templates for four representative tasks:
Recommendation (Table 4), Routing (Table 5), Passage Ranking (Table 6), and Product Searching
(Table 7). Each template follows a unified structure but adapts the final instruction to match the
objective of the corresponding task.

Table 4: Prompt template for Recommendation task.
Task: Recommendation

Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate items) and the query
above, recommend the most relevant item.

Table 5: Prompt template for Routing task.
Task: Routing

Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate LLMs/agents) and the
query above, select the most suitable route or model.

Table 6: Prompt template for Passage Ranking task.
Task: Passage Ranking

Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate passages) and the
query above, identify the most relevant passage.

B IMPLEMENTATION DETAILS

We implement LRanker on top of the Qwen3-0.6B Embedding model2 using LoRA adaptation.
Before training, we generate 1024-dimensional offline candidate embeddings for each candidate’s
context via Qwen3-0.6B. For all compared baselines, to ensure a fair comparison, we use the same
1024-dimensional offline candidate embeddings as LRanker for their candidate representations. For
each query, we construct 10 random splits of its associated candidate set and obtain the corresponding
embeddings. During training, the split candidate embeddings are clustered using k-means imple-
mented via scikit-learn3, producing candidate centroid embeddings that serve as global structural
features. These centroids are further projected through a Linear–BatchNorm–ReLU block to 1024 di-
mensions and fused with the base encoder’s textual embedding to form the final query representation.
Training is performed with InfoNCE loss (temperature = 0.15), contrasting positives against sampled
negatives. The model is trained for 15 epochs using the AdamW optimizer (β1 = 0.9, β2 = 0.999,
weight decay = 0.01). We use a learning rate of 1× 10−4 with a 10% linear warm-up followed by
cosine decay, and a batch size of 20. LoRA is applied to both attention and feed-forward layers with
rank = 32, α = 64, and dropout = 0.1. To further improve efficiency and stability, we enable BF16

2https://huggingface.co/Qwen/Qwen3-0.6B
3https://scikit-learn.org/stable/getting_started.html

15

https://huggingface.co/Qwen/Qwen3-0.6B
https://scikit-learn.org/stable/getting_started.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Prompt template for Product Searching task.
Task: Product Searching

Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate products) and the
query above, return the product that best matches the search intent.

training, gradient checkpointing, and gradient clipping (norm = 0.5). For evaluation, we determine
the best graph depth and width using the validation set, and fix these configurations when testing on
the held-out test set. Note that, to ensure inference efficiency, we restrict the search depth to 0–5
and the search width to 0–10. The detailed graph despth and width settings can be seen in Table 16
of Appendix. Moreover, during training we carefully designed parallelized processing that allows
multiple queries and multiple partition-embedding plans to run simultaneously, significantly reducing
inference latency. All experiments are conducted on 1 NVIDIA A6000 GPUs.

To improve clustering efficiency under large-scale candidate pools, we adopt two optimizations.
First, we use MiniBatchKMeans, which processes the full candidate set in small batches to acceler-
ate convergence. Second, because Qwen3-Embedding is trained with Matryoshka Representation
Learning (MRL) (Zhang et al., 2025), we can obtain most semantic information by truncating its
embedding to the first 128 dimensions. We therefore compute cluster assignments using only the
truncated 128-dimensional embeddings, and then compute the final centroid embeddings using the
full 1024-dimensional vectors. These two strategies significantly accelerate clustering and make
LRanker scalable in real-world large-candidate settings.

C GENERALIZATION EXPERIMENTS

C.1 GENERALIZATION TO NEW DATASETS

Table 8: Model zero-shot performance comparison with general ranking baselines and task-
specific baselines on Video Games and Software. Specifically, we evaluate the method trained on
the Rec-Toy dataset in RBench in a zero-shot manner on the Video Games and Software datasets.
Bold and underline denote the best and second-best results.

Video Games Software

Model NDCG@10 MRR NDCG@10 MRR

General Ranking Baselines

BM25 0.39 0.36 0.56 0.51
Contriever 0.90 0.93 0.64 0.67

Task-specific Baselines

FM 1.03 1.09 3.15 3.77
BERT4Rec 1.18 1.38 2.97 2.31
GRU4Rec 1.15 1.27 4.89 4.31
SASRec 1.21 1.40 2.83 2.56

Tiger 1.93 2.17 4.58 3.94

LRanker 2.31 2.61 5.43 4.86

To evaluate the generalization ability of LRanker on datasets beyond RBench, we first train all
methods on Rec-Toy and then perform zero-shot testing on the Video Games and Software datasets
(McAuley et al., 2015; Ni et al., 2019) from amazon (see Table 2 for dataset details). We report
the results in 8. As shown in the table, LRanker exhibits clear cross-domain generalization,
outperforming both general-ranking and task-specific baselines by substantial margins. On Video
Games, LRanker delivers roughly 20% improvements over the strongest task-specific baseline

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and well over 100% gains compared with general-ranking baselines. On Software, the zero-shot
advantage becomes even larger, with LRanker surpassing the best task-specific method by around
20–25% and general-ranking baselines by several-fold. These consistent percentage gains across
two unseen domains demonstrate that the ranking patterns learned from Rec-Toy transfer effectively,
highlighting the robust zero-shot generalization capability of LRanker.

C.2 PERFORMANCE ANALYSIS IN SCENARIOS WITH EXTREMELY IRRELEVANT CANDIDATES

Table 9: Performance comparison in scenarios with extremely irrelevant candidates across two
scenarios on NDCG@10 and MRR. Left: Rec-Toy. Right: MS MARCO. Specifically, we train the
models on the training sets of Rec-Toy and MS MARCO, where the candidates used during training
are the original candidates of each dataset. During testing, however, we replace the candidates with
a mixed pool that combines all candidates from Rec-Movie, Rec-Toy, MS MARCO, and ESCI. In
addition, ∆ performance denotes the relative difference in MRR between the results obtained under
the mixed-candidate setting and those obtained under the original candidate set.Bold and underline
denote the best and second-best results.

Rec-Toy

Model NDCG@10 MRR

General Ranking Baselines

BM25 0.02 0.17
Contriever 0.12 0.21

Task-specific Baselines

FM 0.37 0.34
BERT4Rec 0.55 0.57
GRU4Rec 0.56 0.60
SASRec 0.78 0.64

Tiger 2.25 1.91

LRanker 2.43 2.06

∆ performance

∆ Tiger −24.6% −18.0%
∆ LRanker −24.2% −14.9%

MS MARCO

Model NDCG@10 MRR

General Ranking Baselines

BM25 30.24 24.87
Contriever 39.21 31.09

Task-specific Baselines

RankBERT-110M 36.27 28.13
Multilingual-E5-560M 45.85 41.35

KaLM-mini-instruct-0.5B 43.19 38.36
BGE-Rerank-v2-m3-568M 45.83 43.98

RankLLaMA 8B 46.91 44.04

LRanker 49.03 46.40

∆ performance

∆ RankLLaMA 8B −10.2% −10.5%
∆ LRanker −9.8% −5.9%

To evaluate the performance of LRanker in scenarios with extremely irrelevant candidates, we
construct a mixed candidate pool by combining all candidates from Rec-Movie, Rec-Toy, MS
MARCO, and ESCI. We then compare all methods trained on the original candidate sets of Rec-Toy
and MS MARCO but tested on the mixed candidate pool. The results are shown in Table 9. We can
observe that although all models experience performance degradation when exposed to a large number
of irrelevant candidates, LRanker remains consistently the most robust across both scenarios. On
Rec-Toy, the drop of LRanker is much smaller than that of the strongest task-specific baseline, while
still retaining a clear performance advantage. On MS MARCO, the relative degradation of LRanker
is substantially lower than that of the strongest baseline, indicating that the ranking patterns learned
during training generalize more effectively under heavy distribution shift. These trends demonstrate
that LRanker not only achieves the best overall performance but also maintains superior stability
and robustness in the presence of large-scale irrelevant candidates.

C.3 EXPERIMENT UNDER CANDIDATES DISTRIBUTION SHIFT

To evaluate the robustness of LRanker under candidate distribution shift, we construct two separate
mixed candidate pools: one combining candidates from Rec-Movie and Rec-Toy, and the other
combining candidates from MS MARCO and ESCI. We then compare all methods that are trained
on the original candidate sets of Rec-Toy and MS MARCO but tested on their corresponding mixed
candidate pools. The results are shown in Table 10. We can observe that most baselines experience
substantial performance degradation when evaluated on the mixed candidate pools, indicating their
limited robustness to candidate distribution shift. In contrast, LRanker consistently achieves the
highest accuracy under both Rec-Toy and MS MARCO settings and exhibits a significantly smaller
performance drop compared to strong task-specific baselines such as Tiger and RankLLaMA 8B.
These results demonstrate that LRanker effectively leverages global candidate information and
maintains stable ranking behavior even when the candidate distribution changes at test time.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Performance comparison in scenarios under candidates distribution shift across two
scenarios on NDCG@10 and MRR. Left: Rec-Toy. Right: MS MARCO. Specifically, we train
the models on the training sets of Rec-Toy and MS MARCO, where the candidates used during
training are the original candidates of each dataset. During testing, we replace the candidate set of
Rec-Toy with a mixed candidate pool constructed from both Rec-Movie and Rec-Toy. Similarly, for
MS MARCO and ESCI, we replace each candidate set with mixed candidate pools that combine
candidates from MS MARCO and ESCI. In addition, ∆ performance denotes the relative difference
in MRR between the results obtained under the mixed-candidate setting and those obtained under the
original candidate set.Bold and underline denote the best and second-best results.

Rec-Toy

Model NDCG@10 MRR

General Ranking Baselines

BM25 0.14 0.29
Contriever 0.54 0.52

Task-specific Baselines

FM 0.71 0.48
BERT4Rec 1.22 1.28
GRU4Rec 1.26 1.43
SASRec 1.39 1.34

Tiger 2.34 2.27

LRanker 2.54 2.36

∆ performance

∆ Tiger −30.2% −6.2%
∆ LRanker −20.9% −2.5%

MS MARCO

Model NDCG@10 MRR

General Ranking Baselines

BM25 32.61 27.22
Contriever 40.68 33.74

Task-specific Baselines

RankBERT-110M 38.52 29.59
Multilingual-E5-560M 47.95 45.21

KaLM-mini-instruct-0.5B 45.73 39.48
BGE-Rerank-v2-m3-568M 47.06 46.59

RankLLaMA 8B 47.08 47.27

LRanker 51.41 49.01

∆ performance

∆ RankLLaMA 8B −9.8% −3.2%
∆ LRanker −6.2% −0.55%

D EXPERIMENTS ON SCALABILITY

6.8 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 48.0

Candidate Size (M)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
RR

 (%
)

LRanker
Tiger

Figure 5: The change in MRR performance of LRanker and Tiger as the candidate size increases.
Specifically, we use increments of 5M candidates and scale up to a maximum of 48M candidates.

To examine the limits of LRanker in handling extremely large candidate sets and to analyze how
its performance changes under such conditions, we conduct experiments on the Amazon-23 dataset
(Hou et al., 2024a), which contains approximately 4.8M candidates. Specifically, we take LRanker
and Tiger trained on Rec-Clothing from RBench-Ultra and progressively expand the candidate pool
by randomly adding candidates in increments of 5M on top of the original pool, evaluating the MRR
performance at each step. We report the results in Figure 5. We can observe that both LRanker
and Tiger exhibit consistent performance degradation as the candidate size increases, but LRanker

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

maintains a noticeably slower relative decay. From 6.8M to 48M candidates, LRanker’s MRR
decreases by roughly 25% relative to its initial value, whereas Tiger suffers a substantially larger
relative drop of around 50%. Moreover, the degradation curves of both methods follow the classic IR
scaling after saturation behavior: once the candidate pool grows beyond a certain scale, the decline
in ranking performance becomes progressively flatter rather than continuing linearly. This saturation
effect likely occurs because, as the candidate pool grows, most newly added items are increasingly
irrelevant to the query and therefore less confusable with the ground-truth item. In high-dimensional
embedding spaces, the number of true hard negatives grows sublinearly with corpus size, while
the proportion of far, irrelevant items dominates. As a result, performance degradation slows and
eventually plateaus.

E ADDITIONAL ABLATION STUDIES

E.1 COMPARATIVE STUDY OF K-MEANS AND ALTERNATIVE CLUSTERING TECHNIQUES

Table 11: Performance comparison of the possible candidate aggregation encoder variants
across four tasks.

Rec-Movie Rec-Toy

Model MRR MRR

Set Encoder 6.20 1.95
PCA 6.70 2.05

Hierarchical Clustering 7.00 2.18

LRanker 7.80 2.42

MS MARCO ESCI

Model MRR MRR

Set Encoder 43.50 50.10
PCA 45.50 52.40

Hierarchical Clustering 46.80 53.80

LRanker 49.28 57.01

In this section, we compare LRanker with other methods based on different candidate aggregation
methods. To be specific, we design three baselines. To ensure a fair comparison between LRanker
and the baselines, we constrain all methods such that the final candidate embeddings fed into the
LLM occupy the same number of ”tokens”.

• Set Encoder: In this setting, we sample K candidates from the full candidate pool and pass their
embeddings through a cross-attention module. The resulting representations are then fed into the
LLM. Here, K is set to match the number of k-means cluster centroids used in LRanker.

• PCA: In this setting, the offline embeddings of candidates are first reduced to 256 dimensions
using PCA, followed by k-means clustering.

• Hierarchical Clustering: Compared with LRanker, in this setting, we replace k-means with
hierarchical clustering while keeping the number of clusters unchanged.

As shown in Table 11, LRanker consistently surpasses all three aggregation baselines across all
tasks. The Set Encoder performs the worst because it samples only a small subset of candidates
and aggregates them through cross attention, inevitably discarding global information from the full
candidate pool. The PCA baseline performs better than Set Encoder but still suffers from substantial
information loss due to projecting 1024-dimensional embeddings into a 256-dimensional space prior
to clustering. Hierarchical Clustering achieves the strongest baseline performance and comes closest
to LRanker, as it preserves more structural relationships and avoids sampling or dimensionality
reduction. However, its computational cost is prohibitive: agglomerative hierarchical clustering
requires O(n2d) time and O(n2) memory to compute and store all pairwise distances, where n
is the number of candidates and d is the embedding dimensionality, making it infeasible when n
reaches millions. In contrast, k-means used in LRanker scales as O(nkdT), where k is the number
of clusters and T is the number of iterations, thus providing linear rather than quadratic scaling in
n. As described in Appendix B, LRanker further improves the efficiency of k-means by using
MiniBatchKMeans, which reduces the effective complexity to O(bkdT) with a small batch size
b ≪ n, and by exploiting the Matryoshka Representation Learning property of Qwen3-Embedding,
which enables clustering on truncated embeddings of dimension d′ ≪ d (e.g., 256 instead of 1024)
without sacrificing semantic fidelity. These design choices allow LRanker to maintain strong
ranking performance while enabling fast inference under extremely large candidate pools, making it
practical for real-world deployment.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

10 20 30 40 50
Number of Centroids (k)

6.0

6.5

7.0

7.5

8.0

M
RR

Rec-Movie
LRanker
Best Baseline

10 20 30 40 50
Number of Centroids (k)

2.3

2.4

2.5

2.6

2.7

M
RR

Rec-Toy
LRanker
Best Baseline

10 20 30 40 50
Number of Centroids (k)

48.7
48.8
48.9
49.0
49.1
49.2
49.3
49.4
49.5

M
RR

MS MARCO
LRanker
Best Baseline

10 20 30 40 50
Number of Centroids (k)

52

53

54

55

56

57

58

M
RR

ESCI
LRanker
Best Baseline

Figure 6: Effect of the number of centroids (k) on the performance of LRanker across four
tasks. LRanker consistently outperforms the strongest baseline under all choices of k, and typically
reaches peak performance at moderate values (k = 10–50). Larger k introduces finer but noisier
partitions, resulting in a slight performance drop.

E.2 IMPACT OF THE CHOICE OF K ON PERFORMANCE

In this experiment, we study how the number of centroids k influences the effectiveness of LRanker
in Figure 6. From a computational perspective, k directly affects both the clustering cost during
preprocessing and the inference-time cost of encoding candidate-cluster features. To ensure a prac-
tical efficiency–effectiveness trade-off, we explore a moderate range of k ∈ {10, 20, 30, 40, 50},
which covers the values that are computationally feasible while still allowing sufficient granular-
ity for capturing the structure of the candidate pool. Across all four tasks (Rec-Movie, Rec-Toy,
MS MARCO, and ESCI), LRanker consistently outperforms the strongest baseline under all choices
of k, demonstrating that the model is highly robust to the selection of this hyperparameter. Perfor-
mance typically peaks at moderate values (e.g., k = 10–50), where the centroids provide a balanced
level of abstraction: too few centroids underrepresent the candidate distribution, whereas excessively
large k yields finer but noisier partitions, leading to slight performance drops. Nevertheless, the
margin over the best baseline remains substantial for all settings, illustrating that LRanker maintains
strong effectiveness even when k varies within a wide operational range.

E.3 EFFECT OF CENTROID DIMENSIONALITY ON MODEL PERFORMANCE

We further investigate how the dimensionality of the centroid embeddings affects the performance of
LRanker. This hyperparameter directly influences the expressiveness of the aggregated candidate
representations as well as the computational cost of the clustering stage and the subsequent LLM
encoding step. To balance semantic fidelity and efficiency, we evaluate centroid dimensionalities
in the range {256, 512, 768, 1024}, which spans from aggressively truncated representations to the
full-dimensional Qwen3-Embedding output (the principle and rationale for truncation can be found
in appendix B). As shown in Figure 7, across all four tasks, LRanker consistently outperforms the
strongest baseline for every dimensionality setting, demonstrating strong robustness to this design

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

256 512 768 1024
Centroid Dimensionality

6.0

6.5

7.0

7.5

8.0

M
RR

Rec-Movie
LRanker
Best Baseline

256 512 768 1024
Centroid Dimensionality

2.3

2.4

2.5

2.6

2.7

M
RR

Rec-Toy
LRanker
Best Baseline

256 512 768 1024
Centroid Dimensionality

48.7
48.8
48.9
49.0
49.1
49.2
49.3
49.4
49.5

M
RR

MS MARCO
LRanker
Best Baseline

256 512 768 1024
Centroid Dimensionality

52

53

54

55

56

57

58

M
RR

ESCI
LRanker
Best Baseline

Figure 7: Effect of the centroid dimensionality on the performance of LRanker across four
tasks. Increasing the dimensionality generally improves the quality of centroid representations
by preserving more semantic information, leading to consistent gains over the strongest baseline
under all settings. Moderate dimensions (256–1024) already achieve strong results, indicating that
LRanker does not require the full 1024-dimensional embeddings to maintain high effectiveness.

choice. Increasing the centroid dimensionality generally leads to better performance, as higher-
dimensional centroids preserve more semantic information from the original candidate embeddings.
However, we observe that moderate dimensions (e.g., 512–768) already capture most of the useful
structure and yield competitive or near-peak performance. This suggests that LRanker does not
heavily rely on full 1024-dimensional centroids to achieve high ranking effectiveness. The ability
to operate effectively with reduced centroid dimensionality highlights the efficiency advantages of
LRanker, as lower-dimensional centroids reduce both clustering and inference-time computation
while maintaining strong accuracy.

E.4 ANALYSIS OF BACKBONE LLM INFLUENCE

In addition to comparing against general and task-specific baselines, we further evaluate the ranking
capability of the backbone models used in LRanker by directly applying two Qwen3 variants (0.6B
and 4B) to the Rec-Movie and Rec-Toy tasks in a zero-shot manner. As shown in Table 12, the
0.6B model performs substantially worse than most task-specific baselines, indicating that a small
LLM backbone lacks sufficient inductive bias for effective item ranking. The larger 4B model shows
noticeable improvement, yet still lags behind the strongest baselines (e.g., Tiger), demonstrating that
simply scaling the backbone model size does not close the gap. These results highlight that directly
using a pretrained Qwen3 model to solve ranking tasks does not inherently provide performance gains.
In contrast, LRanker achieves substantial improvements by combining a carefully designed training
objective with graph-based test-time scaling, which equips the LLM with candidate aggregation
encoder and enables robust ranking behavior far beyond what the backbone alone can offer.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Evaluating the direct task-solving capability of Qwen3 backbones of different sizes
against general and task-specific baselines on Rec-Movie and Rec-Toy. Bold and underline denote
the best and second-best results.

Rec-Movie Rec-Toy

Model NDCG@10 MRR NDCG@10 MRR

General Ranking Baselines

BM25 0.18 0.54 0.37 0.42
Contriever 0.24 0.43 0.84 1.11

Backbone Models

Qwen3 0.6B 0.61 0.84 1.56 1.52
Qwen3 4B 0.84 1.29 2.52 2.11

Task-specific Baselines

FM 2.35 2.01 0.95 0.98
BERT4Rec 4.08 3.56 1.26 1.31
GRU4Rec 4.12 3.59 1.59 1.46
SASRec 4.36 3.84 1.65 1.52
Tiger 7.37 6.12 2.99 2.33

LRanker 8.02 7.80 3.21 2.42

F COMPUTATION AND RUNTIME ANALYSIS

F.1 EVALUATION OF COMPUTATIONAL COST AND RUNTIME AGAINST BEST BASELINES

Table 13: Computation time and memory usage for different models on Rec-Movie and MS MARCO.
Scenario Model Train Time Train Memory Test Time Test Memory

Rec-Movie Tiger 21 h 36 m 10.8 GB 20 min 200 MB
LRanker 52 min 24.5 GB 15 min 17.2 GB

MS MARCO RankLLaMA 8B 6 h 33 min 188 GB 21.67 min 71.28 GB
LRanker 21 min 25.0 GB 10 min 17.5 GB

As shown in Table 13, we compare the computation time and memory usage of LRanker against the
strongest task-specific baselines on Rec-Movie and MS MARCO under identical hardware settings.
On Rec-Movie, LRanker completes training in only 52 minutes, representing more than a 24×
reduction in training time compared with Tiger (21 h 36 m), while also achieving lower test-time
latency (15 min vs. 20 min). A similar trend appears on MS MARCO: LRanker requires just 21
minutes to train, in stark contrast to RankLLaMA 8B, which takes 6 h 33 m. Test-time latency is also
reduced by more than half (10 min vs. 21.67 min). Although LRanker uses moderately more memory
during training due to LoRA adaptation and centroid aggregation, its test-time memory footprint
(17–18 GB) remains lightweight, especially compared with RankLLaMA 8B, which consumes over
70 GB. These results highlight that LRanker achieves substantial improvements in computational
efficiency and latency without sacrificing effectiveness. Overall, LRanker provides a practical and
scalable solution for real-world retrieval and ranking systems, where fast training and low-latency
inference are essential.

F.2 SCENARIO-WISE MEMORY USAGE OF LRANKER

Table 14 reports the scenario-wise memory usage of LRanker during both training and inference
across all tasks in RBench. Overall, the memory consumption remains highly stable for most
scenarios. Training typically requires around 24–25 GB of GPU memory, while inference remains
within 16–18 GB. This stability stems from the design of LRanker, whose memory footprint is
dominated by the LoRA-adapted backbone model and the centroid aggregation module.

F.3 LATENCY COMPARISON IN TABLE 1

Table 15 shows that LRanker delivers consistently low per-query latency across both small and
large candidate pools. On Rec-Music (20 candidates), models such as PRP, IRanker, and RankGPT

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 14: Memory Requirements of RBench Scenarios.
Scenario Train Memory Inference Memory
Rec-Music 24.4 GB 16.9 GB
Routing-Balance 24.4 GB 16.9 GB
Rec-Movie 24.5 GB 17.2 GB
ESCI 24.5 GB 17.2 GB
Rec-Toy 25.0 GB 17.5 GB
MS MARCO 25.0 GB 17.5 GB
Rec-Clothing 37.2 GB 29.2 GB

Table 15: Per-query inference latency comparison across different models on Rec-Music and
MS MARCO.

Scenario Model Per-query Inference Time

Rec-Music (20 candidates) PRP 38.3 s
IRanker 6.5 s

RankGPT 3.8 s
LRanker 15 ms

MS MARCO (24,697 candidates) RankLLaMA 8B 21.67 min
LRanker 20 ms

require seconds of computation, while LRanker responds in only 15 ms. The gap widens on
MS MARCO, where RankLLaMA 8B needs over 21 minutes per query due to full-candidate scoring,
whereas LRanker maintains a 20 ms latency by operating on precomputed centroids instead of all
candidates. These results demonstrate that LRanker is not only accurate but also two to three orders
of magnitude faster than existing LLM-based rankers, making it suitable for real-time production
systems.

F.4 IMPACT OF WIDTHS AND DEPTHS ON THE COMPUTATIONAL EFFICIENCY OF LRANKER

Table 16: Optimal width/depth settings of LRanker and their relative latency overhead com-
pared to direct ranking.

Scenario Best Width Best Depth Latency Increase vs. Direct Ranking (%)
RBench-Small

Rec-Music 3 3 1.2%
Routing-Balance 3 3 1.5%

RBench-Large
Rec-Movie 5 4 3.2%
Rec-Toy 5 6 3.8%
MS MARCO 9 6 6.5%
ESCI 6 5 5.2%

RBench-Ultra
Rec-Clothing 10 6 7.8%

As shown in Table 16, the additional latency introduced by the graph-based test-time scaling module
is surprisingly small across all scenarios. Even when the best-performing configurations require
moderate widths and depths (e.g., width = 9, depth = 6 on MS MARCO), the relative latency
increase over direct ranking remains below 8%, and is often as low as 1–3% on the smaller RBench
tasks. This demonstrates that LRanker achieves substantial ranking improvements with minimal
overhead. Moreover, when viewed in absolute terms, LRanker remains extremely fast. As reported in
Appendix F.3, its per-query inference latency is already orders of magnitude lower than that of strong
LLM-based rankers (e.g., RankLLaMA 8B), and remains competitive even against lightweight models

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

such as RankGPT. This high efficiency is enabled by the test-time design described in Appendix B:
MiniBatchKMeans for scalable centroid construction, Matryoshka Representation Learning (MRL)
for low-dimensional clustering, and centroid-only aggregation for compact LLM input. Together,
these optimizations ensure that LRanker maintains both strong performance and low latency, even
when operating under larger width/depth configurations.

G LLM WRITING USAGE DISCLOSURE

An LLM was applied as a writing aid to enhance the clarity and linguistic quality of this paper,
specifically by correcting grammatical errors and polishing sentence flow. No part of the research
design, data analysis, or interpretation relied on the use of the LLM.

24

	Introduction
	Problem Formulation
	LRanker: LLM Ranker for Massive Candidates
	Framework of LRanker
	Training LRanker
	Graph-Based Test-Time Scaling
	Qualitative Illustration

	Experiments
	LRanker Outperforms General Ranking Methods and Task-Specific Baselines
	LRanker Achieves Superior Results in Both RBench-Ultra and RBench-Small Scenarios
	Ablation Studies Confirm the Effectiveness of LRanker ’s Key Components

	Additional Related Work
	Conclusion
	Prompt Usage
	Implementation details
	Generalization Experiments
	Generalization to new datasets
	Performance analysis in scenarios with extremely irrelevant candidates
	Experiment under candidates distribution shift

	Experiments on Scalability
	Additional Ablation Studies
	Comparative Study of K-Means and Alternative Clustering Techniques
	Impact of the Choice of K on Performance
	Effect of Centroid Dimensionality on Model Performance
	Analysis of Backbone LLM Influence

	Computation and runtime analysis
	Evaluation of Computational Cost and Runtime Against Best Baselines
	Scenario-Wise Memory Usage of LRanker
	Latency comparison in Table 1
	Impact of Widths and Depths on the Computational Efficiency of LRanker

	LLM Writing Usage Disclosure

