
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LRANKER: LLM RANKER FOR MASSIVE CANDIDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently shown strong potential for ranking
by capturing semantic relevance and adapting across diverse domains, yet existing
methods remain constrained by limited context length and high computational
costs, restricting their applicability to real-world scenarios where candidate pools
often scale to millions. To address this challenge, we propose LRanker, a frame-
work tailored for large-candidate ranking. LRanker incorporates a candidate
aggregation encoder that leverages K-means clustering to explicitly model global
candidate information, and a graph-based test-time scaling mechanism that parti-
tions candidates into subsets, generates multiple query embeddings, and integrates
them through an ensemble procedure. By aggregating diverse embeddings instead
of relying on a single representation, this mechanism enhances robustness and
expressiveness, leading to more accurate ranking over massive candidate pools.
We evaluate LRanker on seven tasks across three scenarios in RBench with
different candidate scales. Experimental results show that LRanker achieves
over 30% gains in the RBench-Small scenario, improves by 3–9% in MRR in the
RBench-Large scenario, and sustains scalability with 20–30% improvements in the
RBench-Ultra scenario with more than 6.8M candidates. Ablation studies further
verify the effectiveness of its key components. Together, these findings demonstrate
the robustness, scalability, and effectiveness of LRanker for massive-candidate
ranking.

1 INTRODUCTION

Using large language models (LLMs) for ranking has already demonstrated remarkable potential
(Li et al., 2023b; Lin et al., 2024; Jiang et al., 2023), showing strong capabilities in capturing
semantic relevance, adapting to diverse domains, and achieving competitive performance compared
to traditional retrieval and ranking methods. However, constraints such as limited context length
(Rashid et al., 2024; Liu et al., 2024b) and prohibitive computational costs (Chen et al., 2025b) restrict
current LLM-based ranking methods to small candidate sets, limiting their applicability to real-world
scenarios like search and recommendation, where candidate pools often scale to millions. Therefore,
our paper aims to raise attention to this pressing research question: How can we build an efficient
LLM ranker for large candidate ranking?

Existing LLM-based rankers can be broadly distinguished by their input and output formats as shown
in Table 1. In terms of input, prior approaches typically adopt one of four strategies: (1) query only
(Li et al., 2023a), (2) query combined with a single candidate (Ma et al., 2024), (3) query–candidate
pairs (Qin et al., 2023), or (4) the full candidate list (Pradeep et al., 2023; Feng et al., 2025; Sun et al.,
2023a). While the last option quickly becomes infeasible due to the limited context length of LLMs,
the first three fail to incorporate global candidate-level information, introducing systematic biases
into the ranking process. On the output side, most methods directly generate ranking results in the
token space, which couples ranking quality with the LLM’s decoding latency and restricts scalability.

Based on the above discussion, we argue that an effective LLM framework for massive-candidate rank-
ing must model global candidate information in the input and perform ranking through embedding-
based outputs. Nevertheless, constructing such LLM rankers faces two key challenges. First, when
the number of candidates is large, the limited context length of LLMs makes it difficult to model the
global candidate information, which can lead to ranking inaccuracies. Second, relying on a single
embedding to rank all candidates limits the expressive capacity of the model, thereby constraining its
overall potential.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of LRanker with existing LLM-based rankers across four dimensions: in-
put, output, ranking latency, and maximum candidate scale. Unlike prior approaches, LRanker
leverages aggregated candidate centroids within an efficient LLM-based ranking architecture, making
its computation independent of candidate size and enabling efficient processing of the information of
large-scale candidate sets.

LLM-based Ranker Input Output Ranking Latency Largest Candidate Scale
PRP (Qin et al., 2023) Query+ Candidate Pair Token High 100
RankGPT (Sun et al., 2023a) Query + Candidate List Token Moderate 100
IRanker (Feng et al., 2025) Query + Partial Candidate List Token Moderate 20
RankLLaMA (Ma et al., 2024) Query+Single Candidate Embedding High 200

LRanker Query + Aggregated Candidate info Embedding Low 6.81M

To address the limitations of existing LLM rankers, we propose LRanker, a framework tailored
for large-candidate ranking. At the input stage, LRanker employs a candidate aggregation encoder
that clusters candidate embeddings via K-means and summarizes them into compact centroids,
ensuring that global candidate information is explicitly modeled within the prompt. At the inference
stage, LRanker introduces a graph-based test-time scaling mechanism that iteratively partitions
candidates, generates multiple query embeddings under different candidate subsets, and integrates
them through an ensemble procedure. This design enriches the representation of the query by
aggregating multiple perspectives rather than relying on a single embedding, thereby enhancing
robustness and discriminative power for ranking, and enabling more accurate matching across massive
candidate pools.

We evaluate LRanker on seven tasks across three scenarios in RBench with different candidate scales.
In the RBench-Small setting, LRanker achieves over 30% relative gains compared with existing
rankers. In the RBench-Large setting, it outperforms existing approaches by about 3–9% in MRR.
Even in the challenging RBench-Ultra scenario with more than 6.8M candidates, LRanker sustains
scalability and delivers 20–30% improvements. Ablation studies further confirm that global candidate
aggregation, test-time ensemble, and LoRA adaptation all contribute to these gains, demonstrating
the robustness of our design.

2 PROBLEM FORMULATION

Given a query q, the objective of a ranking task (Liu et al., 2009; Li, 2011; Cao et al., 2007) is to
train a ranker f that orders a candidate set D = {c1, c2, . . . , cn} of size n. Typically, D can be
separated into a positive subset Dp (items that the user truly interacted with, e.g., products actually
purchased) and a negative subset Dn (items not chosen). To assess how accurately the ranker retrieves
the positives, its performance is evaluated with ranking metrics E, such as Normalized Discounted
Cumulative Gain (nDCG) (Järvelin & Kekäläinen, 2002) or Mean Reciprocal Rank (MRR) (Voorhees
et al., 1999; Cremonesi et al., 2010).

Formally, a ranker π maps the pair (q,D) into an ordered sequence

π : (q,D) 7→ O = {cr11 , cr22 , . . . , crnn }, O ∈ Sn, (1)

where ri denotes the position assigned to candidate ci, and Sn is the space of all permutations over n
elements. The learning objective is then to identify the optimal ranker π∗ within a hypothesis class F
that maximizes the expected evaluation score under the data distribution Z:

π∗ = argmax
f∈F

E(q,D)∼Z [E(π(q,D))] . (2)

3 LRANKER : LLM RANKER FOR MASSIVE CANDIDATES

Building on the limitations of existing LLM rankers shown in Figure 1, we introduce LRanker, a
framework designed to handle large-candidate ranking more effectively. LRanker improves ranking
performance through two complementary components: (1) a candidate aggregation encoder that
leverages K-means clustering to capture global candidate information, and (2) a graph-based test-
time scaling strategy that integrates query embeddings across multiple candidate scales to enhance
inference. We also describe the model training procedure and provide a motivation example to
illustrate how these components work together.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

What is the
longest river
in the world
and where

does it start?

User query Q

...

1.

2.

3.

Candidates

Q

Rank

①

②

③

...

1.

3.

2.

LLM LLM

Query
Embedding

Off-line
Candidate Embedding

Score

(a) Existing LLM rankers

InputQ+

Q+

Q+ ...

Output

What is the
longest river
in the world
and where

does it start?

User query Q

...

1.

2.

3.

Candidates

K-Means

Aggregated
Candidate Info

Q+

Query
Embedding

...

...

Training Test

(b) LRanker

Figure 1: Compared with existing LLM rankers on large-candidate tasks, LRanker incorpo-
rates advanced designs in both the representation of candidate information and the inference
strategies used during testing. (a) Existing LLM rankers generally adopt four input formats—a
point worth highlighting (see the red box). These include: (1) query only, (2) query with a single
candidate, (3) query with candidate pairs, and (4) query with the complete candidate list. The
fourth approach is fundamentally constrained by the limited context length of LLMs, rendering it
ineffective in massive-candidate scenarios. The first three approaches, in turn, fail to incorporate
global candidate-level information, thereby introducing systematic biases into the ranking process.
(b)LRanker tackles the limitations of existing LLM rankers through two key innovations. First,
at the input stage, it employs K-means clustering to construct aggregated candidate info (see the
red box), enabling effective modeling of global candidate information. Second, at the testing stage,
it introduces a graph-based scaling mechanism that integrates query embeddings across multiple
candidate scales, thereby enhancing ranking accuracy and robustness.

3.1 FRAMEWORK OF LRANKER

We design LRanker as an encoder–decoder framework consisting of two components: a candidate
aggregation encoder and an LLM decoder. The overall goal is to learn query-aware embeddings that
integrate both user intent and global candidate information, thereby enabling more accurate passage
ranking.

Candidate Aggregation Encoder. To capture the global distributional information of candidates, we
apply K-means clustering on their embeddings. Given a candidate set C = {c1, c2, . . . , cN} of size
N , we obtain:

{G1,G2, . . . ,GK} = KMeans({c1, . . . , cN}), (3)

where Gk represents the k-th cluster. Each cluster centroid is computed as:

gk =
1

|Gk|
∑
ci∈Gk

e(ci), (4)

with e(ci) denoting the base encoder embedding of candidate ci. The centroids are then concatenated
and projected into the query embedding space:

g = [g1;g2; . . . ;gK], g̃ = P(g). (5)

LLM as a Decoder. The LLM serves as a decoder to jointly encode the query and the aggregated
candidate information. We design an input prompt that integrates the user query q with the pro-
jected aggregated candidate embedding g̃, as shown in Appendix A. A special placeholder token
<|embedding|> is reserved in the prompt and replaced with g̃, allowing the LLM to condition its
representation on the global candidate context.

For a query q with T tokens, let zq,t denote the hidden state of the t-th token and zq,nt the hidden
state of the predicted next token. The query embedding is obtained by averaging over all token states:

hq =
1

T + 1

(
zq,nt +

T∑
t=1

zq,t

)
. (6)

Similarly, for each candidate ci with length |ci|, the off-line candidate embedding is:

hci =
1

|ci|+ 1

zci,nt +

|ci|∑
j=1

zci,j

 , (7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 2: Detailed summarization of tasks used in our ranking tasks with varying candidate
scales. We summarize the scenarios, task names, candidate sizes, and the number of queries.

Scenario Task Candidate Size # Query Num
RBench-Small

Rec-Music Recommendation 20 12,483
Routing-Balance Routing 20 1,620

RBench-Large
Rec-Movie Recommendation 3,884 4,167

Rec-Toy Recommendation 11,925 19,413
MS MARCO Passage ranking 24,697 3,038

ESCI Product searching 4,000 3,999

RBench-Ultra
Rec-Clothing Recommendation 6,805,462 185,925

where zci,j and zci,nt are the hidden states of the j-th token and predicted next token, respectively.
Finally, we compute relevance scores and rank the candidates:

s(q, ci) = ⟨hq,hci⟩, π(q) = argsort
(
{s(q, ci)}Ni=1

)
, (8)

where ⟨·, ·⟩ denotes the inner product and π(q) represents the ordered sequence of candidates.

3.2 TRAINING LRANKER

During training, we adopt a ranking objective with both positive and negative samples. For each
query q, let c+ denote the ground-truth relevant candidate and C− the set of sampled negative
candidates. The model is trained to assign a higher score to c+ than to any negative candidate
c− ∈ C−. Concretely, the loss function is defined as a softmax cross-entropy:

L = − log
exp(s(q, c+))

exp(s(q, c+)) +
∑

c−∈C− exp(s(q, c−))
, (9)

where s(q, c) is the relevance score between query q and candidate c.

To improve the robustness of the aggregated candidate representation, we further introduce a random
partition sampling strategy during training. Specifically, for each training instance, the candidate set
C is randomly split into two disjoint partitions. We then compute aggregated candidate info based
on one of the partitions and update the model accordingly. This strategy enables the encoder to
learn from diverse candidate scales and prepares the model to better support test-time scaling, where
multiple candidate partitions of varying sizes are integrated for final ranking.

3.3 GRAPH-BASED TEST-TIME SCALING

Motivated by the principle of ensemble learning (Zhou, 2025; Breiman, 1996; Freund & Schapire,
1997; Wolpert, 1992)—where combining multiple classifiers outperforms relying on a single one—we
extend this idea to ranking by aggregating multiple query embeddings. The key intuition is that a
single query embedding may be biased by the initial candidate context, while combining embeddings
obtained under diverse candidate partitions can lead to more robust ranking performance.

Concretely, for a ranking task with N candidates, we first obtain an initial query embedding E
(0)
q

using the proposed encoder–decoder framework as shown in Figure 1(b). Based on E
(0)
q , we perform

an elimination step: the candidates are partitioned into k subsets of size N/2(k), and only the
top-ranked candidates within each subset are retained. For each subset, we update the aggregated
candidate information and compute a new query embedding. This yields k embeddings, which are
then averaged with the original E(0)

q to produce an updated embedding E
(1)
q :

E(1)
q =

1

k + 1

(
E(0)

q +

k∑
m=1

E(0)
q,m

)
, (10)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where E
(0)
q,m denotes the embedding obtained from the m-th partition in the first elimination round.

This elimination-and-update process can be repeated for multiple iterations, producing a sequence of
embeddings E(0)

q , E
(1)
q , . . . , E

(i)
q . At test time, the final ranking score for a candidate c is computed

by averaging its scores across all embeddings in the sequence:

sfinal(q, c) =
1

i+ 1

i∑
t=0

s
E

(t)
q
(q, c), (11)

where s
E

(t)
q
(q, c) is the score computed with embedding E

(t)
q .

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

100->1

50->1

25->1

Average Embed

Average Embed
Query Embed (different scales)
Ground Truth
Similarity distance

Figure 2: The graph-based test-time ensemble mech-
anism qualitatively illustrates how combining multi-
ple embeddings can provide richer representations
than relying on a single query embedding. On a
recommendation dataset with 100 candidates, we use
t-SNE to visualize candidate embeddings (gray points),
the ground-truth item embedding (red star), and query
embeddings produced by LRanker at different N→1
scales. The visualizations suggest that the averaged
query embedding obtained through test-time ensem-
ble captures complementary information from multiple
embeddings and tends to lie closer to the ground-truth
embedding.

We refer to k (the number of partitions per
elimination step) as the width of test-time
scaling, and to i (the number of embedding
update iterations) as its depth. Together,
this forms a graph-based scaling procedure,
where embeddings propagate along a graph
of candidate partitions to refine query rep-
resentations iteratively. In practice, both
width k and depth i are selected based on
validation performance, and the best hyper-
parameters are directly applied at inference
time.

3.4 QUALITATIVE ILLUSTRATION

We provide a qualitative illustration in Fig-
ure 2 to show how LRanker ’s test-time
scaling mechanism leverages multiple query
embeddings to enhance representation qual-
ity compared to using a single embedding
in a dual-tower setup. On a recommenda-
tion dataset with 100 candidates, we apply t-
SNE to visualize candidate embeddings, the
ground-truth item embedding, and the query
embeddings produced at different N → 1
scales. The plots indicate that the averaged
query embedding from test-time ensemble
integrates complementary strengths from in-
dividual embeddings and qualitatively ap-
pears closer to the ground-truth, providing
intuitive evidence for its potential to im-
prove ranking performance.

4 EXPERIMENTS

To explore the capability of LLMs for large-candidate ranking, we conduct a comprehensive training
and evaluation of the proposed LRanker across seven interdisciplinary tasks in LLM ranking bench
(RBench) with varying candidate scales. We then compare its performance against both general
ranking baselines and domain-specific methods. We begin by introducing the tasks within the LLM
ranking framework.

Task description. The details of the tasks are summarized across three scenarios in Table 2.

• RBench-Large. For the large-candidate ranking scenario, we employ four widely used datasets,
where the number of candidates ranges from several thousand to over ten thousand as shown in
Table 2. We begin our experiments with two sequential recommendation datasets, MovieLens
ml-1m (Rec-Movie) (Hou et al., 2024a) and Amazon Toys (Rec-Toy) (McAuley et al., 2015; Ni
et al., 2019). For both tasks, following prior studies (Geng et al., 2022; Hua et al., 2023), we
construct each sample by extracting 20 consecutive interactions as the historical sequence, while

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

designating the 21st interaction as the ground-truth item. For evaluation, we adopt the widely used
leave-one-out strategy. In addition, we adopt datasets from passage ranking and product search
tasks, namely MS MARCO (Bajaj et al., 2016) and ESCI (Reddy et al., 2022), respectively. For
both datasets, we assign one positive sample to each query and construct the negative sample set
for each query by aggregating the negative samples from all queries.

• RBench-Ultra. This scenario is designed to investigate the capability limits of the LLM-based
LRanker in addressing ultra-large ranking tasks with candidate pools at the million scale. To
this end, we employ the sequential recommendation dataset Amazon Clothing (Rec-Clothing)
(McAuley et al., 2015; Ni et al., 2019), which contains nearly 7 million candidate items as shown in
Table 2. For this task, we follow the same setting as in the RBench-Large setup, namely extracting
20 consecutive interactions as the historical sequence and designating the 21st interaction as the
ground-truth item. Evaluation is also conducted using the widely adopted leave-one-out strategy.

• RBench-Small. We design this scenario to explore the capability of LRanker in ranking scenarios
with relatively small candidate sets, such as the re-ranking stage in recommender systems. To this
end, following prior work (Feng et al., 2025; 2024), we adopt the sequential recommendation task
Rec-Music and the LLM routing task Routing-Balance, both with 20 candidates as shown in Table
2, which is fully consistent with the setting in (Feng et al., 2025).

Baselines and metrics. We evaluate a variety of baseline methods across three scenarios. The
baselines are categorized into two groups: (a) General baselines that apply across tasks, and (b)
Task-specific baselines tailored to each task. For all methods, we primarily use Mean Reciprocal
Rank (MRR) (Voorhees et al., 1999; Cremonesi et al., 2010) and Normalized Discounted Cumulative
Gain (NDCG@K) (Järvelin & Kekäläinen, 2002; Burges et al., 2005; Liu et al., 2009) with K = 10 to
evaluate ranking performance in the main text.

• General baselines. We consider two categories of general baselines: retrieval-based methods
and LLM-based methods. In retrieval-based methods, user queries or histories are treated as the
query, while candidates are regarded as the corpus. We employ both a classical probabilistic
retrieval model and a modern dense retrieval model: 1) BM25 (Robertson et al., 2009), a traditional
probabilistic retrieval function that leverages term frequency, inverse document frequency, and
document length normalization. 2) Contriever (Izacard et al., 2021), a state-of-the-art dense
retrieval model trained with contrastive learning and hard negatives.

• Task-specific baselines. For the recommendation tasks in scenarios of RBench-Large and
RBench-Ultra, following prior work on large-scale recommendation (Rajput et al., 2023), we
implemented five sequential recommendation baselines: 1) FM (Rendle, 2010): A general pre-
dictive model that efficiently captures all pairwise feature interactions, widely used as a strong
baseline for recommendation and CTR prediction. 2) BERT4Rec (Sun et al., 2019): A sequen-
tial recommender that applies the bidirectional Transformer (BERT) architecture to user–item
sequences, enabling effective modeling of complex item dependencies. 3) GRU4Rec (Hidasi et al.,
2015): A session-based recommendation model that leverages gated recurrent units (GRUs) to
capture sequential dependencies in user interaction data. 4) SASRec (Kang & McAuley, 2018): A
Transformer-based sequential recommender that employs self-attention to model both short- and
long-term user preferences. 5) Tiger (Rajput et al., 2023): A state-of-the-art generative retrieval
framework designed for large-scale recommendation, which encodes items into semantic IDs and
autoregressively generates them for efficient ranking under massive candidate sets.
For the recommendation tasks in RBench-Small scenario, we follow the baseline setup in (Feng
et al., 2025) and adopt three representative methods: 1) SASRec (Kang & McAuley, 2018): A
self-attention-based sequential recommender that models users’ sequential behavioral patterns
using a Transformer architecture. 2) BPR (Rendle et al., 2012): A pairwise ranking method
that optimizes sequential recommendation by encouraging observed items to be ranked higher
than unobserved ones. 3) R1-Rec (Lin et al., 2025): A reinforcement learning-based framework
that directly optimizes retrieval-augmented LLMs for recommendation tasks using downstream
feedback. As for the routing task, we compared three representative routers: 1) RouterKNN (Hu
et al., 2024): A simple yet effective routing baseline that assigns queries to models by retrieving
similar examples and applying majority voting. 2) RouterBERT (Ong et al., 2024): A lightweight
BERT model fine-tuned for routing decisions using classification over task labels. 3) GraphRouter
(Feng et al., 2024): A state-of-the-art graph-based router that balances performance and cost
through structural modeling.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Model performance comparison with general ranking baselines and task-specific
baselines across four scenarios on NDCG@10 and MRR. Left: Rec-Movie and Rec-Toy. Right:
MS MARCO and ESCI. Bold and underline denote the best and second-best results.

Rec-Movie Rec-Toy

Model NDCG@10 MRR NDCG@10 MRR

General Ranking Baselines

BM25 0.18 0.54 0.37 0.42
Contriever 0.24 0.43 0.84 1.11

Task-specific Baselines

FM 2.35 2.01 0.95 0.98
BERT4Rec 4.08 3.56 1.26 1.31
GRU4Rec 4.12 3.59 1.59 1.46
SASRec 4.36 3.84 1.65 1.52

Tiger 7.37 6.12 2.99 2.33

LRanker 8.02 7.80 3.21 2.42

MS MARCO ESCI

Model NDCG@10 MRR NDCG@10 MRR

General Ranking Baselines

BM25 34.77 26.28 33.70 23.77
Contriever 44.36 33.29 29.41 26.17

Task-specific Baselines

RankBERT-110M 42.26 28.59 42.39 31.45
Multilingual-E5-560M 53.73 46.49 53.17 48.43

KaLM-mini-instruct-0.5B 50.57 40.07 55.21 50.28
BGE-Rerank-v2-m3-568M 53.43 47.74 52.02 48.10

RankLLaMA 8B 52.22 48.83 55.78 52.37

LRanker 54.80 49.28 58.80 57.01

Finally, for the passage ranking and product search tasks, we implemented three specialized
ranking baselines: 1) RankBERT-110M (Nogueira & Cho, 2019): A BERT-based passage reranker
fine-tuned on MS MARCO relevance judgments, treating ranking as a binary classification problem.
2) Multilingual-E5-560M (Wang et al., 2022): A multilingual embedding model optimized for
retrieval and ranking tasks, trained with contrastive learning objectives to generate semantically
meaningful embeddings across languages. 3) KaLM-mini-instruct-0.5B (Hu et al., 2025): A
0.5B-parameter multilingual embedding model, instruction-tuned for retrieval and ranking tasks.
4) BGE-Rerank-v2-m3-568M (Xiao et al., 2024): A state-of-the-art reranker from the BGE series,
fine-tuned on large-scale relevance datasets to enhance cross-encoder-based ranking performance.
5) RankLLama-8B (Ma et al., 2024): A ranking-specialized version of Llama-2-8B fine-tuned for
passage ranking using pairwise and listwise objectives.

Implementation details. We implement LRanker on top of Qwen3-0.6B embedding1 with LoRA
adaptation. The base encoder produces 1024-dimensional embeddings, which are fused with global
candidate cluster features. Candidate clusters are projected using a linear–BatchNorm–ReLU block
to 512 dimensions, while user histories are aggregated through a 2-layer MLP (512 hidden units) with
positional embeddings and mean pooling. The concatenated representation forms a 1536-dimensional
vector, which is aligned with the textual embedding space for retrieval. We adopt InfoNCE loss with
temperature 0.15, contrasting positives against sampled negatives. The model is trained for 15 epochs
with the AdamW optimizer (β1 = 0.9, β2 = 0.999, weight decay= 0.01). The learning rate is set to
1× 10−4 with a linear warm-up over the first 10% of steps followed by cosine decay. The batch size
is 20. LoRA is applied to attention and feed-forward layers with rank=32, α = 64, and dropout=0.1.
To improve efficiency and stability, we enable BF16 training, gradient checkpointing, and gradient
clipping (norm 0.5). For evaluation, we determine the best graph depth and width using the validation
set, and fix these configurations when testing on the held-out test set. All experiments are conducted
on a single NVIDIA A6000 GPU.

4.1 LRANKER OUTPERFORMS GENERAL RANKING METHODS AND TASK-SPECIFIC
BASELINES

In the RBench-Large scenario, we compare the 0.6B-sized LRanker with both general ranking
baselines and task-specific baselines across four tasks—Rec-Movie, Rec-Toy, MS MARCO, and
ESCI—as shown in Table 4. Across all four tasks, LRanker consistently outperforms the strongest
existing baselines by relative margins ranging from about 3% to nearly 9% in MRR, establishing
clear SoTA performance. In the recommendation setting (Rec-Movie, Rec-Toy), where specialized
sequential models such as Tiger dominate, LRanker still secures 7–9% relative improvements,
showing that its centroid-based design provides complementary advantages even when strong tempo-
ral signals are available. In the retrieval setting (MS MARCO, ESCI), where large-scale candidate
pools pose significant efficiency and quality challenges, LRanker achieves 3–9% relative gains
over the best LLM rerankers (e.g., RankLLaMA, BGE-Rerank). Notably, the larger improvement
on ESCI highlights LRanker’s robustness in multilingual and noisy e-commerce search scenarios.
Together, these results confirm that LRanker not only scales effectively across candidate sizes but
also generalizes well across both recommendation and retrieval domains, consistently surpassing
both traditional IR methods and task-specific LLM-based rankers.

1https://huggingface.co/Qwen/Qwen3-0.6B

7

https://huggingface.co/Qwen/Qwen3-0.6B

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Rec-Music Routing-Balance Rec-Clothing
Task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

ti
ve

 P
er

fo
rm

an
ce

 (
LR

an
ke

r
=

 1
)

22.0%
21.7%

0.26%
23.7%

22.0%

0.25%
17.2%

29.6%

0.29%

29.2% 24.4% 0.37%

37.0% 31.4% 0.47%
SoTA-1 SoTA-2 SoTA-3 SoTA-4 LRanker

Figure 3: Compared with state-of-the-art domain-specific baselines, LRanker consistently
outperforms them across both ultra-long and ultra-short scenarios. We compared the perfor-
mance of LRanker against four representative SOTA methods across three tasks. Among them,
Rec-Music and Routing-Balance are tasks in the RBench-Small scenario, while Rec-Clothing is a
task in the RBench-Ultra scenario. Specifically, SOTA-1, SOTA-2, SOTA-3, and SOTA-4 correspond
to SASRec (Kang & McAuley, 2018), BPR (Rendle et al., 2012), R1-Rec (Lin et al., 2025), and
IRanker (Feng et al., 2025) in the Rec-Music task; GraphRouter (Feng et al., 2024), RouterBert (Ong
et al., 2024), RouterKNN (Hu et al., 2024), and IRanker (Feng et al., 2025) in the Routing-Balance
task; BERT4Rec (Kang & McAuley, 2018), GRU4Rec (Hidasi et al., 2015), SASRec (Nogueira et al.,
2020), and Tiger (Rajput et al., 2023) in the Rec-Clothing task.

4.2 LRANKER ACHIEVES SUPERIOR RESULTS IN BOTH RBENCH-ULTRA AND
RBENCH-SMALL SCENARIOS

In the RBench-Small and RBench-Ultra scenarios, we compare the 0.6B-sized LRanker with repre-
sentative state-of-the-art domain-specific baselines across three tasks—Rec-Music, Routing-Balance,
and Rec-Clothing—as illustrated in Figure 3. LRanker consistently establishes superior perfor-
mance over all baselines. On RBench-Small, LRanker achieves substantial relative improvements,
with gains of up to 37% on Rec-Music and over 30% on Routing-Balance compared with the strongest
sequential and routing-specific baselines. These results highlight that even in short-context ranking
settings with small candidate pools, LRanker delivers clear benefits beyond specialized architec-
tures such as SASRec, IRanker, and GraphRouter. On RBench-Ultra, where Rec-Clothing involves
over 6.8M candidates, LRanker still surpasses highly optimized sequential recommenders (e.g.,
BERT4Rec, GRU4Rec, Tiger) by 20–30% in relative performance, underscoring its scalability to
extreme candidate sizes. Overall, these findings confirm that LRanker not only excels in ultra-short
candidate scenarios but also scales effectively to ultra-large tasks, demonstrating versatility across
diverse ranking regimes.

4.3 ABLATION STUDIES CONFIRM THE EFFECTIVENESS OF LRANKER ’S KEY COMPONENTS

To provide a comprehensive understanding of the key components of LRanker, we conduct a series
of experiments to investigate the effect of different components.

• w/o global info: Evaluates the contribution of incorporating global candidate information. This
variant removes the clustered embedding input and its associated projector from the LRanker
framework.

• w/o test-time ensemble: Assesses the impact of the test-time ensemble mechanism. In this setting,
LRanker performs ranking solely using the initial embedding generated by the LLM.

• w/o LoRA: Examines the role of LoRA-based training. Here, the LLM parameters are frozen
during training, and only the projector is fine-tuned.

We report the evaluation results on Rec-Movie, Rec-Toy, MS MARCO, and ESCI dataset in Figure
4. It can be observed that removing global candidate information causes a clear degradation across
all tasks. Without clustered embeddings and the corresponding projector, the model fails to capture
global context, which limits its ability to discriminate among candidates and lowers ranking accuracy.
Removing the test-time ensemble mechanism also leads to reduced performance. Without the
ensemble, the model relies solely on a single embedding from the LLM, which weakens its adaptability

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Rec-Movie Rec-Toy MS MARCO ESCI
Task

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

ti
ve

 P
er

fo
rm

an
ce

 (
LR

an
ke

r
=

 1
)

6.9% 2.1% 43.5% 50.3%
7.6% 2.3% 47.7% 55.2%7.4% 2.3% 46.9% 54.0%

7.8% 2.4% 49.3% 57.0%
w/o global info w/o test-time ensemble w/o lora LRanker

Figure 4: Ablation studies confirm that each component of LRanker contributes positively to
the overall performance. To further examine their roles, we evaluate three ablated settings: (i) w/o
global info removes aggregated candidate information, excluding the clustered embedding input and
its projector; (ii) w/o test-time ensemble disables the ensemble mechanism, relying only on the initial
embedding from the LLM; and (iii) w/o LoRA freezes LLM parameters during training and only
fine-tunes the projector. As shown across Rec-Movie, Rec-Toy, MS MARCO, and ESCI, removing
any component consistently leads to performance degradation.

to task-specific variations and reduces robustness. Nevertheless, the results without this mechanism
remain reasonably strong, suggesting that the ensemble mainly serves as a performance booster. This
indicates that while test-time ensemble can further improve ranking quality, users who prioritize
inference efficiency may choose to omit it with only a modest loss in performance. This highlights
the flexibility of LRanker in accommodating different application needs. Eliminating LoRA-based
training likewise results in a performance drop. Freezing the LLM parameters and only fine-tuning
the projector prevents the model from learning task-specific adaptations, making it harder to fully
exploit the LLM’s representational capacity.

5 ADDITIONAL RELATED WORK

Recent works have explored leveraging large language models (LLMs) for ranking under different
paradigms. Token-space ranking methods treat LLMs as text rankers by converting queries and
candidates into textual prompts, either through iterative elimination (IRanker (Feng et al., 2025),
PRP (Qin et al., 2023)) or one-shot generation (DRanker (Feng et al., 2025), RankVicuna (Pradeep
et al., 2023)). However, these approaches face efficiency and context length limitations for large
candidate sets. Embedding-based paradigms address this: single-tower methods (RankLLaMA (Ma
et al., 2024)) use neural scoring heads but require independent candidate scoring, while dual-tower
methods improve efficiency through pre-computed embeddings but limit expressiveness with single
query embeddings. Generative LLM approaches have shown strong performance across diverse
ranking tasks (Liu et al., 2024a; Sun et al., 2023b; Yoon et al., 2024; Chen et al., 2025a; Hou et al.,
2024b). Prompting-based methods (PRP (Qin et al., 2023), LLM4Rec (Hou et al., 2024a)) leverage
LLM generalization with minimal modification, while instruction tuning approaches (GPT4Rec (Li
et al., 2023a), RankRAG (Yu et al., 2024)) fine-tune models for domain-specific ranking signals.
These works highlight LLMs’ potential as general-purpose rankers while exposing limitations in
efficiency, scalability, and complex reasoning.

6 CONCLUSION

We propose LRanker, a framework designed to address the challenges of large-candidate ranking
with LLMs by integrating candidate aggregation and graph-based test-time scaling. Extensive
experiments across three scenarios in RBench demonstrate that LRanker consistently outperforms
existing approaches, achieving substantial improvements from small-scale to million-level candidate
pools. Ablation studies further validate the effectiveness of its key components. In future work, we
plan to extend LRanker to a broader range of ranking tasks, further exploring its generality and
applicability in real-world settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors of this paper have read and adhered to the ICLR Code of Ethics. Our work does not
involve human subjects, personal data, or sensitive attributes. We followed best practices for data
usage, ensured compliance with licensing terms, and considered potential risks of bias or misuse.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Details of the model archi-
tecture, training settings, and hyperparameters are described in Section 4. All datasets we used are
publicly available. The training scripts and evaluation code will be released upon publication to
facilitate replication.

REFERENCES

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated
machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd international
conference on Machine learning, pp. 89–96, 2005.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pp. 129–136, 2007.

Yang Chen, Min Zhang, Yiqun Wu, and Yanyan Liu. Rank-r1: Enhancing reasoning in llm-based
document reranking. arXiv preprint arXiv:2503.06034, 2025a.

Yiqun Chen, Qi Liu, Yi Zhang, Weiwei Sun, Xinyu Ma, Wei Yang, Daiting Shi, Jiaxin Mao, and
Dawei Yin. Tourrank: Utilizing large language models for documents ranking with a tournament-
inspired strategy. In Proceedings of the ACM on Web Conference 2025, pp. 1638–1652, 2025b.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algorithms on
top-n recommendation tasks. In Proceedings of the fourth ACM conference on Recommender
systems, pp. 39–46. ACM, 2010.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
arXiv preprint arXiv:2410.03834, 2024.

Tao Feng, Zhigang Hua, Zijie Lei, Yan Xie, Shuang Yang, Bo Long, and Jiaxuan You. Iranker:
Towards ranking foundation model. arXiv preprint arXiv:2506.21638, 2025.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as
language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In
Proceedings of the 16th ACM conference on recommender systems, pp. 299–315, 2022.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. Large language models are zero-shot rankers for recommender systems. In European
Conference on Information Retrieval, pp. 364–381. Springer, 2024a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. Large language models are zero-shot rankers for recommender systems. In Advances
in Information Retrieval: 46th European Conference on IR Research, ECIR 2024, Glasgow,
UK, March 24–28, 2024, Proceedings, Part II, volume 14685 of Lecture Notes in Computer
Science, pp. 364–381. Springer, 2024b. doi: 10.1007/978-3-031-56060-6\ 24. URL https:
//arxiv.org/abs/2305.08845.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv preprint arXiv:2403.12031, 2024.

Xinshuo Hu, Zifei Shan, Xinping Zhao, Zetian Sun, Zhenyu Liu, Dongfang Li, Shaolin Ye, Xinyuan
Wei, Qian Chen, Baotian Hu, et al. Kalm-embedding: Superior training data brings a stronger
embedding model. arXiv preprint arXiv:2501.01028, 2025.

Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. How to index item ids for recom-
mendation foundation models. In Proceedings of the Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval in the Asia Pacific Region, pp. 195–204,
2023.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
arXiv preprint arXiv:2112.09118, 2021.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018.

Hang Li. A short introduction to learning to rank. IEICE TRANSACTIONS on Information and
Systems, 94(10):1854–1862, 2011.

Jinming Li, Wentao Zhang, Tian Wang, Guanglei Xiong, Alan Lu, and Gerard Medioni. Gpt4rec: A
generative framework for personalized recommendation and user interests interpretation. arXiv
preprint arXiv:2304.03879, 2023a.

Lei Li, Yongfeng Zhang, and Li Chen. Prompt distillation for efficient llm-based recommendation. In
Proceedings of the 32nd ACM international conference on information and knowledge management,
pp. 1348–1357, 2023b.

Jiacheng Lin, Tian Wang, and Kun Qian. Rec-r1: Bridging generative large language models and user-
centric recommendation systems via reinforcement learning. arXiv preprint arXiv:2503.24289,
2025.

Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng Chua. Data-
efficient fine-tuning for llm-based recommendation. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 365–374, 2024.

Qidong Liu, Xian Wu, Wanyu Wang, et al. Llmemb: Large language model can be a good embedding
generator for sequential recommendation. arXiv preprint arXiv:2409.19925, 2024a.

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Information
Retrieval, 3(3):225–331, 2009.

Wenhan Liu, Xinyu Ma, Yutao Zhu, Ziliang Zhao, Shuaiqiang Wang, Dawei Yin, and Zhicheng Dou.
Sliding windows are not the end: Exploring full ranking with long-context large language models.
arXiv preprint arXiv:2412.14574, 2024b.

11

https://arxiv.org/abs/2305.08845
https://arxiv.org/abs/2305.08845

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2421–2425, 2024.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43–52, 2015.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188–197, 2019.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL), 2019. URL https://arxiv.org/abs/1901.04085.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Document ranking with a pretrained sequence-to-
sequence model. arXiv preprint arXiv:2003.06713, 2020.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms from preference data. In The
Thirteenth International Conference on Learning Representations, 2024.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankvicuna: Zero-shot listwise document
reranking with open-source large language models. arXiv preprint arXiv:2309.15088, 2023.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu,
Jialu Liu, Donald Metzler, et al. Large language models are effective text rankers with pairwise
ranking prompting. arXiv preprint arXiv:2306.17563, 2023.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems with generative
retrieval. Advances in Neural Information Processing Systems, 36:10299–10315, 2023.

Muhammad Shihab Rashid, Jannat Ara Meem, Yue Dong, and Vagelis Hristidis. Ecorank: Budget-
constrained text re-ranking using large language models. arXiv preprint arXiv:2402.10866, 2024.

Chandan K Reddy, Lluı́s Màrquez, Fran Valero, Nikhil Rao, Hugo Zaragoza, Sambaran Bandyopad-
hyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. Shopping queries dataset: A large-scale
esci benchmark for improving product search. arXiv preprint arXiv:2206.06588, 2022.

Steffen Rendle. Factorization machines. In 2010 IEEE International conference on data mining, pp.
995–1000. IEEE, 2010.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings of the
28th ACM international conference on information and knowledge management, pp. 1441–1450,
2019.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents. arXiv preprint arXiv:2304.09542, 2023a.

Yixin Sun, Yiqun Zhang, Jiaxin Ma, Yanyan Liu, Yanyan Shao, and Shaoping Zhou. Rankgpt:
Enhancing zero-shot ranking with instruction-finetuned large language models. arXiv preprint
arXiv:2304.09542, 2023b.

12

https://arxiv.org/abs/1901.04085

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ellen M Voorhees et al. The trec-8 question answering track report. In Trec, volume 99, pp. 77–82,
1999.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 641–649, 2024.

Jinhyuk Yoon, Minbyul Jeong, Chan Kim, and Minjoon Seo. Listt5: Listwise reranking with
fusion-in-decoder. arXiv preprint arXiv:2402.15838, 2024.

Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
Bryan Catanzaro. Rankrag: Unifying context ranking with retrieval-augmented generation in llms.
Advances in Neural Information Processing Systems, 37:121156–121184, 2024.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROMPT USAGE

To unify the input format across different tasks, we design prompt templates that integrate the user
query with the aggregated candidate information through the special token <|embedding|>. These
templates guide the model to attend not only to the query but also to the global context of candidate
representations. Specifically, we construct task-specific templates for four representative tasks:
Recommendation (Table 4), Routing (Table 5), Passage Ranking (Table 6), and Product Searching
(Table 7). Each template follows a unified structure but adapts the final instruction to match the
objective of the corresponding task.

Table 4: Prompt template for Recommendation task.
Task: Recommendation

Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate items) and the query
above, recommend the most relevant item.

Table 5: Prompt template for Routing task.
Task: Routing

Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate LLMs/agents) and the
query above, select the most suitable route or model.

Table 6: Prompt template for Passage Ranking task.
Task: Passage Ranking

Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate passages) and the
query above, identify the most relevant passage.

B LLM WRITING USAGE DISCLOSURE

An LLM was applied as a writing aid to enhance the clarity and linguistic quality of this paper,
specifically by correcting grammatical errors and polishing sentence flow. No part of the research
design, data analysis, or interpretation relied on the use of the LLM.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Prompt template for Product Searching task.
Task: Product Searching

Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate products) and the
query above, return the product that best matches the search intent.

15

	Introduction
	Problem Formulation
	LRanker: LLM Ranker for Massive Candidates
	Framework of LRanker
	Training LRanker
	Graph-Based Test-Time Scaling
	Qualitative Illustration

	Experiments
	LRanker Outperforms General Ranking Methods and Task-Specific Baselines
	LRanker Achieves Superior Results in Both RBench-Ultra and RBench-Small Scenarios
	Ablation Studies Confirm the Effectiveness of LRanker ’s Key Components

	Additional Related Work
	Conclusion
	Prompt Usage
	LLM Writing Usage Disclosure

