Under review as a conference paper at ICLR 2026

LRANKER: LLM RANKER FOR MASSIVE CANDIDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently shown strong potential for ranking
by capturing semantic relevance and adapting across diverse domains, yet existing
methods remain constrained by limited context length and high computational
costs, restricting their applicability to real-world scenarios where candidate pools
often scale to millions. To address this challenge, we propose LRanker, a frame-
work tailored for large-candidate ranking. LRanker incorporates a candidate
aggregation encoder that leverages K -means clustering to explicitly model global
candidate information, and a graph-based test-time scaling mechanism that parti-
tions candidates into subsets, generates multiple query embeddings, and integrates
them through an ensemble procedure. By aggregating diverse embeddings instead
of relying on a single representation, this mechanism enhances robustness and
expressiveness, leading to more accurate ranking over massive candidate pools.
We evaluate LRanker on seven tasks across three scenarios in RBench with
different candidate scales. Experimental results show that LRanker achieves
over 30% gains in the RBench-Small scenario, improves by 3-9% in MRR in the
RBench-Large scenario, and sustains scalability with 20-30% improvements in the
RBench-Ultra scenario with more than 6.8M candidates. Ablation studies further
verify the effectiveness of its key components. Together, these findings demonstrate
the robustness, scalability, and effectiveness of LRanker for massive-candidate
ranking.

1 INTRODUCTION

Using large language models (LLMs) for ranking has already demonstrated remarkable potential
(Li et al., 2023b; Lin et al., 2024; Jiang et al., 2023), showing strong capabilities in capturing
semantic relevance, adapting to diverse domains, and achieving competitive performance compared
to traditional retrieval and ranking methods. However, constraints such as limited context length
(Rashid et al., 2024; Liu et al., 2024b) and prohibitive computational costs (Chen et al., 2025b) restrict
current LLM-based ranking methods to small candidate sets, limiting their applicability to real-world
scenarios like search and recommendation, where candidate pools often scale to millions. Therefore,
our paper aims to raise attention to this pressing research question: How can we build an efficient
LLM ranker for large candidate ranking?

Existing LLM-based rankers can be broadly distinguished by their input and output formats as shown
in Table 1. In terms of input, prior approaches typically adopt one of four strategies: (1) query only
(Li et al., 2023a), (2) query combined with a single candidate (Ma et al., 2024), (3) query—candidate
pairs (Qin et al., 2023), or (4) the full candidate list (Pradeep et al., 2023; Feng et al., 2025; Sun et al.,
2023a). While the last option quickly becomes infeasible due to the limited context length of LLMs,
the first three fail to incorporate global candidate-level information, introducing systematic biases
into the ranking process. On the output side, most methods directly generate ranking results in the
token space, which couples ranking quality with the LLM’s decoding latency and restricts scalability.

Based on the above discussion, we argue that an effective LLM framework for massive-candidate rank-
ing must model global candidate information in the input and perform ranking through embedding-
based outputs. Nevertheless, constructing such LLM rankers faces two key challenges. First, when
the number of candidates is large, the limited context length of LLMs makes it difficult to model the
global candidate information, which can lead to ranking inaccuracies. Second, relying on a single
embedding to rank all candidates limits the expressive capacity of the model, thereby constraining its
overall potential.

Under review as a conference paper at ICLR 2026

Table 1: Comparison of LRanker with existing LLM-based rankers across four dimensions: in-
put, output, ranking latency, and maximum candidate scale. Unlike prior approaches, LRanker
leverages aggregated candidate centroids within an efficient LLM-based ranking architecture, making
its computation independent of candidate size and enabling efficient processing of the information of
large-scale candidate sets.

LLM-based Ranker Input Output Ranking Latency Largest Candidate Scale
PRP (Qin et al., 2023) Query+ Candidate Pair Token High 100

RankGPT (Sun et al., 2023a) Query + Candidate List Token Moderate 100

IRanker (Feng et al., 2025) Query + Partial Candidate List Token Moderate 20
RankLLaMA (Ma et al., 2024) Query+Single Candidate Embedding High 200

LRanker Query + Aggregated Candidate info Embedding Low 6.81M

To address the limitations of existing LLM rankers, we propose LRanker, a framework tailored
for large-candidate ranking. At the input stage, LRanker employs a candidate aggregation encoder
that clusters candidate embeddings via K-means and summarizes them into compact centroids,
ensuring that global candidate information is explicitly modeled within the prompt. At the inference
stage, LRanker introduces a graph-based test-time scaling mechanism that iteratively partitions
candidates, generates multiple query embeddings under different candidate subsets, and integrates
them through an ensemble procedure. This design enriches the representation of the query by
aggregating multiple perspectives rather than relying on a single embedding, thereby enhancing
robustness and discriminative power for ranking, and enabling more accurate matching across massive
candidate pools.

We evaluate LRanker on seven tasks across three scenarios in RBench with different candidate scales.
In the RBench-Small setting, LRanker achieves over 30% relative gains compared with existing
rankers. In the RBench-Large setting, it outperforms existing approaches by about 3-9% in MRR.
Even in the challenging RBench-Ultra scenario with more than 6.8M candidates, LRanker sustains
scalability and delivers 20-30% improvements. Ablation studies further confirm that global candidate
aggregation, test-time ensemble, and LoRA adaptation all contribute to these gains, demonstrating
the robustness of our design.

2 PROBLEM FORMULATION

Given a query ¢, the objective of a ranking task (Liu et al., 2009; Li, 2011; Cao et al., 2007) is to
train a ranker f that orders a candidate set D = {c1,ca,...,c,} of size n. Typically, D can be
separated into a positive subset D,, (items that the user truly interacted with, e.g., products actually
purchased) and a negative subset D,, (items not chosen). To assess how accurately the ranker retrieves
the positives, its performance is evaluated with ranking metrics F, such as Normalized Discounted
Cumulative Gain (nDCG) (Jarvelin & Kekildinen, 2002) or Mean Reciprocal Rank (MRR) (Voorhees
et al., 1999; Cremonesi et al., 2010).

Formally, a ranker 7 maps the pair (g, D) into an ordered sequence
m:(q, D)~ O ={c]*,ch?,...,c"}, OE€S,, (1

where r; denotes the position assigned to candidate c;, and S,, is the space of all permutations over n
elements. The learning objective is then to identify the optimal ranker 7* within a hypothesis class F
that maximizes the expected evaluation score under the data distribution Z:

= argmax E(g,p)~z [E(7(g, D))] - (2

3 LRaNkKER: LLM RANKER FOR MASSIVE CANDIDATES

Building on the limitations of existing LLM rankers shown in Figure 1, we introduce LRanker, a
framework designed to handle large-candidate ranking more effectively. LRanker improves ranking
performance through two complementary components: (1) a candidate aggregation encoder that
leverages K-means clustering to capture global candidate information, and (2) a graph-based test-
time scaling strategy that integrates query embeddings across multiple candidate scales to enhance
inference. We also describe the model training procedure and provide a motivation example to
illustrate how these components work together.

Under review as a conference paper at ICLR 2026

User query @ Candidates C' = [cy,). .., Cy) User query Q Candidates Training I Jest
What is the TF ’6 """""" Whatisthe | ~ Query H N
longest river] ' i g i
inthe worid : ; Inewora | ’- _K-Means Fmbedding L
and where | N Input: d wh H : ' H
does it start?| a+Fe; MPY }l does it start?] ¢ 2 ' v ﬂ D Scorei:

LLm D] o I /20
Y f d i LLm N/2"W — 1
: B dinit. ol i
- 1 ol O
v a+[22D v N ‘ Q+Aggregated Off-line ' .
o A= [ah * Candidate Info Candidate Embedding
(a) Existing LLM rankers (b) LRanker

Figure 1: Compared with existing LLM rankers on large-candidate tasks, LRanker incorpo-
rates advanced designs in both the representation of candidate information and the inference
strategies used during testing. (a) Existing LLM rankers generally adopt four input formats—a
point worth highlighting (see the red box). These include: (1) query only, (2) query with a single
candidate, (3) query with candidate pairs, and (4) query with the complete candidate list. The
fourth approach is fundamentally constrained by the limited context length of LLMs, rendering it
ineffective in massive-candidate scenarios. The first three approaches, in turn, fail to incorporate
global candidate-level information, thereby introducing systematic biases into the ranking process.
(b)LRanker tackles the limitations of existing LLM rankers through two key innovations. First,
at the input stage, it employs K-means clustering to construct aggregated candidate info (see the
red box), enabling effective modeling of global candidate information. Second, at the testing stage,
it introduces a graph-based scaling mechanism that integrates query embeddings across multiple
candidate scales, thereby enhancing ranking accuracy and robustness.

3.1 FRAMEWORK OF LRANKER

We design LRanker as an encoder—decoder framework consisting of two components: a candidate
aggregation encoder and an LLM decoder. The overall goal is to learn query-aware embeddings that
integrate both user intent and global candidate information, thereby enabling more accurate passage
ranking.

Candidate Aggregation Encoder. To capture the global distributional information of candidates, we
apply K -means clustering on their embeddings. Given a candidate set C = {c1, ca,...,cn} of size
N, we obtain:

{G1,Ga,...,Gx} = KMeans({cy,...,cn}), 3)
where Gy, represents the k-th cluster. Each cluster centroid is computed as:
1
=S e,)
B = g 2)
Ci k

with e(c¢;) denoting the base encoder embedding of candidate ¢;. The centroids are then concatenated
and projected into the query embedding space:

g =[g1;82;...:8x], &="P(g). (5)

LLM as a Decoder. The LLM serves as a decoder to jointly encode the query and the aggregated
candidate information. We design an input prompt that integrates the user query ¢ with the pro-
jected aggregated candidate embedding g, as shown in Appendix A. A special placeholder token
<|embedding| > is reserved in the prompt and replaced with g, allowing the LLM to condition its
representation on the global candidate context.

For a query g with T' tokens, let z, ; denote the hidden state of the ¢-th token and z, , the hidden
state of the predicted next token. The query embedding is obtained by averaging over all token states:

T
1
h, =) <zq7m + ;zq,t)) (6)

Similarly, for each candidate ¢; with length |¢;|, the off-line candidate embedding is:

lcil

1
hCz‘ = W Zc; nt T Z Zcij | > @)
j=1

Under review as a conference paper at ICLR 2026

Table 2: Detailed summarization of tasks used in our ranking tasks with varying candidate
scales. We summarize the scenarios, task names, candidate sizes, and the number of queries.

Scenario Task Candidate Size # Query Num
RBench-Small
Rec-Music Recommendation 20 12,483
Routing-Balance Routing 20 1,620
RBench-Large
Rec-Movie Recommendation 3,884 4,167
Rec-Toy Recommendation 11,925 19,413
MS MARCO Passage ranking 24,697 3,038
ESCI Product searching 4,000 3,999
RBench-Ultra
Rec-Clothing Recommendation 6,805,462 185,925

where z., ; and z., . are the hidden states of the j-th token and predicted next token, respectively.
Finally, we compute relevance scores and rank the candidates:

S(Q,Ci) = <hq7hci>a 7T(q) = argsort({s(q7ci)}7z;\;1)7 (8)
where (-, -) denotes the inner product and 7 (q) represents the ordered sequence of candidates.
3.2 TRAINING LRANKER

During training, we adopt a ranking objective with both positive and negative samples. For each
query g, let ¢* denote the ground-truth relevant candidate and C~ the set of sampled negative
candidates. The model is trained to assign a higher score to ¢t than to any negative candidate
¢~ € C~. Concretely, the loss function is defined as a softmax cross-entropy:

exp(s(g, ct))
eXp(S(Qa C+)) + Zc— eCc— exp(s(q, Ci)) 7

where s(g, ¢) is the relevance score between query ¢ and candidate c.

L= —log

C))

To improve the robustness of the aggregated candidate representation, we further introduce a random
partition sampling strategy during training. Specifically, for each training instance, the candidate set
C is randomly split into two disjoint partitions. We then compute aggregated candidate info based
on one of the partitions and update the model accordingly. This strategy enables the encoder to
learn from diverse candidate scales and prepares the model to better support test-time scaling, where
multiple candidate partitions of varying sizes are integrated for final ranking.

3.3 GRAPH-BASED TEST-TIME SCALING

Motivated by the principle of ensemble learning (Zhou, 2025; Breiman, 1996; Freund & Schapire,
1997; Wolpert, 1992)—where combining multiple classifiers outperforms relying on a single one—we
extend this idea to ranking by aggregating multiple query embeddings. The key intuition is that a
single query embedding may be biased by the initial candidate context, while combining embeddings
obtained under diverse candidate partitions can lead to more robust ranking performance.

Concretely, for a ranking task with N candidates, we first obtain an initial query embedding Eéo)

using the proposed encoder—decoder framework as shown in Figure 1(b). Based on E,SO) , we perform

an elimination step: the candidates are partitioned into k subsets of size N/ 2(F) " and only the
top-ranked candidates within each subset are retained. For each subset, we update the aggregated
candidate information and compute a new query embedding. This yields & embeddings, which are

then averaged with the original E,SO) to produce an updated embedding Eél):

k
1
1) 0 0
EWY =) <E§ = E(gﬂg@) , (10)
m=1

4

Under review as a conference paper at ICLR 2026

(0)

where Ey 7, denotes the embedding obtained from the m-th partition in the first elimination round.

This elimination-and-update process can be repeated for multiple iterations, producing a sequence of

embeddings E,§°>, E,gl), ce E(gi). At test time, the final ranking score for a candidate c is computed
by averaging its scores across all embeddings in the sequence:

1 i
Sfinal (¢, €) = T Z SE((It) (g,0),
t=0

where s B (g, ¢) is the score computed with embedding E(gt).

We refer to k (the number of partitions per
elimination step) as the width of test-time
scaling, and to ¢ (the number of embedding
update iterations) as its depth. Together,
this forms a graph-based scaling procedure,
where embeddings propagate along a graph
of candidate partitions to refine query rep-
resentations iteratively. In practice, both
width k and depth ¢ are selected based on
validation performance, and the best hyper-
parameters are directly applied at inference
time.

3.4 QUALITATIVE ILLUSTRATION

We provide a qualitative illustration in Fig-
ure 2 to show how LRanker ’s test-time
scaling mechanism leverages multiple query
embeddings to enhance representation qual-
ity compared to using a single embedding
in a dual-tower setup. On a recommenda-
tion dataset with 100 candidates, we apply t-
SNE to visualize candidate embeddings, the
ground-truth item embedding, and the query
embeddings produced at different N — 1
scales. The plots indicate that the averaged
query embedding from test-time ensemble
integrates complementary strengths from in-
dividual embeddings and qualitatively ap-
pears closer to the ground-truth, providing
intuitive evidence for its potential to im-
prove ranking performance.

4 EXPERIMENTS

(1)
1.2
1.04 ><50->1
><25->1
0.8
0.6 5 ,/’
>
0.4
Average Embed 100->1
0.2 X Query Embed (different scales) X
* Ground Truth
---- Similarity distance
OIOA T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 2: The graph-based test-time ensemble mech-
anism qualitatively illustrates how combining multi-
ple embeddings can provide richer representations
than relying on a single query embedding. On a
recommendation dataset with 100 candidates, we use
t-SNE to visualize candidate embeddings (gray points),
the ground-truth item embedding (red star), and query
embeddings produced by LRanker at different N — 1
scales. The visualizations suggest that the averaged
query embedding obtained through test-time ensem-
ble captures complementary information from multiple
embeddings and tends to lie closer to the ground-truth
embedding.

To explore the capability of LLMs for large-candidate ranking, we conduct a comprehensive training
and evaluation of the proposed LRanker across seven interdisciplinary tasks in LLM ranking bench
(RBench) with varying candidate scales. We then compare its performance against both general
ranking baselines and domain-specific methods. We begin by introducing the tasks within the LLM

ranking framework.

Task description. The details of the tasks are summarized across three scenarios in Table 2.

* RBench-Large. For the large-candidate ranking scenario, we employ four widely used datasets,
where the number of candidates ranges from several thousand to over ten thousand as shown in
Table 2. We begin our experiments with two sequential recommendation datasets, MovieLens
ml-1m (Rec-Movie) (Hou et al., 2024a) and Amazon Toys (Rec-Toy) (McAuley et al., 2015; Ni
et al., 2019). For both tasks, following prior studies (Geng et al., 2022; Hua et al., 2023), we
construct each sample by extracting 20 consecutive interactions as the historical sequence, while

Under review as a conference paper at ICLR 2026

designating the 21st interaction as the ground-truth item. For evaluation, we adopt the widely used
leave-one-out strategy. In addition, we adopt datasets from passage ranking and product search
tasks, namely MS MARCO (Bajaj et al., 2016) and ESCI (Reddy et al., 2022), respectively. For
both datasets, we assign one positive sample to each query and construct the negative sample set
for each query by aggregating the negative samples from all queries.

* RBench-Ultra. This scenario is designed to investigate the capability limits of the LLM-based
LRanker in addressing ultra-large ranking tasks with candidate pools at the million scale. To
this end, we employ the sequential recommendation dataset Amazon Clothing (Rec-Clothing)
(McAuley et al., 2015; Ni et al., 2019), which contains nearly 7 million candidate items as shown in
Table 2. For this task, we follow the same setting as in the RBench-Large setup, namely extracting
20 consecutive interactions as the historical sequence and designating the 21st interaction as the
ground-truth item. Evaluation is also conducted using the widely adopted leave-one-out strategy.

* RBench-Small. We design this scenario to explore the capability of LRanker in ranking scenarios
with relatively small candidate sets, such as the re-ranking stage in recommender systems. To this
end, following prior work (Feng et al., 2025; 2024), we adopt the sequential recommendation task
Rec-Music and the LLM routing task Routing-Balance, both with 20 candidates as shown in Table
2, which is fully consistent with the setting in (Feng et al., 2025).

Baselines and metrics. We evaluate a variety of baseline methods across three scenarios. The
baselines are categorized into two groups: (a) General baselines that apply across tasks, and (b)
Task-specific baselines tailored to each task. For all methods, we primarily use Mean Reciprocal
Rank (MRR) (Voorhees et al., 1999; Cremonesi et al., 2010) and Normalized Discounted Cumulative
Gain (NDCG@K) (Jéarvelin & Kekildinen, 2002; Burges et al., 2005; Liu et al., 2009) with K = 10 to
evaluate ranking performance in the main text.

* General baselines. We consider two categories of general baselines: retrieval-based methods
and LLM-based methods. In retrieval-based methods, user queries or histories are treated as the
query, while candidates are regarded as the corpus. We employ both a classical probabilistic
retrieval model and a modern dense retrieval model: 1) BM25 (Robertson et al., 2009), a traditional
probabilistic retrieval function that leverages term frequency, inverse document frequency, and
document length normalization. 2) Contriever (Izacard et al., 2021), a state-of-the-art dense
retrieval model trained with contrastive learning and hard negatives.

* Task-specific baselines. For the recommendation tasks in scenarios of RBench-Large and
RBench-Ultra, following prior work on large-scale recommendation (Rajput et al., 2023), we
implemented five sequential recommendation baselines: 1) FM (Rendle, 2010): A general pre-
dictive model that efficiently captures all pairwise feature interactions, widely used as a strong
baseline for recommendation and CTR prediction. 2) BERT4Rec (Sun et al., 2019): A sequen-
tial recommender that applies the bidirectional Transformer (BERT) architecture to user—item
sequences, enabling effective modeling of complex item dependencies. 3) GRU4Rec (Hidasi et al.,
2015): A session-based recommendation model that leverages gated recurrent units (GRUs) to
capture sequential dependencies in user interaction data. 4) SASRec (Kang & McAuley, 2018): A
Transformer-based sequential recommender that employs self-attention to model both short- and
long-term user preferences. 5) Tiger (Rajput et al., 2023): A state-of-the-art generative retrieval
framework designed for large-scale recommendation, which encodes items into semantic IDs and
autoregressively generates them for efficient ranking under massive candidate sets.

For the recommendation tasks in RBench-Small scenario, we follow the baseline setup in (Feng
et al., 2025) and adopt three representative methods: 1) SASRec (Kang & McAuley, 2018): A
self-attention-based sequential recommender that models users’ sequential behavioral patterns
using a Transformer architecture. 2) BPR (Rendle et al., 2012): A pairwise ranking method
that optimizes sequential recommendation by encouraging observed items to be ranked higher
than unobserved ones. 3) R/-Rec (Lin et al., 2025): A reinforcement learning-based framework
that directly optimizes retrieval-augmented LLMs for recommendation tasks using downstream
feedback. As for the routing task, we compared three representative routers: 1) RouterKNN (Hu
et al., 2024): A simple yet effective routing baseline that assigns queries to models by retrieving
similar examples and applying majority voting. 2) RouterBERT (Ong et al., 2024): A lightweight
BERT model fine-tuned for routing decisions using classification over task labels. 3) GraphRouter
(Feng et al., 2024): A state-of-the-art graph-based router that balances performance and cost
through structural modeling.

Under review as a conference paper at ICLR 2026

Table 3: Model performance comparison with general ranking baselines and task-specific
baselines across four scenarios on NDCG @10 and MRR. Left: Rec-Movie and Rec-Toy. Right:
MS MARCO and ESCI. Bold and underline denote the best and second-best results.

Rec-Movie Rec-Toy MS MARCO ESCI
Model NDCG@10 MRR NDCG@10 MRR Model NDCG@10 MRR NDCG@10 MRR
General Ranking Baselines General Ranking Baselines
BM25 0.18 0.54 0.37 0.42 BM25 3477 26.28 33.70 23.77
Contriever 0.24 0.43 0.84 1.11 Contriever 44.36 33.29 29.41 26.17
Task-specific Baselines Task-specific Baselines
FM 2.35 2.01 0.95 0.98 RankBERT-110M 42.26 28.59 4239 31.45
BERT4Rec 4.08 3.56 1.26 1.31 Multilingual-E5-560M 53.73 46.49 53.17 48.43
GRU4Rec 4.12 3.59 1.59 1.46 KaLM-mini-instruct-0.5B 50.57 40.07 55.21 50.28
SASRec 4.36 3.84 1.65 1.52 BGE-Rerank-v2-m3-568M 5343 47.74 52.02 48.10
Tiger 7.37 6.12 2.99 233 RankLLaMA 8B 5222 48.83 55.78 5237
LRanker 8.02 7.80 3.21 2.42 LRanker 54.80 49.28 58.80 57.01

Finally, for the passage ranking and product search tasks, we implemented three specialized
ranking baselines: 1) RankBERT-110M (Nogueira & Cho, 2019): A BERT-based passage reranker
fine-tuned on MS MARCO relevance judgments, treating ranking as a binary classification problem.
2) Multilingual-E5-560M (Wang et al., 2022): A multilingual embedding model optimized for
retrieval and ranking tasks, trained with contrastive learning objectives to generate semantically
meaningful embeddings across languages. 3) KaLM-mini-instruct-0.5B (Hu et al., 2025): A
0.5B-parameter multilingual embedding model, instruction-tuned for retrieval and ranking tasks.
4) BGE-Rerank-v2-m3-568M (Xiao et al., 2024): A state-of-the-art reranker from the BGE series,
fine-tuned on large-scale relevance datasets to enhance cross-encoder-based ranking performance.
5) RankLLama-8B (Ma et al., 2024): A ranking-specialized version of Llama-2-8B fine-tuned for
passage ranking using pairwise and listwise objectives.

Implementation details. We implement LRanker on top of Qwen3-0.6B embedding' with LoRA
adaptation. The base encoder produces 1024-dimensional embeddings, which are fused with global
candidate cluster features. Candidate clusters are projected using a linear—-BatchNorm—ReL.U block
to 512 dimensions, while user histories are aggregated through a 2-layer MLP (512 hidden units) with
positional embeddings and mean pooling. The concatenated representation forms a 1536-dimensional
vector, which is aligned with the textual embedding space for retrieval. We adopt InfoNCE loss with
temperature 0.15, contrasting positives against sampled negatives. The model is trained for 15 epochs
with the AdamW optimizer (51 = 0.9, B2 = 0.999, weight decay= 0.01). The learning rate is set to
1 x 10~* with a linear warm-up over the first 10% of steps followed by cosine decay. The batch size
is 20. LoRA is applied to attention and feed-forward layers with rank=32, o = 64, and dropout=0.1.
To improve efficiency and stability, we enable BF16 training, gradient checkpointing, and gradient
clipping (norm 0.5). For evaluation, we determine the best graph depth and width using the validation
set, and fix these configurations when testing on the held-out test set. All experiments are conducted
on a single NVIDIA A6000 GPU.

4.1 LRANKER OUTPERFORMS GENERAL RANKING METHODS AND TASK-SPECIFIC
BASELINES

In the RBench-Large scenario, we compare the 0.6B-sized LRanker with both general ranking
baselines and task-specific baselines across four tasks—Rec-Movie, Rec-Toy, MS MARCO, and
ESCI—as shown in Table 4. Across all four tasks, LRanker consistently outperforms the strongest
existing baselines by relative margins ranging from about 3% to nearly 9% in MRR, establishing
clear SOoTA performance. In the recommendation setting (Rec-Movie, Rec-Toy), where specialized
sequential models such as Tiger dominate, LRanker still secures 7-9% relative improvements,
showing that its centroid-based design provides complementary advantages even when strong tempo-
ral signals are available. In the retrieval setting (MS MARCO, ESCI), where large-scale candidate
pools pose significant efficiency and quality challenges, LRanker achieves 3-9% relative gains
over the best LLM rerankers (e.g., RankLLaMA, BGE-Rerank). Notably, the larger improvement
on ESCI highlights LRanker’s robustness in multilingual and noisy e-commerce search scenarios.
Together, these results confirm that LRanker not only scales effectively across candidate sizes but
also generalizes well across both recommendation and retrieval domains, consistently surpassing
both traditional IR methods and task-specific LLM-based rankers.

"https://huggingface.co/Qwen/Qwen3-0.6B

https://huggingface.co/Qwen/Qwen3-0.6B

Under review as a conference paper at ICLR 2026

-
1. !
I SoTA-1 SoTA-2 SoTA-3 SoTA-4 LRanker
@ 37.0% 31.4% 0.47%
X 1.0 29.6%
c
I
é o8 29.2% 24.4% 0.37%
o 21.7% 22.0%
23.7%
g 22.0% ° i 0.29%
© 0.6 0.26% g.25%
3 17.2%
-
-g 0.4
[
o
9o.
g 0.2
=
8
© 0.0 . . .
4 Rec-Music Routing-Balance Rec-Clothing
Task

Figure 3: Compared with state-of-the-art domain-specific baselines, LRanker consistently
outperforms them across both ultra-long and ultra-short scenarios. We compared the perfor-
mance of LRanker against four representative SOTA methods across three tasks. Among them,
Rec-Music and Routing-Balance are tasks in the RBench-Small scenario, while Rec-Clothing is a
task in the RBench-Ultra scenario. Specifically, SOTA-1, SOTA-2, SOTA-3, and SOTA-4 correspond
to SASRec (Kang & McAuley, 2018), BPR (Rendle et al., 2012), R1-Rec (Lin et al., 2025), and
IRanker (Feng et al., 2025) in the Rec-Music task; GraphRouter (Feng et al., 2024), RouterBert (Ong
et al., 2024), RouterKNN (Hu et al., 2024), and IRanker (Feng et al., 2025) in the Routing-Balance
task; BERT4Rec (Kang & McAuley, 2018), GRU4Rec (Hidasi et al., 2015), SASRec (Nogueira et al.,
2020), and Tiger (Rajput et al., 2023) in the Rec-Clothing task.

4.2 LRANKER ACHIEVES SUPERIOR RESULTS IN BOTH RBENCH-ULTRA AND
RBENCH-SMALL SCENARIOS

In the RBench-Small and RBench-Ultra scenarios, we compare the 0.6B-sized LRanker with repre-
sentative state-of-the-art domain-specific baselines across three tasks—Rec-Music, Routing-Balance,
and Rec-Clothing—as illustrated in Figure 3. LRanker consistently establishes superior perfor-
mance over all baselines. On RBench-Small, LRanker achieves substantial relative improvements,
with gains of up to 37% on Rec-Music and over 30% on Routing-Balance compared with the strongest
sequential and routing-specific baselines. These results highlight that even in short-context ranking
settings with small candidate pools, LRanker delivers clear benefits beyond specialized architec-
tures such as SASRec, IRanker, and GraphRouter. On RBench-Ultra, where Rec-Clothing involves
over 6.8M candidates, LRanker still surpasses highly optimized sequential recommenders (e.g.,
BERT4Rec, GRU4Rec, Tiger) by 20-30% in relative performance, underscoring its scalability to
extreme candidate sizes. Overall, these findings confirm that LRanker not only excels in ultra-short
candidate scenarios but also scales effectively to ultra-large tasks, demonstrating versatility across
diverse ranking regimes.

4.3 ABLATION STUDIES CONFIRM THE EFFECTIVENESS OF LRANKER 'S KEY COMPONENTS

To provide a comprehensive understanding of the key components of LRanker, we conduct a series
of experiments to investigate the effect of different components.

» w/o global info: Evaluates the contribution of incorporating global candidate information. This
variant removes the clustered embedding input and its associated projector from the LRanker
framework.

* w/o test-time ensemble: Assesses the impact of the test-time ensemble mechanism. In this setting,
LRanker performs ranking solely using the initial embedding generated by the LLM.

* w/o LoRA: Examines the role of LoRA-based training. Here, the LLM parameters are frozen
during training, and only the projector is fine-tuned.

We report the evaluation results on Rec-Movie, Rec-Toy, MS MARCO, and ESCI dataset in Figure
4. It can be observed that removing global candidate information causes a clear degradation across
all tasks. Without clustered embeddings and the corresponding projector, the model fails to capture
global context, which limits its ability to discriminate among candidates and lowers ranking accuracy.
Removing the test-time ensemble mechanism also leads to reduced performance. Without the
ensemble, the model relies solely on a single embedding from the LLM, which weakens its adaptability

Under review as a conference paper at ICLR 2026

=
N

T T
mmm w/o global info - w/o test-time ensemble w/o lora | LRankerJ

7.8% 2.4% 49.3% 57.0%
2.3% 539, 47.7% 46.9% 55.2% 54.0%

43.5% 50.3%

7.6% 7.9

Iy
)

6.9%

o
®

o
)

I
>

o
N

e
o

Relative Performance (LRanker = 1

Rec-Movie Rec-Toy MS MARCO ESCI

Task

Figure 4: Ablation studies confirm that each component of LRanker contributes positively to
the overall performance. To further examine their roles, we evaluate three ablated settings: (i) w/o
global info removes aggregated candidate information, excluding the clustered embedding input and
its projector; (ii) w/o test-time ensemble disables the ensemble mechanism, relying only on the initial
embedding from the LLM; and (iii) w/o LoRA freezes LLM parameters during training and only
fine-tunes the projector. As shown across Rec-Movie, Rec-Toy, MS MARCO, and ESCI, removing
any component consistently leads to performance degradation.

to task-specific variations and reduces robustness. Nevertheless, the results without this mechanism
remain reasonably strong, suggesting that the ensemble mainly serves as a performance booster. This
indicates that while test-time ensemble can further improve ranking quality, users who prioritize
inference efficiency may choose to omit it with only a modest loss in performance. This highlights
the flexibility of LRanker in accommodating different application needs. Eliminating LoRA-based
training likewise results in a performance drop. Freezing the LLM parameters and only fine-tuning
the projector prevents the model from learning task-specific adaptations, making it harder to fully
exploit the LLM’s representational capacity.

5 ADDITIONAL RELATED WORK

Recent works have explored leveraging large language models (LLMs) for ranking under different
paradigms. Token-space ranking methods treat LLMs as text rankers by converting queries and
candidates into textual prompts, either through iterative elimination (IRanker (Feng et al., 2025),
PRP (Qin et al., 2023)) or one-shot generation (DRanker (Feng et al., 2025), RankVicuna (Pradeep
et al., 2023)). However, these approaches face efficiency and context length limitations for large
candidate sets. Embedding-based paradigms address this: single-tower methods (RankLLaMA (Ma
et al., 2024)) use neural scoring heads but require independent candidate scoring, while dual-tower
methods improve efficiency through pre-computed embeddings but limit expressiveness with single
query embeddings. Generative LLM approaches have shown strong performance across diverse
ranking tasks (Liu et al., 2024a; Sun et al., 2023b; Yoon et al., 2024; Chen et al., 2025a; Hou et al.,
2024b). Prompting-based methods (PRP (Qin et al., 2023), LLM4Rec (Hou et al., 2024a)) leverage
LLM generalization with minimal modification, while instruction tuning approaches (GPT4Rec (Li
et al., 2023a), RankRAG (Yu et al., 2024)) fine-tune models for domain-specific ranking signals.
These works highlight LLMs’ potential as general-purpose rankers while exposing limitations in
efficiency, scalability, and complex reasoning.

6 CONCLUSION

We propose LRanker, a framework designed to address the challenges of large-candidate ranking
with LLMs by integrating candidate aggregation and graph-based test-time scaling. Extensive
experiments across three scenarios in RBench demonstrate that LRanker consistently outperforms
existing approaches, achieving substantial improvements from small-scale to million-level candidate
pools. Ablation studies further validate the effectiveness of its key components. In future work, we
plan to extend LRanker to a broader range of ranking tasks, further exploring its generality and
applicability in real-world settings.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors of this paper have read and adhered to the ICLR Code of Ethics. Our work does not
involve human subjects, personal data, or sensitive attributes. We followed best practices for data
usage, ensured compliance with licensing terms, and considered potential risks of bias or misuse.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Details of the model archi-
tecture, training settings, and hyperparameters are described in Section 4. All datasets we used are
publicly available. The training scripts and evaluation code will be released upon publication to
facilitate replication.

REFERENCES

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated
machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123-140, 1996.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd international
conference on Machine learning, pp. 89-96, 2005.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pp. 129-136, 2007.

Yang Chen, Min Zhang, Yiqun Wu, and Yanyan Liu. Rank-rl: Enhancing reasoning in llm-based
document reranking. arXiv preprint arXiv:2503.06034, 2025a.

Yiqun Chen, Qi Liu, Yi Zhang, Weiwei Sun, Xinyu Ma, Wei Yang, Daiting Shi, Jiaxin Mao, and
Dawei Yin. Tourrank: Utilizing large language models for documents ranking with a tournament-
inspired strategy. In Proceedings of the ACM on Web Conference 2025, pp. 1638—1652, 2025b.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algorithms on
top-n recommendation tasks. In Proceedings of the fourth ACM conference on Recommender
systems, pp. 39—46. ACM, 2010.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for 1lm selections.
arXiv preprint arXiv:2410.03834, 2024.

Tao Feng, Zhigang Hua, Zijie Lei, Yan Xie, Shuang Yang, Bo Long, and Jiaxuan You. Iranker:
Towards ranking foundation model. arXiv preprint arXiv:2506.21638, 2025.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119-139, 1997.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqgiang Ge, and Yongfeng Zhang. Recommendation as
language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In
Proceedings of the 16th ACM conference on recommender systems, pp. 299-315, 2022.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin

Zhao. Large language models are zero-shot rankers for recommender systems. In European
Conference on Information Retrieval, pp. 364-381. Springer, 2024a.

10

Under review as a conference paper at ICLR 2026

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. Large language models are zero-shot rankers for recommender systems. In Advances
in Information Retrieval: 46th European Conference on IR Research, ECIR 2024, Glasgow,
UK, March 24-28, 2024, Proceedings, Part II, volume 14685 of Lecture Notes in Computer
Science, pp. 364-381. Springer, 2024b. doi: 10.1007/978-3-031-56060-6\ 24. URL https:
//arxiv.org/abs/2305.08845.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv preprint arXiv:2403.12031, 2024.

Xinshuo Hu, Zifei Shan, Xinping Zhao, Zetian Sun, Zhenyu Liu, Dongfang Li, Shaolin Ye, Xinyuan
Wei, Qian Chen, Baotian Hu, et al. Kalm-embedding: Superior training data brings a stronger
embedding model. arXiv preprint arXiv:2501.01028, 2025.

Wenyue Hua, Shuyuan Xu, Yinggiang Ge, and Yongfeng Zhang. How to index item ids for recom-
mendation foundation models. In Proceedings of the Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval in the Asia Pacific Region, pp. 195-204,
2023.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
arXiv preprint arXiv:2112.09118, 2021.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Kalervo Jirvelin and Jaana Kekildinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422-446, 2002.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197-206. IEEE, 2018.

Hang Li. A short introduction to learning to rank. IEICE TRANSACTIONS on Information and
Systems, 94(10):1854-1862, 2011.

Jinming Li, Wentao Zhang, Tian Wang, Guanglei Xiong, Alan Lu, and Gerard Medioni. Gptdrec: A
generative framework for personalized recommendation and user interests interpretation. arXiv
preprint arXiv:2304.03879, 2023a.

Lei Li, Yongfeng Zhang, and Li Chen. Prompt distillation for efficient llm-based recommendation. In
Proceedings of the 32nd ACM international conference on information and knowledge management,
pp. 1348-1357, 2023b.

Jiacheng Lin, Tian Wang, and Kun Qian. Rec-r1: Bridging generative large language models and user-
centric recommendation systems via reinforcement learning. arXiv preprint arXiv:2503.24289,
2025.

Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-Seng Chua. Data-
efficient fine-tuning for llm-based recommendation. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 365-374, 2024.

Qidong Liu, Xian Wu, Wanyu Wang, et al. Limemb: Large language model can be a good embedding
generator for sequential recommendation. arXiv preprint arXiv:2409.19925, 2024a.

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Information
Retrieval, 3(3):225-331, 2009.

Wenhan Liu, Xinyu Ma, Yutao Zhu, Ziliang Zhao, Shuaiqiang Wang, Dawei Yin, and Zhicheng Dou.

Sliding windows are not the end: Exploring full ranking with long-context large language models.
arXiv preprint arXiv:2412.14574, 2024b.

11

https://arxiv.org/abs/2305.08845
https://arxiv.org/abs/2305.08845

Under review as a conference paper at ICLR 2026

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2421-2425, 2024.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43-52, 2015.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188—-197, 2019.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL), 2019. URL https://arxiv.org/abs/1901.04085.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Document ranking with a pretrained sequence-to-
sequence model. arXiv preprint arXiv:2003.06713, 2020.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms from preference data. In The
Thirteenth International Conference on Learning Representations, 2024.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankvicuna: Zero-shot listwise document
reranking with open-source large language models. arXiv preprint arXiv:2309.15088, 2023.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu,
Jialu Liu, Donald Metzler, et al. Large language models are effective text rankers with pairwise
ranking prompting. arXiv preprint arXiv:2306.17563, 2023.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems with generative
retrieval. Advances in Neural Information Processing Systems, 36:10299-10315, 2023.

Muhammad Shihab Rashid, Jannat Ara Meem, Yue Dong, and Vagelis Hristidis. Ecorank: Budget-
constrained text re-ranking using large language models. arXiv preprint arXiv:2402.10866, 2024.

Chandan K Reddy, Lluis Marquez, Fran Valero, Nikhil Rao, Hugo Zaragoza, Sambaran Bandyopad-
hyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. Shopping queries dataset: A large-scale
esci benchmark for improving product search. arXiv preprint arXiv:2206.06588, 2022.

Steffen Rendle. Factorization machines. In 2010 IEEE International conference on data mining, pp.
995-1000. IEEE, 2010.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333-389, 2009.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings of the
28th ACM international conference on information and knowledge management, pp. 1441-1450,
2019.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaigiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents. arXiv preprint arXiv:2304.09542, 2023a.

Yixin Sun, Yiqun Zhang, Jiaxin Ma, Yanyan Liu, Yanyan Shao, and Shaoping Zhou. Rankgpt:

Enhancing zero-shot ranking with instruction-finetuned large language models. arXiv preprint
arXiv:2304.09542, 2023b.

12

https://arxiv.org/abs/1901.04085

Under review as a conference paper at ICLR 2026

Ellen M Voorhees et al. The trec-8 question answering track report. In Trec, volume 99, pp. 77-82,
1999.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241-259, 1992.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th international ACM
SIGIR conference on research and development in information retrieval, pp. 641-649, 2024.

Jinhyuk Yoon, Minbyul Jeong, Chan Kim, and Minjoon Seo. ListtS: Listwise reranking with
fusion-in-decoder. arXiv preprint arXiv:2402.15838, 2024.

Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
Bryan Catanzaro. Rankrag: Unifying context ranking with retrieval-augmented generation in llms.
Advances in Neural Information Processing Systems, 37:121156—-121184, 2024.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2025.

13

Under review as a conference paper at ICLR 2026

A PROMPT USAGE

To unify the input format across different tasks, we design prompt templates that integrate the user
query with the aggregated candidate information through the special token < | embedding | >. These
templates guide the model to attend not only to the query but also to the global context of candidate
representations. Specifically, we construct task-specific templates for four representative tasks:
Recommendation (Table 4), Routing (Table 5), Passage Ranking (Table 6), and Product Searching
(Table 7). Each template follows a unified structure but adapts the final instruction to match the
objective of the corresponding task.

Table 4: Prompt template for Recommendation task.

Task: Recommendation
Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate items) and the query
above, recommend the most relevant item.

Table 5: Prompt template for Routing task.

Task: Routing
Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate LLMs/agents) and the
query above, select the most suitable route or model.

Table 6: Prompt template for Passage Ranking task.

Task: Passage Ranking
Query: [USER QUERY]

<|embedding|> Based on the global context information (candidate passages) and the
query above, identify the most relevant passage.

B LLM WRITING USAGE DISCLOSURE
An LLM was applied as a writing aid to enhance the clarity and linguistic quality of this paper,

specifically by correcting grammatical errors and polishing sentence flow. No part of the research
design, data analysis, or interpretation relied on the use of the LLM.

14

Under review as a conference paper at ICLR 2026

Table 7: Prompt template for Product Searching task.

Task: Product Searching
Query: [USER QUERY]

<|embedding | > Based on the global context information (candidate products) and the
query above, return the product that best matches the search intent.

15

	Introduction
	Problem Formulation
	LRanker: LLM Ranker for Massive Candidates
	Framework of LRanker
	Training LRanker
	Graph-Based Test-Time Scaling
	Qualitative Illustration

	Experiments
	LRanker Outperforms General Ranking Methods and Task-Specific Baselines
	LRanker Achieves Superior Results in Both RBench-Ultra and RBench-Small Scenarios
	Ablation Studies Confirm the Effectiveness of LRanker ’s Key Components

	Additional Related Work
	Conclusion
	Prompt Usage
	LLM Writing Usage Disclosure

