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Abstract

This paper proposes a novel method, Explicit Flow Matching (ExFM), for training1

and analyzing flow-based generative models. ExFM leverages a theoretically2

grounded loss function, ExFM loss (a tractable form of Flow Matching (FM) loss),3

to demonstrably reduce variance during training, leading to faster convergence and4

more stable learning. Based on theoretical analysis of these formulas, we derived5

exact expressions for the vector field (and score in stochastic cases) for model6

examples (in particular, for separating multiple exponents), and in some simple7

cases, exact solutions for trajectories. In addition, we also investigated simple cases8

of diffusion generative models by adding a stochastic term and obtained an explicit9

form of the expression for score. While the paper emphasizes the theoretical10

underpinnings of ExFM, it also showcases its effectiveness through numerical11

experiments on various datasets, including high-dimensional ones. Compared to12

traditional FM methods, ExFM achieves superior performance in terms of both13

learning speed and final outcomes.14

1 Introduction15

In recent years, there has been a remarkable surge in Deep Learning, wherein the advancements16

have transitioned from purely neural networks to tackling differential equations. Notably, Diffusion17

Models [16] have emerged as key players in this field. This models transform a simple initial18

distribution, usually a standard Gaussian distribution, into a target distribution via a solution of19

Stochastic Differentiable Equation (SDE) [1] or Ordinary Differentiable Equation (ODE)[2] with20

right-hand side representing a trained neural network. The Conditional Flow Matching (CFM) [9]21

technique, which we focus on in our research, is a promising approach for constructing probability22

distributions using conditional probability paths, which is notably a robust and stable alternative for23

training Diffusion Models. The development of the CFM-based approach includes various techniques24

and heuristics [4, 7, 13] aimed at improving convergence or quality of learning or inference. For25

example, in the works [19, 20, 10] it was proposed to straighten the trajectories between points by26

different methods, which led to serious modifications of the learning process. We refer the reader27

for, example, to the paper [20] where different FM-based approaches are summarised, and to the28

paper [9] for the connection between Diffusion Models and CFM.29

In our work, we introduced an approach which we called Explicit Flow Matching (ExFM), to consider30

the Flow Matching framework theoretically by modifying the loss and writing the explicit value of31

the vector field. Strictly speaking, the presented loss is a tractable form of the FM loss, see Eq. (5)32

of [9]. Base on this methods we can improve the convergence of the method in practical examples33

reducing the variance of the loss, but the main focus of our paper is on theoretical derivations.34
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Our method allows us to write an expression for the vector field in closed form for quite simple35

cases (Gaussian distributions), however, we note that Diffusion Models framework in the case of36

a Gaussian Mixture of two Gaussian as a target distribution is still under investigation, see recent37

publications [15, 8].38

Our main contributions are:39

1. A tractable form of the FM loss is presented, which reaches a minimum on the same function40

as the loss used in Conditional Flow Matching, but has a smaller variance;41

2. The explicit expression in integral form for the vector field delivering the minimum to this42

loss (therefore for Flow Matching loss) is presented.43

3. As a consequence, we derive expressions for the flow matching vector field and score in44

several particular cases (when linear conditional mapping is used, normal distribution, etc.);45

4. Analytical analysis of SGD convergence showed that our formula have better training46

variance on several cases;47

5. Numerical experiments show that we can achieve better learning results in fewer steps.48

1.1 Preliminaries49

Flow matching is well known method for finding a flow to connect samples from two distribution50

with densities ρ0 and ρ1. It is done by solving continuity equation with respect to the time dependent51

vector field v(x, t) and time-dependent density ρ(x, t) with boundary conditions:52 
∂ρ(x, t)

∂t
= −div(ρ(x, t)v(x, t)),

ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x).
(1)

Function ρ(x, t) is called probability density path. Typically, the distribution ρ0 is known and it is53

chosen for convenience reasons, for example, as standard normal distribution ρ(x) = N (x | 0, I).54

The distribution ρ1 is unknown and we only know the set of samples from it, so the problem is to55

approximate the vector field v(x, t) ≈ v(x, t) using these samples. To make problem (1) well defined,56

one usually imposes additional regularity conditions on the densities, such as smoothness. The57

rigorous justification of the obtained results we put in the Appendix, leaving the general formulations58

of theorems and ideas in the main text.59

From a given vector field, we can construct a flow ϕt, i. e., a time-dependent map, satisfying the60

ODE ∂ϕt(x)
∂t = v(ϕt(x), t) with initial condition ϕ0(x) = x. Thus, one can sample a point x0 from61

the distribution ρ0 and then using this ODE obtain a point x1 = ϕ1(x0) which have a distribution62

approximately equal to ρ1. For given boundary ρ0 and ρ1, the vector field or path solutions are not63

the only solutions, but if we have found any solution, it will already allow us to sample from the64

unknown density rho1. However, if the problem is more narrowly defined, e. g., one needs to have a65

map that is close to the Optimal Transport (OT) map, we have to impose additional constraints.66

The problem of finding any vector field v is solved in conditional manner in the paper [9], where67

so-called Conditional Flow Matching (CFM) is present. Namely, the following loss function was68

introduced for the training a model vθ which depends on parameters θ69

LCFM(θ) = EtEx1,x0

∥∥vθ(ϕt,x1
(x0), t)− ϕ′

t,x1
(x0)

∥∥2, (2)

where ϕt,x1
(x0) is some flow, conditioned on x1 (one can take ϕt,x1

(x0) = (1− t)x0 + tx1 + σstx070

in the simplest case, where σs > 0 is a small parameter need for this map to be invertable at71

any 0 ≤ t ≤ 1). Hereinafter the dash indicates the time derivative. Time variable t is uniformly72

distributed: t ∼ U [0, 1] and random variables x0 and x1 are distributed according to the initial and73

final distributions, respectively: x0 ∼ ρ0, x1 ∼ ρ1. Below we omit specifying of the symbol E the74

distribution by which the expectation is taken where it does not lead to ambiguity.75

1.2 Why new method?76

Model training using loss (2) have the following disadvantage: during training, due to the randomness77

of x0 and x1, significantly different values can be presented for model as output value at close model78
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Figure 1: (Left) The key novelty of our approach is that in classical CFM, highly divergent directions
can appear in a small spatial area at similar times (left part). In our approach (right part) we average
over these vectors, training the model on a smoothed unnoised vector field. (Right) The comparison
evaluated dispersion norm over time parameter t for CFM and ExFM in matching standard Gaussian
ρ0 = N (0, I) to general Gaussian ρ1 = N (µ, σ2I) distributions. The y-axis represents the sum of
dispersion vector components, denoted as |Dx,x1

∆v(x, t)|. The left panel illustrates samples drawn
from the ρ0 and ρ1 distributions, as well as the corresponding flows. The right panel depicts the
dispersion trend over time for both CFM (black line) and ExFM (red line) objectives. The dotted
lines correspond to the dispersion levels (in top-down order |Dx1|, |Dx0|, |Dx1|/N .

argument values (xt, t). Indeed, a fixed point xt = ϕt,x1
(x0) can be obtained by an infinite set of x079

and x1 pairs, some of which are directly opposite, and at least for small times t the probability of these80

different directions may not be significantly different. At the same time, data ϕ′
t,x1

(x0) on which the81

model learns significantly different for such different positions of pairs x0 and x1. Thus, the model is82

forced to do two functions during training: generalize and take the mathematical expectation (clean83

the data from noise).84

In our approach, see Fig. 1(a), we feed the model input with cleaned data with small variance. Thus,85

the model only needs to generalize the data, which happens much faster (in fewer training steps).86

Moreover, in the process of constructing the modified loss, we have developed the exact formula for87

the vector field, see Eq. (11), (34). The existence of an explicit formula for the vector field is of great88

importance not only from a theoretical but also from a practical point of view.89

2 Main idea90

2.1 Modified objective91

Lets expand the last two mathematical expectations in the loss (2) and substitute variables using92

map ϕt,x1
, passing from the point x0 to its position xt = ϕt,x1

(x0) at time t:93

Ex1,x0

∥∥vθ(ϕt,x1
(x0), t)− ϕ′

t,x1
(x0)

∥∥2=∫∫ ∥∥vθ(ϕt,x1
(x0), t)− ϕ′

t,x1
(x0)

∥∥2ρ0(x0)ρ1(x1)dx0dx1

=

∫∫ ∥∥vθ(xt, t)− ϕ′
t,x1

(
ϕ−1
t,x1

(xt)
)∥∥2 det[ ∂ϕ−1

t,x1
(x)
/
∂x

∣∣∣∣
x=xt

]
ρ0
(
ϕ−1
t,x1

(xt)
)

︸ ︷︷ ︸
ρx1

(xt,t)

ρ1(x1) dxt dx1

= Ex1,xt∼ρx1 (·,t)
∥∥vθ(xt, t)− ϕ′

t,x1

(
ϕ−1
t,x1

(xt)
)∥∥2. (3)

We assume, that the map ϕt,x1 is invertible at each 0 < t < 1, i. e. that ϕ−1
t,x1

(xt) exits on this94

time interval and for all xt = {ϕt(x0) | ∀x0 : ρ(x0) > 0}. Eq. (3) can be seen as a transition95

from expectation on the variable x0 ∼ ρ0 to expectation on the variable xt ∼ ρx1
(·, t), where96

ρx1(x, t) = [ϕt,x1 ]∗ρ0(x) := ρ0
(
ϕ−1
t,x1

(x)
)
det
[
∂ϕ−1

t,x1
(x)
/
∂x
]
. See paper [5] for details about the97

push-forward operator “*”. Our representation (3) is very similar to expression (9) of the cited98

paper [9], only we write it in terms of the conditional flow rather than the conditional vector field.99
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To obtain the modified loss, we return to end of the standard CFM loss representation in (3). It is100

written as the expectation over two random variables x1 and xt having a common distribution density101

{x1, xt} ∼ ρj(x1, xt, t) = ρx1
(xt, t)ρ1(x1), (4)

which, generally speaking, is not factorizable. Let us rewrite this expectations in terms of two inde-102

pendent random variables, each of which have its marginal distribution. The marginal distribution ρm103

of xt can be obtained via integration:104

ρm(xt, t) =

∫
ρj(x1, xt, t) dx1 =

∫
ρx1

(xt, t)ρ1(x1) dx1 , (5)

while the marginal distribution of x1 is just (unknown) function ρ1. Let for convenience w(t, x1, x) =105

ϕ′
t,x1

(
ϕ−1
t,x1

(x)
)

1. We have106

LCFM(θ) = Et,x1,xt∼ρx1 (·,t)∥vθ(xt, t)− w(t, x1, xt)∥2 =∫ 1

0

∫∫
∥vθ(xt, t)− w(t, x1, xt)∥2ρx1

(x, t)ρ1(x1) dxt dx1dt =∫ 1

0

∫∫
∥vθ(xt, t)− w(t, x1, xt)∥2 (ρx1 (xt,t)/ρm(xt,t)) ρm(xt, t)ρ1(x1) dxt dx1dt =

Et,x1,x∼ρm(·,t)∥vθ(x, t)− w(t, x1, x)∥2 ρc(x|x1, t)/ρ1(x1), (6)

where we introduce a conditional distribution107

ρc(x|x1, t) := ρx1
(x, t)ρ1(x1)/ρm(x, t) := ρx1

(x, t)ρ1(x1)

/∫
ρx1

(x, t)ρ1(x1) dx1. (7)

The key feature of the representation (6) is that the integration variables x1 and x are independent.108

Thus, we can evaluate them using Monte Carlo-like schemes in different ways. However, we go109

further and make a modification to this loss to reduce the variance of Monte Carlo methods.110

2.2 New loss and exact expression for vector field111

Note that so far the expression for LCFM have not changed, it has just been rewritten in different forms.112

Now we change this expression so that its numerical value, generally speaking, may be different, but113

the derivative of the model parameters will be the same. We introduce the following loss114

LExFM(θ) = EtEx∼ρm

∥∥∥vθ(x, t)− Ex1∼ρ1
w(t, x1, x)ρc(x|x1, t)/ρ1(x1)

∥∥∥2=∫ 1

0

∫ ∥∥∥vθ(x, t)− ∫ w(t, x1, x)× ρc(x|x1, t) dx1

∥∥∥2ρm(x, t) dxdt. (8)

Theorem 2.1. Losses LCFM in Eq. (2) and LExFM in Eq. (8) have the same derivative with respect to115

model parameters:116

dLCFM(θ)/dθ = dLExFM(θ)/dθ . (9)

Proof is in the Appendix A.1.117

In the presented loss LExFM, the integration (outside the norm operator) proceeds on those variables118

on which the model depends, while inside this operator there are no other free variables. Thus, using119

this kind of loss, it is possible to find an exact analytical expression for the vector field for which the120

minimum of this loss is zero (unlike the loss LCFM). Namely, we have121

v(x, t) =

∫
w(t, x1, x)ρc(x|x1, t) dx1 . (10)

We can obtain the exact form of this vector field given the particular map ϕt,x1 . For example, the122

following statement holds:123

1Note, that w(t, x1, x) is the conditional velocity at the given point x.
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Corollary 2.2. Consider the linear conditioned flow ϕt,x1(x0) = (1− t)x0 + tx1 which is inevitable124

as 0 ≤ t < 1. Then w(t, x1, x) = x1−x
1−t , ρx1

(x, t) = ρ0

(
x−x1t
1−t

)
1

(1−t)d
and the loss LExFM in125

Eq. (8) reaches zero value when the model of the vector field have the following analytical form126

v(x, t) =

∫
(x1−x)ρ0

(
x− x1t

1− t

)
ρ1(x1) dx1

/(
(1− t)

∫
ρ0

(
x− x1t

1− t

)
ρ1(x1) dx1

)
. (11)

This is the exact value of the vector field whose flow translates the given distribution ρ0 to ρ1.127

Complete proofs are in the Appendix A.3.1. Note that the result (11) is not totally new, for example,128

a similar result (though in the form of a general expression rather than an explicit formula), was given129

in [19], Eq. (9). However, our contribution consists of both the general form (10) and practical and130

theoretical conclusions from it (see below).131

Remark 2.3. In the case of the initial and final times t = 0, 1, Eq. (11) is noticeably simpler132

v(x, 0) = Ex1
x1 − x =

∫
x1ρ1(x1) dx1 − x. v(x, 1) = x−

∫
x0ρ0(x0) dx0 . (12)

This expression for the initial velocity means that each point first tends to the center of mass of the133

unknown distribution ρ1 regardless of its initial position.134

Extensions to SDE Now let the conditional map be stochastic: ϕt,x1
= (1− t)x0 + tx1 + σe(t)ϵ,135

where ϵ ∼ N (0, 1). Typically, σe(0) = σe(1) = 0, for example, σe(t) = t(1− t)σe.136

Note that this formulation covers (with appropriate selection of the σe(t) parameter) the case of137

diffusion models [20].138

Then, we can write the exact solution for a so-called score and flow matching objective (see [20] for139

details)140

L[SF]2M(θ) = E
[
∥vθ(x, t)− u◦

t (x)∥2︸ ︷︷ ︸
flow matching loss

+λ(t)2 ∥sθ(x, t)−∇ log pt(x)∥2︸ ︷︷ ︸
score matching loss

]
.

that corresponds to this map. In the last expression, the following explicit conditional expressions are141

considered in the cited paper for the case σe(t) =
√
t(1− t)σe142

u◦
t (x) =

1− 2t

t(1− t)
(x− (tx1 + (1− t)x0)) + (x1 − x0), ∇ log pt(x) =

tx1 + (1− t)x0 − x

σ2
et(1− t)

.

The exact solution (our result, explicit analog of the Eq. (10) from [20]) under consideration has143

the form (44) and (46) and, for example for the for the Gaussian ρ0 this expressions reduced to the144

Eq. (49) and (50), correspondingly. See Appendix E for the details on this case.145

Simple examples Consider the case of Standard Normal Distribution as ρ0 and Gaussian Mixture146

of two Gaussians as ρ1. Vector field have a closed form (37) in this case, and we can fast numerically147

solve ODE for trajectories. Random generated trajectories and plot of the vector field are shown148

on Fig. 2 (a)–(b). Detailed explanation of this case is in the Sec. D.2. Another example is related149

to the case of a stochastic map in the form of Brownian Bridge, which briefly described in the last150

paragraph and considered in Sec. E.3.2 in details, see Fig. 2 (c)–(f). Note that at some σe values the151

trajectories are a little bit straightened in this case compared to the usual linear map, if we compare152

cases on the Fig. 6.153

2.3 Training scheme based on the modified loss154

Let us consider the difference between our new scheme based on loss LExFM and the classical CFM155

learning scheme. As a basis for the implementation of the learning scheme, we take the open-source156

code2 from the works [20, 19].157

Consider a general framework of numerical schemes in classical CFM. We first sample m random time158

variables t ∼ U [0, 1]. Then we sample several values of x. To do this, we sample a certain number n159

samples {xi
0}ni=1 from the “noisy” distribution ρ0, and the same number n of samples {xi

1}ni=1 from160

2https://github.com/atong01/conditional-flow-matching
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Figure 2: Trajectories and vector field obtained in simple cases: (a) N = 80 random trajectories from
N
(
·
∣∣ 0, 12) to GM; (b) 2D plot of the vector field in this case (c)–(f) N = 40 random trajectories

from N
(
·
∣∣ 0, 12) to N

(
·
∣∣ 2, 32) and 2D plot of the vector fieldfor different σe for the Brownian

Bridge map

the unknown distribution ρ1. Then we pair them (according to some scheme), and get n samples as161

xj,i = ϕtj ,xi
1
(xi

0) (e. g. a linear combination in the simple case of linear map: xj,i = (1−tj)xi
0+tjxi

1),162

∀i = 1, 2, . . . , n; ∀j = 1, 2, . . . ,m. Note, than one of the variable n or m (or both) can be equal to 1.163

At the step 2, the following discrete loss is constructed from the obtained samples164

Ld
CFM(θ) =

m∑
j=1

n∑
i=1

∥∥∥vθ(xj,i, tj)− ϕ′
tj ,xi

1
(xi

0)
∥∥∥2. (13)

Finally, we do a standard gradient descent step to update model parameters θ using this loss.165

The first and last step in our algorithm is the same as in the standard algorithm, but the second step is166

significantly different. Namely, we additionally generate a sufficiently large number N ≫ n ·m of167

samples x1 from the unknown distribution ρ1, sampling (N − n) new samples and adding to it the168

samples {xi
1}n1 that are already obtained on the previous step.169

Then we form the following discrete loss which replaces the integral on x1 in LExFM by its evalua-170

tion vd by self-normalized importance sampling or rejection sampling (see Appendix B for details)171

Ld
ExFM(θ) =

m∑
j=1

n∑
i=1

∥∥∥vθ(xj,i, tj)− vd(xj,i, tj)
∥∥∥2. (14)

For example, if we use self-normalized importance sampling and assume that the Jacobian172

det
[
∂ϕ−1

t,x1
(x)
/
∂x
]

do not depend on x1, we can write173

vd(x, t) =

(
N∑

k=1

w(t, xk
1 , x)ρ0

(
ϕ−1
t,xk

1
(x)
))/ N∑

k=1

ρ0
(
ϕ−1
t,xk

1
(x)
)
. (15)

Theorem 2.4. Under mild conditions, the error variance of the integral gradient (9) using the Monte174

Carlo method (14) is lower than using formula (13) with the same number n ·m of samples for {x}.175

Sketch of the proof is in the Appendix A.2. The steps of our scheme are formally summarized in176

Algorithm 1.177

Particular case of linear map and Gaussian noise Let ϕt,x1 be the linear flow: ϕt,x1(x0) =178

(1 − t)x0 + tx1. and consider the case of standard normal distribution for the initial density ρ0:179

ρ0(x) ∼ N (x | 0, I). Then in the case of using self-normalized importance sampling, we have180

vd(x, t) =

N∑
k=1

xk
1 − x

1− t

(
SoftMax(Y 1, . . . , Y N )

)
k
, where Y k = −1

2

∥∥x− t · xk
1

∥∥2
Rd

1− t
. (16)

Here, the lower index k in SoftMax stands for the k-th component, and the SoftMax operation itself181

came about due to exponents in the Gaussian density as a more stable substitute for computing than182

directly through exponents.183

Extension of other maps and initial densities ρ0 Common expression (10) can be reduced to184

closed form for the particular choices of density ρ0 and map ϕ (consequently, expression for w). We185

summarise several known approaches for which FM-based techniques can be applied in Table 13.186

See Appendix C and D for derivations of formulas and for more extensions.187

3The idea and common structure of the Table is taken from [20]
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Table 1: Correspondence between some methods which can reduced to FM framework and our
theoretical descriptions of them.

Probability Path q(z) µt(z) σt
Explicit expressions:
vector field (VF) and score (S)

Var. Exploding [17] ρ1(x1) x1 σ1−t VF: (32)

Var. Preserving [6] ρ1(x1) α1−tx1

√
1− α2

1−t VF: (31)
Flow Matching [9] ρ1(x1) tx1 tσs − t+ 1 VF: (11) if σ = 0; and (26)
Independent CFM ρ0(x0)ρ1(x1) tx1 + (1− t)x0 σ VF: (10)
Schrödinger Bridge CFM [20] ρ0(x0)ρ1(x1) tx1 + (1− t)x0 σ

√
t(1− t) Can be obtained by SDE using

VF: (49), S:(50)

Complexity We assume that the main running time of the algorithm is spent on training the model,188

especially if it is quite complex. Thus, the running time of one training step depends crucially on the189

number n ·m of samples {x} and it is approximately the same for both algorithms: the addition of190

points x1 entails only an additional calculation using formula (16), which can be done quickly and,191

moreover, can be simple parallelized.192

2.4 Irreducible dispersion of gradient for CFM optimization193

Ensuring the stability of optimization is vital. Let ∆θ be changes in parameters, obtained by SGD194

with step size γ/2 applied to the functional from Eq. (13):195

∆v(xj,i, tj) = −γ ·
(
v(xj,i, tj)− vd(xj,i, tj)

)
. (17)

For simplification, we consider a function, vθ(x, t), capable of perfectly fitting the CFM problem and196

providing an optimal solution for any point x and time t. For a linear conditional flow at a specific197

point xj,i ∼ ρxi
1
(·, tj) at time tj ∼ U(0, 1), the update ∆v(xj,i, tj) can be represented as follows:198

∆v(xj,i, tj) = γ
(
xi
1 − x̂i

0 − v(xj,i, tj)
)
, (18)

where x̂i
0 =

xj,i−tjxi
1

1−tj . We define the dispersion Dx,x1
f(x, x1) for x ∼ ρx1

(·, t) and x1 ∼ ρ1 as:199

Dx,x1
f(x, x1) = Ex,x1

f2(x, x1)− (Ex,x1
f(x, x1))

2. (19)

Proposition 2.5. At the time t = 0, the dispersion of update in the form (18) have the following200

element-wise lower bound:201

Dxj,i,xi
1
∆v(xj,i, 0) = γ2Dxi

1
xi
1 + γ2Dxj,i,xi

1
(xj,i + v(xj,i, 0)) ≥ γ2Dxi

1
xi
1.

Equality is reached when the model v(xj,i, 0) has exact values equal to (12).202

Given that the dispersion cannot be reduced with an increase in batch size, the only available option203

is to decrease the step size of the optimization method, i. e., reduce the learning rate slowing down the204

convergence. The situation is much better for the proposed loss in (14). We can express the update205

∆v(xj,i, tj) in the case of ExFM objective as:206

∆v(xj , tj) = γ2
( N∑
k=1

xk
1 ρ̃
(
xj,i|xk

1 , t
j
)
− xj,i − v(xj,i, tj)

)
, (20)

where xj,i ∼ ρxi
1
(·, tj), xk

1 ∼ ρ1 and ρ̃
(
xj,i|xk

1 , t
j
)
= ρ0

(
xj,i−tjxk

1

1−tj

)
/

N∑
k=1

ρ0

(
xj,i−tjxk

1

1−tj

)
. Similar207

to the derivations in the previous part, we can found simplified form for the dispersion of update at208

t = 0.209

Proposition 2.6. At the time t = 0, the dispersion of update from (20) have the following element-wise210

lower bound:211

Dxj,i,xk
1
∆v(xj,i, 0) =

γ2

N
Dxk

1
xk
1 + γ2Dxj,i,xk

1
(xj,i + v(xj,i, 0)) ≥ γ2

N
Dxk

1
xk
1 .

Equality is reached when the model v(xj,i, 0) has exact values equal to (12).212
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In comparison to CFM, the dispersion of the update is N times smaller than the dispersion of the213

target distribution and could be controlled without impeding convergence by adjusting the number of214

samples N . In Figure 1(b), we visually compare the dispersions of CFM and ExFM. The illustration215

aligns a standard normal distribution N (0, I) with a shifted and scaled variant N (µ, Iσ2). ExFM216

yields lower dispersion throughout the range t ∈ [0, 1]. Detailed analytical calculations of the optimal217

velocity v(x, t) and dispersion are provided in the Appendix G.218

(a) swissroll (b) moons (c) circles (d) 2spirals (e)
checkerboard

(f) pinwheel (g) rings

Figure 3: Visual comparison of methods on toy 2D data. First row are original samples, second row
sampled by ExFM, third row sampled by CFM.

Table 2: ExFM and CFM metrics comparison table on toy 2D data.
MSE TRAINING LOSS ENERGY DISTANCE

DATA EXFM CFM EXFM CFM

SWISSROLL 1.13E-02 2.12E+00 2.58e-03 1.07E-02
MOONS 9.96E-03 2.01E+00 2.74e-03 1.41E-02
8GAUSSIANS 2.40E-02 2.77E+00 4.90e-03 2.45E-02
CIRCLES 9.28E-03 2.79E+00 6.69e-04 1.32E-02
2SPIRALS 8.92E-03 2.34E+00 1.27e-03 8.35E-03
CHECKERBOARD 1.04E-02 3.12E+00 1.01e-02 1.63E-02
PINWHEEL 4.53E-03 2.12E+00 1.01e-03 9.22E-03
RINGS 8.60E-03 1.93E+00 3.55e-04 2.37E-03

Table 3: NLL comparison for ExFM, CFM and OT-CFM methods over 10 000 learning steps, mean
and std taken from 10 sampling iterations.

DATA EXFM CFM OT-CFM

POWER -8.51e-02 ± 4.85e-02 1.64E-01 ± 4.18E-02 5.22E-02 ± 3.92E-02
GAS -5.53e+00 ± 3.66e-02 -5.00E+00 ± 2.56E-02 -5.48E+00 ± 2.90E-02
HEPMASS 2.16E+01 ± 6.31E-02 2.21e+01 ± 6.13e-02 2.16E+01 ± 4.32E-02
BSDS300 -1.29E+02 ± 8.40E-01 -1.29E+02 ± 8.97E-01 -1.32e+02 ± 6.39e-01
MINIBOONE 1.34e+01 ± 1.95e-04 1.42E+01 ± 1.29E-04 1.43E+01 ± 9.22E-05

3 Numerical Experiments219

Toy 2D data We conducted unconditional density estimation among eight distributions. Additional220

details of the experiments see in the Appendix H. We commence the exposition of our findings221

by showcasing a series of classical 2-dimensional examples, as depicted in Fig. 3 and Table 2.222

Our observations indicate that ExFM adeptly handles complex distribution shapes is particularly223

noteworthy, especially considering its ability to do so within a small number of epochs. Additionally,224

the visual comparison underscores the evident superiority of ExFM over the CFM approach.225
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Tabular data We conducted unconditional density estimation on five tabular datasets, namely226

power, gas, hepmass, minibone, and BSDS300. Additional details of the experiments see in the227

Appendix H. The empirical findings obtained from the numerical experiments from Table 3 indicate228

a statistically significant improvement in the performance of our proposed method. Notably, ExFM229

demonstrates a notable acceleration in convergence rate.230

High-dimensional data and additional experiments We conducted experiments on high-231

dimensional data, among them experiments on CIFAR10 and MNIST dataset. FID results on232

CIFAR10 shows slightly better score among sampled images.233

Additional details of the experiments and sampled images see in the Appendix H.234

Stochastic ExFM (ExFM-S) on toy 2D data We evaluated the performance of the stochastic235

version of ExFM (ExFM-S) with use of expressions given in Sec. E.3.2 on four standard toy datasets.236

The primary experimental setup follows that used in [19]. Additional details on the hyperparameters237

used are available in Appendix H. Based on the findings presented in Table 4, we determine that238

ExFM-S surpasses I-CFM on all four datasets in terms of generative performance (W2) and also239

outperforms in terms of OT optimality (NPE) on two of them, exhibiting similar results on the240

remaining datasets. It also demonstrates performance similar to OT-CFM. While ExFM-S is not as241

robust as the basic ExFM, it enables the matching of one dataset to another (moons→ 8gaussians) as242

it does not necessitate the presence of an explicit formula for ρ0. Among other things, this experiment243

demonstrates the feasibility of our methods when both distributions ρ0 and ρ1 are unknown.

Table 4: ExFM-S evaluation on four toy datasets (µ± σ over three seeds). For comparison we take
I-CFM, OT-CFM, and ExFM (no values for moons → 8gaussians due to the absence of explicit
formula for ρ0). Performance in generative modeling (W2) and dynamic OT optimality (NPE) is
assessed. The best result for each metric is highlighted in bold. Instances where we outperform CFM
are underscored.

Metric→ W2 ↓ NPE ↓
Algorithm ↓ Dataset→ N → moons N → 8gaussians moons→ 8gaussians N → 2spirals N → moons N → 8gaussians moons→ 8gaussians N → 2spirals

I-CFM 0.522± 0.015 0.647± 0.078 0.966± 0.21 1.662± 0.067 0.328± 0.051 0.209± 0.009 0.945± 0.025 0.098± 0.04
OT-CFM 0.427± 0.038 0.528± 0.053 0.569 ± 0.018 1.322± 0.052 0.065 ± 0.068 0.031 ± 0.018 0.074 ± 0.026 0.031 ± 0.02

ExFM 0.318 ± 0.010 0.445 ± 0.075 – 1.276 ± 0.043 0.382± 0.050 0.213± 0.023 – 0.069 ± 0.064
ExFM-S 0.486 ± 0.09 0.570 ± 0.053 0.728 ± 0.063 1.361 ± 0.181 0.35± 0.143 0.166 ± 0.039 0.946± 0.059 0.083 ± 0.059

244

4 Conclusions245

The presented method introduces a new loss function in tracrable form (in terms of integrals) that246

improves upon the existing Conditional Flow Matching approach. New loss as a function of the model247

parameters, reaches zero at its minimum. Thanks to this, we can: a) write an explicit expression for248

the vector field on which the loss minimum is achieved; b) get a smaller variance when training on249

the discrete version of the loss, therefore, we can learn the model faster and more accurately.250

Numerical experiments conducted on toy 2D data show reliable outcomes under uniform conditions251

and parameters. Comparison of the absolute values of loss for the proposed method and for CFM for252

the same distributions show that the absolute values of loss for these models differ strikingly, by a253

factor of 102–103. Experiments on high-dimensional datasets also confirm the theoretical deductions254

about the variance reduction of our method. However, we emphasize that we do not expect to use the255

proposed method in its pure form. On the contrary, we expect that the theoretical implications of our256

formulas will contribute to the construction of better learning or inference algorithms in conjunction257

with other heuristics or methods.258

Algebraic analysis of variance for some cases (in particular, for the case t = 0 or for the case of259

two Gaussians as initial and final distributions) show an improvement in variance when using the260

new loss. However, it is rather difficult to analyze in the general case, for all times t and general261

distributions ρ0 and ρ1.262

Having the expression for the vector field and score in the form of integrals, we can explicitly write263

out their expressions for some simple cases; in the case of Gaussian distributions we can also write264

out the exact solution for the trajectories. Thus, our approach allows one to advance the theoretical265

study of FM-based and Diffusion Model-based frameworks.266
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Question: Does the research conducted in the paper conform, in every respect, with the517

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?518

Answer: [Yes]519

Justification: The article and experiments meet all the requirements of the code of ethics, all520

citations for materials used are given.521

Guidelines: The research conducted in the article and its text meet the ethics codex.522

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.523

• If the authors answer No, they should explain the special circumstances that require a524

deviation from the Code of Ethics.525

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-526

eration due to laws or regulations in their jurisdiction).527

10. Broader Impacts528

Question: Does the paper discuss both potential positive societal impacts and negative529

societal impacts of the work performed?530

Answer: [NA]531

Justification: Paper is mostly theoretical, there’s little chance there could be a negative532

impact.533

Guidelines:534

• The answer NA means that there is no societal impact of the work performed.535

• If the authors answer NA or No, they should explain why their work has no societal536

impact or why the paper does not address societal impact.537
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• Examples of negative societal impacts include potential malicious or unintended uses538

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations539

(e.g., deployment of technologies that could make decisions that unfairly impact specific540

groups), privacy considerations, and security considerations.541

• The conference expects that many papers will be foundational research and not tied542

to particular applications, let alone deployments. However, if there is a direct path to543

any negative applications, the authors should point it out. For example, it is legitimate544

to point out that an improvement in the quality of generative models could be used to545

generate deepfakes for disinformation. On the other hand, it is not needed to point out546

that a generic algorithm for optimizing neural networks could enable people to train547

models that generate Deepfakes faster.548

• The authors should consider possible harms that could arise when the technology is549

being used as intended and functioning correctly, harms that could arise when the550

technology is being used as intended but gives incorrect results, and harms following551

from (intentional or unintentional) misuse of the technology.552

• If there are negative societal impacts, the authors could also discuss possible mitigation553

strategies (e.g., gated release of models, providing defenses in addition to attacks,554

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from555

feedback over time, improving the efficiency and accessibility of ML).556

11. Safeguards557

Question: Does the paper describe safeguards that have been put in place for responsible558

release of data or models that have a high risk for misuse (e.g., pretrained language models,559

image generators, or scraped datasets)?560

Answer: [NA]561

Justification: Our work has a very low risk of misuse.562

Guidelines:563

• The answer NA means that the paper poses no such risks.564

• Released models that have a high risk for misuse or dual-use should be released with565

necessary safeguards to allow for controlled use of the model, for example by requiring566

that users adhere to usage guidelines or restrictions to access the model or implementing567

safety filters.568

• Datasets that have been scraped from the Internet could pose safety risks. The authors569

should describe how they avoided releasing unsafe images.570

• We recognize that providing effective safeguards is challenging, and many papers do571

not require this, but we encourage authors to take this into account and make a best572

faith effort.573

12. Licenses for existing assets574

Question: Are the creators or original owners of assets (e.g., code, data, models), used in575

the paper, properly credited and are the license and terms of use explicitly mentioned and576

properly respected?577

Answer: [Yes]578

Justification: Links are provided to articles with open repositories whose code was used in579

the work580

Guidelines:581

• The answer NA means that the paper does not use existing assets.582

• The authors should cite the original paper that produced the code package or dataset.583

• The authors should state which version of the asset is used and, if possible, include a584

URL.585

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.586

• For scraped data from a particular source (e.g., website), the copyright and terms of587

service of that source should be provided.588
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• If assets are released, the license, copyright information, and terms of use in the589

package should be provided. For popular datasets, paperswithcode.com/datasets590

has curated licenses for some datasets. Their licensing guide can help determine the591

license of a dataset.592

• For existing datasets that are re-packaged, both the original license and the license of593

the derived asset (if it has changed) should be provided.594

• If this information is not available online, the authors are encouraged to reach out to595

the asset’s creators.596

13. New Assets597

Question: Are new assets introduced in the paper well documented and is the documentation598

provided alongside the assets?599

Answer: [NA]600

Justification: We do not provide a code. All Theorems and Satetements are well formulated.601

Guidelines:602

• The answer NA means that the paper does not release new assets.603

• Researchers should communicate the details of the dataset/code/model as part of their604

submissions via structured templates. This includes details about training, license,605

limitations, etc.606

• The paper should discuss whether and how consent was obtained from people whose607

asset is used.608

• At submission time, remember to anonymize your assets (if applicable). You can either609

create an anonymized URL or include an anonymized zip file.610

14. Crowdsourcing and Research with Human Subjects611

Question: For crowdsourcing experiments and research with human subjects, does the paper612

include the full text of instructions given to participants and screenshots, if applicable, as613

well as details about compensation (if any)?614

Answer: [NA]615

Justification: we have no crowdsourcing616

Guidelines:617

• The answer NA means that the paper does not involve crowdsourcing nor research with618

human subjects.619

• Including this information in the supplemental material is fine, but if the main contribu-620

tion of the paper involves human subjects, then as much detail as possible should be621

included in the main paper.622

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,623

or other labor should be paid at least the minimum wage in the country of the data624

collector.625

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human626

Subjects627

Question: Does the paper describe potential risks incurred by study participants, whether628

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)629

approvals (or an equivalent approval/review based on the requirements of your country or630

institution) were obtained?631

Answer: [NA]632

Justification: There are no experiments with subjects in the paper, only numerical experi-633

ments.634

Guidelines:635

• The answer NA means that the paper does not involve crowdsourcing nor research with636

human subjects.637

• Depending on the country in which research is conducted, IRB approval (or equivalent)638

may be required for any human subjects research. If you obtained IRB approval, you639

should clearly state this in the paper.640
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• We recognize that the procedures for this may vary significantly between institutions641

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the642

guidelines for their institution.643

• For initial submissions, do not include any information that would break anonymity (if644

applicable), such as the institution conducting the review.645
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A Proof of the theorems646

A.1 Proof of the Theorem 2.1647

Proof. We need to proof, that dLCFM(θ)
dθ = dLExFM(θ)

dθ .648

To establish the equivalence of LCFM and LExFM up to a constant term, we begin by expressing LCFM649

in the format specified by equation (6):650

LCFM = Et,x1,x∼ρm(·,t)∥vθ(x, t)− w(t, x1, x)∥2 × ρc(x|x1, t)/ρ1(x1).

Utilizing the bilinearity of the 2-norm, we can rewrite LCFM as:651

LCFM = Et,x1,x∼ρm(·,t)
∥vθ(x, t)∥2ρc(x|x1, t)

ρ1(x1)
−

2Et,x1,x∼ρm(·,t)
vθ(x, t)

T · w(t, x1, x)ρc(x|x1, t)

ρ1(x1)
+ C. (21)

Here, T denotes transposed vector, dot denotes scalar product, C represents a constant independent652

of θ.653

Noting that Ex1
ρc(x|x1, t)/ρ1(x1) = 1:654

Ex1

ρc(x|x1, t)

ρ1(x1)
=

∫
ρx1

(x, t)ρ1(x1) dx1∫
ρx1

(x, t)ρ1(x1) dx1
= 1,

we can simplify the first term in the expansion (21):655

Et,x1,x∼ρm(·,t)
∥vθ(x, t)∥2ρc(x|x1, t)

ρ1(x1)
=

Et,x∼ρm(·,t)∥vθ(x, t)∥
2 Ex1

ρc(x|x1, t)

ρ1(x1)
= Et,x∼ρm(·,t)∥vθ(x, t)∥

2
. (22)

For our loss LExFM in the form (8) we also use the bilinearity of the norm:656

LExFM = Et,x∼ρm(·,t)∥vθ(x, t)∥
2 − 2Et,x∼ρm(·,t)Ex1

vθ(x, t)
T · w(t, x1, x)ρc(x|x1, t)

ρ1(x1)
+C. (23)

Comparing the last expression and the Eq. (21) with the modification (22) and also taking into account657

the independence of random variables x and x1, we come to the conclusion that LExFM is equal to658

LCFM up to some constant independent of the model parameters.659

660

A.2 Sketch of the proof of the Theorem 2.4661

Proof. We need to prove that DdLd
ExFM(θ)
dθ ≤ DdLd

CFM(θ)
dθ , where Ld

ExFM(θ) and Ld
CFM(θ) discrete loss662

functions presented in (14) and (13). Firstly, let us rewrite the derivative of loss functions using the663

bilinearity:664

dLd
ExFM(θ)

dθ
= 2

∑
i,j

(
dvθ(x

j,i, tj)

dθ

)T

·
(
vθ(x

j,i, tj)− vd(xj,i, tj)
)
.

Note that in this expression, values xj,i as well as tj , which are included in the argument of the665

function v, are fixed (our goal to calculate the variance with fixed model arguments). Thus, we need666

to consider the variance of the remaining expression arising from the randomness of xk
1 .667

Recall (below we will omit the indices at variables x and t),

vd(x, t) =

∑N
k=1 w(t, x

k
1 , x) · ρ0

(
ϕ−1
t,xk

1
(x)
)

∑N
k=1 ρ0

(
ϕ−1
t,xk

1
(x)
) .
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Note, that if N = 1, (i. e. we do not sample any additional points other than the ones we have668

already sampled) this expression is exactly the same as the derivative of the common discretized669

CFM loss dLd
CFM(θ)
dθ .670

Moreover, recall that one of the points (without loss of generality, we can assume that its index is 1)671

x1
1 is added from the set from which point x was derived: x = ϕt,x1

1
(x0). (Here x0 is the paired point672

to x1
1)673

Thus, we can rewrite expression for vd:674

vd(x, t) =
w(t, x1

1, x)ρ0(x0) +
∑N

k=2 w(t, x
k
1 , x) · ρ0

(
ϕ−1
t,xk

1
(x)
)

ρ0(x0) +
∑N

k=2 ρ0

(
ϕ−1
t,xk

1
(x)
) . (24)

Thus, our task was reduced to evaluating how well the additional terms (for k starting from 2) improve675

approximate of the original integrals that are in loss (8).676

So, we need to estimate the following dispersion ratio, where in the numerator is the variance of
discrete loss CFM, and in the denominator — the variance of loss ExFM:

kD =
D
(
vθ(x, t)− w(t, x1

1, x)
)

D

(
vθ(x, t)−

∑N
k=1 w(t,xk

1 ,x)·ρ0

(
ϕ−1

t,xk
1

(x)
)

∑N
k=1 ρ0

(
ϕ−1

t,xk
1

(x)
) )

The smaller coefficient kD is, the better the proposed loss ExFM works.677

Formally, we can write our problem as an importance sampling problem for the following integral:

I =

∫
f(x)p(x) dx .

This integral we estimate by sample mean of the following expectation over some random variable
with density function q(x):

I = Ex∼q

(
w(x)f(x)

)
with

w(x) =
p(x)

q(x)
.

We replace the exact value of I with the value

I =

∑N
k=1 w(x

i
1)f(x

k
1)∑N

i=k w(x
k
1)

.

It follows from the strong law of large numbers that in the limit N →∞, I → I almost surely. From678

the central limit theorem we can find the asymptotic variance:679

DI =
1

N
Ex∼q

(
w2(x)(f(x)− I)2

)
. (25)

In our case (loss LExFM), we have q(x1) = ρ1(x1), f(x1) = w(t, x1, x) and w(x1) = ρ0
(
ϕ−1
t,x1

(x)
)
.680

Despite the fact that the equation (25) for the variance contains N in the denominator, it is rather681

difficult to give an estimate of its behavior in general. The point is that this formula is well suited for682

the case when w in it is of approximately the same order. In the considered case, this is achieved at683

times t noticeably less than 1.684

But in the case, when t is closed to 1 we have, for example, for the linear map, that

w(x1) = ρ0
(
ϕ−1
t,x1

(x)
)
= ρ0

(
x− x1t

1− t

)
and this function has a sharp peak near the point x/t if it is considered as a function of x1. Thus, at685

such values of t, only a small number of summands will give a sufficient contribution to the sum686

compared to the first term.687

Finally, inequality kD < 1 is formally fulfilled, but how much kD is less than one depends on many688

factors.689

690
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A.3 Expressions for the regularized map691

To justify the expression (11), we use a invertable transformation and then strictly take the limit σs →692

0.693

Expression Eq. (11), (16) are obtained for the simple map ϕt,x1
(x0) = (1 − t)x0 + tx1 which694

is not invertable at t = 1. For the map with small regaluraziting parameter σs > 0 ϕt,x1
(x0) =695

(1 − t)x0 + tx1 + σsx0, which is invertable at all time values 0 ≤ t ≤ 1, Eq. (11), (16) needs696

modifications. Namely, for this map the following exact formulas holds true697

v(x, t) =

∫
w(t, x1, x)ρc(x|x1, t)ρ1(x1) dx1=

∫ (
x1 − x(1− σs)

)
ρ0

(
x−x1t

1+σst−t

)
ρ1(x1) dx1

(1 + σst− t)
∫
ρ0

(
x−x1t

1+σst−t

)
ρ1(x1) dx1

.

(26)
By direct substitution we make sure that for this vector field698

v(x, 0) =

∫
x1ρ1(x1) dx1 − x(1− σs) (27)

and699

v(x, 1) =

∫
(x− y)ρ0(y)ρ1(x− yσs) dy∫

ρ0(y)ρ1(x− yσs) dy
, (28)

where we perform change of the variables y ← x1−x
σst

.700

A.3.1 Prof of the explicit formula (11) for the vector field701

Assumption A.1. Density ρ1 is continuous at any point x ∈ (−∞, ∞).702

Theorem A.2. In equations (26), (27) and (28) we can take the limit σs → 0 under integrals to get703

Eq. (11) and (12).704

Proof. Assuming that the distribution ρ1 has a finite first moment: |
∫
ξρ1(ξ) dξ | < C1 and that the

density of ρ0 is bounded: ρ0(x) < C2, ∀x ∈ (−∞,∞), we obtain that the integrand functions in the
numerator and denominator in the Eq. (26) can be bounded by the following integrable functions
independent of σs and t:

ρ0

(
x− x1t

1 + σs − t

)
ρ1(x1) < C1ρ1(x1)

and

0 ≤ x1ρ0

(
x− x1t

1 + σst− t

)
ρ1(x1) < x1C1ρ1(x1), x ≥ 0,

0 > x1ρ0

(
x− x1t

1 + σst− t

)
ρ1(x1) > x1C1ρ1(x1), x < 0.

It follows that both integrals in expression (26) converge absolutely and uniformly. So, we can swap705

the operations of taking the limit and integration, and we can take the limit σs → 0 in the integrand706

for any time t ∈ [0, t0] for arbitrary t0 < 1.707

Now, let us consider the case t = 1. From Assumption A.1 the boundedness of the density ρ1 follows:
ρ1(x) < C2, ∀x ∈ (−∞, ∞). Thus, integrand functions in the numerator and denominator in the
Eq. (28) can be bounded by the following integrable functions independent of σs:

ρ0(y)ρ1(x− yσs) < ρ0(y)C2

and
0 ≤ yρ0(y)ρ1(x− yσs) < yC2ρ0(y), y ≥ 0,

0 > yρ0(y)ρ1(x− yσs) > yC2ρ0(y), y < 0.

The existence of the limit
lim
σs→0

ρ1(x− yσs) = ρ1(x),

follows from Assumption A.1.708

Finally, we conclude that formula (11), regarded as the limit σs → 0 of the (26) at any t ∈ [0, 1], is709

true.710
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Theorem A.3. The vector field in Eq. (11) delivers minimum to the Flow Matching objective (see the
work [9]),

EtEx∼ρ(x,t)∥v(x, t)− v(x, t)∥,
where ρ(x, t) and v(x, t) satisfy the equation (1) with the given densities ρ0 and ρ1.711

Proof. The proof is based on the previous statements and on a Theorem 1 from [9] (that the marginal712

vector field based on conditional vector fields generates the marginal probability path based on713

conditional probability paths.714

To complete the proof, we must justify that, with σs tending to zero, the marginal path at t = 1715

coincides with a given probability ρ1.716

Consider the marginal probability path pt(x, t)717

pt(x, t) =

∫
pt(x|x1, σs)ρ1(x1)dx1 (29)

where pt(x|x1, σs) is conditional probability paths obtained by regularized linear conditional map.718

Distribution pt in the time t = 0 is equal to standard normal distribution p0(x|x1, σs) = N (x | 0, 1)719

and at the time t = 1 it is a stretched Gaussian centered at x1: p1(x|x1, σs) = N (x | x1, σsI).720

Substituting p1 into the Eq. (29) and considering that there exists a limit σs → 0 due to Assump-
tion A.1, we obtain

p1(x) = lim
σs→0

∫
pt(x|x1, σs)ρ1(x1)dx1 = ρ1(x1).

This finish the proof.721

A.3.2 Learning procedure for σs > 0722

Using standard normal distribution as initial density ρ0, and the regularized map ϕt,x1(x0) =723

(1− t)x0 + tx1 + σstx0 we obtain the following approximation formula724

vd(x, t) =

∑N
k=1

xk
1−x(1−σs)
1−t(1−σs)

exp
(
Y k
)∑N

k=1 exp(Y
k)

, where Y k = −1

2

∥∥x− t · xk
1

∥∥2
Rd

1− t(1− σs)
.

In practical applications, the exponent calculation is replaced by the SoftMax function calculation,725

which is more stable.726

B Estimation of integrals727

In general, we need to estimate the following expression728

I(η) =

∫
w(x1, η)f(x1, η)ρ1(x1) dx1∫

f(x1, η)ρ1(x1) dx1
.

In particular, substituting η → {x, t}, w(x, η) → (x1 − x)/(1 − t) we obtain formula (11) and729

similar ones with similar substitutions.730

If we can sample from the ρ1 distribution, we can estimate this integral in two ways: self-normalized731

importance sampling and rejection sampling.732

Let X = {xk
1}Nk=1 be N samples from the distribution ρ1.733

Self-normalized Importance Sampling In this case734

I(η) ≈

N∑
k=1

w(xk
1 , η)f(x

k
1 , η)ρ1(x

k
1) dx1

N∑
k=1

f(xk
1 , η)ρ1(x

k
1) dx1

. (30)

This estimate is biased in theory, but there several methods to reduce this bias and improve this735

estimate, see, for example, [3]. Our numerical experiments generally show that the estimation (30) in736

the form is already sufficient for stable results; we don not observe any bias.737
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Rejection sampling Let Y = {yk}Mk=1 ⊂ X be a subset of the the initially given set of samples,
which is formed according to the following rule. Let C = supx ρ1(x). For a given sample xj

1 we
generate a random uniformly distributed variable ξj ∼ U(0, 1) and if

f(xj
1) ≥ Cξj ,

then we put the point xj
k to the set Y; otherwise we reject it.738

Having formed the set Y , we evaluate the integral as739

I(η) ≈ 1

M

M∑
k=1

w(yk, η).

To justify the last estimation, we note, that the points from the set Y are distributed according740

to (non-normalized) density ρ(x)f(x, η)ρ1(x). One can show it using the proof of the rejection741

sampling method. This is the same density as in Eq. (7) and thus we estimate the expression (10)742

using Important Sampling without any additional denominator.743

Comparison When we apply these techniques to evaluating the expression for the vector field, we744

know that when the time parameter t is close to 1, the function f(x1, η) (which is a scaled ρ0) has a745

peak at the point x = x1. This means that only a small number of points from the original set will746

end up in the set Y . Moreover, in the case when the time t is very close to one and the data are well747

separated, only one point x1 will end up in Y . This explains why we initially put this point in the748

set X , because otherwise it would be possible that the set Y is empty and M = 0.749

As a future work, we indicate a theoretical finding of the probability of hitting a particular point x1 in750

the set Y and, thus, a modification of our algorithm, when the sample x1 will not always go to the751

set X , but with some probability — the greater the t the closer this probability to 1.752

C The main Algorithm and extensions and generalization of the exact753

expression754

Algorithm 1 Vector field model training algorithm
Require: Sampler from distribution ρ1 (or a set of samples); parameters n and m (number of spatial

and time points, correspondingly); parameter N (number of averaging point); model vθ(x, t);
algorithm with parameters for SGD

Ensure: quasi-optimal parameters θ for the trained model
1: Initialize θ (maybe random)
2: while exit condition is not met do
3: Sample m points {tj} from U [0, 1]
4: Sample n points pairs {xi

0, x
i
1}ni=1 from joint distribution π (π(x0, x1) = ρ0(x0)ρ1(x1) if

variables are independent)
5: Sample N −n points {x̂l

1} from ρ1 and form {xk
1} = {xi

1}∪{x̂l
1} // We can take all available

samples as {xk
1} if we don’t have access to a sampler, but only ready-made samples.

6: For all i and j calculate the sum at the right side of (14) (using (16) if ρ0 is standard Gaussian
or (24) in general)

7: Calculate the sum on i and j in discrete loss (14), and take backward derivative, obtaining
approximate grad G ≈∇θLExFM of loss LExFM on model parameters θ.

8: Update model parameters θ ← SGD(θ,G)
9: end while

General form of the proposed Algorithm is given in Alg 1.755

When using other maps, formula (11) is modified accordingly. For example, if we use the regularized756

map ϕt,x1
(x0) = (1 − t)x0 + tx1 + σstx0, we get the formula (26).Note, that in this case the757

final density ρ(x, 1), obtained from the continuity equation is not equal to ρ1, but is its smoothed758

modification.759

When using a different initial density ρ0 (not the normal distribution), an obvious modification will760

be made to formula (16).761
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Diffusion-like models We can treat so-called Variance Preserving [6] model as CFM with the map

ϕt,x1
(x) = α1−tx+

√
1− α2

1−tx1.

and ρ0 as standard normal distribution: ρ0 = N
(
·
∣∣ 0, 12) In this case, the common expression (10)762

for vector filed transforms to763

v(x, t) =

∫
(xα1−t − x1)α

′
1−t ρ0

(
x−x1α1−t√

1−α2
1−t

)
ρ1(x1) dx1

(1− α2
1−t)

∫
ρ0

(
x−x1α1−t√

1−α2
1−t

)
ρ1(x1) dx1

, (31)

where α′
s =

dαs

ds .764

Similarity we can treat so-called Variance Exploding [17] model as CFM with the map

ϕt,x1
(x) = σ1−tx+ x1.

and ρ0 also as standard normal distribution: ρ0 = N
(
·
∣∣ 0, 12) In this case, the common expres-765

sion (10) for vector filed transforms to766

v(x, t) =

∫
(x1 − x)σ′

1−t ρ0

(
x−x1

σ1−t

)
ρ1(x1) dx1

σ1−t

∫
ρ0

(
x−x1

σ1−t

)
ρ1(x1) dx1

, (32)

where σ′
s =

dσs

ds .767

Joint Distribution Moreover, in addition to the independent densities x0 ∼ ρ0 and x1 ∼ ρ1, we768

can use the joint density {x0, x1} ∼ π(x0, x1). In the papers [20, 19], optimal transport (OT)769

and Schrödinger’s bridge are taken as π. In this case the expression for the vector field changes770

insignificantly: the conditional probability ρc from Eq. (7) is subject to change:771

ρc(x|x1, t) =

π
(
ϕ−1
t,x1

(x), x1

)
det

[
∂ϕ−1

t,x1
(x)

∂x

]
∫
π
(
ϕ−1
t,x1

(x), x1

)
det

[
∂ϕ−1

t,x1
(x)

∂x

]
dx1

. (33)

Then, Eq. (10) remains the same in general case. In the case of linear ϕ, the extension of Eq. (11)772

reads773

v(x, t) =

∫
(x1 − x)π

(
ϕ−1
t,x1

(x), x1

)
det

[
∂ϕ−1

t,x1
(x)

∂x

]
dx1

(1− t)
∫
π
(
ϕ−1
t,x1

(x), x1

)
det

[
∂ϕ−1

t,x1
(x)

∂x

]
dx1

. (34)

In all of the above cases, the essence of Algorithm 1 does not change (except that in the case of774

dependent x0 and x1 we should be able either to calculate the value of π
(
ϕ−1
t,x1

(x), x1

)
/ρ1(x1) or to775

estimate it).776

D Several analytical results, following from the explicit formula777

In this section, we present several analytical results that directly follow from our exact formulas for778

the vector field, which, to the best of our knowledge, have not been published before.779

D.1 Exact path from one Gaussian to another Gaussian780

Consider the flow from a one-dimensional Gaussian distribution ρ0 ∼ N
(
·
∣∣µ0, σ

2
0

)
into another (with781

other parameters) Gaussian distribution ρ1 ∼ N
(
·
∣∣µ1, σ

2
1

)
. Note that in this case the generalization782

to the multivariate case is done directly, so the spatial variables are separated.783
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From the general formula (11) we have:784

v(x, t) =

∫
(x1 − x)N

(
x−tx1

1−t

∣∣∣µ0, σ
2
0

)
N
(
x1

∣∣µ1, σ
2
1

)
dx1

(1− t)
∫
N
(

x−tx1

1−t

∣∣∣µ0, σ2
0

)
N (x1|µ1, σ2

1) dx1

. =

=

∫
(x1 − x) exp

(
−
(
x−tx1

1−t − µ0

)2
/(2σ2

0)− (x1 − µ1)
2/(2σ2

1)
)
dx1

(1− t)
∫
exp

(
−
(
x−tx1

1−t − µ0

)2
/(2σ2

0)− (x1 − µ1)2/(2σ2
1)
)
dx1

.

Both integrals in the last expression are taken explicitly:785 ∫
N
(
x− tx1

1− t

∣∣∣∣µ0, σ
2
0

)
N
(
x1

∣∣µ1, σ
2
1

)
dx1 =

=

exp

(
− (x−µ0(1−t)−µ1t)

2

2(σ2
1t

2+σ2
0(1−t)2)

)
√
2π
√

σ2
0 +

σ2
1t

2

(t−1)2

= N
(

x

1− t

∣∣∣∣ µ0(1− t) + µ1t

1− t
, σ2

0 +
σ2
1t

2

(t− 1)2

)
.

Note that the last relation can be obtained as a distribution of two Gaussian random variables with786

corresponding parameters.787

The second integral:788 ∫
x1 − x

1− t
N
(
x− tx1

1− t

∣∣∣∣µ0, σ
2
0

)
N
(
x1

∣∣µ1, σ
2
1

)
dx1 =

=

exp

(
− (x−µ0(1−t)−µ1t)

2

2(σ2
1t

2+σ2
0(1−t)2)

)
√
2π

(1− t)
(
σ2
1t(x− µ0) + σ2

0(t− 1)(x− µ1)
)

(σ2
1t

2 + σ2
0(1− t)2)

3/2
.

Thus, in the considered case we can explicitly write the expression for the vector field v:789

v(x, t) =
σ2
1t(x− µ0)− σ2

0(1− t)(x− µ1)

σ2
1t

2 + σ2
0(1− t)2

. (35)

For this vector field we can explicitly solve the equation for the path x(t) starting from the arbitrary790

point x0791 
∂x(t)

∂t
= v(x(t), t),

x(0) = x0

.

The solution is:792

x(t) = (1− t)µ0 + tµ1 + (x0 − µ0)
√
(σ1/σ0)2t2 + (1− t)2. (36)

Note that although this solution does not correspond to the Optimal Transport joint distribution, since793

the obtained path is not a straight line in general, (i. e. we do not have a solution to the Kantorovich’s794

formulation of the OT problem) the endpoint x(1) = µ1 + (x0 − µ0)
σ1

σ0
falls exactly in the one that795

is optimal if we solve the OT problem in the Monge formultation. Thus, the map x(0)→ x(1) is the796

OT map for the case of 2 Gaussian.797

See the Fig. 4 for the examples of the paths for the obtained solution.798

D.2 From one Gaussian to Gaussian Mixture799

Let initial distribution be standard Gaussian ρ0 = N
(
·
∣∣ 0, 12), and the target distribution be Gaussian800

Mixture (GM) of two symmetric Gaussians: ρ1(x) = 1/2(N
(
x
∣∣µ, σ2

)
) +N

(
x
∣∣−µ, σ2

)
), In this801
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(a) Trajectories (b) Vector field

Figure 4: a) N = 40 random trajectories from from N
(
·
∣∣ 0, 12) to N

(
·
∣∣ 2, 32); (b) 2D plot of the

vector field in this case

case, we can obtain exact form for v802

v(x, t) =
exp

(
− µ2

2σ2 + µ2t2+x2

σ2t2+(t−1)2 −
x2

2(t−1)2

)
(σ2t2 + (t− 1)2)

(
e

(x−µt)2

2(σ2t2+(t−1)2) + e
(µt+x)2

2(σ2t2+(t−1)2)

)×
[
µ(t− 1)

(
exp

( (
µ(t− 1)2 − σ2tx

)
2

2σ2(t− 1)2 (σ2t2 + (t− 1)2)

)
− exp

( (
µ(t− 1)2 + σ2tx

)
2

2σ2(t− 1)2 (σ2t2 + (t− 1)2)

))
+

+x
(
σ2t+ t− 1

)(
exp

( (
µ(t− 1)2 − σ2tx

)
2

2σ2(t− 1)2 (σ2t2 + (t− 1)2)

)
+ exp

( (
µ(t− 1)2 + σ2tx

)
2

2σ2(t− 1)2 (σ2t2 + (t− 1)2)

))]
,

(37)

but the expression for the path x(t) is unknown.803

0.2 0.4 0.6 0.8 1.0
t
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x(t)

(a) Trajectories (b) Vector field

Figure 5: a) N = 80 random trajectories from N
(
·
∣∣ 0, 12) to GM of N

(
·
∣∣−2, 1/22) and

N
(
·
∣∣ 2, 1/22); (b) 2D plot of the vector field in this case

Numerically solution of the differential equation with the obtained vector field give the trajectories804

shown in Fig. 5.805

26



D.3 From Gaussian to Gaussian with stochastic806

Using Eq. (44)-(46) we can explicitly calculate vector field v and score s with the setup as in Sec. D.1807

but with additional noise, i. e. in the stochastic case.808

D.3.1 Gaussian to Gaussian with noise809

Consider like in the Sec. D.1 the flow from a one-dimensional standard Gaussian distribution810

ρ0 ∼ N
(
·
∣∣ 0, 02) into another (with other parameters) Gaussian distribution ρ1 ∼ N

(
·
∣∣µ1, σ

2
1

)
but811

with additional noise as described above.812

In this case we have for the field.813

v(x, t) =
x
(
tσ2

1 + (1− t)σ2
e/2
)
− (x− µ1)

(
(1− t) + tσ2

e/2
)

t(1− t)σ2
e + σ2

1t
2 + (1− t)2

(38)

We can solve ODE with this field and get the expression for the trajectories, starting from the given814

point x0:815

x(t) = µ1t+ x0

√
t(1− t)σ2

e + σ2
1t

2 + (1− t)2. (39)

These trajectories, for different x0 are depicted in Fig. 6.

0.2 0.4 0.6 0.8 1.0
t

-5

5

10

x(t)

(a) Trajectories, σe = 0.3 (b) Vector field,
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(g) Trajectories, σe = 10 (h) Vector field,
σe = 10

Figure 6: a) N = 40 random trajectories from N
(
·
∣∣ 0, 12) to N

(
·
∣∣ 2, 32) and 2D plot of the vector

field in this case for different σe

816

At the limit σe → 0 expressions (38) and (39) turn into expressions (35) and (36) as expected.817

For the score s in the considered case we have818

s(x, t) =
tµ1 − x

(1− t)2 + t(1− t)σ2
e + t2σ2

1

Thus, we can explicitly write expressions for the stochastic process for the evolution from the initial819

distribution rho0 (standard Gaussian) to the final distribution ρ1:820

dx(x) =

[
x
(
tσ2

1 + (1− t)σ2
e/2
)
− (x− µ1)

(
(1− t) + tσ2

e/2
)

t(1− t)σ2
e + σ2

1t
2 + (1− t)2

+

+
g2(t)

2

tµ1 − x

(1− t)2 + t(1− t)σ2
e + t2σ2

1

]
dt+ g(t) dW (t) .

Here g(t) is arbitrary smooth function. In the case of Shrödinger Bridge we take g(t) = σe

√
t(1− t).821
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E Detail on the SDE case822

E.1 Optimal vector field and score for stochastic map823

Following [20] we consider a so-called Brownian bridge B(t) from x0 to x1 with constant diffusion824

rate σe. This stochastic process can be expressed through a multidimensional standard Winner825

process W (t) as826

B(t | x0, x1) = (1− t)x0 + tx1 + σe(1− t)W

(
t

1− t

)
. (40)

Thus, the conditional distribution p(t, x | x0, x1) conditioned on the starting x0 and end point x1 is827

Gaussian:828

p(x, t | x0, x1) = N
(
x
∣∣ (1− t)x0 + tx1, σ

2
et(1− t)

)
.

We can not directly use the results Theorem 3 from [9] (or similar Theorem 2.1 from [19] ) for829

the Gaussian paths, as in this case σ(0) = 0. To circumvent this obstacle and to be able to write830

an expression for the conditional velocity, we assume that we have a Gaussian distribution with a831

very narrow peak at the initial (t = 0) and final (t = 1) points. In other words, we will consider832

conditional probabilities of the form833

p(x, t | x0, x1) = N
(
x
∣∣ (1− t)x0 + tx1, σ

2
e(t+ η)(1− t+ η)

)
, (41)

where parameter η is small enough. Then we can use the above Theorems and immediately write834

vx0,x1(x, t) =
σ′(t)

σ(t)

(
x−µ(t)

)
+µ′(t) =

1− 2t

2(t+ η)(1− t+ η)

(
x−(1−t)x0−tx1

)
+x1−x0. (42)

After integrating over x0 and x1, we can take the limit η → 0. Thus, now for fixed x0 and x1 we do835

not have a fixed value of xt in which to train the model, but a random one. In general case, we end up836

to the loss:837

Lv = Et∼U(0,1), {x1,x0}∼π, x∼p(·,t|x0,x1)∥vθ(x, t)− vx0,x1
(x, t)∥2, (43)

where π(x1, x0) is the density of the joint distributions with the marginal equal to the two given838

probabilities:839 ∫
π(x1, x0) dx1 = ρ0(x0),

∫
π(x1, x0) dx0 = ρ1(x1).

In the simple case, π(x1, x0) = ρ0(x0)ρ1(x1). Vector field in Eq. (43) if taken in the form of840

Eq. (42).841

Now, we can obtain an explicit form for the vector field v at which the written loss is reached its842

minimum by performing the same calculations as in the derivation of formula (10):843

v(x, t) =

∫∫
vx0,x1

(x, t) p(x, t | x0, x1)π(x0, x1) dx0 dx1∫∫
p(x, t | x0, x1)π(x0, x1) dx0 dx1

. (44)

As in the work [20] we can also train score network. Namely, as marginals for Brownian bridge are844

Gaussian, we can write explicit conditional score for conditional probabilistic path845

∇ log p(x, t | x0, x1) =
µ(t)− x

σ2
e(t)

=
x0(1− t) + x1t− x

σ2
et(1− t)

.

In the work [20] the following loss is introduced to train a model for this score846

Ls = Et∼U(0,1), {x1,x0}∼π, x∼p(·,t|x0,x1)∥sθ(x, t)−∇ log p(x, t | x0, x1)∥2. (45)

Similar to (44), for the optimal score s we have:847

s(x, t) =

∫∫
∇ log p(x, t | x0, x1) p(x, t | x0, x1)π(x0, x1) dx0 dx1∫∫

p(x, t | x0, x1)π(x0, x1) dx0 dx1
, (46)

where p is given in (41).848
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E.2 Use stochastic849

Note that the obtained vector field gives marginal distributions p(x, t), which (in the limit η → 0) at850

t = 1 leads to the distribution we need: p(x, t = 1) = ρ1(x). However, the addition of the stochastic851

term allows us to extend the scope of application of the explicit formula for the vector field. In852

particular, it can be applied to the situation when we have two sets of samples and both distributions853

are unknown, as well as the possibility of constructing SDE and solving it using, for example, the854

Euler–Maruyama method (see examples below).855

As consequence of Theorem 3.1 from [20] we have that, if v is given by Eq. (44) then ODE856

∂ρ(x, t)

∂t
= −div

(
ρ(x, t)v(x, t)

)
(47)

recovers the marginal ρ(x, t) (with the given initial conditions) of the stochastic process P (t) which857

is obtained by marginalization conditional Brownian bridge (40) over initial and target distribution858

P (t) =

∫
B(t | x0, x1)π(x0, x1) dx0 dx1 .

As the second consequence of this Theorem, the SDE859

dx(t) =
(
v
(
x(t), t

)
+

g2(t)

2
s
(
x(t), t

))
dt+ g(t) dW (t) (48)

generates so-called Markovization of the process P (t). Indeed, we can rewrite PDE Eq. (47) in the860

form861
∂ρ(x, t)

∂t
= − div

(
ρ(x, t)v(x, t) +

g2(t)

2
∇ρ(x, t)

)
+

g2(t)

2
∆ρ(x, t),

where nabla operator is defined as ∆ = div∇. Thus, we get the Fokker–Planck equation for the862

density of the stochastic process (48).863

E.3 Particular cases864

In particular case of Brownian bridge when σe(t) = σϵ

√
t(1− t), then σ′

e(t) = σϵ(1 −865

2t)/
(
2
√

t(1− t)
)
. In this section we consider simple case of separable variables π(x0, x1) =866

ρ0(x0)ρ1(x1).867

E.3.1 Gaussian initial distribution868

In the case, when ρ0 is standard Gaussian distribution: ρ0 = N
(
·
∣∣ 0, 12), we can take integral869

on x0 and then take the limit η → 0 in the expressions for v and s. First, consider the expression870

for v: where we use explicit expression (41) for conditional density path and Eq. (42) for conditional871

velocity:872

v(x, t) =

∫
w(x, t | x1)N

(
x
∣∣x1t, σ

2
et(1− t) + (1− t)2

)
ρ1(x1)dx1∫

N (x|x1t, σ2
et(1− t) + (1− t)2) ρ1(x1)dx1

=

=

∫
w(x, t | x1)ρ0

(
x−x1t√

σ2
et(1−t)+(1−t)2

)
ρ1(x1)dx1∫

ρ0

(
x−x1t√

σ2
et(1−t)+(1−t)2

)
ρ1(x1)dx1

, (49)

where w(x, t | x1) is the conditional velocity, generated by the conditional map ϕt,x1
(x) =873 √

σ2
et(1− t) + (1− t)2 + tx1:874

w(x, t | x1) =
x1 − x

1− t+ tσ2
e

+ σ2
e

(1− 2t)x+ tx1

2
(
(1− t)2 + (1− t)tσ2

e

) .
Thus, note that in the case of Gaussian distributions, all the difference between this expression and875

the expression without the stochastic part is the appearance of additional (time-dependent, in general)876

variance. Marginal distributions are still Gaussian’s.877
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Similar, using Eq. (46) we have for the score s:878

s(x, t) =

∫
(tx1 − x)N

(
x
∣∣x1t, σ

2
et(1− t) + (1− t)2

)
ρ1(x1)dx1(

(1− t)2 + (1− t)tσ2
e

) ∫
N (x|x1t, σ2

et(1− t) + (1− t)2) ρ1(x1)dx1

=

=

∫
(tx1 − x)ρ0

(
x−x1t√

σ2
et(1−t)+(1−t)2

)
ρ1(x1)dx1(

(1− t)2 + (1− t)tσ2
e

) ∫
ρ0

(
x−x1t√

σ2
et(1−t)+(1−t)2

)
ρ1(x1)dx1

. (50)

E.3.2 Samples instead of distributions879

Consider the case where we only have access to the samples {xi
0}

N0
i=1 and {xi

1}
N1
i=1 from both880

distributions, ρ0 and ρ1, but do not know their explicit expressions. In this case, we can estimate the881

vector field using by a method similar to the one we used to estimate the vector field in (15):882

v(x, t) ≈
∑N0

i=1

∑N1

j=1 vxi
0,x

j
1
(x, t) p(x, t | xi

0, x
j
1)∑N0

i=1

∑N1

j=1 p(x, t | xi
0, x

j
1)

. (51)

Similar for the score883

s(x, t) ≈
∑N0

i=1

∑N1

j=1 ∇p(x, t | xi
0, x

j
1) p(x, t | xi

0, x
j
1)∑N0

i=1

∑N1

j=1 p(x, t | xi
0, x

j
1)

. (52)

In addition, we can also use the importance sampling method in this case. Namely we can use884

both approaches: self-normalized importance sampling and rejection sampling, similar to what is885

described in Sec. B886

F Consistency of Eq. (24) in the case of optimal transport887

Let us analyze what happens if in formula (24) the joint density π represents the following Dirac
delta-function4:

π(x0, x1) = δ
(
x0 − F (x1)

)
,

i. e. we have a deterministic mapping F from x1 to x0. Then, the Eq. (34) come to888

v(x, t) =

∫
(x1 − x) δ

(
ϕ−1
t,x1

(x)− F (x1)
)
dx1

(1− t)
∫
δ
(
ϕ−1
t,x1

(x)− F (x1)
)
dx1

.

Let y(x, t) be the unique solution of the equation889

ϕ−1
t,y(x) = F (y), (53)

considered as an equation on y. Then

v(x, t) =
x− y(x, t)

1− t
.

Now, let us use linear mapping ϕt,x1
(x) = x1t + x(1 − t), with inverse ϕ−1

t,x1
(x) = x−tx1

1−t , and
consider the simplest case when the original distribution is a d-dimensional standard Gaussian and ρ1
is a d-dimensional Gaussian with mean µ and diagonal variance Σ = diag(σ). We know the OT
correspondence between Gaussians, namely(

F (x1)
)
i
=

(x1 − µ)i
Σii

, ∀1 ≥ i ≥ d.

4Further reasoning is not absolutely rigorous, and in order not to introduce the axiomatics of generalized
functions, we can assume that the delta function is the limit of the density of a normal distribution with mean 0
and variance tending to zero.
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Here and further by index i we denote ith component of the corresponding vector. Then, the Eq. (53)
reads as

(x− yt)i
1− t

=
(y − µ)i

Σii
,

with the solution (
y(x, t)

)
i
=

µi(1− t) + xiΣii

1 + (Σii − 1)t
.

Then the expression for the vector field is(
v(x, t)

)
i
=

µi + xi(Σii − 1)

1 + (Σii − 1)t
.

Now, knowing the expression for velocity, we can write the equations for the trajectories x(t):
(
x′(t)

)
i
=

µi + (x(t))i(Σii − 1)

1 + (Σii − 1)t
,

x(0)i = (x0)i

.

This equation have closed-form solution:

x(t) = µt+ x0 − (1− σ) tx0.

Analyzing the obtained solution, we conclude that, first, the trajectories obey the given mapping F :(
F (x(1))

)
i
= (x0)i =

(x(1)− µ)i
Σii

,

And, second, the trajectories are straight lines (in space), as they should be when the flow carries890

points along the optimal transport.891

As a final conclusion, note that, of course, if we are mapping optimal transport F , then it is meaning-892

less to use numerical formula (16). However, usually the exact value of the mapping F is not known,893

and our theoretical formula (34) can help to rigorously establish the error that is committed when an894

approximate mapping is used instead of the optimal one.895

G Analytical derivations for example in Fig. 1(b)896

G.1 CFM dispersion897

To derive the analytical expression for the optimal flow velocity in the case of two normal distributions898

ρ0 ∼ N(0, I) and ρ1 ∼ N(µ, σ2I), we start by substituting µ0 = 0, σ0 = 1, µ1 = µ, σ1 = σ, to the899

exact expression (35) to get900

v(x, t) =
tσ2 + t− 1

(1− t)2 + t2σ2
x+

1

(1− t)2 + t2σ2
(µ− tµ) = w(t)x+ C, (54)

where

w(t) =
tσ2 + t− 1

(1− t)2 + t2σ2
,

and C is constant independent of x. We then redefine the dispersion based on Eq. (19) using901

x = (1− t)x0 + tx1 with x0 ∼ ρ0 and x1 ∼ ρ1:902

Dx,x1
f(x, x1) = Dx0,x1

f
(
(1− t)x0 + tx1, x1

)
(55)

This leads us to the final expression:903

Dx,x1
∆v(x, t) = Dx0,x1

((1− w(t))x1 − (1 + w(t)(1− t))x0) =

= (1 + w(t)(1− t))2Dx0x0 + (1− w(t))2Dx1x1.

This provides a comprehensive representation of the updated dispersion for the CFM objective at any904

given time t.905
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Algorithm 2 Computation ExFM dispersion algorithm
Require: Density function for initial distribution ρ0; sampler for target distribution ρ1; parameter

M (number of samples for evaluation); parameter N (number of samples from ρ1 for certain
samples x ∼ ρm(x, t)); optimal model v(x, t); time for evaluation t.

Ensure: numerical evaluation of dispersion update for ExFM objective
1: Sample (M ·N) samples xi,j

1 from ρ1, where i ∈ [1,M ] and j ∈ [1, N ]
2: Sample (M) samples xi

0 from ρ0, where i ∈ [1,M ]

3: Compute points xi as (1− t)xi
0 + txi,0

1

4: Compute vd(xi, t) =
N∑
j=1

ρ̃i,j(t)
xi,j
1 −xi

1−t , where ρ̃i,j(t) = ρ0

(
xi−txi,j

1

1−t

)
/

N∑
j=1

ρ0

(
xi−txi,j

1

1−t

)
5: Compute and return dispersion Di(v(x

i, t)− vd(xi, t))

G.2 ExFM dispersion906

The analytical derivation of the updated dispersion for the ExFM objective proves to be complex in907

practice. Therefore, for the example at hand, a numerical scheme was employed for evaluation. The908

procedure outlined in Alg. 2 was utilized for this task. The experiment’s parameters for the algorithm909

were as follows: M = 200k, N = 128, ρ0 = N(0, I), ρ1 = N(µ, σ2I), and the optimal model910

v(x, t) was derived from equation (54).911

H Additional Experiments912

H.1 2D toy examples913

To ensure the reliability and impartiality of the outcomes, we carried out the experiment under914

uniform conditions and parameters. Initially, we generated a training set of batch size N = 10,000915

points. The employed model was a simple Multilayer Perceptron with ReLu activations and 2 hidden916

layers of 512 neurons, Adam optimizer with a learning rate of 10−3, and no learning rate scheduler.917

We determined the number of iteration steps equal to 10000. Subsequently, we configured the mini918

batch size n = 256 during the training procedure, with the primary objective of minimizing the Mean919

Squared Error (MSE) loss. The full training algorithm and notations can be seen in Algorithm 1. To920

perform sampling, we employed the function odeint with dopri5 method from the python package921

torchdiffeq import odeint with atol and rtol equal 1e− 5.922

H.2 Tabular923

The power dataset (dimension = 6, train size = 1659917, test size = 204928) consisted of electric924

power consumption data from households over a period of 47 months. The gas dataset (dimension925

= 8, train size = 852174, test size = 105206) recorded readings from 16 chemical sensors exposed926

to gas mixtures. The hepmass dataset (dimension = 21, train size = 315123, test size = 174987)927

described Monte Carlo simulations for high energy physics experiments. The minibone (dimension928

= 43, train size = 29556, test size = 3648) dataset contained examples of electron neutrino and muon929

neutrino. Furthermore, we utilized the BSDS300 dataset (dimension = 63, train size = 1000000, test930

size = 250000), which involved extracting random 8 x 8 monochrome patches from the BSDS300931

datasets of natural images [11].932

These diverse multivariate datasets are selected to provide a comprehensive evaluation of performance933

across various domains. To maintain consistency, we followed the code available at the given GitHub934

link5 to ensure that the same instances and covariates were used for all the datasets.935

To ensure the correctness of the experiments we conduct them with the same parameters. To train936

the model we use the same MultiLayer Perceptron (1024 x 3) model with ReLu activations, Adam937

as optimizer with learning rate of 10−3 and no learning rate scheduler. As in the pretrained step,938

we use separately training and testing sets for training the model and calculating metrics. We train939

the models on the full dataset (of size train_set_size) with batch size N = 5000 (batch_size)940

5https://github.com/gpapamak/maf
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Figure 7: Training loss comparison for ExFM, CFM and OT-CFM methods over 10 000 learning
steps.

(except miniboone dataset, here we used 2000 since the smaller size of the dataset) and mini941

batches n = 256 elements (mini_batch_size), the number of epochs and steps for each dataset942

is adaptive num_epochs = train_set_size // batch_size and num_steps = batch_size943

// mini_batch_size.944

For both 2D-toy an tabular data: we take m = n time variable, individual value of variable t945

corresponds to its pair (x0, x1). The notations N , n and m corresponds to those in Algorithm 1. To946

perform sampling, we employed the function odeint with dopri5 method from the python package947

torchdiffeq import odeint with atol and rtol equal 1e− 5.948

Table 5: Learning parameters for Tabular datasets.
DATA MLP LAYERS LR

POWER [512, 1024, 2048] 1E-3
GAS [512, 1024,1024] 1E-4
HEPMASS [512, 1024] 1E-3
BSDS300 [512, 1024,1024] 1E-4
MINIBOONE [512, 1024] 1E-3

Table 6: NLL comparison for ExFM, CFM and OT-CFM methods over 10 000 learning steps, mean
and std taken from 10 sampling iterations.

DATA EXFM CFM OT-CFM

POWER -8.51e-02 ± 4.85e-02 1.64E-01 ± 4.18E-02 5.22E-02 ± 3.92E-02
GAS -5.53e+00 ± 3.66e-02 -5.00E+00 ± 2.56E-02 -5.48E+00 ± 2.90E-02
HEPMASS 2.16E+01 ± 6.31E-02 2.21e+01 ± 6.13e-02 2.16E+01 ± 4.32E-02
BSDS300 -1.29E+02 ± 8.40E-01 -1.29E+02 ± 8.97E-01 -1.32e+02 ± 6.39e-01
MINIBOONE 1.34e+01 ± 1.95e-04 1.42E+01 ± 1.29E-04 1.43E+01 ± 9.22E-05

H.3 ExFM-S evaluation949

The models were assessed using four toy datasets of two dimensions each. A three-layer MLP950

network was utilized, featuring SeLU activations and a hidden dimension of 64. Optimization was951

carried out using the AdamW optimizer with a learning rate of 10−3 and a weight decay of 10−5.952
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Figure 8: NLL comparison for ExFM, CFM and OT-CFM methods over 10 000 learning steps, mean
and std for range taken from 10 sampling iterations.

Figure 9: Training loss comparison for ExFM, CFM and OT-CFM methods, CIFAR-10 dataset.

The model was trained over 2,000 iterations with a batch size of 128. Inference was conducted using953

the Euler solver for Ordinary Differential Equations (ODE) with 100 steps. To validate the models,954

the POT library was employed to compute the Wasserstein distance based on 4,000 samples. The955

experiments were performed on a single Nvidia H100 GPU with 80gb memory.956

H.4 CIFAR 10 and MNIST957

We conducted experiments related to high dimensional data, the parameters for training were taken958

from the open-source code6 from the works [20, 19]. We saved the leverage of additional heuris-959

tics(EMA, lr scheduler).960

Table 7: FID comparison for 4 sampling iterations, 400 000 learning steps.
METHOD FID

EXFM 3.686 ± 0.029
CFM 3.727 ± 0.026
OT-CFM 3.843 ± 0.033

6https://github.com/atong01/conditional-flow-matching
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Table 8: FID comparison for ExFM, CFM and OT-CFM methods over 400 000 learning steps, mean
and std taken from 4 sampling iterations.

Step ExFM FID CFM FID OT-CFM FID

0 447.256 ± 0.116 447.106 ± 0.130 447.091 ± 0.081
20000 281.060 ± 0.243 275.044 ± 0.123 281.499 ± 0.287
40000 52.050 ± 0.245 51.436 ± 0.142 45.976 ± 0.109
60000 9.125 ± 0.060 9.181 ± 0.035 10.358 ± 0.054
80000 6.624 ± 0.053 6.978 ± 0.062 7.492 ± 0.050
100000 5.641 ± 0.048 5.894 ± 0.045 6.299 ± 0.031
120000 5.085 ± 0.031 5.247 ± 0.051 5.558 ± 0.017
140000 4.766 ± 0.036 4.902 ± 0.053 5.120 ± 0.043
160000 4.486 ± 0.054 4.593 ± 0.068 4.828 ± 0.046
180000 4.294 ± 0.023 4.447 ± 0.045 4.576 ± 0.051
200000 4.180 ± 0.029 4.204 ± 0.013 4.434 ± 0.031
220000 4.022 ± 0.036 4.182 ± 0.024 4.331 ± 0.036
240000 3.925 ± 0.028 4.037 ± 0.036 4.227 ± 0.050
260000 3.852 ± 0.047 3.937 ± 0.018 4.125 ± 0.015
280000 3.842 ± 0.053 3.870 ± 0.040 4.056 ± 0.029
300000 3.758 ± 0.032 3.788 ± 0.024 4.017 ± 0.029
320000 3.749 ± 0.029 3.792 ± 0.034 3.937 ± 0.052
340000 3.724 ± 0.042 3.747 ± 0.033 3.897 ± 0.037
360000 3.714 ± 0.022 3.751 ± 0.041 3.875 ± 0.015
380000 3.707 ± 0.028 3.754 ± 0.020 3.917 ± 0.037
400000 3.686 ± 0.029 3.727 ± 0.026 3.843 ± 0.033

Figure 10: Training loss comparison for ExFM, CFM and OT-CFM methods, MNIST dataset.

H.5 Metrics961

For evaluating 2D toy data we use Energy Distance and W2 metricis, for Tabular datasets we use962

Negative Log Likelihood, for CIFAR10 we took Fréchet inception distance (FID) metrics. This963

choice is connected with an instability and poor evaluation quality of Energy Distance metrics and964

W2 among high-dimensional data .965

H.5.1 Energy Distance966

We use the generalized Energy Distance [18] (or E-metrics) to the metric space.967

Consider the null hypothesis that two random variables, X and Y , have the same probability distribu-968

tions: µ = ν .969

For statistical samples from Xand Y :

{x1, . . . , xn} and {y1, . . . , ym},

the following arithmetic averages of distances are computed between the X and the Y samples:970

A =
1

nm

n∑
i=1

m∑
j=1

∥xi − yj∥, B =
1

n2

n∑
i=1

n∑
j=1

∥xi − xj∥, C =
1

m2

m∑
i=1

m∑
j=1

∥yi − yj∥.
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Figure 11: FID comparison for ExFM, CFM and OT-CFM methods, CIFAR-10 dataset.

Figure 12: Sampled images from ExFM method, CIFAR-10 dataset.
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Figure 13: Sampled images from ExFM method, MNIST dataset.

The E-statistic of the underlying null hypothesis is defined as follows:971

En,m(X,Y ) := 2A−B − C

H.5.2 2-Wasserstein distance (W2)972

The 2-Wasserstein distance [14], also called the Earth mover’s distance or the optimal transport973

distance W is a metric to describe the distance between two distributions, representing two different974

subsets A and B. For continuous distributions, it is:975

W := W (FA, FB) =

(∫ 1

0

∣∣F−1
A (u)− F−1

B (u)
∣∣2 du) 1

2

,

where FA and FB are the corresponding cumulative distribution functions and F−1
A and F−1

B the976

respective quantile functions.977

H.5.3 Negative Log Likelihood (NLL)978

To compute the NLL, we first sampled N = 5000 samples {xs
i}Ni=1 from the target distribution. Then979

we solved the following inverse flow ODE:980 
∂x(t)

∂t
= vθ(x(t), t),

x(1) = xs

for t from 1 to 0. For simplicity, changing time variable τ = 1− t we solve the following ODE:981 
∂x(τ)

∂τ
= −vθ(x(τ), 1− τ),

x(0) = xs
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for τ from 0 to 1. Thus we obtained N solutions {x0
i }Ni=1 which are expected to be distributed

according to the standard normal distribution N (x | 0, I). So we calculate NLL as

NLL = − 1

N

N∑
i=1

lnN (x0
i | 0, I).

H.5.4 Fréchet inception distance (FID)982

For images evaluation we take Fréchet inception distance (FID) metrics, in particular the implementa-983

tion from [12]. The main idea of FID metrics is to measure the gap between two data distributions,984

such as between a training set and samples from a trained model. After resizing the images, and985

feature extraction, the mean (µ, µ̂) and covariance matrix (Σ, Σ̂) of the corresponding features are986

used to compute FID:987

FID = ||µ− µ̂||22 +Tr(Σ + Σ̂− 2(ΣΣ̂)1/2),988

where Tr is the trace of the matrix.989
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