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ABSTRACT

Despite the recent success of Graph Neural Networks (GNNs), it remains chal-
lenging to train a GNN on large graphs with over millions of nodes & billions of
edges, which are prevalent in many graph-based applications such as social net-
works, recommender systems, and knowledge graphs. Traditional sampling-based
methods accelerate GNN training by dropping edges and nodes, which impairs the
graph integrity and model performance. Differently, distributed GNN algorithms
accelerate GNN training by utilizing multiple computing devices and can be clas-
sified into two types: "partition-based" methods enjoy low communication cost
but suffer from information loss due to dropped edges, while "propagation-based"
methods avoid information loss but suffer from prohibitive communication over-
head caused by neighbor explosion. To jointly address these problems, this paper
proposes DIGEST (DIstributed Graph reprEsentation SynchronizaTion), a novel
distributed GNN training framework that synergizes the complementary strength
of both categories of existing methods. We propose to allow each device utilize the
stale representations of its neighbors in other subgraphs during subgraph parallel
training. This way, out method preserves global graph information from neighbors
to avoid information loss and reduce the communication cost. Therefore, DIGEST
is both computation-efficient and communication-efficient as it does not need to
frequently (re-)compute and transfer the massive representation data across the de-
vices, due to neighbor explosion. DIGEST provides synchronous and asynchronous
training manners for homogeneous and heterogeneous training environment, re-
spectively. We proved that the approximation error induced by the staleness of the
representations can be upper-bounded. More importantly, our convergence analysis
demonstrates that DIGEST enjoys the state-of-the-art convergence rate. Extensive
experimental evaluation on large, real-world graph datasets shows that DIGEST
achieves up to 21.82× speedup without compromising the performance compared
to state-of-the-art distributed GNN training frameworks.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown impressive success in analyzing non-Euclidean graph
data and have achieved promising results in various applications, including social networks, rec-
ommender systems and knowledge graphs, etc. (Dai et al., 2016; Ying et al., 2018; Eksombatchai
et al., 2018; Lei et al., 2019; Zhu et al., 2019). Despite the great promise of GNNs, they meet
significant challenges when being applied to large graphs, which are common in real world—the
number of nodes of a large graph can be up to millions or even billions. For instance, Facebook social
network graph contains over 2.9 billion users and over 400 billion friendship relations among users1.
Amazon provides recommendations over 350 million items to 300 million users2. Further, natural
language processing (NLP) tasks take advantage of knowledge graphs, such as Freebase (Chah, 2017)
with over 1.9 billion triples. Training GNNs on large graphs is jointly challenged by the lack of
inherent parallelism in the backpropagation optimization and heavy inter-dependencies among graph
nodes, rendering existing parallel techniques inefficient. To tackle the unique challenges in GNN

1https://backlinko.com/facebook-users
2https://amzscout.net/blog/amazon-statistics
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training, distributed GNN training is a promising open domain that has attracted fast-increasing
attention in recent years. A classic and intuitive way is by sampling. Until now, a good number
of graph-sampling-based GNN methods have been proposed, including neighbor-sampling-based
methods (e.g., GraphSAGE (Hamilton et al., 2017), VR-GCN (Chen et al., 2018)) and subgraph-
sampling-based methods (e.g., Cluster-GCN (Chiang et al., 2019), GraphSAINT (Zeng et al., 2019)).
These methods enable a GNN model to be trained over large graphs on a single machine by sampling
a subset of data during forward or backward propagation. While sampling operations reduce the
size of data needed for computation, these methods suffer from degenerated performance due to
unnecessary information loss. To walk around this drawback and also to leverage the increasingly
powerful computing capability of modern hardware accelerators, recent solutions propose to train
GNNs on a large number of CPU and GPU devices (Thorpe et al., 2021; Ramezani et al., 2021; Wan
et al., 2022) and have become the de facto standard for fast and accurate training over large graphs.

Existing methods in distributed training for GNNs can be classified into two categories, namely
"partition-based" and "propagation-based", by how they tackle the trade-off between computa-
tion/communication cost and information loss. "Partition-based" methods (Angerd et al., 2020; Jia
et al., 2020; Ramezani et al., 2021) partition the graph into different subgraphs by dropping the
edges across subgraphs. This way, the GNN training on a large graph is decomposed into many
smaller training tasks, each trained in a siloed subgraphs in parallel, reducing communications among
subgraphs, and thus, tasks, due to edge dropping. However, this will result in severe information
loss due to the ignorance of the dependencies among nodes across subgraphs and cause performance
degeneration. To alleviate information loss, "propagation-based" methods (Ma et al., 2019; Zhu et al.,
2019; Zheng et al., 2020; Tripathy et al., 2020; Wan et al., 2022) do not ignore edges across different
subgraphs with neighbor communications among subgraphs to satisfy GNN’s neighbor aggregation.
However, the number of neighbors involved in neighbor aggregation grows exponentially as the GNN
goes deeper (i.e., neighborhood explosion (Hamilton et al., 2017)), hence inevitably suffering huge
communication overhead and plagued training efficiency.

Therefore, although "partition-based" methods can parallelize a training job among partitioned
subgraphs, they suffers from information loss and low accuracy. "Propagation-based" methods,
on the other hand, use the entire graph for training without information loss but suffer from huge
communication overhead and poor efficiency. Hence, it is highly imperative to develop a method that
can jointly address the problems of high communication cost and severe information loss. Moreover,
theoretical guarantees (e.g., on convergence, approximation error) are not well explored for distributed
GNN training due to the joint sophistication of graph structure and neural network optimization.

To address the aforementioned challenges, we propose a novel distributed GNN training framework
that synergizes the complementary strengths of both partitioning-based and propagating-based meth-
ods, named DIstributed Graph reprEsentation SynchronizaTion, or DIGEST. DIGEST does not
completely discard node information from other subgraphs in order to avoid unnecessary information
loss; DIGEST does not frequently update all the node information in order to minimize commu-
nication costs. Instead, DIGEST extends the idea of single-GPU-based GCN training with stale
representations (Chen et al., 2018; Fey et al., 2021) to a distributed setting, by enabling each device
to efficiently exchange a relatively stale version of the neighbor representations from other subgraphs,
to achieve scalable and high-performance GNN training. This effectively avoids neighbor updating
explosion and reduces communication costs across training devices. Considering naive synchronous
distributed training that inherently lacks the capability of handling stragglers caused by training
environment heterogeneity (e.g. GPU resource heterogeneity), we further design an asynchronous
version of DIGEST (DIGEST-A), where each subgraph follows a non-blocking training manner. The
synchronous version is a natural generalization of Fey et al. (2021) while the asynchronous version
can handle the straggler issue (Chen et al., 2016; Zheng et al., 2017) in synchronous version and
enjoys even better performance. From the system aspect, DIGEST (1) enables efficient, cross-device
representation exchanging by using a shared-memory key-value storage (KVS) system, (2) supports
both synchronous and asynchronous parameter updating, and (3) overlaps the computation (layer
training) with I/Os (pushing/pulling representations to/from the KVS.

Furthermore, we proved that the approximation error induced by the staleness of representation can
be bounded. More importantly, global convergence guarantee is provided, which demonstrates that
DIGEST has the state-of-the-art convergence rate. Our main contributions can be summarized as:
• Proposing a novel distributed GNN training framework that synergizes the benefits of

partition-based and communication-based methods. Existing work in distributed GNN training
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focus on two contradictory objectives: partition-based methods target minimizing the communica-
tion cost while propagation-based methods aim to minimize information loss. DIGEST drops no
edges while avoiding communication overhead by integrating the strengths of both categories.

• Developing a periodic stale representation synchronization technique for distributed GNN
training. DIGEST utilizes the entire graph for training by separating in- and out-of-subgraph
neighbor nodes and approximating the latter with stale representations. Instead of making strictly
synchronous pull/push operations for the representations of all layers before/after training, DIGEST
overlaps pull/push operations with layer training to minimize the overall training time. Furthermore,
a shared-memory-based KVS is used among subgraphs for efficiently exchanging representations.

• Providing extensive theoretical guarantee on both performance and convergence of the
proposed algorithm. We proved that DIGEST’s convergence rate is O(T−2/3M−1/3) with T
iterations and M subgraphs, which is close to vanilla distributed GNN training without staleness.
Convergence guarantee for both synchronous and asynchronous versions of DIGEST is provided.
We also showed the upper bound on the approximation error of gradients due to the staleness.

• Conducting comprehensive empirical results on both performance and speedup. We perform
extensive evaluation on four benchmark with classic GNNs (e.g., GCN (Hamilton et al., 2017)
and GAT (Veličković et al., 2017)). The experimental results show that for the best case DIGEST
improves the performance by 33.14%, and achieves 21.82× speedup in training time compared to
two state-of-the-art distributed GNNs training frameworks.

2 BACKGROUND AND PROBLEM FORMULATION

In this section, we first introduce the Graph Neural Network (GNN) and its training on a single
machine, and then formulate the problem of distributed GNN training.

Graph Neural Networks. GNNs aim to learn a function of signals/features on a graph G(V, E) with
node representations X ∈ R|V|×d, where d denotes the node feature dimension. For typical semi-
supervised node classification tasks (Kipf & Welling, 2016), where each node v ∈ V is associated
with a label yv, a L-layer GNN f is trained to learn the node representation hv such that yv can
be predicted accurately. The training process of a GNN can be practically described as the node
representation learning based on the message passing mechanism (Gilmer et al., 2017). Analytically,
given a graph G(V, E) and a node v ∈ V , the (ℓ+ 1)-th layer of the GNN is defined as

h(ℓ+1)
v = f (ℓ+1)

(
h(ℓ)
v ,

{
h(ℓ)
u : u ∈ N (v)

})
= Ψ(ℓ+1)

(
h(ℓ)
v ,Φ(ℓ+1)

({
h(ℓ)
u : u ∈ N (v)

}))
, (1)

where h
(ℓ)
v denotes the representation of node v in the ℓ-th layer, and h

(0)
v being initialized to xv

(v-th row in X), and N (v) represents the set of direct 1-hop neighbors for node v. Each layer of
the GNN, i.e. f (ℓ), can be further decomposed into two components: 1) Aggregation function Φ(ℓ),
which takes the nodes representations of node v’s neighbors as input, and output the aggregated
neighborhood representation. 2) Updating function Ψ(ℓ), which combines the representation of v
and the aggregated neighborhood representation to update the representation of node v for the next
layer. Both Φ(ℓ) and Ψ(ℓ) can choose to use various functions in different types of GNNs. To train a
GNN on a single machine, one can minimize the empirical loss L(W) over the entire graph in the
training data, i.e., L(W) = (1/|V|)

∑
v∈V Loss

(
h
(L)
v ,yv

)
, where Loss(·, ·) denotes a loss function

(e.g., cross entropy loss), and h
(L)
v denotes the representation of node v from the last layer of the

GNN and can be calculated by following Eq. 1 recursively.

Distributed Training for GNNs. Distributed GNN training means to first partition the original graph
into multiple subgraphs without overlap, which can also be considered as mini batches. Then different
mini-batches are trained in different devices in parallel. Here, Eq. 1 can be further reformulated as

h(ℓ+1)
v = Ψ(ℓ+1)

(
h(ℓ)
v ,Φ(ℓ+1)

({
h(ℓ)
u : u ∈ N (v) ∩ S(v)

}︸ ︷︷ ︸
In-subgraph nodes

∪
{
h(ℓ)
u : u ∈ N (v) \ S(v)

}︸ ︷︷ ︸
Out-of-subgraph nodes

))
,

(2)

where S(v) denotes the subgraph that node v belongs to. In this paper, we consider the distributed
training of GNNs with multiple local machines and a global server. The original input graph G is first
partitioned into M subgraphs, where each Gm(Vm, Em) represents the subgraph m. Our goal is to
find the optimal set of parameters W in a distributed manner by minimizing each local loss, i.e.,

minW LLocal
m

(
Wm

)
=

1

|Vm|
∑
v∈Vm

Loss
(
h(L)
v ,yv

)
, m = 1, 2, · · · ,M in parallel, (3)
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Figure 1: Distributed GNN training methods. (a): Propagation-based methods rely on commu-
nication of out-of-subgraph neighbor nodes for exact message passing even in a distributed setup.
(b): Partition-based methods decompose the original problem into multiple smaller ones and directly
apply data parallelism onto partitioned subgraph data. (c): In DIGEST each device utilizes the stale
representations of all its neighbors from other subgraphs. Propagation-based methods suffers high
communication cost (red vertical double arrows in (a)) due to neighbor explosion, while partition-
based methods suffer severe information loss due to dropped edges (red crosses in (b)). DIGEST
combines the best of both worlds. ALL nodes are utilized in DIGEST to achieve full-graph awareness,
while periodic stale representation synchronization keeps the communication cost low.

where Wm = {W(ℓ)
m }Lℓ=1 are local parameters and h

(L)
v follows Eq. 2 recursively.

Challenges. The main challenges for distributed training of GNNs lie in the trade-off between
communication cost and information loss. "Partition-based" method generalizes the existing data
parallelism techniques of classical distributed training on i.i.d data to graph data and enjoys minimal
communication cost. However, directly partitioning a large graph into multiple subgraphs can result
in severe information loss due to the ignorance of huge number of cross-subgraph edges and cause
performance degeneration (Angerd et al., 2020; Jia et al., 2020; Ramezani et al., 2021). For these
methods, the representation of neighbors out of the current subgraph (second representation set in
Eq. 2) are dropped and the connections between subgraphs are thus ignored. Hence, another line
of work (Wang et al., 2019), namely "propagation-based" method considers using communication
of neighbor nodes for each subgraph to satisfy GNN’s neighbor aggregation, which minimizes the
information loss. As shown in Eq. 2, the representations for neighbor nodes outside the current
subgraph is swapped between different subgraphs. However, the number of neighbors involved in the
neighbor aggregation process expands exponentially as the GNN model goes deep, which is known
as the neighborhood explosion problem. Hence, though no edges are dropped in this case, inevitable
communication overhead is incurred and plagues the achievable training efficiency (Ma et al., 2019;
Zhu et al., 2019; Zheng et al., 2020; Tripathy et al., 2020; Wan et al., 2022). Moreover, theoretical
guarantees (e.g., on convergence, approximation error) are not well explored for distributed GNN
due to the joint sophistication of graph structure and neural network optimization.

3 PROPOSED METHOD

In this section, we introduce the proposed GNN training framework DIGEST. DIGEST leverages
both types of representations in Eq. 2 to address the information loss issue. In addition, instead of
exchanging real-time representations during the training process between the subgraphs, DIGEST
only pull and push the stale representations before or after each step of training periodically. With this
strategy, the communications turn to be more efficient, which are illustrated in Figure 1 and analyzed
in more details in Section 3.3. Moreover, we prove that the error introduced by the staleness of the
stale representation is upper-bounded while the convergence is also guaranteed.
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3.1 DISTRIBUTED GNN TRAINING WITH FULL-GRAPH AWARENESS

In DIGEST, each copy of GNN trained on a local machine will make use of all available graph
information, i.e. no edges are dropped in both forward and backward propagation. Analytically,
calculating each local gradient ∇LLocal

m as defined in Eq. 3 will involve out-of-subgraph neighbor
information. For out-of-subgraph neighbor nodes, we approximate their representations via stale rep-
resentations acquired in previous training, denoted by h̃

(ℓ)
v . Formally, given a node v ∈ Gm(Vm, Em),

the forward propagation for the (ℓ+ 1)-th layer of DIGEST is achieved by modifying Eq. 2 as

h(ℓ+1)
v = Ψ(ℓ+1)

(
h(ℓ)
v ,Φ(ℓ+1)

({
h(ℓ)
u : u ∈ N (v) ∩ Vm

}
∪
{
h̃(ℓ)
u : u ∈ N (v) \ Vm

}
︸ ︷︷ ︸

Stale representation

))
.

(4)

As can be seen, DIGEST considers ALL neighbor nodes information during forward propagation.
On the other hand, leveraging the entire graph data in forward propagation will in turn improve the
estimation of gradient in backpropagation. To see this, we reformulate Eq. 4 into the matrix form:

H
(ℓ+1,m)
in = F

(
H

(ℓ,m)
in , H̃

(ℓ,m)
out

)
:= σ

(
P

(m)
in H

(ℓ,m)
in W(ℓ+1)

m +P
(m)
out H̃

(ℓ,m)
out W(ℓ+1)

m

)
, (5)

where H(ℓ,m)
in and H̃

(ℓ,m)
out denotes the matrix of in-subgraph node representations and out-of-subgraph

stale representations at ℓ-th layer on subgraph Gm, respectively. F denotes the forward propagation
function of one layer of GNN for compact formula. We consider the GCN model as an example for
illustration but our analyses apply to general cases of any GNN models. P(m)

in and P
(m)
out denotes the

propagation matrix for in-subgraph nodes and out-of-subgraph nodes of Gm, respectively, and we
have Pm = P

(m)
in +P

(m)
out where Pm is the original propagation matrix for subgraph Gm. σ(·) is the

activation function following GCN’s definition. Hence, the gradient over model parameters is

∂

∂W
(ℓ+1)
m

F
(
H

(ℓ,m)
in , H̃

(ℓ,m)
out

)
=

∂

∂W
(ℓ+1)
m

σ
(
P

(m)
in H

(ℓ,m)
in W(ℓ+1)

m +P
(m)
out H̃

(ℓ,m)
out W(ℓ+1)

m

)
=

[
P

(m)
in H

(ℓ,m)
in +P

(m)
out H̃

(ℓ,m)
out

]⊤
σ′
(
P

(m)
in H

(ℓ,m)
in W(ℓ+1)

m +P
(m)
out H̃

(ℓ,m)
out W(ℓ+1)

m

)
.

(6)

The key observation here is that ALL neighbor nodes are involved in the backpropagation since the
gradient above depends on H̃

(ℓ,m)
out . The separation of in-subgraph nodes and out-of-subgraph nodes,

and their approximation via stale representation form the very foundation of DIGEST.

3.2 SYSTEM DESIGN

This section presents the overall system design of DIGEST as depicted in Figure 1. DIGEST maintains
a shared-memory-based KVS for storing and retrieving representations. KVS can be easily extended
to a truly distributed storage to support large-scale distributed training spanning multiple servers.

We first introduce two operations used by DIGEST to store and retrieve representations. The
stale representations of layer ℓ for all nodes in V can be formulated as H̃(ℓ) = {h̃(ℓ)

v : v ∈ V}.
For any subgraph Gm to start the forward process of layer ℓ, the necessary stale representations
H̃

(ℓ,m)
out = {h̃(ℓ)

u : u ∈ N (v) \ Vm,∀ v ∈ Vm} are pulled from the KVS that stores representations;
this is called a "pull" operation denoted as H(ℓ,m)

out ← H̃
(ℓ,m)
out . See Figure 1(c). After the end of a

epoch, the newly-computed representations H(ℓ,m)
in = {h(ℓ)

v : ∀ v ∈ Vm} are pushed to the KVS,
and these newly-stored representations will be fetched as stale representations in future epochs; this
is called a "push" operation denoted as H(ℓ,m)

in → H̃
(ℓ,m)
in .

DIGEST features two training modes: (1) DIGEST: a synchronous mode designed ideal for ho-
mogeneous training environments. (2) DIGEST-A: an asynchronous mode that better fits for a
heterogeneous training environment. DIGEST and DIGEST-A follow different parameter and rep-
resentation updating strategies. In DIGEST, for each global round, before fetching the aggregated
parameters and pulling the stale representations, each subgraph has to wait for other subgraphs to
finish updating the latest parameters to the parameter server (PS) and their local representations
to the KVS. However, some subgraphs may have lower computing resource compared to other
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subgraphs, which we call stragglers. This may lead to imbalanced local training times. In this case,
with the synchronous mode, the overall training process can be bottlenecked by the slowest subgraph,
therefore suffering from prolonged training time. To address this issue, DIGEST-A applies an asyn-
chronous, non-blocking strategy, where each subgraph directly pulls/pushes stale representations
of other subgraphs from the shared KVS and downloads/uploads parameters from the PS without
blindly waiting for the slowest subgraph to finish. For better scalability, we will explore disaggregated
storage techniques (Klimovic et al., 2016; Nanavati et al., 2017; Amaro et al., 2020) as part of our
future work, where DIGEST can utilize a network-attached, high-performance far memory storage
system for representation storage and retrieval. We summarize our algorithm in Algorithm 1 in the
appendix due to limited space.

In addition, DIGEST and DIGEST-A use several optimizations to minimize the I/O overhead intro-
duced by pulls and pushes. First, we observe that there are a large number of node representations
involved in both pull and push operations, and more importantly, nodes are independent of each other
on these two operations. Hence, it is inherently suitable for parallel I/O at the granularity of node
level. For subgraph Gm, the total number of stale representations needed to be pulled from the KVS
is |H̃(ℓ,m)

out |. Assume that it takes time t to pull the stale representation of one node, the total time cost
should be |H̃(ℓ,m)

out | × t if being pulled in serial. But with parallel I/O where needed representations
are pulled in parallel, theoretically we can still keep the pull time for v ∈ Vm as t. Additionally, we
observe that the pull operation for H̃(ℓ,m)

out can be overlapped with the forward process of layer ℓ− 1;
similarly, the push operation for H(ℓ,m)

in can be overlapped with the forward process of layer ℓ+ 1.
The training process on each subgraph is depicted in Figure 2. The cost of pull/push operations is
hidden by the layer forward process, therefore, is eliminated.

Figure 2: Illustration of DIGEST’s concurrent pull/push
and forward propagation operations on a 3-layer GNN.

Second, to further reduce the I/O overhead,
DIGEST uses a periodic representation syn-
chronization strategy, which pushes up-
dated representations to the KVS once ev-
ery N epoches. This introduces a trade-off
in I/O overhead and training performance.
Increasing the frequency of the periodic
synchronization will benefit performance,
but this will introduce more I/O overhead.
We analyze this trade-off in Section 5.2.

3.3 COMPLEXITY ANALYSES

Here we analyze the memory and communication complexity of DIGEST. DIGEST pulls the required
out-of-subgraph node representations and keeps them locally for each local machine. For the m-th
local machine and the corresponding subgraph on it, i.e. Gm(Vm, Em), the memory complexity
per training iteration is O

( ∣∣⋃
v∈Vm

N (v) ∪ {v}
∣∣Ld). which scales linearly with respect to the

number of GNN layers. DIGEST’s communication cost per round can be expressed as O
(
MLd2 +∑M

m=1

∣∣⋃
v∈Vm

N (v) \ Vm
∣∣Ld+NLd

)
. Again, the communication cost of DIGEST is only linear

with respect to GNN depth L.

4 THEORETICAL ANALYSES

In this section, we provide theoretical analyses of the propose distributed strategy DIGEST, including
the bound of error induced by the staleness of node representations, and convergence guarantee for
DIGEST under both synchronous and asynchronous settings. All proofs can be found in the appendix.

4.1 ERROR BOUND ON GLOBAL APPROXIMATED GRADIENTS

Our first theorem shows that under the distributed setting, the approximation error of the global
model’s gradients can be upper bounded by the staleness of node representations.
Theorem 1. Given a L-layer GNN fW with r1-Lipschitz smooth Φ and r2-Lipschitz smooth Ψ.
Denote ∆(G) as the maximal node degree for graph G. Assume ∀ v ∈ V and ∀ ℓ ∈ {1, 2, · · · , L− 1}
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we have ∥h(ℓ)
v − h̃

(ℓ)
v ∥ ≤ ϵ(ℓ), where h

(ℓ)
v and h̃

(ℓ)
v denotes the node representation computed

by DIGEST and the stale one, respectively. Further assume each local loss function LLocal
m is

τ -Lipschitz smooth w.r.t the node representation. Then, we have that
∥∥∇WL − ∇WL∗

∥∥
2
≤

(τ/M)
∑L−1

ℓ=1 ϵ(ℓ)rL−ℓ
1 rL−ℓ

2

∑M
m=1 |∆(Gm)|L−ℓ, where ∇WL and ∇WL∗ denotes the global gra-

dient computed by DIGEST and the exact global gradient without any staleness.

4.2 CONVERGENCE OF SYNCHRONOUS DIGEST

As both fresh inner-subgraph and stale out-of-subgraph representations are adopted in our algorithm,
its convergence rate is still unknown. We have proved the convergence of DIGEST and present the
convergence property in the theorem blow. First, we introduce some assumptions:
Assumption 1. The loss function Loss(·, ·) is CLoss-Lipchitz continuous and LLoss-Lipschitz smooth
with respect to the last layer’s node representation, i.e., |Loss(h(L)

v ,yv) − Loss(h
(L)
w ,yv)| ≤

CLoss∥h(L)
v − h

(L)
w ∥2 and ∥∇Loss(h(L)

v ,yv)−∇Loss(h(L)
w ,yv)∥2 ≤ LLoss∥h(L)

v − h
(L)
w ∥2.

Assumption 2. The activation function σ(·) is Cσ-Lipchitz continuous and Lσ-Lipschitz smooth, i.e.
∥σ(Z(ℓ)

1 )− σ(Z
(ℓ)
2 )∥2 ≤ Cσ∥(Z(ℓ)

1 − Z
(ℓ)
2 ∥2 and ∥σ′(Z

(ℓ)
1 )− σ′(Z

(ℓ)
2 )∥2 ≤ Lσ∥(Z(ℓ)

1 − Z
(ℓ)
2 ∥2.

Assumption 3. ∀ ℓ = 1, 2, · · · , L, we have ∥W (ℓ)∥F ≤ KW , ∥P (ℓ)∥P ≤ KW , ∥X(ℓ)∥F ≤ KX .
Theorem 2. Consider GCN with L layers that is Lf -Lipschitz smooth. ∀ ϵ > 0, ∃ constant
E > 0 such that, we can choose a learning rate η =

√
Mϵ
E and number of training iterations

T = (L(W(1)) − L(W∗)) E√
M
ϵ−

3
2 s.t., T−1

∑T
t=1 ∥∇L(W(t))∥2 ≤ O(T−2/3M−1/3), where

W∗ denotes the optimal parameter.
Our convergence rate of DIGEST is O(T−2/3M−1/3), which is better than pipeline-parallelism
method O(T−2/3) (Wan et al., 2022) and sampling-based method O(T−1/2) (Chen et al., 2018;
Cong et al., 2021), and very close to full-graph training O(T−1).

4.3 CONVERGENCE OF ASYNCHRONOUS DIGEST

Convergence for asynchronous distributed algorithms could be even harder to obtain due to the delay
in parameter’s update (the global model’s parameters may have been updated several times when the
slowest local machine finishes its computation.) Our main result is shown below:
Assumption 4. ∀ m ∈ [M ], ∥∇L̃m(W )∥2 ≤ V · ∥∇L(W )∥2, and

〈
∇L(W ),∇L̃m(W )

〉
≥

β · ∥∇L(W )∥22, where V and β are positive real numbers, i.e., V, β ∈ R+.
Theorem 3. Assume the global model L(W ) is Cf -Lipschitz continuous and the delay is bounded,
i.e., τ < K. Further, assume β − V 2

2 > 0. There exist constant B and a second-order polynomial of
learning rate η, i.e., P (η) such that after T global iterations on the server, asynchronous DIGEST
converges to the optimal parameter W∗ by T−1

∑T
t=1

∥∥∇L(W(t))
∥∥2
2
≤ (ηTB)−1(L(W(1)) −

L(W(∗))) + P (η)/B, where B = β − V 2

2 and P (η) = 1
2η

2K2C2
fL

2
f + (1 + V )ηKC2

fLf .

5 EXPERIMENTS

In this section, we evaluate DIGEST and compare DIGEST against two state-of-the-art distributed
GNNs training frameworks as baselines in terms of training efficiency and scalability. Considering
the distinct training time per epoch between DIGEST and other baselines, we report the F1 scores on
validation dataset and training loss over training time, instead of over communication rounds, in the
results. This way it makes a fairer comparison in terms of training performance and efficiency.

5.1 EXPERIMENT SETTING

Implementation and Setup. We have implemented DIGEST and other comparison GNNs training
methods all in PyTorch (Paszke et al., 2019). For all the experiments, we simulate a distributed
training environment using an EC2 g4dn.metal virtual machine (VM) instance on AWS, which
has 8 NVIDIA T4 GPUs, 96 vCPUs, and 384 GB main memory. We implemented the shared-memory
KVS using the Plasma in-memory object store3 for representation storage and retrieval.

3https://arrow.apache.org/docs/python/plasma.html
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Figure 3: Performance comparison of the GCN training frameworks on four benchmark datasets. The
top four subfigures show the training loss over training time, and the bottom four subfigures show the
global validation F1 scores during the whole training process. (Best viewed in color.)

Table 1: Performance comparison of distributed GNNs frameworks. F1 score on validation dataset
reported. Speedup is calculated by normalizing per-epoch training time against that of DGL.

Method Metric GCN GAT
OGB-Arxiv Flickr Reddit OGB-Products OGB-Arxiv Flickr Reddit

LLCG F1
Speedup

69.8± 0.21
2.35×

50.73± 0.15
0.88×

62.09± 0.41
1.47×

90.79± 0.16
1.396×

68.84± 0.22
1.787×

43.98± 0.32
0.923×

91.1± 0.17
9.956×

DGL F1
Speedup

69.9± 0.17
1×

50.9± 0.13
1×

87.02± 0.23
1×

91.01± 0.12
1×

70.34± 0.17
1×

51.50± 0.27
1×

92.58± 0.12
1×

DIGEST F1
Speedup

72± 0.23
17.41×

53.78± 0.21
11.06×

95.23± 0.43
7.86×

91.55± 0.1
3.096×

68.35± 0.41
11.49×

52.08± 0.21
6.591×

94.19± 0.15
21.817×

DIGEST-A F1 71.9± 0.16 53.1± 0.32 94.55± 0.37 91.54± 0.1 69.04± 0.13 52.16± 0.17 93.95± 0.22

Baselines. Recall in Section 2 we categorize existing distributed GNN training into two types of
general methods. In evaluation, we choose two state-of-the-art distributed training frameworks, one
from each category as the baseline. For the first category, we choose LLCG (Ramezani et al., 2021),
which partitions a graph into subgraphs and trains each subgraph strictly independently without
incurring any communication among subgraphs. LLCG uses a central server to aggregate local models
from each device and performs global training using mini-batches with full neighbor information
to ensure that the model learns the global structure of the graph. LLCG uses this additional step
to reduce the information loss caused by graph partitioning. For the second category, we choose
to use DGL (Wang et al., 2019), which is a commonly-used, distributed GNN training framework.
In contrast to LLCG, DGL requires exchanging node representations among partitioned subgraphs.
DGL requires frequent swap operations with other subgraphs for representations during subgraph’s
local training in each epoch, and therefore, DGL incurs high communication cost.
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Figure 4: Training time/epoch.
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Figure 5: Scalability.
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5.2 EXPERIMENTAL RESULTS

In this section, we evaluate both sync & async versions of DIGEST, LLCG, and DGL on the four
datasets. Due to the page limit, we move parts of our evaluation results to the Appendix.
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Efficiency of DIGEST. We first evaluate the training performance of DIGEST and DIGEST-A. As
shown in Figure 3, DIGEST outperforms both LLCG and DGL for all the datasets when performing
distributed training on a pure GCN. LLCG performs worst particularly for the Reddit dataset, because
in the global server correction of LLCG, only a mini-batch is trained and it is not sufficient to correct
the plain GCN. This is also the reason why the authors of LLCG report the performance of a complex
model with mixing GCN layers and GraphSAGE layers Ramezani et al. (2021). DGL achieves good
performance on some dataset (e.g., OGB-products) with uniform node sampling strategy and real-
time representation exchanging. However, frequent communication also leads to slow performance
increasing for dataset Flickr (Figure 3(b)) and poor performance for all four datasets. DIGEST and
DIGEST-A avoid these issues and therefore achieve satisfying performance over the training time.
DIGEST-A is slowly catching up DIGEST due to the diverse model parameters used by subgraphs in
the early training period.

We measure the training time per epoch as shown in Figure 4. Since the representation synchronization
is only performed before the start or after the end of local training, DIGEST takes significantly shorter
training time per epoch than that of LLCG and DGL. Furthermore, DIGEST performs periodic
synchronization instead of per-epoch synchronization, which further shortens the training time.

Table 1 presents the detailed numbers for the comparison of three frameworks on the four datasets.
For all the cases except GAT on OGB-Arxiv, DIGEST achieves leading F1 scores on the validation
dataset, demonstrating the efficacy of DIGEST’s design.
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Figure 7: Performance comparison
of OGB-Products when trained in a
heterogeneous environment.

Scalability of DIGEST. We evaluate the scalability of three
frameworks by training a GCN on OGB-Products with varied
number of GPUs. We use average training time per epoch
against that of DGL with a single GPU to calculate the speedup
results. As shown in Figure 5, DIGEST shows the best scala-
bility compared to the other two. The speedup rises with the
number of GPUs used during training. We observe a similar
trend for DGL, but the relative speedup for DGL is significantly
smaller than that for DIGEST, due to the using of real-time
representations instead of stale representations.

Synchronization frequency. We next perform a sensitivity
analysis by varying the synchronization intervals for OGB-
Products to study how the synchronization frequency would
affect the training performance. As shown in Figure 6, DIGEST
achieves the highest F1 score over training time when config-
ured to perform synchronization of stale representations every
10 epochs. A large interval (20) or a small interval (1) results
in performance degradation, due to the long term loss of graph
information or additional communication cost.

Training in heterogeneous environment. Finally, we test DIGEST’s asynchronous training mode.
As stated in Section 3.2, asynchronous training is better suited for GNN training in heterogeneous
environments. In this test, we randomly select one subgraph as the straggler before the training starts.
To simulate the straggler lagging caused by limited computing capability, a random delay ranging
from 8 to 10 seconds is added to the chosen straggler during the whole training process. We can
see from Figure 7 that DIGEST-A performs much better than other three synchronous methods and
converge to high F1-score at the early stage of the training. This is because asynchronous mode
effectively eliminates GPU’s blocking caused by waiting with significantly improved GPU utilization.

6 CONCLUSION

There are two general categories in distributed GNN training. Partition-based methods suffer from
graph information loss, while propogation-based methods suffer from high communication cost.
In this work we present DIGEST, a novel distributed GNN training framework that synergizes the
complementary strengths of both methods by leveraging stale representations intelligently. We
provide rigorous theoretical analysis to prove that DIGEST has competitive convergence rate and
bounded error due to staleness. Extensive experiments on four benchmark datasets validate our
analysis and demonstrate the efficiency and scalability of DIGEST.
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A APPENDIX

In this section, we clarify our contributions made in this work and describe detailed experimen-
tal setup, additional experimental results, and complete proofs. We reuse part of code adopted
from GNNAutoScale Fey et al. (2021); our code is available at: https://anonymous.4open.
science/r/DIGESTA-78F2/. Please note that the code is subjected to reorganization to im-
prove the readability.

A.1 CONTRIBUTIONS AND NOVELTY

The contributions and novelty of this work are multi-fold. In this paper, we propose a new, highly-
parallel, and full-graph-aware distributed GNN training method; on top of this new method, we
design a novel, compute-and-storage-disaggregated training system to enable better scalability and
allow distributed GNN training to potentially benefit from emerging computing paradigms and
hardware; finally, we deduce new theoretical guarantees and analyses for the co-designed algorithms
and systems.

(1). Methodology Novelty in Algorithm-System Co-design: Our paper is mainly motivated
from a distributed training perspective, where the proposed framework synergizes the best of both
partition-based and propagation-based distributed training; GNNAutoScale provides a theoretical
foundation, which exposes potential opportunities that can be harnessed by and co-designed with
new distributed training system infrastructures to enable highly-parallel GNN training. DIGEST
goes beyond GNNAutoScale in that we built a novel distributed training framework that effectively
decouples the management of state (i.e., representations) and compute (i.e., GNN training).

(2). System Architecture Novelty: The disaggregated architecture of DIGEST is the result of an
algorithm-system co-design as mentioned in the Methodology Novelty, and enables great properties
including high scalability and low training time, as demonstrated in our paper. More importantly,
this disaggregated architecture could enable fundamental opportunities for GNN training systems
to take advantage of emerging computing paradigm such as elastic serverless computing as well
as emerging hardware such as Zoned Namespace SSD (ZNS) and smart programmable network
hardware (SmartNIC); in this work, we have shown the promising scalability and speedup that
DIGEST offers, which establishes a solid system foundation for further system-level optimizations
and innovations. This demands/inspires future research along the line, which we plan to do as part of
our future work.

(3). Theoretical Novelty: All of our theoretical analyses are tailored for a distributed training setup,
while GNNAutoScale only considers single-GPU training.

A.2 EXPERIMENTAL SETUP DETAILS

As mentioned in Section 5.1, all the experiments are done on an EC2 g4dn.metal virtual machine
(VM) instance on AWS, which has 8 NVIDIA T4 GPUs, 96 vCPUs, and 384 GB main memory.
Other important information including operation system version, Linux kernel version, and CUDA
version is summarized in Table 2. For fair comparison, we use the same optimizer (Adam), learning
rate, and graph partition algorithm for all the three frameworks, DIGEST, LLCG, and DGL. For
parameters that are unique to both LLCG and DGL, such as the number of neighbors sampled from
each layer for each node, we choose the default value for both LLCG and DGL. Each of the three
frameworks has a set of parameters that are exclusively unique to that framework; for these exclusive
parameters, we tune them in order to achieve the best performance. Please refer to the configuration
files under run/conf/model for detailed configuration setups for all the models and datasets.

Table 2: Summary of environmental setup of our testbed.

OS Linux kernel CUDA Driver PyTorch PyTorch Geometric PyTorch Sparse
Ubuntu 18.04 5.4.0 11.6 510.47.03 1.10.0 2.0.4 0.6.13

We use four datasets: OGB-Arxiv Hu et al. (2020), Flickr Zeng et al. (2019), Reddit Zeng et al.
(2019), and OGB-Products Hu et al. (2020) for evaluation. The detailed information of these datasets
is summarized in Table 3.
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Table 3: Summary of dataset statistics.

Dataset # Nodes # Edges # Features # Classes Train % / Validation % / Test %
Flickr 89,250 899,756 500 7 50% / 25% / 25%
Reddit 232,965 23,213,838 602 41 66% / 10% / 24%
OGB-Arixv 169,343 2,315,598 128 40 53.7% / 17.6% / 28.7%
OGB-Products 2,449,029 123,718,280 100 47 8% / 2% / 90%
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Figure 8: Performance comparison of different distributed GAT training methods on four benchmark
datasets. The top three subfigures show the training loss during the whole training process; the bottom
three subfigures show the global validation F1 scores during the whole training process.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 PERFORMANCE OF GAT TRAINING
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Figure 9: The average ration of the num-
ber of out-of-subgraph nodes to the num-
ber of in-subgraph nodes when training
a GCN over the four datasets.

We first show the learning curves of training GAT with
three methods on three different datasets. As shown in Fig-
ure 8, for dataset Flickr and Reddit, DIGEST acheives the
best validation F1 score over training time of all the three
frameworks. For dataset OGB-Arxiv, the performance of
DIGEST is slightly worse than DGL but still outperforms
LLCG. Specifically, LLCG’s training curves are not sta-
ble and fluctuate dramatically for both GCN and GAT on
Reddit. This is because Reddit is much denser compared
to other datasets, and in this case, the sampling process of
the global server correction in LLCG has difficulty captur-
ing all the information loss due to the cut-edges. Unlike
LLCG, DIGEST’s training curves are much smoother not
only for GCN training but also for GAT training.

A.3.2 MEMORY OVERHEAD

In this section we quantify the memory overhead intro-
duced by DIGEST.
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Ratio of out-of-subgraph nodes and in-subgraph nodes.
Figure 9 shows the ratios of the number of out-of-subgraph nodes to the number of in-subgraph nodes
across four datasets. This ratio quantifies additional memory consumption compared to methods that
does not use any information of the neighboring nodes during training.

Denser graphs like Flickr and Reddit require more memory to store representations of off-subgraph
nodes than OGB-Arxiv and OGB-products. This introduces an interesting tradeoff between extra
memory storage and gained benefits in reduced communication and preservation of global graph
information. We argue that modern GPU servers are equipped with ample GPU memory resources to
buffer the out-of-subgraph representations Gandhi & Iyer (2021); Wang et al. (2021); if indeed more
memory is required, our research will benefit from the recent advancement of unified memory Choi
et al. (2022); Huang et al. (2020); Peng et al. (2020), where DIGEST can use both the host and GPU
memory more efficiently.

In the worst case, if GPU memory is limited, DIGEST can implement a multi-tier storage system
that uses the limited memory as a level-one cache and the host memory as a backing store. For large
graphs that are sparse (OGB-products), the extra memory cost can be bounded to a relatively lower
ratio (58.43%).

Host memory cost of stale representations. The KVS is responsible for storing the representations
of all the nodes in a graph. The representations are stored in the memory of the host server instead of
the GPUs, the latter of which is rather limited. We implemented the in-memory KVS with Apache
Plasma, which is a shared memory storage that supports efficient, shared-memory-based inter-process
communication (IPC) for multiple training processes located on the same server. However, extending
our current KVS implementation to a fully-distributed storage system is trivial. Using off-the-shelf,
high-performance distributed in-memory KVSes such as Redis is one option. Alternatively, we could
also implement a simple client library, which can be used by the training process for key-value item
mapping (e.g., using the commonly-used consistent hashing algorithm) and remote representation
retrieval/storage, and with the client library, we could deploy a cluster of Plasma storage processes
either on a dedicated storage cluster or on the same training server cluster to support distributed
representation storage.

The overall memory consumption required to store representation data can be calculated with the
following equation:

KV S memory usage = (L− 1)× dim× |V | × s (7)

where L is the total number of layers of the model, dim denotes the hidden dimension, |V | represents
the number of nodes in the graph, and s is the size of data type in Python numpy. For the float32
data type, it takes 4 bytes for each single value. With the provided formula, for a 3-layer GNN
model, training large graph dataset such as OGB-Products (with 2, 449, 029 nodes and 128 hidden
dimensions), the extra host memory consumption for the representations is around 2∗128∗2449029∗
4/1024/1024/1024 = 2.336 GB. DIGEST exhibits an interesting tradeoff: it uses a small amount of
extra memory overhead for storing stale representations to enable the disaggregation of the compute
and storage for higher scalability and more flexibility. We also argue that a small host memory cost
of several GBs is negligible considering today’s multi-GPU servers are equipped with hundreds of
GBs if not more than a few TBs of host memory4.

Table 4: GPU memory consumption.

Model OGB-Arxiv OGB-Products
GraphSAGE 0.40 GB 0.92 GB

DGL 0.64 GB 1.78 GB
LLCG 0.23 GB 0.36 GB

DIGEST 0.22 GB 0.36 GB

4For example, AWS EC2’s p3.16xlarge is equipped with 8 Nvidia Tesla V100
GPUs with 488 GBs of host memory: https://aws.amazon.com/blogs/aws/
new-amazon-ec2-instances-with-up-to-8-nvidia-tesla-v100-gpus-p3/.
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GPU memory consumption. For the concern of GPU memory consumption, we compare DIGEST
with GraphSAGE, LLCG, and DGL by including all the information inside a GNN’s receptive field
in a single optimization step. The comparison results in Table 4 show that DIGEST has the lowest
GPU memory consumption across all four systems.

A.3.3 EMPIRICAL VALIDATION OF GRADIENT APPROXIMATION ERROR

In this section, we empirically evaluate the gradient approximation error due to the usage of stale
representation. We conduct this experiment to show that the actual approximation error of gradients
of DIGEST compared with the ground-truth gradients (i.e., gradients calculated without any stale
representation) can be negligible in practice.
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Figure 10: Error between the gradients calculated by DIGEST and full-graph baseline (i.e., without
any staleness). Zoom in for detail.

As can be seen in Figure 10, during the training phase the gradient calculated by DIGEST quickly
converge to the ground-truth gradients typically after fewer than 10-20 epochs. Hence, for the
majority of training epochs the error of gradients is very small and the impact is negligible, which in
turn validate our theoretical analyses in Theorem 1.

A.3.4 OTHER COMPARISONS

In this section, we compare DIGEST/DIGEST-A with PipeGCN and GNNAutoScale. We train OGB-
Products with DIGEST/DIGEST-A, PipeGCN and GNNAutoScale in the heterogeneous environment
mentioned in Section 5.2, and report the training time taken to reach the target validation F1 score
and time per epoch in Firgure 11, since there is no "epoch" in an asynchronous setting, the value
of time per epoch for DIGEST-A is omitted. We can see that DIGEST gets slight higher time per
epoch than GNNAutoScale but reduces the time per epoch by 24.13% compared with PipeGCN.
Meanwhile, DIGEST-A gets the lowest training time to reach the target F1 score and saves 48.98%
and 19.12% training time compared with PipeGCN and GNNAutoScale, respectively.

We further evaluate DIGEST, PipeGCN and GNNAutoScale on a large graph OGB-papers100m which
consist of 111 million nodes 1.6 billion edges to show the efficiency of DIGEST. The experiments
are done in a homogeneous environment with 32 GPUs. Since mini-batches in GNNAutoScale are
trained in a serial manner instead of a parallel distributed setting, only one GPU is used. DIGEST
reduces the time per epoch by 21.13% compared with distributed GNN training algorithm PipeGCN.

A.4 ALGORITHM

Algorithm 1 shows the process of DIGEST’s synchronous mode. At the beginning of training, the
original graph is partitioned into several subgraphs with off-the-shelf graph clustering methods;
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Figure 11: Time comparisons with PipeGCN and GNNAutoScale.

DIGEST uses the widely-used METIS algorithm Karypis & Kumar (1998). Then the mini-batches
are distributed to distinct workers, each of which handles training on a GPU device. Depending on the
size of the mini-batch, a single worker can handle one or multiple subgraphs. DIGEST has two types
of I/Os: storing and retrieving the model weights and stale representation as illustrated in Figure 1(c).
The former one is performed for each epoch by aggregating all the model weights of other subgraphs
in parallel (Line 13). For the stale representation synchronization, we synchronize every N epochs,
where we empirically tune N to obtain the optimal performance over training time with the defined
pull and push operations (Lines 5,6,9,10). To support the asynchronous mode (DIGEST-A), we can
simply remove the loop of training epoch and move the parameter aggregation (Line 13) into the
subgraph loop.

A.5 THEORETICAL PROOF

In this section, we provide the formal proof for all the theories presented in the main paper.

A.5.1 PROOF OF THEOREM 1

Theorem 4 (Formal version of Theorem 1). Given a L-layer GNN fW with r1-Lipschitz smooth Φ
and r2-Lipschitz smooth Ψ. Denote ∆(G) as the maximal node degree for graph G. Assume ∀ v ∈ V
and ∀ ℓ ∈ {1, 2, · · · , L − 1} we have ∥h(ℓ)

v − h̃
(ℓ)
v ∥ ≤ ϵ(ℓ), where h

(ℓ)
v and h̃

(ℓ)
v denotes the node

representation computed by DIGEST and the stale one, respectively. Further assume each local loss
function LLocal

m is τ -Lipschitz smooth w.r.t node representation. Then the global gradient computed by
DIGEST has the following error bound

∥∥∇WL −∇WL∗∥∥
2
≤ τ

M

L−1∑
ℓ=1

ϵ(ℓ)rL−ℓ
1 rL−ℓ

2

M∑
m=1

|∆(Gm)|L−ℓ, (8)

where

∇WL :=
1

M

M∑
m=1

1

|Vm|
∑
v∈Vm

∇WLLocal
m (h(L)

v ), (9)

and

∇WL∗ :=
1

M

M∑
m=1

1

|Vm|
∑
v∈Vm

∇WLLocal
m (h∗(L)

v ), (10)

where h∗(ℓ)
v denotes the exact output from the ℓ-th layer of GNN without any staleness.

Proof. As stated in Theorem 2 in Fey et al. (2021), under the single-GPU training setup, with
Lipschitz smooth Φ and Ψ as well as not too stale node representations, the GNN last layer’s output
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Algorithm 1 Distributed GNN training with periodic stale representation synchronization

Input: Graph G(V, E); GNN depth L; training epoch R; global parameters W(r) = {W(r,ℓ)}Lℓ=1,
local parameters W

(r)
m = {W(r,ℓ)

m }Lℓ=1, ∀ m ∈
[
M

]
, r ∈

[
R
]
; non-linearity activation

function σ; neighborhood function N : v → 2V ; synchronization interval N; learning rate η.
Output: The trained model weights W(R+1).

1 DIGEST():
2 Initialize W(1)

{Gm(Vm, Em),m = 1, 2, ..,M} ←METIS(G) ▷ graph partition
for r = 1...R do

3 for m = 1, · · · ,M in parallel do
4 W

(r)
m = W(r)

for ℓ = 1...L do
5 if r % N == 0 and ℓ ̸= L then
6 H

(ℓ,m)
out ← H̃

(ℓ,m)
out ▷ PULL

7 for v ∈ Vm do
8 h

(ℓ)
out = {h

(ℓ)
u : u ∈ N (v) \ Vm}

h
(ℓ)
in = {h(ℓ)

u : u ∈ N (v) ∩ Vm}
h
(ℓ)
v = σ

(
W

(r,ℓ)
m · CONCAT

(
h
(ℓ)
v ,h

(ℓ)
in ,h

(ℓ)
out

))
9 if (r − 1) % N == 0 and ℓ ̸= L then

10 H
(ℓ,m)
in → H̃

(ℓ,m)
in ▷ PUSH

11 h
(ℓ)
v ← h

(ℓ)
v /∥h(ℓ)

v ∥2, ∀ v ∈ Vm ▷ representation normalization
12 W

(r,ℓ+1)
m = W

(r,ℓ)
m − η · ▽W

(r,ℓ)
m ▷ update local parameters

13 W(r+1) ← AGG(W(r+1)
1 ...W

(r+1)
M ) ▷ update global parameters

14 return W(R+1)

can be bounded by

∥∥∥h(L)
v − h∗(L)

v

∥∥∥
2
≤

L−1∑
ℓ=1

ϵ(ℓ)rL−ℓ
1 rL−ℓ

2 |N (v)|L−ℓ. (11)

Now consider the distributed GNN training setting. First, notice that in our distributed setting, the
stale node representation h̃

(ℓ)
v is shared for all subgraphs. In other words, for m = 1, 2, · · · ,M we

can apply the conclusion above with the Lipschitz smooth asumption and have

∥∥∥∇WLLocal
m (h(L)

v )−∇WLLocal
m (h∗(L)

v )
∥∥∥
2
≤ τ

∥∥∥h(L)
v − h∗(L)

v

∥∥∥
2

≤ τ ·
L−1∑
ℓ=1

ϵ(ℓ)rL−ℓ
1 rL−ℓ

2 |N (v)|L−ℓ.
(12)

Notice that |N (v)| ≤ ∆(Gm), ∀ v ∈ Vm, where ∆(Gm) is defined as the maximal node degree for
subgraph Gm. We can sum over all nodes v ∈ Vm and take average on both sides of Eq. 12 to get

1

|Vm|
∑
v∈Vm

∥∥∥∇WLLocal
m (h(L)

v )−∇WLLocal
m (h∗(L)

v )
∥∥∥
2
≤ τ ·

L−1∑
ℓ=1

ϵ(ℓ)rL−ℓ
1 rL−ℓ

2 |∆Gm|L−ℓ. (13)
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Finally, since we apply average to aggregate each local subgraph’s gradient to get the global gradients,
by the triangle inequality, we have∥∥∥∇WL −∇WL∗

∥∥∥
2

=

∥∥∥∥∥ 1

M

M∑
m=1

1

|Vm|
∑
v∈Vm

∇WLLocal
m (h(L)

v )− 1

M

M∑
m=1

1

|Vm|
∑
v∈Vm

∇WLLocal
m (h∗(L)

v )

∥∥∥∥∥
2

≤ 1

M

M∑
m=1

∥∥∥∥∥ 1

|Vm|
∑
v∈Vm

∇WLLocal
m (h(L)

v )− 1

|Vm|
∑
v∈Vm

∇WLLocal
m (h∗(L)

v )

∥∥∥∥∥
2

≤ 1

M

M∑
m=1

1

|Vm|
∑
v∈Vm

∥∥∥∇WLLocal
m (h(L)

v )−∇WLLocal
m (h∗(L)

v )
∥∥∥
2

≤ 1

M

M∑
m=1

τ ·
L−1∑
ℓ=1

ϵ(ℓ)rL−ℓ
1 rL−ℓ

2 |∆Gm|L−ℓ,

(14)

which finishes the proof.

A.5.2 PROOF OF THEOREM 2

In this section, we prove the convergence of DIGEST under the synchronous setting. First, we
introduce some notions, definitions and necessary assumptions.

Preliminaries. We consider GCN in our proof without loss of generality. We denote the input
graph as G = (V, E), L-layer GNN as f , feature matrix as X , weight matrix as W . The forward
propagation of one layer of GCN is

Z(ℓ+1) = PH(ℓ)W (ℓ), H(ℓ+1) = σ(Z(ℓ)) (15)

where ℓ is the layer index, σ is the activation function, and P is the propagation matrix following the
definition of GCN (Kipf & Welling, 2016). Notice H(0) = X . We can further define the (ℓ+ 1)-th
layer of GCN as:

f (ℓ+1)(H(ℓ),W (ℓ)) := σ(PH(ℓ)W (ℓ)) (16)

The backward propagation of GCN can be expressed as follow:

G
(ℓ)
H = ∇Hf (ℓ+1)(H(ℓ),W (ℓ), G

(ℓ+1)
H ) := P ⊺D(ℓ+1)(W (ℓ+1))⊺ (17)

G
(ℓ+1)
W = ∇W f (ℓ+1)(H(ℓ+1),W (ℓ), G

(ℓ+1)
H ) := (PH(ℓ))⊺D(ℓ+1) (18)

where
D(ℓ+1) = G

(ℓ)
H ◦ σ

′(PH(ℓ)W (ℓ+1)) (19)

and ◦ represents the Hadamard product.

Under a distributed training setting, for each subgraph Gm = (Vm, Em), m = 1.2, · · · ,M , the
propagation matrix can be decomposed into two independent matrices, i.e. P = Pm,in + Pm,out,
where Pm,in denotes the propagation matrix for nodes inside the subgraph Gm while Pm,out denotes
that for neighbor nodes outside Gm. If it will not cause confusion, we will use Pin and Pout in our
future proof for simpler notation.

For DIGEST, the forward propagation of a single layer of GCN can be expressed as

Z̃(t,ℓ+1)
m = PinH̃

(t,ℓ)
m W̃ (t,ℓ)

m + PoutH̃
(t−1,ℓ)
m W̃ (t,ℓ)

m

H̃(t,ℓ+1)
m = σ(Z̃(t,ℓ)

m )
(20)

where we use H̃ to differentiate with the counterpart without staleness, i.e., H (same for other
variables). t is the training iteration index. Similarly, we can define each layer as a single function

f̃ (t,ℓ+1)
m (H̃(t,ℓ)

m , W̃ (t,ℓ)
m ) := σ(PinH̃

(t,ℓ)
m W̃ (t,ℓ)

m + PoutH̃
(t−1,ℓ)
m W̃ (t,ℓ)

m ) (21)
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Note that H̃(t−1,ℓ−1)
m is not part of the input since it is the stale results from the previous iteration,

i.e., it can be regarded as a constant in the current iteration.

Now we can give the definition of back-propagation in DIGEST:

G̃
(t,ℓ)
H,m = ∇H f̃ (t,ℓ+1)

m (H̃(ℓ)
m , W̃ (ℓ), G̃

(ℓ+1)
H,m )

:= P ⊺
inD̃

(t,ℓ+1)
m (W̃ (t,ℓ+1)

m )⊺ + P ⊺
outD̃

(t−1,ℓ+1)
m (W̃ (t,ℓ+1)

m )⊺
(22)

G̃
(t,ℓ+1)
W,m = ∇W f̃ (t,ℓ+1)

m (H̃(t,ℓ+1)
m , W̃ (t,ℓ)

m , G̃
(t,ℓ+1)
H,m )

:= (PinH̃
(t,ℓ)
m + PoutH̃

(t−1,ℓ−1)
m )⊺D̃(t,ℓ+1)

m

(23)

where
D̃(t,ℓ+1)

m = G
(ℓ)
H,m ◦ σ

′(PinH̃
(t,ℓ)
m W̃ (t,ℓ)

m + PoutH̃
(t−1,ℓ−1)
m W̃ (t,ℓ)

m ) (24)

In our proof, we use L(W (t)) to denote the global loss with GCN parameter W after t iterations, and
use L̃m(W

(t)
m ) to denotes the local loss for the m-th subgraph with model parameter W (t)

m after t
iterations computed by DIGEST.

Assumptions. Here we introduce some assumptions about the GCN model and the original input
graph. These assumptions are standard ones that are also used in (Chen et al., 2018; Cong et al., 2021;
Wan et al., 2022).
Assumption 5. The loss function Loss(·, ·) is CLoss-Lipchitz continuous and LLoss-Lipschitz smooth
with respect to the last layer’s node representation, i.e.,

|Loss(h(L)
v ,yv)− Loss(h(L)

w ,yv)| ≤ CLoss∥h(L)
v − h(L)

w ∥2 (25)

and
∥∇Loss(h(L)

v ,yv)−∇Loss(h(L)
w ,yv)∥2 ≤ LLoss∥h(L)

v − h(L)
w ∥2 (26)

Assumption 6. The activation function σ(·) is Cσ-Lipchitz continuous and Lσ-Lipschitz smooth, i.e.

∥σ(Z(ℓ)
1 )−σ(Z

(ℓ)
2 )∥2 ≤ Cσ∥(Z(ℓ)

1 −Z
(ℓ)
2 ∥2 and ∥σ′(Z

(ℓ)
1 )−σ′(Z

(ℓ)
2 )∥2 ≤ Lσ∥(Z(ℓ)

1 −Z
(ℓ)
2 ∥2
(27)

Assumption 7. ∀ ℓ that ℓ = 1, 2, · · · , L, we have

∥W (ℓ)∥F ≤ KW , ∥P (ℓ)∥P ≤ KW , ∥X(ℓ)∥F ≤ KX . (28)

Now we can introduce the proof of our Theorem 2. We consider a GCN with L layers that is
Lf -Lipschitz smooth, i.e., ∥∇L(W1)−∇L(W2)∥2 ≤ Lf∥W1 −W2∥2.
Theorem 5 (Formal version of Theorem 2). There exists a constant E such that for any arbitrarily
small constant ϵ > 0, we can choose a learning rate η =

√
Mϵ
E and number of training iterations

T = (L(W (1))− L(W ∗)) E√
M
ϵ−

3
2 , such that

1

T

T∑
t=1

∥∇L(W (t))∥2 ≤ O( 1

T
2
3M

1
3

) (29)

where W (t)and W ∗ denotes the parameters at iteration t and the optimal one, respectively.

Proof. Beginning from the assumption of smoothness of loss function,

L(W t+1) ≤ L(W t) +
〈
∇L(W t),W (t+1) −W (t)

〉
+

Lf

2
∥W (t+1) −W (t)∥22 (30)

Recall that the update rule of DIGEST is

W (t+1) = W (t) − η

M

M∑
m=1

∇L̃m(W (t)
m ) (31)
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so we have

L(W t) +
〈
∇L(W t),W (t+1) −W (t)

〉
+

Lf

2
∥W (t+1) −W (t)∥22

=L(W t)− η

〈
∇L(W t),

1

M

M∑
m=1

∇L̃m(W (t)
m )

〉
+

η2Lf

2

∥∥∥∥∥ 1

M

M∑
m=1

∇L̃m(W (t)
m )

∥∥∥∥∥
2

2

(32)

Denote δ
(t)
m = ∇L̃m(W

(t)
m )−∇Lm(W

(t)
m ), we have

L(W t+1) ≤L(W t)− η

〈
∇L(W t),

1

M

M∑
m=1

(
∇Lm(W (t)

m ) + δ(t)m

)〉

+
η2Lf

2

∥∥∥∥∥ 1

M

M∑
m=1

(
∇Lm(W (t)

m ) + δ(t)m

)∥∥∥∥∥
2

2

(33)

Without loss of generality, assume the original graph can be divided evenly into M subgraphs and
denote N = |V| as the original graph size, i.e., N = M · S, where S is each subgraph size. Notice
that

∇L(W t) =
1

N

N∑
i=1

∇Loss(f (L)
i , yi) =

1

M

{ M∑
m=1

1

S

S∑
i=1

∇Loss(f (L)
m,i , ym,i)

}
(34)

which is essentially

∇L(W t) =
1

M

M∑
m=1

∇Lm(W (t)
m ) (35)

Plugging the equation above into Eq. 33, we have

L(W t+1) ≤ L(W t)− η

2
∥∇L(W t)∥22 +

η2Lf

2

∥∥∥ 1

M

M∑
m=1

δ(t)m

∥∥∥2
2

(36)

which after rearranging the terms leads to

∥∇L(W t)∥22 ≤
2

η
(L(W t)− L(W t+1)) + ηLf

∥∥∥ 1

M

M∑
m=1

δ(t)m

∥∥∥2
2

(37)

By taking η < 1/Lf , using the three assumptions defined earlier and Corollary A.10 in Wan et al.
(2022), and summing up the inequality above over all iterations, i.e., t = 1, 2, · · · , T , we have

1

T

T∑
t=1

∥∇L(W (t))∥2 ≤ 2

ηT

(
L(W 1)− L(WT+1)

)
+

η2E2

M

≤ 2

ηT

(
L(W 1)− L(W ∗)

)
+

η2E2

M

(38)

where W ∗ denotes the minima of the loss function and E is a constant depends on E′.

Finally, taking η =
√
Mϵ
E and T = (L(W (1))− L(W ∗)) E√

M
ϵ−

3
2 finishes the proof.

A.5.3 PROOF OF THEOREM 3

By following Li et al. (2020); Chen et al. (2020); Chai et al. (2021) we make the assumption as below:

Assumption 8. ∀ m ∈ [M ], ∥∇L̃m(W )∥2 ≤ V · ∥∇L(W )∥2, and
〈
∇L(W ),∇L̃m(W )

〉
≥

β · ∥∇L(W )∥22, where V and β are positive real numbers, i.e., V, β ∈ R+.
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We naturally assume that each local copy of the global GCN model is also Lf -Lipschitz smooth, i.e.,
∥∇L̃m(W1)−∇L̃m(W2)∥2 ≤ Lf∥W1 −W2∥2, ∀ m = 1, 2, · · · ,M .

Now we can give the proof of Theorem 3.
Theorem 6 (Formal version of Theorem 3). Assume the global model L(W ) is Cf -Lipschitz contin-
uous and the delay is bounded, i.e., τ < K. Further, assume the constants defined in Assumption 8
satisfy β − V 2

2 > 0. Then, after T global iterations on the server, asynchronous DIGEST converges
to the optimal parameter W ∗ by

1

T

T∑
t=1

∥∇L(W (t))∥22 ≤
1

ηTB

(
L(W (1))− L(W (∗))

)
+

P (η)

B
, (39)

where B = β − V 2

2 and P (η) = 1
2η

2K2C2
fL

2
f + (1 + V )ηKC2

fLf .

Proof. By the smoothness assumption of global model,

L(W (t+1)) ≤ L(W (t)) +
〈
∇L(W (t)),W (t+1) −W (t)

〉
+

Lf

2
∥W (t+1) −W (t)∥22. (40)

Suppose at global iteration t+ 1, the server receives an update from subgraph m, where m could be
any value from 1 up to M . Then,

L(W (t+1)) ≤ L(W (t))− η
〈
∇L(W (t)),∇L̃m(W (t−τ))

〉
+

η2Lf

2
∥∇L̃m(W (t−τ))∥22, (41)

where τ is the delay for subgraph m when sending server its update.

Denote rm := ∇L̃m(W (t−τ))−∇L̃m(W (t)). Since τ ≤ K, by the Lipschitz smoothness of L̃m,

∥rm∥2 = ∥∇L̃m(W (t−τ))−∇L̃m(W (t))∥2
≤ Lf · ∥W (t−τ) −W (t)∥2

= Lf · ∥
t∑

i=t−τ

ηgi∥2

≤ ηKLfCf ,

(42)

where gi is the gradient or update the global server receives at iteration i.

Therefore,

L(W (t+1))− L(W (t))

≤− η
〈
∇L(W (t)),∇L̃m(W (t)) + rm

〉
+

η2Lf

2
∥∇L̃m(W (t)) + rm∥22

=−η
〈
∇L(W (t)),∇L̃m(W (t))

〉
︸ ︷︷ ︸

I

+
η2Lf

2
∥∇L̃m(W (t))∥22︸ ︷︷ ︸

II

+
η2Lf

2
∥rm∥22︸ ︷︷ ︸

III

−η
〈
∇L(W (t)), rm

〉
︸ ︷︷ ︸

IV

+ η2Lf

〈
∇L̃m(W (t)), rm

〉
︸ ︷︷ ︸

V

(43)

Now we want to find bounds for (I - V) above.

By Assumption 8, we have
(I) ≤ −ηβ∥∇L(W(t))∥22, (44)

and
(II) ≤ 1

2
η2LfV

2∥∇L(W(t))∥22. (45)

By our previous result on ∥rm∥2, we have

(III) ≤ 1

2
η3K2L2

fC
2
f (46)
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Taking η ≤ 1/Lf , we have

(IV) + (V) ≤ η
〈
∇L̃m(W (t))−∇L(W (t)), rm

〉
(47)

By Cauchy-Schwartz inequality, triangle inequality and Assumption 8,

(IV) + (V) ≤ η∥∇L̃m(W (t))−∇L(W (t))∥2 · ∥rm∥2
≤ η2KCfLf · ∥∇L̃m(W (t))−∇L(W (t))∥2

≤ η2KCfLf ·
(
∥∇L̃m(W (t))∥2 + ∥∇L(W (t))∥2

)
≤ (1 + V )η2KCfLf · ∥∇L(W (t))∥2
≤ (1 + V )η2KC2

fLf

(48)

Put everything together, we have

L(W (t+1))− L(W (t)) ≤
(
1

2
ηV 2 − ηβ

)
· ∥∇L(W (t))∥22 +

1

2
η3K2L2

fC
2
f + (1 + V )η2KC2

fLf .

(49)

Hence,

∥∇L(W (t))∥22 ≤
(
ηβ − 1

2
ηV 2

)−1

·
(
L(W (t))− L(W (t+1))

)
+

(
ηβ − 1

2
ηV 2

)−1

·
(
1

2
η3K2L2

fC
2
f + (1 + V )η2KC2

fLf

)
.

(50)

Summing up from t = 1 to T and taking the average,

1

T

T∑
t=1

∥∇L(W (t))∥22 ≤
1(

ηβ − 1
2ηV

2
)
T

(
L(W (1))− L(W (∗))

)
+

(
ηβ − 1

2
ηV 2

)−1

·
(
1

2
η3K2L2

fC
2
f + (1 + V )η2KC2

fLf

)
≤ 1

ηTB

(
L(W (1))− L(W (∗))

)
+

P (η)

B
,

(51)

where B = β − V 2

2 and P (η) = 1
2η

2K2C2
fL

2
f + (1 + V )ηKC2

fLf .
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