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ABSTRACT

Cognitive Science studies show that human perception becomes robust to occlu-
sions and other nuisances due to internal 3D representations of objects. This idea
has been incorporated into computer vision models to improve their ability to un-
derstand and reason about the 3D world. However, collecting 3D annotations in
vision datasets is expensive. This makes the robustness of the perception model
to distribution shifts challenging. We introduce Conformal Inference aided un-
supervised Domain Adaptation (CIDA)-3D for the complex setting of multiclass
pose estimation. Our method adapts category level pose estimation (3D) models in
nuisance ridden target domains directly from images without class label informa-
tion, by harnessing uncertainty in model predictions (using conformal sets). This
allows for significantly better and computationally efficient adaptation to target
domains with synthetic and real-world noise. We also show a robust adaptation
from fully synthetic data to complex real-world domains. To the best of our knowl-
edge, this method is the first to attempt unsupervised domain adaptation for robust
3D-aware classification and multiclass pose estimation in real-world scenarios by
adapting models trained on procedurally generated synthetic data.

1 INTRODUCTION

Remarkable progress has been observed in recent years in the area of 3D object representation
learningJesslen et al. (2023), revolutionizing applications ranging from robotics Du et al. (2019);
Wang et al. (2019a); Wong et al. (2017); Zeng et al. (2017) and augmented reality Marchand et al.
(2016); Marder-Eppstein (2016); Runz et al. (2018), etc. Cognitive science studies (Neisser, 2014;
Yuille & Kersten, 2006) have often theorized that robustness to OOD inputs, occlusions, and other
nuisances is often due to implicit 3D object representations built into visual processing of humans
and similar mammals. Several works Jesslen et al. (2023); Wang et al. (2021a); Yang et al. (2023);
Wang et al. (2023); Stark et al. (2010); Choy et al. (2015); Zeeshan Zia et al. (2013) have utilized
similar hypotheses to build robust 3D object representations for different computer vision tasks such
as 3D object pose estimation, shape identification, robust image classification, etc. Most previous
works utilizing object 3D pose information are focused on the problem of 3D or 6D pose estimation.
Instance-level He et al. (2021; 2020); Park et al. (2019); Peng et al. (2019); Tremblay et al. (2018);
Wang et al. (2019a); Xiang et al. (2018) pose estimation is most common and requires instance-
specific 3D data and priors. Category-level methods Chen et al. (2020); Chen & Dou (2021); Lin
et al. (2021); Tian et al. (2020); Wang et al. (2019b; 2021b) are more efficient but still require 3D
information, e.g. object depth map Wang et al. (2019b); Lin et al. (2021); Lee et al. (2022) or point
clouds Lee et al. (2023). Extensions to multiclass pose estimation, which is often a prerequisite for
problems such as 3D aware classification are even rarer. We define 3D Aware Classification as
the problem of image object classification where the model prediction is conditioned on implicit or
explicit 3D representation of the object in the image.

Recent works Wang et al. (2023); Jesslen et al. (2023) have shown that 3D-Aware classification is a
robust alternative to conventional 2D-only image classification. However, it has not been clear how
to extend these methods beyond strictly supervised settings on relatively simpler datasets. This is
because, unlike image data, which are widely available, real-world 3D data is scarce, restricting the
development of 3D-aware models. To remedy this, our work focuses on the problem of unsupervised
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(a) Local Part Plurality (b) Local Part Robustness

Figure 1: Our method utilizes following key observations - (a) Local Part Plurality, i.e. the inherent object identification ambiguity that
occurs when we can only see a part of the object since similar parts may occur in different objects and in different poses. We utilize this
ambiguity to update the local vertex features across different categories which roughly correspond to object parts, even when the object in
the image is different. (b) Local Part Robustness As explained in Kaushik et al. (2024), refers to the fact that certain parts (e.g., headlights,
wheels in a car) are less affected in OOD data. This has been verified in Kaushik et al. (2024), and we find similar evidence in our multiclass
setting. The figure represents the percentage of robustly detected vertex features on average per image in a target domain(OOD-CVZhao et al.
(2023)) for airplane category before (left) and after (right) adaptation. Similar to Kaushik et al. (2024), we find that few vertices are detected
robustly even before adaptation which our method leverages in the multi-class setting.

domain adaptation (UDA) for 3D-Aware Classification and multiclass pose estimation. We design a
model that is capable of adapting to a real-world target domain in an unsupervised manner without
requiring any kind of 3D data or object labels and using only unlabeled images in the target
domain.

Previous works Lee et al. (2022; 2023) have largely focused on only semi-supervised category-
level pose estimation and still require some 3D information. A recent seminal work Kaushik et al.
(2024) has succeeded in image-only unsupervised domain adaptation for estimating 3D poses at the
category level. They utilized the idea that certain parts of an object exhibit invariance in out-of-
distribution scenarios. In this paper, we extend this idea to a multi-category setting. We find that
different parts features of a target domain image may be utilized to update parts of neural mesh
models of different object categories despite noisy pose estimation (Figure 1).

Like Kaushik et al. (2024), our source model is based on neural mesh models (Kortylewski et al.,
2020; Wang et al., 2021a; 2023; Ma et al., 2022; Jesslen et al., 2023) used for supervised 3D/6D
object pose estimation and 3D-Aware image classification Jesslen et al. (2023). These methods rep-
resent objects as cuboid meshes and learn neural activations at each vertex, enabling pose estimation
through feature-level rendering and optimization. Kaushik et al. (2024) enabled unsupervised do-
main adaptation (UDA) for 3D pose estimation by updating cuboid mesh features to estimate robust
subcomponents of objects. We extend this to a multi-category UDA setup. Our method, CIDA-3D,
updates a model of multiple cuboid meshes and a single neural backbone to classify and estimate
the 3D pose of unlabeled target domain objects. We present experimental results showing how
CIDA-3D adapts from synthetic to complex real-world target domains. Our method learns from
synthetic data alone, enabling the use of 3D knowledge in computer vision without real-world 3D
ground-truth data.

In summary, we make several important contributions in this paper.

1. We introduce CIDA-3D, the first method known to do image only unsupervised domain
adaptation for 3D-Aware Classification and multiclass 3D pose estimation.

2. CIDA-3D builds on 3DUDA(Kaushik et al., 2024) and uses local part plurality and robust-
ness (Figure 1) to adapt to nuisance-ridden domains with unlabeled images.

3. We utilize weighted Conformal Prediction for covariate shift Tibshirani et al. (2019),
achieving confident prediction sets that minimize computational overhead and divergence
issues of naive adaptation.

4. We evaluate our model on real-world nuisances such as shape, texture, occlusion, and image
corruptions, demonstrating robust adaptation. CIDA-3D allows adaptation from a synthetic
source domain to a nuisance-filled real-world target domain.

2 RELATED WORK

Neural Mesh Models It refers to a family of neural modelsWang et al. (2021a; 2023); Jesslen et al.
(2023); Ma et al. (2022) that learn a 3D pose-conditioned model of neural features and predict
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Figure 2: We extract neural features from CNN backbone fi = Φw(XT ) and use them along with all source neural mesh models
(Myk ) to get the classification scores (Γ) as described in Jesslen et al. (2023). To perform adaptation, a domain classifier trained to distinguish
source features from target features is used for weighted conformal prediction, giving a prediction set (Si) of classes to which a target image
confidently belongs. Feature maps are rendered from the source mesh models of these classes (using vertex features Cr) and the pose estimate
is optimized using render-and-compare. For this incorrectly estimated global pose, we measure the similarity of each individual visible vertex
feature with the corresponding image feature vector in fi independently and update individual vertex features using average feature vector
values. All predicted mesh models are then updated using these changed vertices and the backbone is optimized using the neural mesh. More
details in section 3.

3D pose by minimizing the reconstruction error between the actual and rendered feature maps.
This optimization approach helps circumvent the intricate loss landscapes that can emerge from
performing pixel-level render-and-compare. For example, Wang et al. (2019b) predicted the pose of
the object by solving a rigid transformation between the 3D model (M) and the NOCS mapsWang
et al. (2019b) using the Umeyama algorithmPavlakos et al. (2017). While Iwase et al. (2021) used
differentiable Levenberg-Marquardt optimization for feature learning, Wang et al. (2021a) and Ma
et al. (2022) learned contrastive features for the 3D model (M) within a similar render-and-compare
framework.

Domain Adaptation for 3D Pose Estimation Several semi-supervised approaches exist, such as
those described in Fu & Wang (2022); Peng et al. (2022), which often necessitate labeled target-
domain images and 3D data. Even methods like Lee et al. (2022; 2023) require instance depth data,
point clouds, or segmentation labels during inference. Alternatively, methods such as Yang et al.
(2023) generate synthetic data and combine them with a limited amount of real annotated data for
synthetic-to-real semi-supervised domain adaptation. To the best of our knowledge, only one recent
workKaushik et al. (2024) other than ours is capable of doing image-only object 3D pose estimation.
However, even Kaushik et al. (2024) cannot do UDA for multi-class pose estimation.

Conformal Inference We utilize concepts from some seminal prior works Tibshirani et al. (2019);
Shafer & Vovk (2008); Lei et al. (2018); Park et al. (2020) which show theoretical guarantees of
high confidence conformal predictions under i.i.d. as well as covariate shift settings. These effective
uncertainty handling techniques have only recently started getting traction Yang & Pavone (2023);
Sankaranarayanan et al.; Belhasin et al. (2023).

3 METHODOLOGY

Similarly to 3DUDA Kaushik et al. (2024), we build on neural mesh models Wang et al. (2021a;
2023); Ma et al. (2022). Our source model uses a similar method to that in a concurrent work(Jesslen
et al., 2023). This model performs 3D-Aware Classification and pose estimation but cannot be easily
adapted to a target domain using classification pseudo-labels since it is not directly supervised for
classification. Unlike Jesslen et al. (2023), our pose estimation depends on the class predicted by the
classification inference, while (Jesslen et al., 2023) handles these tasks independently. The following
section briefly introduces this source model. Figure 2 provides a visual explanation. Refer to Jesslen
et al. (2023) or our appendix for further details.

Notation We follow the notation introduced in Kaushik et al. (2024). We define a set of object
categories Y = {y0, y1, ...yk} where |Y | is the total number of categories. We define three sets of
parameters: a CNN backbone Φw that is used as a feature extractor, a clutter model B of background
features, and neural cuboid mesh Myk for each object category yk. We denote the neural feature
representation of an input image X as Φw(X ) = F a ∈ RH×W×d. Where a is the output of layer a
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of a deep convolutional neural network backbone Φw, with d being the number of channels in layer
a. fai ∈ Rd is a feature vector in F a at position i on the 2D lattice P of the feature map. We drop
the superscript a in subsequent sections for notational simplicity.

3.1 SOURCE MODEL: 3D OBJECT REPRESENTATION LEARNING

Our source model learning process is similar to a concurrent workJesslen et al. (2023) that builds on
previous worksMa et al. (2022); Wang et al. (2021a) performing pose estimation by learning neural
mesh models conditioned on 3D object poses and estimating pose using feature-level render and
compare.

The neural mesh model aims to capture the 3D information of the foreground objects. For each
object category yk, the source model defines a neural mesh Myk as {V, C}, where Vy = {Vr ∈
R3}Rr=1 is the set of vertices of the mesh and Cy = {Cr ∈ Rc}Rr=1 is the set of learnable neural
features. r denotes the index of the vertices. R is the total number of vertices per class. We also
define a clutter model B = {βn}Nn=1 to describe the backgrounds that are shared amongst all classes.
N is a prefixed hyperparameter. For a given object pose or camera viewpoint g, we can render the
neural mesh model Myk (denoted simply by M below for simplicity) into a feature map using
(differentiable) rasterization Kato et al. (2020). We can compute the object likelihood of a target
feature map F ∈ RH×W×D as

p(F |M, g,B, y) =
∏

i∈FG
p(fi|M, g, y)

∏
i′∈BG

p(fi′ |B), (1)

where FG and BG denote the foreground and background pixels, respectively. FG is set of all the
positions in the 2D lattice P covered by the mesh M and BG are the positions that are not. We define
P (fi|M(Vr, Cr), g) = Z[κr] exp (κrfi→r.Cr) as a von Mises Fisher (vMF) distribution with mean
Cr, concentration parameter κr and normalization constant Z. For computational simplification, we
fix κ which reduces Z[κ] to a constant value as well. The basic idea is to learn cuboid neural mesh
features conditioned on 3D pose of an object and maximize the dot product fi.Cr where the image
features are obtained from a single neural feature extractor and the neural mesh features belong to
the respective image category.

We utilize contrastive learning to learn the cuboid neural mesh features. The formulation is as
follows where Nr denotes the vertices near r i.e. the neighborhood of the vertex r and y is the
category of the image. During training, the ground truth pose specifies the image feature-vertex
feature correspondence (denoted fi→r). R defines set of all visible vertices. We maximize the
probability that an image feature is generated by the correct mesh vertex feature within a class as
well as among all other classes and background features:

P (fi→r|Cr)∑Cl∈My

l/∈Nr,l∈R P (fi→l|Cl) +
∑N

n=1 P (fi→n|βn) +
∑Cm /∈My

m∈R,m/∈Nr
P (fi→m|Cm)

(2)

Vertex features are updated using simple momentum updates, and background features are learned
by randomly sampling background features from new training batches using the First-In last-Out
approach Jesslen et al. (2023).

3.2 INFERENCE FOR 3D AWARE CLASSIFICATION

Pose Estimation using Render-and-Compare Feature-level render-and-compare is used for es-
timating 3D object pose. We can infer the 3D pose g of the object y by minimizing the negative log
likelihood of the model. Specifically, we first extract the neural features of the image F = Φw(X )
from the CNN backbone. We define an initial pose ginit using random initialization or by pre-
rendering and matching some random poses. Using the initial pose, we render the neural mesh M
into a feature map F ′ ∈ RH×W×D. The projected feature map is divided into FG and BG, depend-
ing on which pixels on the feature map are covered by the projected mesh features. We compare the
rendered feature map and the image feature map position-wise. Given that the feature vectors are
normalized and considering a constant κ, the loss can be refactored as a simple reconstruction loss.
The pose ginit is optimized by minimizing following using stochastic gradient descent:

Lrec = 1− ln p(F |M, g,B) = 1− (
∑

i∈FGfi ∗ f
′
i +

∑
j∈BGfj ∗ β). (3)
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Classification Using Geometry-Independent Feature Matching A trivial way to classify images
for these neural mesh models is to perform a render-and-compare-based gradient pose optimization
for every category and compare the final reconstruction loss. However, this is a computationally
expensive approach, which becomes untenable when we have a significant number of categories to
choose from. To remedy this, a geometry-independent inference method is proposedJesslen et al.
(2023). The foreground likelihood and the background likelihood are calculated at every position
in the feature map using all vertex features (across all categories) and background clutter features.
For all positions where foreground likelihood exceeds background likelihood, the maximum values
are summed depending on which category the maximizing (most similar to image feature) vertex
belongs to. These values are then normalized and compared for the final prediction. This is similar
to conventional CNNs, where we can construe the neural vertex features and background features
individually as one-dimensional convolutional kernels. The final prediction of this inference method
can be formulated as follows:

Γ(Xk) =
∑
fi∈F

max{ max
Cr∈Myk

fi · Cr,max
βn∈B

fi · βn}; ŷ = argmax
k

(Γ(Xk)) (4)

(5)

In an IID scenario, we find that coherent vertex-feature correspondence found using differentiable
render-and-compare (Equation 3) is retained even when we utilize aforementioned geometry in-
dependent feature matching for inference (Equation 4). This means that the vertex features that
minimize the reconstruction error during pose estimation (using render and compare) are largely
those that are activated maximally during independent feature matchingJesslen et al. (2023).

However, this is no longer true in an out-of-distribution scenario. Predictions of classification infer-
ence and pose estimation often diverge. An example of this is provided in the Ablation Section in
our appendix.

3.3 CIDA-3D: UNSUPERVISED DOMAIN ADAPTATION FOR 3D-AWARE CLASSIFICATION
AND MULTI-CLASS POSE ESTIMATION

As the predictions from our fast, unconstrained model diverge from the slow, 3D-constrained render-
and-compare estimates in an OOD scenario, inference becomes uncertain. Running render-and-
compare for all objects and samples to verify fast predictions is computationally impractical. We
cannot update our model using classification pseudo-labeling methods due to the lack of direct
classification loss supervision. Methods like Kaushik et al. (2024) require knowing the ground truth
class for updating the neural mesh model. Establishing if Kaushik et al. (2024)’s hypothesis on
local part robustness and ambiguity applies to a multiclass setting is also challenging. Our method,
CIDA-3D, addresses these issues by using uncertainty quantification from Conformal Prediction and
extending Kaushik et al. (2024)’s hypothesis on Local Part Robustness (as described in Figure 1) to
a multiclass setting, as explained in Figure 1.

Using Local Part Robustness To adapt to an OOD target domain, we use the concept of local
part robustness, as shown in Figure 1. Kaushik et al. (2024) showed that local part robustness can be
exploited to update neural mesh models (Myk) and the CNN backbone (Φw) for single class pose
estimation. We show that we can use the same intuition to adapt these models to perform 3D-Aware
classification on target domain data. This is possible due to what we refer to as Local Part Plurality
hypothesis (Figure 1). In layman terms, it refers to the inherent object identification ambiguity that
occurs when we can only see a part of the object, since similar parts may occur in different objects
and in different poses. We utilize this ambiguity (in terms of neural mesh vertex features) to update
the local vertex features across different categories which roughly correspond to object parts, even
when the object in the image is different. In addition, we also establish that the local part robustness
hypothesis also stands in a multi-class setting (Figure 1 and ablation Section) and there are individual
robust neural mesh vertices which remain unchanged or fewer changes across domains. Note that in
Kaushik et al. (2024), adaptation was achieved in a category-level pose estimation task (where the
class yk of the object was already known), which is a simpler problem with ground-truth knowledge
of which mesh model needs to be updated.

As described in subsection 3.2, the 3D-aware classification scores for each class (Γ) can be calcu-
lated using Equation 4 Jesslen et al. (2023). For our classification task, we do not have access to
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the target data labels. One naive way to achieve adaptation in this harder case is by treating the top
prediction as a pseudolabel and updating the corresponding mesh model (using the locally robust
method in Kaushik et al. (2024)). As the source model does not work well in the target domain,
the top prediction is often wrong, and this approach creates a problem with noisy updates. This is
analogous to using noisy pseudo-global updates (with potentially large pose error) instead of robust
local updates to perform adaptation in 3D pose estimation, which has been shown to be problematic
in Kaushik et al. (2024). In fact, after testing this approach on Corrupted-Pascal3D+, we found that
the source models adapt very slowly and insufficiently (details can be found in our Ablation section).

Another way to adapt is by updating all mesh models (Myk ) with locally robust parts. This method
is computationally prohibitive as it requires render-and-compare for each model. Furthermore, it
produces irrelevant updates in unrelated classes, impairing pose estimation. In an OOD-CV (shape)
experiment, we found that while classification accuracy increased slightly, pose estimation accuracy
dropped significantly and the process was much slower (details in Ablation Section).

To address these problems, we propose using conformal prediction Tibshirani et al. (2019) to obtain
a set of predicted objects that contains the true class with high probability. This approach avoids
both slow and divergent adaptation issues.

Conformal Prediction Given a calibration set DC = {Xj , yj}Nj=1 of N input and target (class) ∈
Y pairs, drawn i.i.d. from an unknown distribution, conformal prediction provides a set predictions
f(Xj+1) = Sj+1 ⊂ Y for a new sample Xj+1 satisfying exchangeability (distribution is invariant of
the order in which the points are presented Lei et al. (2018)) such that the true class of this sample,
yj+1 ∈ Sj+1 with high probability (parameterized by α). More specifically, P (yj+1 ∈ Sj+1) ≥
1−α. To give this conformal prediction guarantee, a non-conformity score Sf (Xj , yj) measures how
well a new sample (Xj , yj) conforms to the training set which is used to learn a predictor f . This can
be as simple as disagreement between the prediction and true target, i.e. Sf (Xj , yj) = 1− f(Xj)

yj

where f(Xj)
yj denotes the classification score assigned by f on class yj . The non-conformity scores

are calculated for all samples in the calibration set (DC), sorted and 1− α quantiles are calculated.
The final output for a new sample Xj+1 is a set of classes Sj+1 such that the non-conformity score
of this sample is upper bounded by the quantile.

Tackling exchangeability Notice that exchangeability is a strong requirement for these confor-
mal prediction guarantees to hold. However, as we work in an unsupervised adaptation setting, the
calibration set (required to give such guarantees) is not from the target domain. The exchangeabil-
ity conditions are violated because the target domain has a different data distribution (a standard
assumption of covariate shift where the marginal distribution P (X) of image features changes be-
tween the source and target domains, but the conditional distribution P (Y |X) remains the same).
To address this problem, we use conformal prediction under covariate shift Tibshirani et al. (2019)
by weighting the nonconformity scores of each sample in the calibration set with a likelihood ratio
PT (X)/PS(X).

In practice, it is difficult to estimate marginal densities PT (X) and PS(X). Instead, we fit a do-
main classifier on features extracted from the CNN back-end using images from the source domain
(ΦS

w(X )) and target (ΦT
w(X )) domains. This classifier gives a score to each sample which we use as a

proxy for the likelihood ratio PT (X)/PS(X) to weight our calibration set. Note that this works best
when there is some support overlap of image features between the source and target domains. The
calibration set looks exchangeable with respect to the target distribution and makes the prediction
set conform better to it.

The following steps describe our whole adaptation method:

1. Train a domain classifier to distinguish image features Φw(X ) of source and target do-
mains.

2. Use domain classification scores as a proxy for PT (X)/PS(X) (importance weights). A
weighted calibration set is used to perform conformal prediction for target samples, i.e. we
get a prediction set Si for each target input X T

i .

3. 3DUDAM: Following Kaushik et al. (2024), obtain CNN features (fi) for target images
from the backend Φw and use predicted class mesh models (from prediction sets obtained
in previous step) to generate rendered neural vertex features Cr. The robustness of a vertex
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Algorithm 1 Domain Adaptation for 3D Aware Classification(CIDA-3D)
Input: Source data DS = {(XS

i , y
S
i )} ∼ PS(X,Y ), Calibration data DC = {(XC

i , y
C
i )} ∼

PS(X,Y ), Target data DT = {(X T
i ) ∼ PT (X)}, source models Myk , source CNN backend Φw

and classification scorer Γ.

for time step t = 0, 1, ... until convergence do
Domain Classifier Ψt ← Trained using Φt

w(XS
i ) and Φt

w(X T
i ). ▷ Φ0

w = Φw

Calibration weights Wi ← Ψt(XC
i )

Prediction set Si ← CP(Γ,Wi,X T
i ) ▷ Conformal Prediction for target samples.

for each target image X T
i do

for yk ∈ Si do
Myk

t+1 ← 3DUDAM(Myk
t ,X T

i ,Φ
t
w) ▷ Update predicted mesh models. (3)

end for
for yk /∈ Si do

Myk

t+1 ←Myk
t ▷ Keep other mesh models the same.

end for
Φt+1

w ←3DUDAC(Φt
w, Si) ▷ Update CNN backend. (Equation 6)

feature is calculated using the similarity
Lsim(fi→r, Cr) = Z[κr] exp (κrf

T
i→rCr) thresholded by δr.

Local robust vertex features of all mesh models (in the conformal prediction set) are up-
dated using
Ct+1

r ← (1 − τ)Ct
r + τ 1

n

∑
nfi→r, ∀fi ∋ Lsim(Cr, fi→r) > δr. Here, τ is the

momentum hyperparameter. Trivially, we can set it to 0.5. However, in this work, we
empirically find that using Lrec to set the value of τ gives better results. We define
τ = max(0.8 ∗ (1− Lrec), 0.1)

4. 3DUDAC: Similar to Kaushik et al. (2024), update the CNN backend but using the pre-
dicted set of classes and a corresponding loss function as described in Equation 6 which
can be derived from Equation 2.

We update our CNN backbone by optimizing the following loss function:

L = −ζ
∑
r∈Rv

log
eκfi→rCr∑Cl∈My

l∈R,l/∈Nr
eκfi→lCl +

∑N
n=1 e

κfi→nβn +
∑Cm /∈My

m∈R,m/∈Nr
eκfi→mCm

, (6)

where Rv denotes all visible vertices for the input image X . Nr denotes the vertices near r. In
practice, we define a parameter ζ that is a weighting parameter that is 1−Lrec if the size of the pre-
diction set is > 1. Subsequently, the estimated pose g′ is recalculated with the updated neural mesh
models, and the CNN backbone is updated by gradient descent iteratively with the Equation 6. We
iteratively update subsets of vertex features, recalculate the conformal prediction sets and finetune
the CNN backbone till convergence in an EM type manner. In practice, to avoid false positives and
encourage better convergence, we establish a few conditions in our selective vertex feature adapta-
tion process. We fix a hyperparameter ψn that controls the least number of local vertices detected
to be similar (5 − 10% of visible vertices). We also drop samples with low global similarity values
(Lrec ≥ 0.4) during the backbone and vertex update. To save computational overhead, we can fix κ
for the loss calculation.

4 EXPERIMENTS

Setup We follow a conventional unsupervised domain adaptation setup Hoyer et al. (2023); Jin
et al. (2019); Zhang et al. (2019). During adaptation and inference, only RGB images from a target
domain set are provided to the model, trained in a supervised manner on source domain data. Unlike
previous works, no 3D information, depth data, or point cloud from the target domain is provided.
Contrary to Kaushik et al. (2024), we do not provide a category label for the target domain images.
The model predicts the category and estimates the 3D pose of the object. Ensemble methods are not
considered in this work.
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Benchmarks Methods are evaluated on three benchmarks. The source model is trained on IID sam-
ples and adapted to OOD data with individual and combined nuisances. The first benchmark, OOD-
CVZhao et al. (2023), includes real-world nuisances like context and weather for 10 categories.
The second benchmark involves domain adaptation from real sources to synthetically corrupted tar-
gets. In Imagenet-CHendrycks & Dietterich (2019), Pascal3D+Xiang et al. (2014) (Table2), data
are corrupted with noises like shot noise and fog from Imagenet-C. The third benchmark evalu-
ates adaptation from synthetic to real-world nuisance-ridden domains. This UDA benchmark trains
on synthetic data and adapts to real-world nuisances. Using Yang et al. (2024); Ma et al. (2023),
synthetic images and 3D poses for 5 object categories are generated. Models are then adapted and
evaluated on OOD-CVZhao et al. (2023) data. This shows domain adaptation methods like CIDA-
3D help models learn 3D knowledge from noisy real-world images, applicable to other computer
vision tasks.

Evaluation For Classification, we use prediction accuracy as a metric. For 3D pose estimation, we
aim to recover the 3D rotation parameterized by azimuth, elevation, and in-plane rotation of the
viewing camera. We follow previous works like Zhou et al. (2018); Kaushik et al. (2024); Ma et al.
(2022) and evaluate the error between the predicted rotation matrix and the ground-truth rotation

matrix: ∆(Rpred, Rgt) =
||logm(RT

predRgt)||F√
2

. We report the accuracy of the pose estimation under
common thresholds, π

6 and π
18 .

Baseline Models In addition to the comparison with other 3D-Aware Classification methodsWang
et al. (2023); Jesslen et al. (2023), we also compare with classification only and pose estimation only
methods. Since our work is the first to attempt to solve 3D-Aware UDA problem, we compare our
results to common classification-only UDA methods Cui et al. (2020); Jin et al. (2019); Zhang et al.
(2019); Long et al. (2018); Na et al. (2021); Hoyer et al. (2023); Wei et al. (2021); Liu et al. (2021);
Mirza et al. (2022); Liang et al. (2022); Rusak et al. (2021); Schneider et al. (2020) which have been
shown to be the state-of-the-art on various classification-only robustness datasets.

Implementation Details An Imagenet pretrained Resnet50 is used as a common feature extractor
for our source model. The cuboid mesh is defined for each category with features obtained from
the common backbone. The source model is trained for 800 epochs with a batch size of 32 using
an Adam optimizer in a fully supervised manner. Similarly to Jesslen et al. (2023); Wang et al.
(2021a), during inference (for pose estimation), 144 poses are pre-rendered into features from the
neural meshes and the one with the lowest reconstruction loss is chosen as the initial pose which is
then optimized using gradient descent. For every adaptation step, we require a minimum batch size
of 32 images for selective vertex and feature extractor updates. We choose a classification prediction
set of 3 or fewer samples and perform pose estimation for these predictions. Samples with very low
global reconstruction similarity (< 0.4) are removed from the update, and samples with very high
global similarity (> 0.85) are fully used for vertex feature updates. Inference takes 0.21 seconds
per sample on an RTX 3090. Our adaptation model is implemented in PyTorch (with PyTorch3D
for differential rasterization) and takes around 4 hours to train on 2 A5000 GPUs.

4.1 RESULTS AND ANALYSIS

OOD-CV Table 1 shows Unsupervised Domain Adaptation results for Classification and multi-
class pose estimation on OOD-CV Zhao et al. (2023), containing real-world images with nuisances
like pose, texture, context, and weather. Our results, compared to SOTA UDA methods, validate
that our method leverages 3D knowledge to enhance model robustness against real-world OOD nui-
sances. Even our source modelJesslen et al. (2023) outperforms many classification-only domain
adaptation methods, highlighting the importance of 3D knowledge. Our method significantly out-
performs all models and bridges the domain gap.

Pascal3D→Corrrupted-Occluded-Pascal3D+ Table Table 2 shows results for UDA in Clas-
sification and multi-class 3D pose estimation. Synthetic corruption of level 5 from Imagenet-
CHendrycks & Dietterich (2019) is applied to the validation dataset representing the target domain.
The benchmark includes 3 levels of occlusion (0%, F1G1 - 20− 40% occlusion in both foreground
and background, and F2G2 - 40−60% occlusion) in addition to the corruptions, making it a complex
setup. Occluded images from Occluded-Pascal3d+ datasetWang et al. (2020) are not shown to mod-
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Table 1: Unsupervised Domain Adaptation for Classification and Multi-Class 3D Pose Estimation on
OOD-CV 67 dataset (Metrics: Acc.: Classification Accuracy, π

6Acc.: 3D pose estimation accuracy;
higher is better)

Acc. π
6 Acc. Acc. π

6 Acc. Acc. π
6 Acc.

Nuisance Combined Context Weather
CDAN 27 .760 - .710 - .745 -
BSP 5 .753 - .610 - .730 -
MDD 66 .780 - .761 - .802 -
MCD 42 .772 - .798 - .810 -
MCC 16 .785 - .730 - .767 -
FixBi 33 .821 - .802 - .755 -
MIC 13 .837 - .755 - .817 -
ToAlign 56 .761 - .712 - .720 -
CST 26 .840 - .687 - .813 -
DUA 32 .699 - .667 - .701 -
DINE 24 .835 - .867 - .798 -
DMNT 52 .811 .495 .798 .524 .845 .545
ORL 15 .831 .401 .848 .413 .823 .389
Ours (CIDA-3D) .922 .556 .931 .601 .901 .557
Nuisance Shape Pose Texture
CDAN 27 .820 - .844 - .773 -
BSP 5 .696 - .831 - .757 -
MDD 66 .895 - .870 - .836 -
MCD 42 .896 - .865 - .834 -
MCC 16 .874 - .867 - .818 -
FixBi 33 .854 - .842 - .801 -
MIC 13 .821 - .799 - .807 -
ToAlign 56 .594 - .788 - .719 -
CST 26 .858 - .887 - .831 -
DUA 32 .918 - .755 - .695 -
DINE 24 .911 - .885 - .838 -
DMNT 52 .796 .515 .818 .380 .756 .568
ORL 15 .821 .440 .869 .335 .829 .439
Ours (CIDA-3D) .910 .611 .921 .459 .935 .605

els to prevent memorization. Our method significantly outperforms state-of-the-art classification
UDA methodsRusak et al. (2021); Schneider et al. (2020).

Synthetic→OOD-CV Table 3 show the results on our novel Unsupervised Domain Adaptation
setup where we adapt from a synthetic source domain to nuisance-ridden real world data (OOD-
CVZhao et al. (2023)). This is a challenging setup which shows that our method is able to bridge the
synthetic-real domain gap significantly and we can transfer 3D object pose knowledge learned from
synthetic data where it is trivial to generate 3D object pose to real-world nuisance ridden image.
This real-world 3D information can be further utilized to robustify downstream computer vision
tasks.

Further experimental and ablation analysis is deferred to the appendix due to limited space.

5 CONCLUSION

In this work, we attempt to solve the problem of unsupervised domain adaptation for 3D-Aware clas-
sification and multiclass pose estimation. We focus our efforts on real world data with nuisances like
weather, shape, texture, etc. and show that our method is capable of adapting to a nuisance-ridden
domain with only unlabeled (and synthetic) image data. Our method further offers the potential to
generate 3D pose information for existing real-world image datasets. By training solely on synthetic

9
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Table 2: UDA results for Pascal3d+→ Corrupted-Occluded-Pascal3D+ (Metrics : Classifica-
tion Accuracy (Acc.), π\6 (π6 ) and π\18 Accuracy ( π

18 ))

Occlusion F0G0 (0%) F1G1 (20-40%) F2G2 (40-60%)

Metric Acc. π
6

π
18 Acc. π

6
π
18 Acc. π

6
π
18

Spatter Noise
RPL41 .749 - - .449 - - .254 - -
BNA44 .693 - - .467 - - .271 - -
ORL15 .815 .617 .366 .685 .438 .204 .484 .266 .097
Ours .999 .825 .649 .963 .594 .277 .848 .424 .137

Motion Blur
RPL41 .766 - - .545 - - .421 - -
BNA44 .749 - - .556 - - .411 - -
ORL15 .793 .543 .284 .573 .328 .122 .378 .182 .054
Ours .996 .731 .430 .956 .522 .207 .822 .330 .100

Snow
RPL41 .752 - - .499 - - .389 - -
BNA44 .711 - - .512 - - .469 - -
ORL15 .857 .565 .311 .697 .410 .159 .504 .215 .074
Ours .991 .784 .493 .951 .586 .271 .824 .417 .145

Pixelate
RPL41 .844 - - .526 - - .331 - -
BNA44 .840 - - .558 - - .395 - -
ORL15 .743 .444 .205 .565 .273 .088 .389 .152 .038
Ours .993 .767 .486 .958 .342 .159 .812 .21 .101

Elastic Transform
RPL41 .751 - - .455 - - .255 - -
BNA44 .699 - - .471 - - .268 - -
ORL15 .813 .614 .371 .537 .350 .160 .315 .183 .068
Ours .994 .718 .499 .972 .455 .201 .878 .275 .090

Shot Noise
RPL41 .783 - - .512 - - .119 - -
BNA44 .768 - - .523 - - .243 - -
ORL15 .521 .323 .127 .397 .156 .048 .275 .092 .021
Ours .986 .805 .534 .938 .562 .253 .798 .400 .152

Table 3: Unsupervised Domain Adaptation from Synthetic Data to OODCV 67

Acc. π
6 Acc. Acc. π

6 Acc. Acc. π
6 Acc.

Nuisance Combined Context Weather
CDAN 27 .650 - .609 - .653 -
DUA 32 .549 - .537 - .631 -
DINE 24 .715 - .791 - .693 -
ORL 15 .803 .377 .798 .396 .798 .355
Ours (CIDA-3D) .902 .515 .923 .591 .900 .537
Nuisance Shape Pose Texture
CDAN 27 .750 - .711 - .536 -
DUA 32 .811 - .677 - .544 -
DINE 24 .799 - .783 - .819 -
ORL 15 .699 .410 .799 .295 .791 .402
Ours (CIDA-3D) .901 .591 .920 .448 .911 .601

data and validating with human evaluation, this approach could pave the way for enriching common
image datasets with corresponding 3D pose annotations.
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A APPENDIX

B SOURCE MODEL

Our source model is similar to a recently proposed concurrent work Jesslen et al. (2023). Figure 3
shows the inference pipeline for our source model. This model itself is based on a line of work using
feature-level neural mesh models and render and compareWang et al. (2021a); Ma et al. (2022);
Wang et al. (2023). The difference is that most of the previous work is in single-category ver-
sions, whereas our source model trains multiple categories on a single neural backbone. This entails
running the contrastive learning training methodology over all mesh vertex features for all classes
instead of just one. In addition to this modification, the geometry-independent feature matching is
only used in our source model. As noted in the main draft, the source model modifications is not
the contribution of our paper and our contributions lie in fully unsupervised adaptation of the source
model for both image classification (3D aware classification) and 3D pose estimation.

Figure 3: Our source model’s inference pipeline. The figure is taken from Jesslen et al. (2023). For
geometry-independent feature matching classification, the neural mesh vertex features are utilized
without considering their relative positions on the cuboid neural mesh. The objective is to find
the maximum number of vertices which are activated for a class given an image’s feature map
obtained from the neural backbone. Subsequently, the predicted mesh model can be chosen from
the classification prediction to run render-and-compare methodology to estimate pose.

C ABLATION ANALYSIS

Divergence of Inference results using Geometry-Independent Feature Matching and Render-
and-Compare in OOD scenarios Table 4 gives classification results for our source model Jesslen
et al. (2023) when evaluated on a subset of OOD-CV context nuisance data Zhao et al. (2023) us-
ing Geometry-Independent Feature Matching (labeled feature matching) and Render-and-Compare
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(labeled pose error). For classification using render-and-compare, we do feature-level render-and-
compare for all the categories using individual neural mesh models. Since this process is computa-
tionally expensive, we only do it on a subset of the dataset. In our experiments, we find that upto
∼ 20% of samples could be predicted differently by these two classification inference methodolo-
gies.

Table 4: Source Model Inference on a OOD-CVZhao et al. (2023) context nuisance data subset

Classification Accuracy π
6 Accuracy π

18Accuracy

Feature Matching .852 .429 .159
Pose Error .794 .413 .141

Local Part Robustness in Multi-Class Setting Figure 4 shows the visualization of the Before
and After CIDA-3D adaptation of robustly detected vertices for a specific category. Figures are
for azimuth angles only for a simpler representation. As can be seen, we can still detect robust
vertices in a multiclass setting where mesh vertices for each object category are trained using a
single backbone. The figures belong to experiments done on the Corrupted-Occluded-Pascal3D+
benchmark and show that the local part robustness hypothesis Kaushik et al. (2024) also holds in a
multiclass setting. The post-adaptation subfigure also shows that our method, CIDA-3D, is able to
robustly and successfully update the mesh models and backbones in an unsupervised manner to a
nuisance-ridden target domain.

Top-1 and all class vertex update Table 5 shows that using just the top-1 prediction from our
classification model leads to relatively slower convergence as compared to using our method. Using
all class predictions for model update requires pose estimation for classes which is about 5x times
slower for the Corrupted-Pascal3D+ experiment on a RTX 2080 GPU. The ablation results shown
are from level 5 spatter noise experiment for no occlusion with Corrupted Pascal3D+ benchmark.

Table 5: Source Model Inference on a OOD-CVZhao et al. (2023) context nuisance data subset
Average Adaptation Epochs Classification Accuracy π

6 Accuracy

Top-1 200 .978 .765
All 58 .975 .677
Ours 40 .999 .825

D EXPERIMENTAL DETAILS

For RPLRusak et al. (2021) and BNASchneider et al. (2020), we used the official implementationa.
For MCC Jin et al. (2019), CDAN Long et al. (2018), MCD Saito et al. (2018), MDD Zhang et al.
(2019) and BSP Chen et al. (2019), we use the Transfer Learning libraryJunguang et al. (2020) im-
plementations. We use the recommended hyperparameters for each method. We utilize a pretrained
Imagenet-50 backbone wherever necessary.

E LIMITATIONS

Our model shares our limitations with our source model. While the simple cuboid model represen-
tation is sufficient for rigid objects, future work involving deformable entities would require more
complex mesh modeling. Having multiple neural meshes without shared vertices scales poorly for
large number of classes, and a sub-linear neural mesh scaling would be preferred. As the number
of categories increases, the complexity of contrastive loss optimization also increases. You may
include other additional sections here.
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Figure 4: Azimuth Polar histograms representing the ratio of visible neural mesh vertices which
are robustly detected for different categories of the Corrupted-Occluded-Pascal3D+ benchmark (for
spatter (bicycle) and snow (aeroplane) noise) before and after adaptation using our method. We can
see the ratio of robustly detected vertices in the corrupted target domain using the source model
which provides evidence towards our hypothesis regarding locally robust neural vertex features in
a multi-class setting, similar to Kaushik et al. (2024). Our method, CIDA-3D, like Kaushik et al.
(2024) leverages these locally robust parts and adapts the model in an unsupervised manner. The
right column shows the increase in ratio of robustly detected vertex features post adaptation using
CIDA-3D.
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