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ABSTRACT

Linear Autoencoders (LAEs) have shown strong performance in state-of-the-art
recommender systems. Some LAE models, like EASE, can be viewed as multi-
variate (multiple-output) linear regression models with a zero-diagonal constraint.
However, these impressive results are mainly based on experiments, with little
theoretical support. This paper investigates the generalizability – a theoretical
measure of model performance in statistical machine learning – of multivariate
linear regression and LAEs. We first propose a PAC-Bayes bound for multivari-
ate linear regression, which is generalized from an earlier PAC-Bayes bound for
single-output linear regression by Shalaeva et al., and outline sufficient conditions
that ensure its theoretical convergence. We then apply this bound to EASE, a
classic LAE model in recommender systems, and develop a practical method for
minimizing the bound, addressing the calculation challenges posed by the zero-
diagonal constraint. Experimental results show that our bound for EASE is non-
vacuous on real-world datasets, demonstrating its practical utility.

1 INTRODUCTION

In recent years, simple (linear) recommendation models have consistently demonstrated impressive
performance, often rivaling deep learning models (Dacrema et al., 2019; Jin et al., 2021; Mao et al.,
2021), especially for the implicit setting, where interactions are inferred from user behavior (e.g.,
clicks or purchases). In particular, linear autoencoders (LAEs) such as EASE (Steck, 2019) and
EDLAE (Steck, 2020) have shown a surprising edge over widely used matrix factorization (MF)
methods such as ALS (Hu et al., 2008). The LAE architecture is remarkably simple: Let R ∈
Rm×n be the data matrix and W ∈ Rn×n be the parameter matrix, the LAE model is defined as
fW (R) = RW , where W is trained to satisfy fW (R) ≈ R. W is considered both an encoder and a
decoder. Typically, we add constraints such as diag(W ) = 0 to prevent W from overfitting towards
I (Steck, 2019).

Despite their power and widespread use, linear autoencoders, particularly in the context of recom-
mendation systems, remain theoretically underexplored. Recommendation research has understand-
ably focused on performance evaluation to compare models, but issues such as weak baselines and
unreliable sampled metrics often make these evaluations difficult to reproduce (Dacrema et al.,
2019; Cremonesi & Jannach, 2021). A recent study attempted to provide a theoretical comparison
between linear recommendation models, such as matrix factorization and LAE, using spectral anal-
ysis, showing that both approaches “reduce” the singular values of the original user-item data matrix
R, albeit in different ways (Jin et al., 2021). Another related study investigates the loss landscape of
low-rank LAEs, characterizing their critical points through the smooth submanifold theory (Kunin
et al., 2019).

In this work, we aim to advance the theoretical understanding of linear autoencoder (LAE) models’
generalizability using statistical learning theory. While generalization theory has been extensively
studied for various machine learning and deep learning models (Vapnik, 1991; Dziugaite & Roy,
2017), its application to LAE recommendation models remains largely unexplored. To address this
gap, we leverage PAC-Bayes theory (McAllester, 1998), which integrates the Probably Approxi-
mately Correct (PAC) framework with Bayesian inference. Our analysis produces a nonvacuous
bound, offering practical insights into LAE performance on unseen data. It is worth noting that prior
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work (Srebro et al., 2004) theoretically analyzed the generalizability of linear matrix factorization
models, deriving a vacuous PAC bound based on covering numbers.

Our study to establish PAC-Bayes bounds for LAE models builds on the theoretical framework in-
troduced by Shalaeva (Shalaeva et al., 2020), which provides a PAC-Bayes bound for multiple linear
regression (a single dependent variable with multiple independent variables) under the assumption
of Gaussian data. However, applying this framework to LAE models introduces several challenges:

1. Multivariate Linear Regression: The PAC-Bayes bound must be extended from the multiple
linear regression setting to the multivariate linear regression scenario, which involves multiple
dependent variables. Notably, PAC-Bayes bounds for multivariate linear regression – an impor-
tant method and topic in statistical learning and inference – remain unexplored in the existing
literature.

2. Additional Convergence Requirements: Our analysis reveals the need for additional conver-
gence conditions beyond those presented in (Shalaeva et al., 2020). These conditions are essential
for ensuring theoretical convergence in the more complex multivariate setting.

3. Zero-Diagonal Constraint: LAE models, such as EASE and EDLAE, enforce a structural zero-
diagonal constraint on the weight matrix. This introduces unique theoretical challenges in adapt-
ing PAC-Bayes bounds from multivariate linear regression to LAE models.

This paper addresses the aforementioned challenges and makes the following key contributions:

• (Section 3) We develop a general theoretical PAC-Bayes bound for multivariate linear regression
(Theorem 1), of which Shalaeva’s bound (Shalaeva et al., 2020) for single-output multiple linear
regression is a special case. Additionally, we propose sufficient conditions (Theorem 2) that guar-
antee convergence for both the new bound (Theorem 1) and Shalaeva’s original bound (Shalaeva
et al., 2020).

• (Section 4) We apply the bound of Theorem 1 to a LAE model for recommendation, EASE (Steck,
2019) and develop a practical method for calculating the optimal parameters that minimize the
bound. Specifically, we incorporate the constraint diag(W ) = 0 into the bound and resolve the
calculation challenges that arise from it by presenting Theorem 3 and Theorem 4.

• (Section 5) We conduct experiments for the bound in Section 4 on real-world datasets, and the
results show that the bound does not exceed 3× of the test error on three out of four datasets we
used.

• (Section 6) We conclude and discuss the empirical implication and potential application of PAC-
Bayes bound for LAE models in recommendation setting.

All proofs of the theorems and lemmas presented in this paper are provided in Appendix A, while
related works are discussed in Appendix D.

2 PRELIMINARIES

Alquier’s Bound (Alquier et al., 2016): Let S = {(xi, yi)}mi=1 be the dataset where xi ∈ Rn is
the feature vector and yi ∈ R is the label. Suppose each (xi, yi) is i.i.d. sampled from an unknown
data distribution D. Let fθ : Rn → R be the machine learning model where θ is the vector of
parameters. Let l be the loss function, Remp(θ) = 1

m

∑m
i=1 l(fθ(xi), yi) be the empirical risk and

Rtrue(θ) = E(x,y)∼D[l(fθ(x), y)] be the true risk. Let π be a prior distribution of θ and ρ be the
posterior distribution of θ, then for any λ > 0, δ > 0,

P

(
Eθ∼ρ[R

true(θ)] < Eθ∼ρ[R
emp(θ)] +

1

λ

[
D( ρ ||π ) + ln

1

δ
+Ψπ,D,l(λ,m)

])
≥ 1− δ

where Ψπ,D,l(λ,m) = lnEθ∼πES∼Dm [eλ(R
true(θ)−Remp(θ))].

The PAC-Bayes bound has two types: empirical bound and oracle bound (Alquier, 2021). The
oracle bound means the upper bound contains Rtrue(W ) and assumes D is given (only the oracle
knows D). Alquier’s bound is an oracle bound. Shalaeva’s bound is derived from Alquier’s bound
by assuming fθ is a linear regression model and D is Gaussian distribution.

Shalaeva’s Bound (Shalaeva et al., 2020): In Alquier’s bound, suppose fθ(x) = θTx where θ ∈
Rn. Assume D satisfies xi ∼ N (0, σ2

xI), and there exist θ∗ ∈ Rn such that yi = (θ∗)Txi+ei where

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ei ∼ N (0, σ2
e). Here σ2

x, σ
2
e are constants. Let the loss function be l(fθ(xi), yi) = (θTxi − yi)

2,
then

Ψπ,D,l(λ,m) = lnEθ∼π
exp(λvθ)

(1 + λvθ
m/2 )

m/2
≤ lnEθ∼π exp

(
2λ2v2θ
m

)
(1)

where vθ = σ2
x∥θ − θ∗∥22 + σ2

e .

Convergence of Shalaeva’s Bound: The convergence analysis in (Shalaeva et al., 2020) is presented
informally. Here we formally state their results as follows:

(1) Since limm→∞(1 + λvθ
m/2 )

m/2 = exp (λvθ), for any λ > 0, the term Ψπ,D,l(λ,m) converges,

lim
m→∞

Ψπ,D,l(λ,m) = lim
m→∞

lnEθ∼π
exp(λvθ)

(1 + λvθ
m/2

)m/2
= lnEθ∼π lim

m→∞

exp(λvθ)

(1 + λvθ
m/2

)m/2
= 0

(2) Let d be a constant and λ = m1/d, then lnEθ∼π exp
(

2λ2v2
θ

m

)
= lnEθ∼π exp

(
2m2/d−1v2θ

)
.

When d > 2, limm→∞ m−1/d lnEθ∼π exp
(
2m2/d−1v2θ

)
= 0, thus the entire bound converges as

m → ∞.

lim
m→∞

1

λ

[
D( ρ ||π ) + ln

1

δ
+Ψπ,D,l(λ,m)

]
≤ lim

m→∞
m−1/d

[
D( ρ ||π ) + ln

1

δ

]
+ lim

m→∞
m−1/d lnEθ∼π exp

(
2m2/d−1v2θ

)
= 0

Upon careful examination of their analysis, we found that additional conditions are needed to ensure
the above convergency results, which were not discussed in their original paper. In (1), swapping
lim and E is valid only under some specific conditions. For example, by dominated convergence
theorem (Resnick, 1998), the condition can be Eθ∼π[exp(λvθ)] < ∞. π needs to be a distri-
bution satisfying this condition. In (2), some choices of π can cause divergence. For example,
when π is Gaussian distribution, we have lnEθ∼π exp

(
2m2/d−1v2θ

)
= ∞ for any m > 0, thus

limm→∞ m−1/d lnEθ∼π exp
(
2m2/d−1v2θ

)
= ∞ and the bound diverges. We will discuss these

issues in Section 3.2.

Multivariate Linear Regression (Johnson & Wichern, 2007): Let S = {(xi, yi)}mi=1 be the
dataset where xi ∈ Rn and yi ∈ Rp. Let X = [x1, x2, ..., xm] ∈ Rn×m be the input matrix,
Y = [y1, y2, ..., ym] ∈ Rp×m be the target, W ∈ Rp×n be the weight matrix of the linear model and
E = [e1, e2, ..., em] ∈ Rp×m be the error matrix. The linear regression is defined as

Y = WX + E

Usually we let the first dimension of every xi be 1, i.e., X1∗ is a vector of all 1s. We say the linear
regression is multivariate if p > 1, and is multiple if n > 2.

We can apply a statistical assumption to the multivariate linear regression, where it is typically
assumed that the errors ei and ej are independent for i ̸= j, but the dimensions of each ei can be
dependent. A common statistical assumption is shown in Assumption 1.

EASE (LAE) Model (Steck, 2019): EASE is one of the most popular LAE models for recommen-
dation (Jin et al., 2021). Let Rm×n be the data matrix and W ∈ Rn×n be the weight matrix, then
EASE obtains the model W by solving the following problem

min
W

∥R−RW∥2F + γ∥W∥2F s.t. diag(W ) = 0 (2)

where γ is the regularization parameter. Let W0 be the solution of Eq (2), then W0 has closed from:
Let P =

(
RTR+ γI

)−1
, then (W0)ij = 0 if i = j and (W0)ij = −Pij/Pjj if i ̸= j.

By structural risk minimization (Vapnik, 1991), the regularizer γ∥W∥2F can be interpreted as a
Lagrange multiplier term γ(∥W∥2F − c) for some constant c. Thus Eq (2) is equivalent to

min
W

∥R−RW∥2F s.t. diag(W ) = 0, ∥W∥2F ≤ c (3)

Hence, tuning λ in Eq (2) is equivalent to tuning c in Eq (3), though the former form is more often
used in practice. Note that by adding the constraint ∥W∥2F ≤ c we assume ∥W∥F is bounded, which
corresponds to case (1) and (3) in section 3.2.
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3 PAC-BAYES BOUND FOR MULTIVARIATE LINEAR REGRESSION

3.1 THE STATISTICAL ASSUMPTION AND THE BOUND

Assumption 1 Suppose each (xi, yi) in S is i.i.d. sampled from a distribution D. D is defined as:
(1) xi ∼ N (µx,Σx); (2) there exist W ∗ ∈ Rp×n and e ∼ N (0,Σe) such that for any given xi,
yi = W ∗xi + e, in other words, yi|xi ∼ N (W ∗xi,Σe). Here µx ∈ Rn, Σx ∈ Rn×n is positive
semi-definite, and Σe ∈ Rp×p is positive-definite.

The positive semi-definite assumption of Σx allows Σx to be singular, implying that the Gaussian
distribution is degenerate, i.e., its support is on a lower dimensional manifold embedded in Rn. This
includes the case that xi has its first dimension to be constant 1 and the other n − 1 dimensions to
be Gaussian random variables. In this case, the first row and first column of Σx are 0.

Let W ∈ Rp×n be the weight matrix of the linear model, then the prediction of the model on xi is
given by ŷi = Wxi. The error is yi − ŷi = (W ∗ −W )xi + e ∼ N (µ

W
,Σ

W
), where

µ
W

= E[(W ∗ −W )xi + e] = (W ∗ −W )E[xi] + E[e] = (W ∗ −W )µx

Σ
W

= E[(W ∗ −W )(xi − µx) + e)][(W ∗ −W )(xi − µx) + e]T

= (W ∗ −W )Σx(W
∗ −W )T +Σe

It is easy to verify that Σ
W

is positive-definite. Thus, Σ
W

has an eigenvalue decomposition Σ
W

=
STΛS where S is orthogonal, Λ = diag(η1, η2, ..., ηp) and ηi > 0 for all i. Note that S and Λ
depend on W .

Define the loss of the sample (xi, yi) as ∥yi − Wxi∥2F , the empirical risk as Remp(W ) =
1
m

∑m
i=1 ∥yi − Wxi∥2F and the true risk as Rtrue(W ) = E(x,y)∼D[∥y − Wx∥2F ]. Then we have

the following bound:

Theorem 1 Let π be the prior distribution of W , ρ be the posterior distribution of W . Denote
b = SΣ−1/2

W
µ

W
. Then for any λ > 0 and δ > 0,

P

(
EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

1

δ
+Ψπ,D(λ,m)

])
≥ 1− δ (4)

where

Ψπ,D(λ,m) = lnEW∼π

exp(λ(tr(ΣW ) + µT
W
µW

)) exp
(∑p

i=1

−λmb2i ηi
m+2ληi

)
∏p

i=1 (1 + 2ληi/m)m/2


≤ lnEW∼π exp

(
2λ2∥ΣW ∥2F

m

)
The bound of Theorem 1 is a general case of Shalaeva’s bound. It can be reduced to Shalaeva’s
bound by taking p = 1, µx = 0, Σx = σ2

xI and Σe = σ2
e for some σx, σe.

3.2 CONVERGENCE ANALYSIS

This section presents the convergence analysis of Theorem 1. We outline sufficient conditions that
ensure convergence, thereby completing and rigorously formalizing the convergence analysis of
Shalaeva’s bound (Shalaeva et al., 2020)

We first discuss the convergence of Ψπ,D(λ,m) term, then the entire bound. Theorem 2 gives a suf-
ficient condition for the convergence of Ψπ,D(λ,m) based on the dominated convergence theorem.

Theorem 2 If λ and π satisfies EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

< ∞, then
limm→∞ Ψπ,D(λ,m) = 0.

By Theorem 2, we can derive some special cases that make Ψπ,D(λ,m) converge:

(1) If π is a bounded distribution such that ∥W∥F < G where G is a constant, then for any λ > 0,

EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

≤ EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2∥2F ∥W ∗ −W∥2F
)]

≤ exp
(
λ∥(Σx + µxµ

T
x )

1/2∥2F (∥W ∗∥F + ∥W∥F )2
)
< exp

(
λ∥(Σx + µxµ

T
x )

1/2∥2F (∥W ∗∥F +G)
2
)
< ∞

4
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(2) If π is a distribution that for W ∼ π, each Wij is independently sampled from
N ((U0)ij , σ

2) where σ > 0 is a constant and U0 ∈ Rn×n. Then for any λ ∈ (0, 1
2η1σ2 ),

EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

< ∞ holds. This is because, let Σx + µxµ
T
x =

STΛS be the eigenvalue decomposition and suppose Λ = diag(η1, η2, ..., ηn) where η1 is the largest
eigenvalue, then

EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

=

p∏
i=1

p∏
j=1

exp

(
ληj(Sj∗(W

∗−U0)∗i)
2

1−2λσ2ηj

)
(1− 2λσ2ηj)

1/2

And λ ∈ (0, 1
2η1σ2 ) ensures denominator

(
1− 2λσ2ηj

)1/2
is not zero or undefined for any j.

Now we discuss the convergence of the entire bound when λ = m1/d. Since 1
λ

[
D( ρ ||π ) + ln 1

δ

]
surely converges as m → ∞, we only discuss the convergence of 1

λΨπ,D(λ,m). By Theorem 1,
1
λΨπ,D(λ,m) converges if the upper bound 1

λ lnEW∼π exp
(

2λ2∥Σ
W

∥2
F

m

)
converges.

(3) If π is a bounded distribution satisfying ∥W∥F < G, then

∥ΣW ∥2F = ∥(W ∗ −W )Σx(W
∗ −W )T +Σe∥2F ≤

(
∥(W ∗ −W )Σx(W

∗ −W )T ∥F + ∥Σe∥F
)2

≤
(
∥Σx∥F ∥W ∗ −W∥2F + ∥Σe∥F

)2 ≤
(
∥Σx∥F (∥W ∗∥F + ∥W∥F )2 + ∥Σe∥F

)2
<
(
∥Σx∥F (∥W ∗∥F +G)

2
+ ∥Σe∥F

)2
< ∞

Denote G′ =
(
∥Σx∥F (∥W ∗∥F +G)

2
+ ∥Σe∥F

)2
. The upper bound converges when d > 2:

lim
m→∞

m−1/d lnEW∼π exp
(
2m2/d−1∥ΣW ∥2F

)
< lim

m→∞
m−1/d lnEW∼π exp

(
2m2/d−1G′

)
= 0

(4) If π is a distribution that for W ∼ π, each Wij is a Gaussian random variable, then the upper
bound diverges when d > 2, thus we cannot show the convergence of 1

λΨπ,D(λ,m). We prove the
divergence of the upper bound as follows. First, for any r, q ∈ {1, 2, ..., p},

∥ΣW ∥2F =

p∑
i=1

p∑
j=1

(
(W ∗ −W )T∗iΣ(W

∗ −W )∗j + (Σe)ij
)2

≥
(
(W ∗ −W )T∗qΣx(W

∗ −W )∗q + (Σe)qq
)2

=
(
∥(Σx)

1/2(W ∗ −W )∗q∥22 + (Σe)qq
)2

≥
(
∥(Σx)

1/2(W ∗ −W )∗q∥22
)2

≥
(
(Σx)

1/2
r∗ (W ∗ −W )∗q

)4
In the above inequality we use the fact that (Σx)qq ≥ 0 since it is a diagonal element of Σx. Since
(W ∗ − W )∗q is a random Gaussian vector, (Σ)1/2r∗ (W ∗ − W )∗q is a Gaussian random variable.
Denote w = (Σ)

1/2
r∗ (W ∗ −W )∗q , then

m−1/d lnEW∼π exp
(
2m2/d−1∥ΣW ∥2F

)
≥ m−1/d lnEw exp

(
2m2/d−1w4

)
Lemma 1 Let {ak}ki=0 be a sequence of real numbers. Let X be a Gaussian random variable and
Yk =

∑k
i=0 aiX

i where ak > 0. If k ≥ 3, then Yk has no MGF, i.e., MYk
(t) = EYk

[exp(tYk)] =
EX [exp(tYk)] = ∞ for any t > 0.

Lemma 1 states that any polynomial of Gaussian random variables of degree ≥ 3 has no MGF.
The term w4 satisfies the conditions of Lemma 1 as a polynomial of degree 4. Thus we have
Ew exp

(
2m2/d−1w4

)
= ∞ for any m > 0, and lnEw exp

(
2m2/d−1w4

)
= ∞. Note that when

m → ∞, m−1/d and m2/d−1 are positive numbers being arbitrary close to 0 but never equivalent to
0. Thus limm→∞ m−1/d lnEw exp

(
2m2/d−1w4

)
= ∞. This shows the upper bound diverges.

Recall that Shalaeva’s bound in Section 2 has vθ = σ2
x∥θ− θ∗∥22+σ2

e . When θ is a Gaussian vector,
v2θ becomes a polynomial of Gaussian random variables of degree 4, which satisfies the condition
of Lemma 1. Thus the divergence limm→∞ lnEθ∼π exp

(
2m2/d−1v2θ

)
= ∞ cannot be resolved by

taking any d > 2.

5
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4 A PRACTICAL PAC-BAYES BOUND FOR LAE

This section introduces how to apply the bound of Theorem 1 to EASE, a simple yet very effective
LAE recommendation model, and provides a practical way to calculate the bound.

4.1 THE SETTINGS AND THE BOUND

The EASE model can be considered as a special case of multivariate linear regression, where Y is
equivalent to X and W is constrained by diag(W ) = 0. Also in recommender system, the dataset
R is usually not Gaussian but bounded. To apply the bound of Theorem 1 to EASE, we redefine our
settings as follows:

Suppose each RT
i in R is i.i.d. sampled from an unknown n dimensional bounded distribution

D. Also, assume D is a bounded distribution satisfying the condition that there exists a, b such
that Rij ∈ [a, b] for any i, j. Define the loss function on Ri as ∥Ri − RiW∥2F , the empirical
risk as Remp(W ) = 1

m∥R − RW∥2F = 1
m

∑m
i=1 ∥Ri − RiW∥2F , and the true risk as Rtrue(W ) =

Er∼D[∥rT − rTW∥2F ].
Then the PAC-Bayes bound for EASE is as follows (the same form as Eq (2) but with different
settings):

P

(
EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ
D( ρ ||π ) +

1

λ
ln

1

δ
+

1

λ
Ψπ,D(λ,m)

)
≥ 1− δ (5)

︸ ︷︷ ︸
part 1

︸ ︷︷ ︸
part 2

with Remp(W ) = 1
m∥R − RW∥2F , Rtrue(W ) = Er∼D[∥rT − rTW∥2F ], diag(W ) = 0, and

Ψπ,D(λ,m) = lnEW∼πER∼Dm

[
eλ(R

true(W )−Remp(W ))
]
.

We aim to find a practical method for calculating the tightest bound, so that it can provide theoretical
support for practical applications. For any given δ, our goal is to find λ, π, ρ that minimizes the right
hand side of Eq (5). It is generally considered difficult to solve for λ, π, ρ simultaneously (Alquier,
2021), so we typically fix λ, π and solve for ρ. We show how to minimize part 1 of Eq (5) in Section
4.2 and how to find a practical upper bound for part 2 of Eq (5) in Section 4.3.

4.2 CLOSED-FORM SOLUTION FOR THE OPTIMAL ρ

Since the PAC-Bayes bound holds for any π, ρ and λ, given π and λ, we search for the optimal ρ by

min
ρ

EW∼ρ[R
emp(W )] +

1

λ
D( ρ ||π ) (6)

Usually we restrict π and ρ to be specific distributions that make Eq (6) easy to calculate. (Dziugaite
& Roy, 2017) proposed a practical way to calculate the PAC-Bayes bound for deep neural networks,
where they assumes π and ρ to be independent multivariate Gaussian. This enables the D( ρ ||π )
term to be easily calculated. We mainly follow the assumptions in (Dziugaite & Roy, 2017):

Assumption 2 Denote N̄ (A,B) for some A ∈ Rn×n and non-negative B ∈ Rn×n as the multivari-
ate Gaussian distribution that W ∼ N̄ (A,B) means W ∈ Rn×n and each Wij is independently
from N (Aij ,Bij). Assume ρ is the distribution N̄ (U ,S) and π is the distribution N̄ (U0, σ

2J),
where U ∈ Rn×n, U0 ∈ Rn×n, S ∈ Rn×n, J = {1}n×n and σ > 0. S is a positive matrix if no
constraint is applied.

Applying the constraint diag(W ) = 0 to ρ and π is equivalent to set diag(U) = 0, diag(S) = 0,
diag(U0) = 0 and diag(σ2J) = 0.

(Dziugaite & Roy, 2017) solved the optimal ρ using stochastic gradient descent, where in each
iteration the gradient is calculated by Monte Carlo method. It should be noticed that Dziugaite and
Roy used the iterative method because they worked on the neural network model, for which the
optimal ρ may not have a closed-form solution. Due to the simplicity of LAE, we find that the
optimal ρ for Eq (6) has closed-form solution, as shown in Theorem 3 (1). This allows us to solve ρ
directly and avoid time-consuming iterative methods.
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Theorem 3 (1) The closed-form solution of the optimal ρ of Eq (6) is given by

U =

(
1

m
RTR+

1

2λσ2
I

)−1(
1

m
RTR+

1

2λσ2
U0

)
, Sij =

1
2λ
m
RT

∗iR∗i +
1
σ2

for i, j ∈ {1, 2, ..., n}

(2) If we add the constraint diag(W ) = 0 to ρ and π, then the optimal ρ becomes

Sij =
1

2λ
m
RT

∗iR∗i +
1
σ2

, Sii = 0 for i, j ∈ {1, 2, ..., n} and i ̸= j

U =

(
1

m
RTR+

1

2λσ2
I

)−1(
1

m
RTR+

1

2λσ2
U0 −

1

2
Diag(x)

)
where

x = 2 · diag

[(
1

m
RTR+

1

2λσ2
I

)−1(
1

m
RTR+

1

2λσ2
U0

)]
⊘ diag

[(
1

m
RTR+

1

2λσ2
I

)−1
]

Here ⊘ means element-wise division and Diag(x) means expanding x ∈ Rn to an n × n diagonal
matrix.

Once the U and S for the optimal ρ are obtained, we can calculate the closed-form solutions of
EW∼ρ[R

emp(W )] and D( ρ ||π ), as shown in the proof of Theorem 3.

4.3 EASY-TO-CALCULATE UPPER BOUND FOR Ψπ,D(λ,m)

Since Ψπ,D(λ,m) = lnEπED[e
λ(Rtrue(W )−Remp(W ))] and Remp(W ) ≥ 0, based on the idea of (Ger-

main et al., 2016), we can get an upper bound of Ψ by removing −Remp(W ): Let Ψ′
π,D(λ) =

lnEπ[e
λRtrue(W )], then Ψπ,D(λ,m) ≤ Ψ′

π,D(λ). Ψ
′ does not converge as m → ∞ since it is inde-

pendent of m, but it is easier to calculate than Ψ.

Denote Σr = Er∼D[rr
T ], then

Eπ

[
eλR

true(W )
]
= Eπ[expλEr∼D[r

T (I −W )]] = Eπ

[
expλ

(
n∑

i=1

(I −W )T∗iΣr(I −W )∗i

)]

= Eπ

[
expλ

(
n∑

i=1

∥∥∥Σ1/2
r (I −W )∗i

∥∥∥2
F

)]
=

n∏
i=1

Eπ

[
expλ

(∥∥∥Σ1/2
r (I −W )∗i

∥∥∥2
F

)]

Since (I −W )ii = 0, (I −W )∗i ∼ N
(
(I − U0)∗i, σ

2(I − Ii)
)
, where Ii is a matrix with Iiii = 1

and other entries being 0. So Σ
1/2
r (I −W )∗i ∼ N

(
Σ

1/2
r (I − U0)∗i, σ

2(Σr − (Σ
1/2
r )∗i(Σ

1/2
r )T∗i)

)
.

Denote A(i) = σ2(Σr − (Σ
1/2
r )∗i(Σ

1/2
r )T∗i), then A(i) is singular and positive semi-definite. Let

A(i) = S(i)TΛ(i)S(i) be the eigenvalue decomposition where S(i) is orthogonal and Λ(i) =

diag(η(i)1 , η
(i)
2 , ..., η

(i)
n ). Also denote µi = Σ

1/2
r (I − U0)∗i. Then

Eπ

[
eλR

true(W )
]
=

n∏
i=1

n∏
j=1

exp

(
λ(b

(i)
j )2η

(i)
j

1−2ληj

)
(
1− 2λη

(i)
j

)1/2 , where b(i) = S(i)(A(i))−1/2µi (7)

Eq (7) is obtained by applying Eq (11) where we take m = 1. The problem with Eq (7) is the
computational complexity: We need to calculate the eigenvalue decomposition for each A(i) in
order to obtain S(i) and Λ(i). Since each eigenvalue decomposition costs O(n3), the computation
of Eq (7) costs O(n4), which is impractical.

Here we show how to find a practical upper bound for Eq (7). Let π′ be the distribution that for
any W ∼ π′, diag(W ) ∼ N (0, σ2I). The only difference between π and π′ is that, π constrains

7
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diag(W ) to be constant zeros, while π′ constrains the diag(W ) to be i.i.d. Gaussian random vari-
ables with zero mean.

W ∼ π′ gives (I −W )∗i ∼ N
(
(I − U0)∗i, σ

2I
)
, Σ1/2

r (I −W )∗i ∼ N
(
Σ

1/2
r (I − U0)∗i, σ

2Σr

)
.

Let A = σ2Σr, and A = STΛS be the eigenvalue decomposition where S is orthogonal and
Λ = diag(η1, η2, ..., ηn), then we have

Eπ′

[
eλR

true(W )
]
=

n∏
i=1

n∏
j=1

exp
(

λ(b̄ij)
2ηj

1−2ληj

)
(1− 2ληj)

1/2
, where b̄i = SA−1/2µi (8)

and the following theorem:

Theorem 4 Eπ

[
eλR

true(W )
]
≤ Eπ′

[
eλR

true(W )
]

for any λ ∈
(
0, 1

2η1

)
.

Note that Eπ′

[
eλR

true(W )
]

is much easier to calculate: We only need to calculate the eigenvalue

decomposition of A, so Eq (8) costs O(n3). Let Ψ′
π′,D(λ) = lnEπ′

[
eλR

true(W )
]
, then Ψ′

π′,D(λ) ≥
Ψ′

π,D(λ). Hence Ψ′
π′,D(λ) is a practical upper bound for Ψ′

π,D(λ).

The last thing we need to do is to obtain Σr. Since D is unknown, we can not calculate Σr directly,
thus we need an approximation.

Let R′ ∈ Rm′×n be the entire dataset where we take the first m rows to be the training set and the
rest m′ − m rows to be the test set, and let Σ̂r = 1

m′R
′TR′, then Σ̂r is an unbiased estimator of

Σr. This is because, let M be a distribution such that r ∼ D is equivalent to rrT ∼ M, then each
R′T

i∗R
′
i∗ is i.i.d. sampled from M, Σ̂r is the sample mean, and Σr is the expectation. By law of

large numbers, we have Σ̂r
p−→ Σr as m′ → ∞. Therefore, we use Σ̂r to approximate Σr. The error

between Σ̂r to approximate Σr is discussed in Appendix C.

Let Σ̂r = S′TΛ′S′ be the eigenvalue decomposition where Λ′ = diag(η′1, η
′
2, ..., η

′
n). The approxi-

mation of Eq (8) can be made by replacing Σr with Σ̂r, specifically, replacing b̄i with 1
σS

′(I−U0)∗i
and ηj with σ2η′j for all j in Eq (8). Then

Êπ′

[
eλR

true(W )
]
=

n∏
i=1

n∏
j=1

exp

(
λη′

j(S
′
j∗(I−U0)∗i)

2

1−2λσ2η′
j

)
(
1− 2λσ2η′

j

)1/2 =

n∏
j=1

exp

(
λη′

j∥S′
j∗(I−U0)∥2

F
1−2λσ2η′

j

)
(
1− 2λσ2η′

j

)n/2
≈ Eπ′

[
eλR

true(W )
]

Denote approx(Ψ′
π′,D(λ)) = ln Êπ′

[
eλR

true(W )
]
, then approx(Ψ′

π′,D(λ)) ≈ Ψ′
π′,D(λ).

4.4 THE FINAL BOUND

Consider we fix π and search λ in a set L = {λ1, λ2, ...λl}. If the set contains |L| candidate values
for λ, then the term |L| should be included to the bound. See Appendix B.

The final bound is shown as follows: Let U0, σ be the parameters of π and U ,S be the parameters
of ρ. Suppose U0, σ are given. For any λ ∈ L, with probability at least 1− δ,

EW∼ρ[R
true(W )] ⪅ EW∼ρ[R

emp(W )] +
1

λ

[
D( ρ ||π ) + ln

|L|
δ

+ approx
(
Ψ′

π′,D(λ)
)]

(9)

where

EW∼ρ[R
emp(W )] =

1

m

m∑
i=1

RiV RT
i = ∥V 1/2R∥2F

V = I − U − UT + UUT + diag

(
n∑

j=1

S1j ,
n∑

j=1

S2j , ...,
n∑

j=1

Snj

)

D( ρ ||π ) =
1

2

(n2 − n)(2 lnσ − 1)−
n∑

i=1

n∑
j=1,j ̸=i

(lnSij −
Sij

σ2
) +

∥U − U0∥2F
σ2
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approx
(
Ψ′

π′,D(λ)
)
=

n∑
i=1

(
λη′

i

1− 2λη′
iσ

2

∥∥S′
i∗(I − U0)

∥∥2
F
− n

2
ln
(
1− 2λη′

iσ
2))

The whole process to calculate the PAC-Bayes bound for EASE is summarized as Algorithm 1.

Algorithm 1 Calculate the PAC-Bayes bound for EASE
Initialize L = {λ1, λ2, ..., λl}, δ, U0, σ, and an empty array A = {}.
for each λi in L:

Calculate U ,S by Theorem 3 (2).
Calculate the right hand side of Eq (9), store the result as Ai, and append Ai to A.

return the minimum element in A.

5 EXPERIMENTS

Our experiments run on a machine with 500 GB RAM and a Nvidia A100 GPU. The GPU has 80
GB RAM. We use 4 datasets: MovieLens 20M, Netflix, Yelp2018 and MSD. The details of the
datasets are shown in Table 1.

Table 1: Dataset information
Dataset MovieLens 20M Netflix Yelp2018 MSD
#rows 138493 480189 905136 1017982

#rows (training set) 117718 408160 769365 865284
#columns 26744 17770 40000 40000
#ratings 2000263 100480507 1969320 33687193

rating range [0, 5] [0, 5] [0, 5] [0, 9667]

For Yelp2018 and MSD datasets, we truncated the rating matrices by keeping the first 40000
columns and all the rows containing non-zero elements in the first 40000 columns. For each dataset,
we take the first 85% of rows of the rating matrix as the training set and the rest 15% rows as the
test set.

The computation of PAC-Bayes bound for EASE mainly follows Algorithm 1. We set L =
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512}, δ = 0.01, σ = 0.001. For each dataset and each choice of
γ in the set {50, 100, 200, 400}, we solve the W0 of Eq (2), set U0 = W0, and run Algorithm 1 to
calculate the PAC-Bayes bound.

We evaluate the non-vacuousness by comparing the gap between the PAC-Bayes bound and the test
error. To the best of our knowledge, there is no universally accepted definition for how small the
gap must be to consider a theoretical bound non-vacuous. (Dziugaite & Roy, 2017) showed in their
experiments that PAC-Bayes bounds within 10× the test error can be considered non-vacuous. We
adopt this criterion in our work.

The results are shown in Table 2. Our PAC-Bayes bound is within 3× the test error on MovieLens
20M, Netflix and MSD, and is within 4× the test error on Yelp2018, for all choices of γ. Thus we
consider the bound non-vacuous.

Since the bound is composed of the terms λ,D( ρ ||π ), Remp(W ) and approx
(
Ψ′

π′,D(λ)
)
, for each

PAC-Bayes bound result in Table 2, we we present the corresponding values of these terms in Table
3 of Appendix E.

6 CONCLUSIONS AND DISCUSSIONS

This paper studies the generalizability of multivariate linear regression and LAE. We propose a new
PAC-Bayes bound for multivariate linear regression, which generalizes Shalaeva’s bound for multi-
ple linear regression (Shalaeva et al., 2020). We also present a convergence analysis and demonstrate
the sufficient conditions that ensure the bound’s convergence. To illustrate how the bound applies
to LAE, we use it with EASE, a simple yet very effective LAE recommendation model, and de-
velop a practical method to calculate the optimal parameters that minimize the bound. This method
primarily addresses the calculation challenges introduced by the zero diagonal constraint of EASE.
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Table 2: Experiment results of the PAC-Bayes bound for EASE

Dataset MovieLens 20M Netflix Yelp2018 MSD

γ = 50
training error 737.54 1359.39 33.18 1172.46

test error 1368.78 1661.67 18.29 1965.40
PAC-Bayes bound 1674.76 2870.11 61.50 2436.74

γ = 100
training error 728.59 1277.50 33.52 1174.46

test error 1290.19 1627.43 17.93 1946.83
PAC-Bayes bound 1696.18 2870.23 61.16 2433.95

γ = 200
training error 774.94 1362.24 34.02 1177.73

test error 1240.14 1638.99 17.60 1923.70
PAC-Bayes bound 1724.65 2871.98 60.74 2435.44

γ = 400
training error 797.71 1366.47 34.66 1182.98

test error 1193.81 1622.19 17.32 1895.80
PAC-Bayes bound 1759.83 2877.29 60.25 2438.74

Extending to other LAE models: Another class of Linear Autoencoder (LAE) models employs
low-rank approximations to represent and constrain W . While our multivariate linear regression
approach can potentially be applied and generalized to these models (though special handling is
needed to model a low-rank W from a certain distribution, which is non-trivial), they are generally
less effective than the zero-diagonal constraint on W in recommendation settings. Consequently,
we chose not to explicitly discuss them in this paper, focusing instead on the more effective zero-
diagonal constraint, which better aligns with the practical demands of recommendation tasks.

Empirical Implication and Potential Applications of PAC-Bayes Bound for Recommendation
Setting: In implicit recommendation settings, the performance of recommendation models is typi-
cally evaluated using top-k metrics such as Recall@k or NDCG@k during offline evaluation. How-
ever, optimizing these metrics directly is challenging due to their non-differentiable nature. As a
result, recommendation models often rely on surrogate loss functions – for example, linear rec-
ommendation models commonly minimize the sum of squared element-wise errors. This reliance
creates a potential mismatch, as the loss function optimized during training does not directly align
with the metrics used for evaluation.

While PAC-Bayes bounds are derived for the surrogate loss (e.g., sum of squared errors), they can
be recast to indirectly relate to evaluation metrics by decomposing the bound into two components:
(1) a generalization bound on the surrogate loss, and (2) the empirical correlation between the sur-
rogate loss and top-k metrics. This decomposition provides a theoretical framework to quantify the
mismatch and understand how improving generalization on the surrogate loss translates to better
performance on top-k metrics.

Additionally, since recommendation models depend on surrogate loss functions, ensuring that these
functions generalize well to unseen data is critical. PAC-Bayes bounds offer guarantees on the
generalization of surrogate losses, which is a necessary condition for achieving strong downstream
performance. Thus, while surrogate losses do not directly align with top-k metrics like Recall@k or
NDCG@k, demonstrating low generalization error on the surrogate loss provides a strong theoretical
foundation for the model’s ability to perform well on these evaluation metrics.

For instance, if a model performs poorly on the top-k metrics, PAC-Bayes bounds can help identify
whether the poor results are likely due to model uncertainty (indicated by a large bound) or other
factors: 1) A large PAC-Bayes bound could indicate high model uncertainty, suggesting insufficient
training or data sparsity. 2) A small PAC-Bayes bound coupled with poor performance might point
to issues like suboptimal surrogate metrics, data distribution shifts, or model design.

Quantifying the Gap between model loss and top k metrics: Finally, we would like to point that
there is lack of formal analytical framework that links various loss functions to top-k recommenda-
tion metrics in implicit settings. Establishing such a connection would bridge the divide between
training objectives and evaluation metrics, potentially enabling the development of more effective
recommendation models. We argue that addressing this challenge is an important open problem for
both the recommendation systems and machine learning communities.
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A PROOFS OF THE THEOREMS

Proof of Theorem 1:

Given W , let (x, y) ∼ D, and denote v = y − Wx, then v ∼ N (µ
W
,Σ

W
). Suppose there exists

Q ∈ Rp×p such that Σ
W

= QQT . Such Q exists since we can take Q = Σ1/2
W

= STΛ1/2S, but we
do not assume it to be unique. Let ϵ ∼ N (0, I), then we can write v = Qϵ+ µ

W
. Thus,

Rtrue(W ) = E(x,y)∼D
[
∥y −Wx∥2F

]
= Eϵ

[
∥Qϵ+ µ

W
∥2F
]
= Eϵ

[
(Qϵ+ µ

W
)T (Qϵ+ µ

W
)
]

= Eϵ[ϵ
TQTQϵ+ µT

W
Qϵ+ ϵTQTµ

W
+ µT

W
µ

W
] = tr(QTQ) + µT

W
µ

W

= tr(QQT ) + µT
W
µ

W
= tr(Σ

W
) + µT

W
µ

W
(10)

Also, we can express the random variable ∥v∥2F in quadratic form (Representation 3.1a.1, (Mathai
& Provost, 1992)):

∥v∥2F = vT v = (Qϵ+ µ
W
)T (Qϵ+ µ

W
)

= (Qϵ+ µ
W
)TΣ−1/2

W
Σ

W
Σ−1/2

W
(Qϵ+ µ

W
)

= (Σ−1/2
W

Qϵ+Σ−1/2
W

µ
W
)TΣ

W
(Σ−1/2

W
Qϵ+Σ−1/2

W
µ

W
)

= (Σ−1/2
W

Qϵ+Σ−1/2
W

µ
W
)TSTΛS(Σ−1/2

W
Qϵ+Σ−1/2

W
µ

W
)

= (SΣ−1/2
W

Qϵ+ SΣ−1/2
W

µ
W
)TΛ(SΣ−1/2

W
Qϵ+ SΣ−1/2

W
µ

W
)

Denote ϵ′ = SΣ−1/2
W

Qϵ, then ϵ′ ∼ N (0, I). This is because E[ϵ′] = SΣ−1/2
W

QE[ϵ] = 0 and

Cov[ϵ′] = E[ϵ′ϵ′T ] = SΣ−1/2
W

QE[ϵϵT ]QTΣ−1/2
W

ST = I

As b = SΣ−1/2
W

µ
W

, we can write

∥v∥2F = (ϵ′ + b)TΛ(ϵ′ + b) =

p∑
i=1

ηi(ϵ
′
i + bi)

2

Hence each ϵ′i + bi is independently from N (bi, 1), and (ϵ′i + bi)
2 is independently from the non-

central chi-squared distribution of noncentrality parameter b2i and with degree 1 of freedom. Thus
the MGF of (ϵ′i + bi)

2 is

M(ϵ′i+bi)2(t) = E(ϵ′i+bi)2 [e
t(ϵ′i+bi)

2

] =
exp

(
b2i t
1−2t

)
(1− 2t)1/2

Let vj = yj −Wxj such that v1, v2, ..., vm are i.i.d. from N (µ
W
,Σ

W
), then

Remp(W ) =
1

m

m∑
j=1

∥yj −Wxj∥2F =
1

m

m∑
j=1

∥vj∥2F

Hence the MGF of Remp(W ) is

MRemp(W )(t) = ES∼Dm

[
etR

emp(W )
]
= ES∼Dm

exp
 t

m

m∑
j=1

∥vj∥2F


=

(
ES∼Dm

[
exp

(
t

m
∥v∥2F

)])m

=

(
ES∼Dm

[
exp

(
t

m

p∑
i=1

ηi(ϵ
′
i + bi)

2

)])m

=

(
p∏

i=1

E(ϵ′i+bi)2

[
exp

(
tηi
m

(ϵ′i + bi)
2

)])m

=

 p∏
i=1

exp
(

tb2iηi

m−2tηi

)
(1− 2tηi/m)

1/2

m

=
exp

(∑p
i=1

tmb2iηi

m−2tηi

)
∏p

i=1 (1− 2tηi/m)
m/2

(11)
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By Eq (10) and Eq (11), we can expand Ψπ,D(λ,m) as

Ψπ,D(λ,m) = lnEW∼πES∼Dm [eλ(R
true(W )−Remp(W )]

= lnEW∼π

[
eλR

true(W )ES∼Dm [e−λRemp(W )]
]

= lnEW∼π

exp (λ (tr(Σ
W
) + µT

W
µ

W

)) exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2

 (12)

Use the inequality that for any x > 0 and k > 0, e
xk

x+k < (xk+1)k 1, and the fact tr(Σ
W
) =

∑p
i=1 ηi,

we have

lnEW∼π

exp (λ (tr(Σ
W
) + µT

W
µ

W

)) exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2


≤ lnEW∼π

exp (λ (tr(Σ
W
) + µT

W
µ

W

)) exp(∑p
i=1

−λmb2iηi

m+2ληi

)
∏p

i=1 exp
(

mληi

m+2ληi

)


= lnEW∼π exp

(
λµT

W
µ

W
+

p∑
i=1

λ(ηi −
mb2i ηi

m+ 2ληi
)−

p∑
i=1

mληi
m+ 2ληi

)

= lnEW∼π exp

(
λµT

W
µ

W
+

p∑
i=1

2λ2η2i − λmb2i ηi
m+ 2ληi

)

≤ lnEW∼π exp

(
λ(µT

W
µ

W
−

p∑
i=1

b2i ηi) +
2λ2(

∑p
i=1 η

2
i )

m

)
= lnEW∼π exp

(
2λ2(

∑p
i=1 η

2
i )

m

)
The last equality above is because

p∑
i=1

b2i ηi = bTΛb = µT
W
Σ−1/2

W
STΛSΣ−1/2

W
µ

W
= µT

W
µ

W

Since
p∑

i=1

η2i = tr(STΛ2S) = tr(Σ2
W
) = tr(Σ

W
ΣT

W
) = ∥Σ

W
∥2F

we have

lnEW∼π exp

(
2λ2(

∑p
i=1 η

2
i )

m

)
= lnEW∼π exp

(
2λ2∥Σ

W
∥2F

m

)
□

Proof of Theorem 2:

By Eq (12), we let {fm}m∈N be a sequence of functions where

fm(W ) = exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

)) exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2

for m > 0, and
f0(W ) = exp

(
λ
(
tr(Σ

W
) + µT

W
µ

W

))
Note that each fi is a non-negative function.

1Since x
x+1

< ln(x+ 1) for any x > −1, replacing x with x
k

, and taking exponential on both sides, we get

e
xk

x+k < (x
k
+ 1)k.

14
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Now we prove the following three conditions:

(1) fm(W ) ≤ f0(W ) for any m and W .

Since λ > 0 and ηi > 0 for all i, we have f0(W ) ≥ f1(W ) ≥ f2(W )... for any W . This is
because, when W is fixed, the numerator exp

(∑p
i=1

−λmb2iηi

m+2ληi

)
is monotonically decreasing with

m for m ≥ 0, the denominator
∏p

i=1 (1 + 2ληi/m)
m/2 is monotonically increasing with m for

m > 0, and (1 + 2ληi/m)
m/2 ≥ 1 for any m > 0.

(2) fm → 1 pointwisely as m → ∞.

For any W ,

lim
m→∞

fm(W ) = exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

))
lim

m→∞

exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2

= exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

)) exp
(∑p

i=1 lim
m→∞

−λmb2iηi

m+2ληi

)
∏p

i=1 lim
m→∞

(1 + 2ληi/m)
m/2

= exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

)) exp (∑p
i=1 −λb2i ηi

)∏p
i=1 exp (ληi)

= 1

The last inequality uses the facts that
∑p

i=1 b
2
i ηi = µT

W
µ

W
and

∑p
i=1 ηi = tr(Σ

W
).

(3) E[f0] < ∞.

E[f0] = E exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

))
= E exp

(
λ
[
tr((W ∗ −W )Σx(W

∗ −W )T +Σe) + ∥(W ∗ −W )µx∥2F
])

= E exp

(
λ

[
p∑

i=1

(W ∗ −W )i∗Σx(W
∗ −W )Ti∗ + tr(Σe) +

p∑
i=1

(W ∗ −W )i∗µxµ
T
x (W

∗ −W )Ti∗

])

= E exp

(
λ

[
p∑

i=1

(W ∗ −W )i∗
[
Σx + µxµ

T
x

]
(W ∗ −W )Ti∗ + tr(Σe)

])

= E exp

(
λ

[∥∥∥(Σx + µxµ
T
x

)1/2
(W ∗ −W )

∥∥∥2
F
+ tr(Σe)

])
= exp (λtr(Σe))E exp

(
λ

[∥∥∥(Σx + µxµ
T
x

)1/2
(W ∗ −W )

∥∥∥2
F

])
< ∞

The last inequality holds because E exp

(
λ

[∥∥∥(Σx + µxµ
T
x

)1/2
(W ∗ −W )

∥∥∥2
F

])
< ∞ is our as-

sumption and exp (λtr(Σe)) is a constant.

Denote E = Rp×p such that W ∈ E. Since W ∼ π, we consider π as a probability measure µ on
E with µ(E) = 1. Then we can express E [fm] as a Lebesgue integral:

E [fm] =

∫
E

fmdµ

Also, condition (3) can be written as
∫
E
f0dµ < ∞. Since the conditions (1), (2) and (3) hold, by

the Dominated Convergence Theorem (Theorem 11.32, (Rudin, 1976) 2), we have

lim
m→∞

∫
E

fmdµ =

∫
E

lim
m→∞

fmdµ =

∫
E

1dµ = 1

2Another version of the theorem is Theorem 5.3.3, (Resnick, 1998). We use Rudin’s version since it makes
the proof easier to understand.
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Or equivalently,
lim

m→∞
E [fm] = E

[
lim

m→∞
fm

]
= E[1] = 1

Since ln is continuous on (0,∞), we can interchange lim and ln. Therefore,

lim
m→∞

Ψπ,D(λ,m) ≤ lim
m→∞

lnE[fm] = ln lim
m→∞

E[fm] = ln 1 = 0

□

Proof of Lemma 1:

Let X ∼ N (µ, σ2), then for any t > 0,

EX [tYk] =

∫
exp

(
t

k∑
i=0

aix
i

)
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
dx

=
1√
2πσ

∫
exp

(
t

k∑
i=0

aix
i − (x− µ)2

2σ2

)
dx (13)

Since k ≥ 3 and ak > 0, t
∑k

i=0 aix
i − (x−µ)2

2σ2 is a polynomial of x with degree ≥ 3, with leading
coefficient being positive, thus

lim
x→∞

exp

(
t

k∑
i=0

aix
i − (x− µ)2

2σ2

)
= ∞

And the integral in Eq (13) is infinity.

□

Proof of Theorem 3:

(1) Denote V = EW∼ρ[(I −W )(I −W )T ], then

EW∼ρ[R
emp(W )] =

1

m
EW∼ρ[∥R−RW∥2F ] =

1

m

m∑
i=1

EW∼ρ[∥Ri −RiW∥2F ]

=
1

m

m∑
i=1

RiEW∼ρ[(I −W )(I −W )T ]RT
i =

1

m

m∑
i=1

RiV RT
i

V is a function of U and S, i.e.,

V = EW∼ρ[(I −W )(I −W )T ] = I − EW∼ρ[W ]− EW∼ρ[W
T ] + EW∼ρ[WWT ]

= I − U − UT +

UUT + diag

 n∑
j=1

S1j ,

n∑
j=1

S2j , ...,

n∑
j=1

Snj


D( ρ ||π ) can also be written as a function of U and S by

D( ρ ||π ) =
1

2

n2(2 lnσ − 1)−
n∑

i=1

n∑
j=1

(lnSij −
Sij

σ2
) +

∥U − U0∥2F
σ2


Denote f(U ,S|U0, σ, λ) =

1
m

∑m
i=1 RiV RT

i + 1
λD( ρ ||π ), our optimization problem becomes

min
U,S

f(U ,S|U0, σ, λ) (14)

The optimal U and S has closed-form solution, which can be obtained by solving
∂
∂U f(U ,S|U0, σ, λ) = 0 and ∂

∂S f(U ,S|U0, σ, λ) = 0.
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First we show the partial derivatives of the 1
λD( ρ ||π ) term:

∂

∂Uij

1

λ
D( ρ ||π ) =

(Uij − (U0)ij)

λσ2
,

∂

∂Sij

1

λ
D( ρ ||π ) = − 1

2λ
(
1

Sij
− 1

σ2
)

Then we discuss the partial derivatives of the 1
m

∑m
i=1 RiV RT

i term. Given i, for any j,

∂

∂Sij

1

m

m∑
l=1

RlV RT
l =

∂

∂Sij

1

m

m∑
l=1

Rldiag

(
n∑

k=1

S1k,

n∑
k=1

S2k, ...,

n∑
k=1

Snk

)
RT

l

=
∂

∂Sij

1

m

m∑
l=1

RliSijRli =
1

m

m∑
l=1

R2
li =

1

m
RT

∗iR∗i

Besides,
∂

∂Uij

1

m

m∑
l=1

RlV RT
l =

∂

∂Uij

1

m

m∑
l=1

Rl(−U − UT + UUT )RT
l

Since
∂

∂Uij

1

m

m∑
l=1

RlURT
l =

∂

∂Uij

1

m

m∑
l=1

RliUijRlj =
1

m
RT

∗iR∗j

∂

∂Uij

1

m

m∑
l=1

RlUUTRT
l =

∂

∂Uij

1

m

m∑
l=1

n∑
k=1

(RlU∗k)
2
=

∂

∂Uij

1

m

m∑
l=1

(RlU∗j)
2
=

2

m

m∑
l=1

Rli(RlU∗j)

=
2

m

m∑
l=1

(RliRl)U∗j =
2

m
RT

∗iRU∗j

Therefore,

∂

∂Uij

1

m

m∑
l=1

RlV RT
l = − 1

m
RT

∗iR∗j −
1

m
RT

∗jR∗i +
2

m
RT

∗iRU∗j =
2

m

(
−RT

∗iR∗j +RT
∗iRU∗j

)
Wrap up the above results, we get

∂

∂Sij
f(U ,S|U0, σ, λ) =

1

m
RT

∗iR∗i −
1

2λ
(
1

Sij
− 1

σ2
) (15)

∂

∂Uij
f(U ,S|U0, σ, λ) =

2

m

(
−RT

∗iR∗j +RT
∗iRU∗j

)
+

(Uij − (U0)ij)

λσ2
(16)

Therefore, the solution of ∂
∂S f(U ,S|U0, σ, λ) = 0 is that, for any i = 1, 2, ..., n,

Sij =
1

2λ
mRT

∗iR∗i +
1
σ2

for j = 1, 2, ..., n (17)

By Eq (16) we have

∂

∂U
f(U ,S|U0, σ, λ) =

[
2

m
(−RTR+RTRU) + 1

λσ2
(U − U0)

]T
(18)

Thus the solution of ∂
∂U f(U ,S|U0, σ, λ) = 0 is

U =

(
1

m
RTR+

1

2λσ2
I

)−1(
1

m
RTR+

1

2λσ2
U0

)
(19)

Now we show that f(U ,S|U0, σ, λ) is a convex function, thus the solutions of S in Eq (17) and U
in Eq (19) are the global minimizer of Eq (14). Denote ν ∈ R2n2

where for i = 1, 2, ..., n and j =

17
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1, 2, ..., n, ν(i−1)n+j = Uij and νn2+(i−1)n+j = Sij . Let Hf ∈ R2n2×2n2

be the Hessian matrix

where (Hf )ij = ∂2f
∂νi∂νj

. Then we can write Hf =

[
A 0
0 B

]
where A = (RTR) ⊗ In + 1

λσ2 In2

and B is a n2 × n2 diagonal matrix with B(i−1)n+j,(i−1)n+j =
1

2λ(Sij)2
. Here ⊗ means Kronecker

product.

The Kronecker product has a property that, let {λi|i = 1, ...,m} be the eigenvalues of A ∈ Rm×m

and {µj |j = 1, ..., n} be the eigenvalues of B ∈ Rn×n, then {λiµj |i = 1, ...,m, j = 1, ..., n } are
the eigenvalues of A⊗B (Theorem 4.2.12, (Horn & Johnson, 1991)). Since RTR is positive semi-
definite and In is positive definite, (RTR)⊗ In is positive semi-definite. Thus A is positive definite.
Since all elements of S is positive, B is positive definite. Therefore, Hf is a positive definite matrix
for any U and S, which means f(U ,S|U0, σ, λ) is a convex function. Thus, the solutions of S in Eq
(17) and U in Eq (19) give the global minimum.

(2) Since applying diag(W ) = 0 to ρ and π is equivalent to set diag(U) = 0, diag(S) = 0,
diag(U0) = 0, and diag(σ2J) = 0, the D( ρ ||π ) term in f(U ,S|U0, σ, λ) is changed to D( ρ ||π ) =
1
2

[
(n2 − n)(2 lnσ − 1)−

∑n
i=1

∑n
j=1,j ̸=i(lnSij − Sij

σ2 ) +
∥U−U0∥2

F

σ2

]
. In this case, Eq (15) holds

only for i ̸= j.

We let S11,S22, ...,Snn be zero constants in f(U ,S|U0, σ, λ), and consider only the off-diagonal
elements of S to be variables. Then we construct the Lagrangian function as

L(U ,S, x|U0, σ, λ) = f(U ,S|U0, σ, λ) + xT diag(U)
for some x ∈ Rn, and solve

∂L

∂x
= [diag(U)]T = 0 (20)

∂L

∂U
=

[
∂

∂U
f(U ,S|U0, σ, λ) + Diag(x)

]T
= 0 (21)

∂L

∂Sij
=

∂

∂Sij
f(U ,S|U0, σ, λ) = 0 for i, j ∈ {1, 2, ..., n}, i ̸= j (22)

The optimal S is obtained by solving Eq (22) and set Sii = 0 for all i. The solution of Eq (22) is Eq
(17) with i ̸= j. The optimal U is obtained by solving Eq (21) and Eq (20). By Eq (21),

2

m
(−RTR+RTRU) + 1

λσ2
(U − U0) + Diag(x) = 0

⇐⇒U =

(
1

m
RTR+

1

2λσ2
I

)−1(
1

m
RTR+

1

2λσ2
U0 −

1

2
Diag(x)

)
(23)

Then we solve x to satisfy Eq (20),

diag(U) = diag

[(
1

m
RTR+

1

2λσ2
I

)−1(
1

m
RTR+

1

2λσ2
U0

)]
− diag

[
1

2

(
1

m
RTR+

1

2λσ2
I

)−1

Diag(x)

]

= diag

[(
1

m
RTR+

1

2λσ2
I

)−1(
1

m
RTR+

1

2λσ2
U0

)]
− 1

2
diag

[(
1

m
RTR+

1

2λσ2
I

)−1
]
⊙ x = 0

we get

x = 2 · diag

[(
1

m
RTR+

1

2λσ2
I

)−1(
1

m
RTR+

1

2λσ2
U0

)]
⊘ diag

[(
1

m
RTR+

1

2λσ2
I

)−1
]

To show the solution of Eq (20), Eq (21) and Eq (22) gives the global minimum of the problem Eq
(14) under the constraint diag(W ) = 0, we use the lemma that if the Hessian matrix HL where
(HL)ij =

∂2L
∂νi∂νj

is positive definite for any U ,S, x, then any solution of ∂L
∂U = 0, ∂L

∂S = 0, ∂L
∂x = 0

will satisfy the second order sufficient conditions (Section 11.5, (Luenberger & Ye, 2008)), thus
becomes a local minimizer.
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It is easy to show that if we remove the dimensions corresponding to S11,S22, ...Snn of Hf and get
H ′

f ∈ R(2n2−n)×(2n2−n), then H ′
f will be equivalent to HL. Thus HL is always positive definite.

Since the solution of Eq (20), Eq (21) and Eq (22) is unique, it gives the global minimum.

□

Proof of Theorem 4:

Let P,Q ∈ Rn×n be two symmetric matrices, we write P ⪰ Q if P − Q is positive semi-definite
and P ≻ Q if P −Q is positive definite.

Let ηj be the jth largest eigenvalue of A and η
(i)
j be the jth largest eigenvalue of A(i). By Corollary

7.7.4 (c) of (Horn & Johnson, 2012), P ⪰ Q implies ηj(P ) ≥ ηj(Q) for any j. Since A − A(i) =

σ2(Σ
1/2
r )∗i(Σ

1/2
r )T∗i ⪰ 0 for any i, we have ηj ≥ η

(i)
j for any i, j.

Since b(i) = S(i)(A(i))−1/2µi, we have

(b
(i)
j )2η

(i)
j = η

(i)
j (µi)T (A(i))−1/2(S

(i)
j∗ )

TS
(i)
j∗ (A

(i))−1/2µi

= η
(i)
j (µi)T (S(i))T (Λ(i))−1/2[S(i)(S

(i)
j∗ )

T ][S
(i)
j∗ (S

(i))T ](Λ(i))−1/2(S(i))µi

= (µi)T (S
(i)
j∗ )

T (S
(i)
j∗ )µ

i

Therefore,

Eπ

[
eλR

true(W )
]
=

n∏
i=1

n∏
j=1

exp

(
t(b

(i)
j )2η

(i)
j

1−2ληj

)
(
1− 2λη

(i)
j

)1/2 =

n∏
i=1

n∏
j=1

exp

(
λ(µi)T (S

(i)
j∗ )T (S

(i)
j∗ )µi

1−2ληj

)
(
1− 2λη

(i)
j

)1/2

=

n∏
i=1

exp

(
λ(µi)T

(∑n
j=1

(S
(i)
j∗ )T (S

(i)
j∗ )

1−2ληj

)
µi

)
∏n

j=1

(
1− 2λη

(i)
j

)1/2 =

n∏
i=1

exp
(
λ(µi)T (S(i))T Λ̄(i)S(i)µi

)
∏n

j=1

(
1− 2λη

(i)
j

)1/2
where Λ̄(i) = diag

(
1

1−2λη
(i)
1

, 1

1−2λη
(i)
2

, ..., 1

1−2λη
(i)
n

)
.

Similarly we have

Eπ′

[
eλR

true(W )
]
=

n∏
i=1

exp
(
λ(µi)TST Λ̄Sµi

)∏n
j=1 (1− 2ληj)

1/2

where Λ̄ = diag
(

1
1−2λη1

, 1
1−2λη2

, ..., 1
1−2ληn

)
.

Now we show that ST Λ̄S ⪰ (S(i))T Λ̄(i)S(i) for any i. By Corollary 7.7.4 (a) of (Horn & Johnson,
2012), if P ≻ 0 and Q ≻ 0, then P ⪰ Q if and only if Q−1 ⪰ P−1. Since we assume 0 < λ < 1

2η1
,

we have 1− 2λη
(i)
j > 0 and 1− 2ληj > 0 for any i, j, thus all diagonal elements of Λ̄(i) and Λ̄ are

positive, implying that (S(i))T Λ̄(i)S(i) ≻ 0 and ST Λ̄S ≻ 0.

Since
(
(S(i))T Λ̄(i)S(i)

)−1
= (S(i))T

(
I − 2λΛ(i)

)
S(i) = I−2λA(i) and

(
ST Λ̄S

)−1
= I−2λA,

we have(
(S(i))T Λ̄(i)S(i)

)−1

⪰
(
ST Λ̄S

)−1 ⇐⇒ I − 2λA(i) ⪰ I − 2λA ⇐⇒ A ⪰ A(i)

Thus ST Λ̄S ⪰ (S(i))T Λ̄(i)S(i), implying that (µi)TST Λ̄Sµi ≥ (µi)T (S(i))T Λ̄(i)S(i)µi holds for
any µi. Therefore,

Eπ

[
eλR

true(W )
]
=

n∏
i=1

exp
(
λ(µi)T (S(i))T Λ̄(i)S(i)µi

)
∏n

j=1

(
1− 2λη

(i)
j

)1/2 ≤
n∏

i=1

exp
(
λ(µi)TST Λ̄Sµi

)∏n
j=1 (1− 2ληj)

1/2
= Eπ′

[
eλR

true(W )
]

□
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B ALLOWING MULTIPLE TRAILS ON λ

Since we do not know the optimal value of λ, by the suggestions of (Alquier, 2021), we can choose
a finite grid in (0,+∞) and search λ in the grid. Let L = {λ1, λ2, ..., λl} be the grid where each
λi > 0 and l = |L| is the cardinality of L.

P

(
∀λ ∈ L, EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

|L|
δ

+Ψπ,D(λ,m)

])
≥ 1− δ

This is because

P

(
∀λ ∈ L, EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

|L|
δ

+Ψπ,D(λ,m)

])
= 1− P

(
∃λ ∈ L, EW∼ρ[R

true(W )] > EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

|L|
δ

+Ψπ,D(λ,m)

])

= 1− P

 |L|⋃
i=1

EW∼ρ[R
true(W )] > EW∼ρ[R

emp(W )] +
1

λi

[
D( ρ ||π ) + ln

|L|
δ

+Ψπ,D(λi,m)

]
≥ 1−

|L|∑
i=1

P

(
EW∼ρ[R

true(W )] > EW∼ρ[R
emp(W )] +

1

λi

[
D( ρ ||π ) + ln

|L|
δ

+Ψπ,D(λi,m)

])

≥ 1−
|L|∑
i=1

δ

|L| = 1− δ

C THE ERROR BETWEEN Σ̂r AND Σr

We discuss how to measure the error between (Σ̂r)ij and (Σr)ij for any i, j. Suppose D is a bounded
distribution such that for r ∼ D, ri ∈ [a, b] for any i. Let c = max{|a|, |b|}, then each element in
R′T

i∗R
′
i∗ is within the range [0, c2].

One way to measure the error is to use theoretical bounds based on concentration inequalities. For
example, by Hoeffding’s Inequality,

P
(∣∣∣(Σ̂r)ij − (Σr)ij

∣∣∣ > t
)
≤ 2 exp

(
−2t2m′

c2

)
⇐⇒ P

(∣∣∣(Σ̂r)ij − (Σr)ij

∣∣∣ < c

√
ln (2/δ)

2m′

)
> 1− δ

where we let δ = 2 exp
(
− 2t2m′

c2

)
. Such bounds are rigorous but tend to be vacuous. Further

theoretical bounds based on matrix concentration inequalities can be found in (Tropp et al., 2015).

Another way is to use empirical bounds based on interval estimation. By the Popoviciu’s inequal-
ity (Bhatia & Davis, 2000), the variance of each element in R′T

i∗R
′
i∗ is within the range [0, c2/4]

Therefore, by central limit theorem, we have
√
m′
(
(Σ̂r)ij − (Σr)ij

)
d−→ N (0, σ2

ij) for any i, j,

where σ2
ij ≤ c2/4. For large enough m′, a 99.7% confidence interval would be

P

(∣∣∣(Σ̂r)ij − (Σr)ij

∣∣∣ < 3c2

4m′

)
= P

(
(Σ̂r)ij −

3c2

4m′ < (Σr)ij < (Σ̂r)ij +
3c2

4m′

)
≥ P

(
(Σ̂r)ij −

3σ2
ij

4m′ < (Σr)ij < (Σ̂r)ij +
3σ2

ij

4m′

)
> 0.997

Note that this bound is not for theoretical use since it does not describe with how large m′ the bound
will be satisfied. One commonly used rule of thumb is m′ > 30.

Here we compare the two bounds: taking δ = 0.003, m′ = 100000 and c = 5, the first bound gives

c
√

ln(2/δ)
2m′ ≈ 0.0285, while the second bound gives 3c2

4m′ ≈ 0.00019.

D RELATED WORKS

The earliest PAC-Bayes bound is proposed by (McAllester, 1998). (Alquier et al., 2016) proposed
an oracle PAC-Bayes bound based under Hoeffding assumption. (Germain et al., 2016) applied
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Alquier’s bound to linear regression problem under Gaussian data and parameter distribution as-
sumptions, but the bound does not converge for being independent of the number of samples.
(Shalaeva et al., 2020) improved Germain’s bound by proposing a bound related to the number
of samples, and showed the bound converges as the number of samples increases. Most PAC-Bayes
bounds are theoretical and difficult to calculate in practice, and some research is focused on mak-
ing the bound more practical to compute. (Dziugaite & Roy, 2017) proposed a practical way to
calculate Seeger’s bound (Langford & Seeger, 2001) for neural networks, and showed the bound is
nonvacuous on MNIST dataset, where the bound is around 10× of the test error.

Recent years LAEs gains popularity in recommendation systems (particularly on implicit settings)
due to their simplicity and effectiveness. (Steck, 2019) proposed the EASE model and showed it
surpasses the performance of deep neural network models on recommendation datasets under Recall
and NDCG metrics. Later (Steck, 2020) proposed EDLAE which introduces a mask to the target
function to avoid the parameter matrix overfitting towards identity. (Vančura et al., 2022) proposed
ELSA which constructs the LAE with an item-item similarity matrix AAT − I with zero diagonal.

Most LAE based recommender models constraints the diagonal of the weight matrix to zero. The
zero diagonal constraint is closely related to the trace norm, which is considered as an effective
tool for matrix completion. (Srebro & Salakhutdinov, 2010) applied the weighted traced norm in
collaborative filtering. (Shamir & Shalev-Shwartz, 2014) proposed a sample complexity bound for
the trace norm in matrix completion.

Another type of linear recommendation model is based on matrix factorization, which can be viewed
as a form of low-rank matrix completion (Candes & Tao, 2009; Recht, 2011; Chen et al., 2014; Sre-
bro & Shraibman, 2005; Foygel et al., 2011; Shamir & Shalev-Shwartz, 2011). Matrix factorization
methods have been shown to be highly effective in explicit settings (Koren et al., 2009), where user
preferences are explicitly expressed (e.g., ratings). However, they have been found to be less ef-
fective than LAE models in implicit settings (Cremonesi & Jannach, 2021; Jin et al., 2021), where
interactions are inferred from user behavior (e.g., clicks or purchases).

Some studies have investigated the generalizability of the matrix factorization models. (Srebro et al.,
2004) proposed a PAC bound based on covering number for collaborative filtering. Other general-
ization bounds include (Ledent et al., 2021) for inductive matrix completion and (Ledent & Alves,
2024) for deep non-linear matrix completion.

E SUPPLEMENTAL EXPERIMENT RESULTS

Table 3: Details of the terms in the PAC-Bayes bound in Table 2

Dataset MovieLens 20M Netflix Yelp2018 MSD

γ = 50

λ 32 32 512 32
EW∼ρ[R

emp(W )] 789.86 1412.10 30.41 1151.06
D( ρ ||π ) 0.0888 0.1011 0.0036 0.7033

approx
(
Ψ′

π′,D(λ)
)

28310.00 46649.43 15910.84 41133.95

γ = 100

λ 32 32 512 32
EW∼ρ[R

emp(W )] 807.22 1412.92 29.77 1148.82
D( ρ ||π ) 0.0889 0.1011 0.0037 0.7033

approx
(
Ψ′

π′,D(λ)
)

28439.91 46626.98 16068.41 41116.51

γ = 200

λ 32 32 512 32
EW∼ρ[R

emp(W )] 827.25 1414.95 28.90 1149.86
D( ρ ||π ) 0.0889 0.1011 0.0037 0.7033

approx
(
Ψ′

π′,D(λ)
)

28709.69 46618.04 16292.60 41131.17

γ = 400

λ 32 32 512 32
EW∼ρ[R

emp(W )] 850.02 1419.18 27.86 1150.58
D( ρ ||π ) 0.0891 0.1011 0.0039 0.7033

approx
(
Ψ′

π′,D(λ)
)

29106.71 46652.54 16578.26 41213.43
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