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ABSTRACT

Linear Autoencoders (LAEs) have shown strong performance in state-of-the-art
recommender systems. Some LAE models, like EASE, can be viewed as multi-
variate (multiple-output) linear regression models with a zero-diagonal constraint.
However, these impressive results are mainly based on experiments, with little
theoretical support. This paper investigates the generalizability — a theoretical
measure of model performance in statistical machine learning — of multivariate
linear regression and LAEs. We first propose a PAC-Bayes bound for multivari-
ate linear regression, which is generalized from an earlier PAC-Bayes bound for
single-output linear regression by Shalaeva et al., and outline sufficient conditions
that ensure its theoretical convergence. We then apply this bound to EASE, a
classic LAE model in recommender systems, and develop a practical method for
minimizing the bound, addressing the calculation challenges posed by the zero-
diagonal constraint. Experimental results show that our bound for EASE is non-
vacuous on real-world datasets, demonstrating its practical utility.

1 INTRODUCTION

In recent years, simple (linear) recommendation models have consistently demonstrated impressive
performance, often rivaling deep learning models (Dacrema et al.,[2019; Jin et al., [2021; Mao et al.|
2021)), especially for the implicit setting, where interactions are inferred from user behavior (e.g.,
clicks or purchases). In particular, linear autoencoders (LAEs) such as EASE (Steck, |2019) and
EDLAE (Steck, 2020) have shown a surprising edge over widely used matrix factorization (MF)
methods such as ALS (Hu et al., 2008). The LAE architecture is remarkably simple: Let R €
R™*"™ be the data matrix and W € R™*" be the parameter matrix, the LAE model is defined as
fw(R) = RW, where W is trained to satisfy fiy(R) ~ R. W is considered both an encoder and a
decoder. Typically, we add constraints such as diag(W) = 0 to prevent W from overfitting towards
I (Steck,[2019).

Despite their power and widespread use, linear autoencoders, particularly in the context of recom-
mendation systems, remain theoretically underexplored. Recommendation research has understand-
ably focused on performance evaluation to compare models, but issues such as weak baselines and
unreliable sampled metrics often make these evaluations difficult to reproduce (Dacrema et al.,
2019; |Cremonesi & Jannach, 2021). A recent study attempted to provide a theoretical comparison
between linear recommendation models, such as matrix factorization and LAE, using spectral anal-
ysis, showing that both approaches “reduce” the singular values of the original user-item data matrix
R, albeit in different ways (Jin et al.,2021). Another related study investigates the loss landscape of
low-rank LAEs, characterizing their critical points through the smooth submanifold theory (Kunin
et al.l[2019).

In this work, we aim to advance the theoretical understanding of linear autoencoder (LAE) models’
generalizability using statistical learning theory. While generalization theory has been extensively
studied for various machine learning and deep learning models (Vapnikl 1991} Dziugaite & Roy,
2017), its application to LAE recommendation models remains largely unexplored. To address this
gap, we leverage PAC-Bayes theory (McAllester;, [1998)), which integrates the Probably Approxi-
mately Correct (PAC) framework with Bayesian inference. Our analysis produces a nonvacuous
bound, offering practical insights into LAE performance on unseen data. It is worth noting that prior
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work (Srebro et all, [2004) theoretically analyzed the generalizability of linear matrix factorization
models, deriving a vacuous PAC bound based on covering numbers.

Our study to establish PAC-Bayes bounds for LAE models builds on the theoretical framework in-
troduced by Shalaeva (Shalaeva et al., 2020), which provides a PAC-Bayes bound for multiple linear
regression (a single dependent variable with multiple independent variables) under the assumption
of Gaussian data. However, applying this framework to LAE models introduces several challenges:

1. Multivariate Linear Regression: The PAC-Bayes bound must be extended from the multiple
linear regression setting to the multivariate linear regression scenario, which involves multiple
dependent variables. Notably, PAC-Bayes bounds for multivariate linear regression — an impor-
tant method and topic in statistical learning and inference — remain unexplored in the existing
literature.

2. Additional Convergence Requirements: Our analysis reveals the need for additional conver-
gence conditions beyond those presented in (Shalaeva et al.,[2020). These conditions are essential
for ensuring theoretical convergence in the more complex multivariate setting.

3. Zero-Diagonal Constraint: LAE models, such as EASE and EDLAE, enforce a structural zero-
diagonal constraint on the weight matrix. This introduces unique theoretical challenges in adapt-
ing PAC-Bayes bounds from multivariate linear regression to LAE models.

This paper addresses the aforementioned challenges and makes the following key contributions:

* (Section [3)) We develop a general theoretical PAC-Bayes bound for multivariate linear regression
(Theorem [T]), of which Shalaeva’s bound (Shalaeva et al.l 2020) for single-output multiple linear
regression is a special case. Additionally, we propose sufficient conditions (Theorem[2) that guar-
antee convergence for both the new bound (Theorem [I)) and Shalaeva’s original bound
2020).

* (Sectionfd) We apply the bound of Theorem|[T]to a LAE model for recommendation, EASE
2019) and develop a practical method for calculating the optimal parameters that minimize the
bound. Specifically, we incorporate the constraint diag(T¥) = 0 into the bound and resolve the
calculation challenges that arise from it by presenting Theorem [3|and Theorem 4]

e (Section |§[) We conduct experiments for the bound in Section E| on real-world datasets, and the
results show that the bound does not exceed 3 x of the test error on three out of four datasets we
used.

* (Section[6) We conclude and discuss the empirical implication and potential application of PAC-
Bayes bound for LAE models in recommendation setting.

All proofs of the theorems and lemmas presented in this paper are provided in Appendix [A] while
related works are discussed in Appendix [D]

2 PRELIMINARIES

Alquier’s Bound (Alquier et al., 2016): Let S = {(z;, y;)}/, be the dataset where z; € R"™ is
the feature vector and y; € R is the label. Suppose each (z;,y;) is i.i.d. sampled from an unknown
data distribution D. Let fy : R™ — R be the machine learning model where 6 is the vector of
parameters. Let [ be the loss function, R°™(6) = L 5" I(fy(x;),y;) be the empirical risk and
R™¢(0) = E(4)~pll(fo(r),y)] be the true risk. Let 7 be a prior distribution of 6 and p be the
posterior distribution of 6, then for any A > 0, § > 0,

1 1
P (BonpR0)] < Bans RO + 5 [ D0pllm) +10 5+ npihm)]| ) 215

where U p (A, m) =InEgEgupm [e”\(Rlyue(Q)_Remp(a))].

The PAC-Bayes bound has two types: empirical bound and oracle bound (Alquier, 2021). The
oracle bound means the upper bound contains R"™¢(WW') and assumes D is given (only the oracle
knows D). Alquier’s bound is an oracle bound. Shalaeva’s bound is derived from Alquier’s bound
by assuming fy is a linear regression model and D is Gaussian distribution.

Shalaeva’s Bound (Shalaeva et al., 2020): In Alquier’s bound, suppose fs(z) = 07z where 6 €
R™. Assume D satisfies z; ~ N(0,021), and there exist §* € R™ such that y; = (6*)7 x; +e; where
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e; ~ N(0,02). Here 02,02 are constants. Let the loss function be I(fy(z;),v:) = (0T z; — vi)?,
then

exp(Avg) (2)\2113)
L\ Am)=mnEj,——— <InEy, ex 1
DA, m) 0 s 2;792)m/2 0 pl— )]

where vy = 02||0 — 6|2 + o2

Convergence of Shalaeva’s Bound: The convergence analysis in (Shalaeva et al.}[2020)) is presented
informally. Here we formally state their results as follows:

(1) Since lim,, 00 (1 + %/92)7”/2 = exp (Avy), for any A > 0, the term ¥ p (A, m) converges,

lim ¥y p (A,m)= lim InEpr _expve) iy gim OPO)
P, Av Av

(2) Let d be a constant and A\ = m!/<, then InEg,. . exp (M> =InEg, exp (2m¥4103).

m

When d > 2, limy_soom™ /% InEg . exp (sz/dflvg) = (0, thus the entire bound converges as
m — 00.
1

. 1
Jim 5 DGl g

+ Urpi(A, m)}

~ m—oo oo

< lim m~ Y4 {D(p”rr) +1n %} + lim m~ /¢ InEg~r exp (2m2/d_1v§) =0
m—s

Upon careful examination of their analysis, we found that additional conditions are needed to ensure
the above convergency results, which were not discussed in their original paper. In (1), swapping
lim and E is valid only under some specific conditions. For example, by dominated convergence

theorem 1998), the condition can be Eg.[exp(Avg)] < oo. 7 needs to be a distri-

bution satisfying this condition. In (2), some choices of 7 can cause divergence. For example,
when 7 is Gaussian distribution, we have InEy... exp (2m2/d’1vg) = oo for any m > 0, thus

limy, 0o m™Y4InEgr exp (2m?/?~1v2) = oo and the bound diverges. We will discuss these
issues in Section [3.2]

Multivariate Linear Regression (Johnson & Wichern, 2007): Let S = {(z;,v;)}/", be the
dataset where z; € R” and y; € RP. Let X = [z1,22,...,2y] € R™™ be the input matrix,
Y = [y1, 92, -, Ym]| € RP*™ be the target, W € RP*™ be the weight matrix of the linear model and
E = [e1, e, ...,em,] € RPX™ be the error matrix. The linear regression is defined as

Y=WX+FE

Usually we let the first dimension of every x; be 1, i.e., X, is a vector of all 1s. We say the linear
regression is multivariate if p > 1, and is multiple if n > 2.

We can apply a statistical assumption to the multivariate linear regression, where it is typically
assumed that the errors e; and e; are independent for 7 # 7, but the dimensions of each e; can be
dependent. A common statistical assumption is shown in Assumption [T}

EASE (LAE) Model (Steck},2019): EASE is one of the most popular LAE models for recommen-
dation (Jin et al., 2021). Let R™*™ be the data matrix and W € R"*™ be the weight matrix, then
EASE obtains the model W by solving the following problem

min || R — RW|% +4|W|%  s.t. diag(W) =0 2)

where 7 is the regularization parameter. Let T be the solution of Eq (2), then W, has closed from:
Let P = (RTR+~I) ", then (Wy)y; = 0if i = j and (Wy)i; = —Pi; /Py, if i # j.

By structural risk minimization (Vapnikl [1991), the regularizer ||V ||% can be interpreted as a
Lagrange multiplier term ~(||W||% — ¢) for some constant c. Thus Eq (2) is equivalent to

min [ R — RWI[% st diag(W) =0, [W]E < c 3)
Hence, tuning A in Eq (2) is equivalent to tuning ¢ in Eq (3)), though the former form is more often

used in practice. Note that by adding the constraint ||W||% < ¢ we assume ||W || ¢ is bounded, which
corresponds to case (1) and (3) in section[3.2]
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3 PAC-BAYES BOUND FOR MULTIVARIATE LINEAR REGRESSION

3.1 THE STATISTICAL ASSUMPTION AND THE BOUND

Assumption 1 Suppose each (x;,y;) in S is i.i.d. sampled from a distribution D. D is defined as:
(1) x; ~ N (g, X2); (2) there exist W* € RP*™ and e ~ N(0,%.) such that for any given x;,
y; = W*z; + e, in other words, y;|x; ~ N(W*x;,3.). Here p, € R", 3, € R ™ s positive
semi-definite, and .. € RP*P is positive-definite.

The positive semi-definite assumption of X, allows X, to be singular, implying that the Gaussian
distribution is degenerate, i.e., its support is on a lower dimensional manifold embedded in R™. This
includes the case that x; has its first dimension to be constant 1 and the other n — 1 dimensions to
be Gaussian random variables. In this case, the first row and first column of X, are 0.

Let W € RP*™ be the weight matrix of the linear model, then the prediction of the model on z; is
given by §; = Wax;. The error is y; — §; = (W* — W)z; + e ~ N(p,,, 2, ), where
ty = E[(W* =W)a; +e] = (W* = W)E[z;] + Ele] = (W™ — W)p,
Sy =E[(W* = W)(2i — po) + (W = W)@ — pta) + €]
=(W* =W, (W* —=w)T + %,
It is easy to verify that X, is positive-definite. Thus, 3, has an eigenvalue decomposition ¥, =

STAS where S is orthogonal, A = diag(n1, 72, ...,7,) and n; > 0 for all i. Note that S and A
depend on W.

Define the loss of the sample (z;,v;) as |ly; — Wx;||%, the empirical risk as R*™ (W) =
LS i — Wai||% and the true risk as R™(W) = E(, ,)~plly — Wz||%]. Then we have

the following bound:

Theorem 1 Let w be the prior distribution of W, p be the posterior distribution of W. Denote

b= 8%, ?u,,. Then for any X > 0 and § > 0,
P (BB (00)) < B[R]+ [DOpllm) 405 4 ¥enOm)] ) 2125 @

where

2
D —Ambin;
exp (21:1 m+2/\Lm ) ]

et < [ (A o500 4 )) )
i=1 g

2222, |12
< InEw~rexp (M)

m

The bound of Theorem [T]is a general case of Shalaeva’s bound. It can be reduced to Shalaeva’s
bound by taking p = 1, j1, = 0, ¥, = 021 and ., = o2 for some o, 0.

3.2 CONVERGENCE ANALYSIS

This section presents the convergence analysis of Theorem[I] We outline sufficient conditions that
ensure convergence, thereby completing and rigorously formalizing the convergence analysis of

Shalaeva’s bound (Shalaeva et al., [2020)

We first discuss the convergence of ¥ p (A, m) term, then the entire bound. Theorem@ gives a suf-
ficient condition for the convergence of ¥ p(\, m) based on the dominated convergence theorem.

Theorem 2 If X and = satisfies Evyr [exp (A|(Zs + popl )V/2(W* = W)[2)] < oo, then
hmm—mo \I/m’D(A, m) =0.

By Theorem [2| we can derive some special cases that make ¥ p(A, m) converge:
(1) If 7 is a bounded distribution such that ||W||p < G where G is a constant, then for any A > 0,
Ewr [exp (A(Ss + prapd) 2 W = W)[E)] < Bweer [oxp (M + pepsd) 25 IW" = W) |

< exp (Al(Sa + )5 W Nl + WD) < exp (S + o) 215 (IWIle + G)?) < o0
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(2) If 7 is a distribution that for W ~ @, each W;; is independently sampled from
N((Up)ij, %) where ¢ > 0 is a constant and Uy € R™ ™. Then for any A\ € (0, 5-5)

727710-2 H
Ew~r [exp (A|(Zs + popl)/2(W* — W)[|%)] < oo holds. This is because, let £, + p pul =

ST AS be the eigenvalue decomposition and suppose A = diag(n1, 12, ..., 1, ) Where 7, is the largest
eigenvalue, then

1—2/\02nj

. (Anj( e (W*—Up).s) )
Ew [exp (/\II(2 + papa ) (W = W)IIE H HH

i=1j=1 (1-2Xo%n )1/2

) ensures denominator (1 — 2)\0277j) 1/2 is not zero or undefined for any j.

And A € (0

1
> 2102
Now we discuss the convergence of the entire bound when A = m!/?. Since + [D(p||7) +In i

surely converges as m — 0o, we only discuss the convergence of X\IJ,“D()\ m) By Theorem

2232, 113
M) converges.

+ ¥, p(A, m) converges if the upper bound + In Eyyr exp ( -

(3) If 7 is a bounded distribution satisfying ||W||r < G, then
2
ISl = W = W)ZeW* = W)+ Self < (107" = W)So(W" = W) [ + e r )

- 2 . 2
< (IZllplIW” =W +[[Zellr)” < (HExHF(HW e+ [Wr)* + HEeHF>
* 2 2
< (IBalle (W lle + G)* + Zellr) < o0
2
Denote G’ = (HELHF (IW*||r + G)* + HZeHF) . The upper bound converges when d > 2:

lim m ™Y InEw.rexp <2m2/d71\|ZWH%) < lim m Y InEwrexp (2m2/d71G') =0
m— o0

m—r oo

(4) If 7 is a distribution that for W ~ 7, each W;; is a Gaussian random variable, then the upper
bound diverges when d > 2, thus we cannot show the convergence of %\IIWVD(A, m). We prove the
divergence of the upper bound as follows. First, for any r, ¢ € {1, 2, ..., p},

1S 3= D57 (0 = WYL — W)y + (Se)is)

> (W = W)L (W = W)y (Bedaa) = (122200 = W)l + (Se)ag)

> (1) 2 W = W)ald)” = (2w - w).,)'
In the above inequality we use the fact that (X,),, > 0 since it is a diagonal element of X;. Since
(W* — W),, is a random Gaussian vector, (Z)iiz(W* — W).q is a Gaussian random variable.
Denote w = (E)Mz(W* — W).q, then
m ™Y InEwr exp (2m2/d71 12, ||%) m~ Y InE, exp (2m2/d71w4)

Lemma 1 Let {ax}¥_, be a sequence of real numbers. Let X be a Gaussian random variable and
Y. = Zf:() a; X" where a, > 0. If k > 3, then Y}, has no MGE, i.e., My, (t) = Ey, [exp(tY})] =
Ex[exp(tYy)] = oo for any t > 0.

Lemma 1 states that any polynomial of Gaussian random variables of degree > 3 has no MGF.
The term w* satisfies the conditions of Lemma [1| as a polynomial of degree 4. Thus we have
E, exp (2m?/?~tw*) = oo for any m > 0, and InE,, exp (2m?/?~1w?*) = oco. Note that when
2/d=1 are positive numbers being arbitrary close to 0 but never equivalent to
2/d=1yy*) = co. This shows the upper bound diverges.

m — oo, m~ /% and m
0. Thus lim,,, oo m~ Y4 InE,, exp (2m

Recall that Shalaeva’s bound in Sectlonlhas vg = 02]|0 — 6*||%3 + 2. When @ is a Gaussian vector,

2 becomes a polynomial of Gaussian random varlables of degree 4 which satisfies the condition
of Lemma Thus the divergence lim,;, o InEg exp (2m*¢~1vZ) = oo cannot be resolved by
taking any d > 2.
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4 A PrRACTICAL PAC-BAYES BOUND FOR LAE

This section introduces how to apply the bound of Theorem [T[to EASE, a simple yet very effective
LAE recommendation model, and provides a practical way to calculate the bound.

4.1 THE SETTINGS AND THE BOUND

The EASE model can be considered as a special case of multivariate linear regression, where Y is
equivalent to X and W is constrained by diag(WW) = 0. Also in recommender system, the dataset
R is usually not Gaussian but bounded. To apply the bound of Theorem|I|to EASE, we redefine our
settings as follows:

Suppose each R} in R is i.i.d. sampled from an unknown n dimensional bounded distribution
D. Also, assume D is a bounded distribution satisfying the condition that there exists a,b such
that R;; € [a,b] for any i, j. Define the loss function on R; as ||[R; — R;W||%, the empirical
risk as R*™ (W) = LR — RW|% = L™ |R; — R;W||%, and the true risk as R™(W) =
Er~pllr” — rWIJZ].

Then the PAC-Bayes bound for EASE is as follows (the same form as Eq (Z) but with different
settings):

rue em 1 1 1 1
P (Ew~p[R‘ (W)] < Ewng R™(W)] + 5 D(p]|7) + 310 5 + 3 ¥np() m>) >1-5 ()
———
part 1 part 2

with R™ (W) = %n |R — RW |2, R™(W) = E..pl|rT — rTW|2], diag(W) = 0, and

\IITD'D(A? m) =1In Ew~rEgr~pm eA(R[m(W)_RemP(W))} ’

We aim to find a practical method for calculating the tightest bound, so that it can provide theoretical

support for practical applications. For any given ¢, our goal is to find A, 7, p that minimizes the right

hand side of Eq (3). It is generally considered difficult to solve for A, 7, p simultaneously (Alquier]

2021), so we typically fix A, 7 and solve for p. We show how to minimize part 1 of Eq (3) in Section
2|and how to find a practical upper bound for part 2 of Eq (3) in Section[4.3]

4.2 CLOSED-FORM SOLUTION FOR THE OPTIMAL p
Since the PAC-Bayes bound holds for any 7, p and A, given 7 and ), we search for the optimal p by
. em 1
mplnEWNP[R P(W))] + XD(,OH?T) (6)
Usually we restrict 7 and p to be specific distributions that make Eq (€] easy to calculate. (Dziugaite]
& Roy, [2017) proposed a practical way to calculate the PAC-Bayes bound for deep neural networks,

where they assumes 7 and p to be independent multivariate Gaussian. This enables the D( p|| )
term to be easily calculated. We mainly follow the assumptions in (Dziugaite & Royl, [2017):

Assumption 2 Denote N'(A, B) for some A € R"*" and non-negative B € R"*™ as the multivari-
ate Gaussian distribution that W ~ N'(A, B) means W € R"*"™ and each W;; is independently
from N'(A;j,Bi;). Assume p is the distribution N'(U,S) and  is the distribution N (Uy, o*J),
where U € R™*™, Uy € R™™ § € R"*"™ J = {1}"*" and o > 0. S is a positive matrix if no
constraint is applied.

Applying the constraint diag(1¥) = 0 to p and 7 is equivalent to set diag(i{) = 0,diag(S) = 0,
diag(Uy) = 0 and diag(c2.J) = 0.

(Dziugaite & Royl |2017) solved the optimal p using stochastic gradient descent, where in each
iteration the gradient is calculated by Monte Carlo method. It should be noticed that Dziugaite and
Roy used the iterative method because they worked on the neural network model, for which the
optimal p may not have a closed-form solution. Due to the simplicity of LAE, we find that the
optimal p for Eq (6) has closed-form solution, as shown in Theorem [3](1). This allows us to solve p
directly and avoid time-consuming iterative methods.
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Theorem 3 (1) The closed-form solution of the optimal p of Eq (6)) is given by

(1o 1\ 1 o 1 o
Z/{7<m 2)\0.2 ) ( R R+ 2)\ 2u> ? S’LJf %RZ;RM+$ for Z?JE{1727"'7TL}
(2) If we add the constraint diag(W) = 0 to p and =, then the optimal p becomes
Sij:;, Sii=0 fori,je{l,2,..,n}andi#j

2\ pPT 1
iR+ 32

2Xo2 2X02

1 1 AT 1 . 1 1 -1
(m 202 ) (mR R+2)\02u0> © diag |:(m 2Xo? )

Here @ means element-wise division and Diag(xz) means expanding x € R™ to an n x n diagonal
matrix.

—1
U= (iRTRJr ! 1) (iRTRJr LI 1Diag(ag))
m m 2

where

x = 2 - diag

Once the U and S for the optimal p are obtained, we can calculate the closed-form solutions of
Ew ~p[R™(W)] and D( p || ), as shown in the proof of Theorem 3]

4.3 EASY-TO-CALCULATE UPPER BOUND FOR ¥, p(A, m)

Since U, p(A,m) = InE,Ep[eME™W)=E™(W))] and Remo(177) > 0, based on the idea of (Ger-
imain et al., |2016), we can get an upper bound of W by removing —R*™(W): Let ¥/ (\) =

In B, [eM M) then U p(\,m) < W (\). ¥’ does not converge as m — oo since it is inde-
pendent of m, but it is easier to calculate than V.

Denote 3, = E,.p[rr?], then

E, [em““(W)} = E,[exp AE,p[rT (I — W)]] = E,

(S0 w2 .

;>]

i)] = ilf[lEﬂ {exp/\ (HE}“Q(I— Wi

Since (I —W);; =0, (I = W) ~ N (I —Up)wi, 02(1 — I')), where I is a matrix with I}; = 1
and other entries being 0. So 21/2(1 Wi ~ N (Ei/Q(I —Up)wi, o2 (X) — (21/2)”(Ei/2)z;)).

:]Eﬂ,

exp A (Z =i = w).
=1

Denote AW = ¢%(%, — (Zi/z)*i(Zl/Q) 5), then A®) is singular and positive semi-definite. Let
AW = §OTAMGE) pe the eigenvalue decomposition where S is orthogonal and A =
diag(n{”, n$" ... i), Also denote ;i = 53/%(I — Uy).;. Then
AL )
B [AR™)] e O ( =22 > () _ i)y g(6)\—1/2, i
W[e }—HH PR where b\ = S (AW)T/ =2, (7)
i=1j=1 (1 — 2 )

Eq (7) is obtained by applying Eq (TI) where we take m = 1. The problem with Eq (7) is the
computational complexity: We need to calculate the eigenvalue decomposition for each A in

order to obtain S and A(?). Since each eigenvalue decomposition costs O(n?), the computation
of Eq (EI) costs O(n*), which is impractical.

Here we show how to find a practical upper bound for Eq @) Let 7’ be the distribution that for
any W ~ 7/, diag(W) ~ N(0,02I). The only difference between 7 and 7’ is that, 7 constrains
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diag(W) to be constant zeros, while 7 constrains the diag(TV) to be i.i.d. Gaussian random vari-
ables with zero mean.

W~ gives (I — W)ai ~ N (I = Up)ai, 021), ST = Wi ~ N (2%/2(1 — Uo)ui, 02&).

Let A = 02%,, and A = STAS be the eigenvalue decomposition where S is orthogonal and
A = diag(n1,n2, ..., n ), then we have

)\(51')27]J
n n exp ( = 2)\7]]

E,. [ex\R‘“’C(W } H H

,  where l_)i:SA_l/Qui 8)
i=1j5=1 172)‘) 1/2

and the following theorem:

Theorem 4 E,. {e’\Rm(W)} <En [eARl"\le(W)} Jorany \ € (0’ ﬁ)

Note that E {e’\Rmm(W)} is much easier to calculate: We only need to calculate the eigenvalue

decomposition of A, so Eq lﬁi costs O(n?). Let W, p(A) = InEqr [e’\R“‘"C(W)} , then U/, () >
W’ p(A). Hence W7, () is a practical upper bound for W/ 5, (A).

The last thing we need to do is to obtain X,.. Since D is unknown, we can not calculate ., directly,
thus we need an approximation.

Let R’ € R™ %" be the entire dataset where we take the first m rows to be the training set and the
rest m’ — m rows to be the test set, and let 3, = #R’ T , then 3, is an unbiased estimator of
3. This is because, let M be a distribution such that r ~ D is equivalent to rrT ~ M, then each
R ;‘F*R;* is i.i.d. sampled from M, 3, is the sample mean, and X, is the expectation. By law of
large numbers, we have f)r LN Y, as m’ — oo. Therefore, we use flr to approximate X,.. The error
between 3, to approximate X, is discussed in Appendix

Let 33, = S'TA’S’ be the eigenvalue decomposition where A’ = diag(n1,n5, ..., n.,). The approxi-
mation of Eq @ can be made by replacing ¥, with 3., specifically, replacing b’ with %S "I —Up)si
and 7); with 0“7, for all j in Eq . Then

Xﬁ"(s{*(ffuo)*i)g
B T (W)
B [e ] = H H 1/2 = H

i=1j=1 (1 —2x02n) =1 (1 —2x02n;)

 exp (M;HS;AWMIIZ

124 ) B, [ AR
n/2 ~ Lm’ |:€ :|

Denote approx (V7 () = InE,. [e,\R"“(W)} then approx (7, 5 (X)) = 7, 5(A).

4.4 THE FINAL BOUND

Consider we fix 7 and search X in a set L = {\1, Aa, ...\;}. If the set contains |L| candidate values
for A, then the term |L| should be included to the bound. See Appendix

The final bound is shown as follows: Let Uy, o be the parameters of = and U/, S be the parameters
of p. Suppose Uy, o are given. For any A € L, with probability at least 1 — 9,
rue )| 1 L ’
B [ (V)] £ Bw g W]+ [DCol1m) + 10 b approx (0000 0

where

em 1<
Ewnp (R (W)] = -3 RVE = [V R

V=I-U-U"+UU" + diag (islj,is%,,..,ism)
j=1

j=1  j=1

D(P||W):;[(n2_n )2Ino — 1) Z Z (InS;; — 24 WUSMF]

=1 j=1,j#1
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< An; n
approx (V7 p(A)) = ; (m |57 (1 fuo)Hi —-5 In (1— 2/\17202))

0

The whole process to calculate the PAC-Bayes bound for EASE is summarized as Algorithm 1.

Algorithm 1 Calculate the PAC-Bayes bound for EASE
Initialize L = {\1, A2, ..., N}, 6, Up, 0, and an empty array A = {}.
for each \; in L:
Calculate ¢, S by Theorem [3(2).
Calculate the right hand side of Eq (9), store the result as A;, and append A; to A.
return the minimum element in A.

5 EXPERIMENTS

Our experiments run on a machine with 500 GB RAM and a Nvidia A100 GPU. The GPU has 80
GB RAM. We use 4 datasets: MovieLens 20M, Netflix, Yelp2018 and MSD. The details of the
datasets are shown in Table[l]

Table 1: Dataset information

Dataset MovieLens 20M Netflix Yelp2018 MSD
#rows 138493 480189 905136 1017982
#rows (training set) 117718 408160 769365 865284
#columns 26744 17770 40000 40000
#ratings 2000263 100480507 | 1969320 | 33687193
rating range [0, 5] [0, 5] [0, 5] [0,9667]

For Yelp2018 and MSD datasets, we truncated the rating matrices by keeping the first 40000
columns and all the rows containing non-zero elements in the first 40000 columns. For each dataset,
we take the first 85% of rows of the rating matrix as the training set and the rest 15% rows as the
test set.

The computation of PAC-Bayes bound for EASE mainly follows Algorithm 1. We set L =
{1,2,4,8,16, 32,64, 128,256,512}, 6 = 0.01, 0 = 0.001. For each dataset and each choice of
~ in the set {50, 100, 200, 400}, we solve the W of Eq , set Uy = Wy, and run Algorithm 1 to
calculate the PAC-Bayes bound.

We evaluate the non-vacuousness by comparing the gap between the PAC-Bayes bound and the test
error. To the best of our knowledge, there is no universally accepted definition for how small the
gap must be to consider a theoretical bound non-vacuous. (Dziugaite & Roy, 2017 showed in their
experiments that PAC-Bayes bounds within 10x the test error can be considered non-vacuous. We
adopt this criterion in our work.

The results are shown in Table 2] Our PAC-Bayes bound is within 3x the test error on MovieLens
20M, Netflix and MSD, and is within 4 x the test error on Yelp2018, for all choices of . Thus we
consider the bound non-vacuous.

Since the bound is composed of the terms A, D( p || 7 ), R (W) and approx (¥’ 1,(})), for each
PAC-Bayes bound result in Table[2] we we present the corresponding values of these terms in Table

[]of Appendix [E]
6 CONCLUSIONS AND DISCUSSIONS

This paper studies the generalizability of multivariate linear regression and LAE. We propose a new
PAC-Bayes bound for multivariate linear regression, which generalizes Shalaeva’s bound for multi-
ple linear regression (Shalaeva et al.,|2020)). We also present a convergence analysis and demonstrate
the sufficient conditions that ensure the bound’s convergence. To illustrate how the bound applies
to LAE, we use it with EASE, a simple yet very effective LAE recommendation model, and de-
velop a practical method to calculate the optimal parameters that minimize the bound. This method
primarily addresses the calculation challenges introduced by the zero diagonal constraint of EASE.
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Table 2: Experiment results of the PAC-Bayes bound for EASE

Dataset MovieLens 20M | Netflix | Yelp2018 | MSD
training error 737.54 1359.39 33.18 1172.46
v =50 test error 1368.78 1661.67 18.29 1965.40
PAC-Bayes bound 1674.76 2870.11 61.50 2436.74
training error 728.59 1277.50 33.52 1174.46
v =100 test error 1290.19 1627.43 17.93 1946.83
PAC-Bayes bound 1696.18 2870.23 61.16 2433.95
training error 774.94 1362.24 34.02 1177.73
v =200 test error 1240.14 1638.99 17.60 1923.70
PAC-Bayes bound 1724.65 2871.98 60.74 2435.44
training error 797.71 1366.47 34.66 1182.98
~v =400 test error 1193.81 1622.19 17.32 1895.80
PAC-Bayes bound 1759.83 2877.29 60.25 2438.74

Extending to other LAE models: Another class of Linear Autoencoder (LAE) models employs
low-rank approximations to represent and constrain W. While our multivariate linear regression
approach can potentially be applied and generalized to these models (though special handling is
needed to model a low-rank W from a certain distribution, which is non-trivial), they are generally
less effective than the zero-diagonal constraint on W in recommendation settings. Consequently,
we chose not to explicitly discuss them in this paper, focusing instead on the more effective zero-
diagonal constraint, which better aligns with the practical demands of recommendation tasks.

Empirical Implication and Potential Applications of PAC-Bayes Bound for Recommendation
Setting: In implicit recommendation settings, the performance of recommendation models is typi-
cally evaluated using top-k metrics such as Recall@k or NDCG @£ during offline evaluation. How-
ever, optimizing these metrics directly is challenging due to their non-differentiable nature. As a
result, recommendation models often rely on surrogate loss functions — for example, linear rec-
ommendation models commonly minimize the sum of squared element-wise errors. This reliance
creates a potential mismatch, as the loss function optimized during training does not directly align
with the metrics used for evaluation.

While PAC-Bayes bounds are derived for the surrogate loss (e.g., sum of squared errors), they can
be recast to indirectly relate to evaluation metrics by decomposing the bound into two components:
(1) a generalization bound on the surrogate loss, and (2) the empirical correlation between the sur-
rogate loss and top-k metrics. This decomposition provides a theoretical framework to quantify the
mismatch and understand how improving generalization on the surrogate loss translates to better
performance on top-k metrics.

Additionally, since recommendation models depend on surrogate loss functions, ensuring that these
functions generalize well to unseen data is critical. PAC-Bayes bounds offer guarantees on the
generalization of surrogate losses, which is a necessary condition for achieving strong downstream
performance. Thus, while surrogate losses do not directly align with top-%k metrics like Recall@k or
NDCG @£, demonstrating low generalization error on the surrogate loss provides a strong theoretical
foundation for the model’s ability to perform well on these evaluation metrics.

For instance, if a model performs poorly on the top-k metrics, PAC-Bayes bounds can help identify
whether the poor results are likely due to model uncertainty (indicated by a large bound) or other
factors: 1) A large PAC-Bayes bound could indicate high model uncertainty, suggesting insufficient
training or data sparsity. 2) A small PAC-Bayes bound coupled with poor performance might point
to issues like suboptimal surrogate metrics, data distribution shifts, or model design.

Quantifying the Gap between model loss and top . metrics: Finally, we would like to point that
there is lack of formal analytical framework that links various loss functions to top-k recommenda-
tion metrics in implicit settings. Establishing such a connection would bridge the divide between
training objectives and evaluation metrics, potentially enabling the development of more effective
recommendation models. We argue that addressing this challenge is an important open problem for
both the recommendation systems and machine learning communities.

10
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A PROOFS OF THE THEOREMS

Proof of Theorem|I}

Given W, let (x,y) ~ D, and denote v = y — Wz, then v ~ N(p,,, %, ). Suppose there exists
Q € RP*P such that ¥, = QQT. Such @ exists since we can take @) = 21/2 STAY/2S, but we
do not assume it to be unique. Let € ~ N(0, I), then we can write v = Qe —|— fty, - Thus,

R™(W) =E(gy)op [lly = WalF] = B [|Qe + py 7] = Be [(Qe + pyy )" (Qe + )]
=Bl QTQe+ p), Qe+ " QT puyy + 1l ] = (QTQ) + 1l 11y
= w(QQT) + pi, pryy = (X)) + iy (10)

Also, we can express the random variable ||v]|3. in quadratic form (Representation 3.1a.1, (Mathai

(& Provost 1992},
ol = 070 = (Qe + )T (Qe + 1)
Qe + ) "5 2T, B (Qe + )
So12Qe + B2, VTS, (S21/2Qe + 2212, )
So12Qe + 512, )T STAS(SY2Qe + 5212,
“U2Qe + SRV, YTA(SEY2Qe + SE-12p,)
Denote ¢ = 5% 1/2Qe, then € ~ N(0, I). This is because E[¢'] = S¥1/2QE[¢] = 0 and

= (
= (
= (
= (5%

Covle'] = El¢€”] = SE;Vl/QQE[eeT]QTZ‘;ImsT =1

Asb = SZV_VUQMW, we can write
[v]|Z = (€ +b)TA( +b) = Zm (¢ 4 b;)?

Hence each ¢, + b; is independently from N (b;, 1), and (€} + b;)? is independently from the non-
central chi-squared distribution of noncentrality parameter b7 and with degree 1 of freedom. Thus
the MGF of (¢} + b;)? is

2
, €Xp (1i2t)
_ t(e)+bi)?1 _
M 4b,)2(t) = E(er 15,2 [e (€+b)™] = =202
Let v; = y; — Wx; such that vy, vg, ..., vy, are L.i.d. from N (., , 2, ), then

1 m

REP(W Z ly; = W3 = - >l
j=1

Hence the MGF of R*™ (W) is

- b —
M em t :]E ~Dm |: tR P(W):| :]E ~Dm _— y 2
R P(W)() S~Dm | € S~Dm | €XP m;H%”F
" m ¢ P m
= (Bsvom [exp (0l )] ) = <E5~Dm [exp (m;w; +bz->2>D

m tbzm m
i m—2tn;
||E<€+bz[exp< (€ + b;) )}) Il—
<21 i (1= 2tn;/m)/?

mb? i
eXp ( f:l ;71)211&271)
= e (an
?:1 (1 - 2t77i/m)

13
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By Eq (10) and Eq (1), we can expand W, p(A, m) as

U, p(A,m) = InEypEgopm [ E V)R W)

=InEyr [e*R"“(W)ESNDm [e*AR‘"“‘“W)]}

p  —Ambin,
exp (Zi:l T 2AT )

P (L2 /m)™

=InEwr |exp (A (r(Z,,) 4+ pl py)) (12)

Use the inequality that for any x > 0 and k > 0, eFIE < (7 + l)k and the facttr(X,,) = >0 ;.
we have

p  —Ambin
eXp( i=1 M2,

Py (142X, /m)™/?

InEw .. [exp (>\ (tr(EW) + /‘jv;uw))

exp ( » —)\mb?m)
i=1 ‘m+2xn;
<InEw.r |exp (>\ (tr(EW) + NT‘;/“W)) p mAn;
| o (22

p 2 p
T mb; i mA7;
= InEy ., exp (AMWMW + DA - m+ 2/\m) -2 m+ 2/\772-)
=1 =1

P 2 9 2
2X ;7 — Ambsn;
=IEwnrexp | Aulp, +> 1"
w p( :U’W/J’W P m+2/\771 )

P 2(\P 2 2(\P 2
2 1 15 2\ 11
< B oxp (M b= S )+ (Zm’”) By e (2D
i=1

The last equality above is because

p
> b =b"Ab = pl £ UVRSTASY VP, = pl oy,

i=1
Since
p
Do = w(STAS) = () = (S, B = |2, [}
i=1
we have b , i 2
N (3P 0 o2
lnEWNTr exp <(2_17771)> = lnEWNﬂ— exp (A”VV”F‘)
m m
O
Proof of Theorem 2}

By Eq , we let { f, }men be a sequence of functions where

p  —Ambin
exp( i=1 m+2An;

P (L2 /m)™

fm(W) = exXp <>‘ (tr(zw) + [Lz;,uw))

for m > 0, and
foW) = exp (A (@(Sy,) + iy, 11y )
Note that each f; is a non-negative function.

'Since a1 < In(z + 1) for any z > —1, replacing = with £, and taking exponential on both sides, we get

eTFF < (F+ 1)

14
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Now we prove the following three conditions:
(D) frn (W) < fo(W) for any m and W.
Since A > 0 and n; > 0 for all ¢, we have fo(WV) > fl( ) > fo(W)... for any W. This is

because, when W is fixed, the numerator exp ( p_ mb; m) is monotonically decreasing with

i=1 m+2An
m for m > 0, the denominator [[%_, (1 + 2\n;/ m)m/ ? is monotonically increasing with m for
m > 0,and (1 + 2)\771/m)m/2 > 1 for any m > 0.

(2) fm — 1 pointwisely as m — oo.

For any W,

exp (S, i)
. o T =1 m+2An;
S () = exp (3 (0() + ) fim R

P 7/\mbi i
exp (Zi:l lim VR )

m—r 00

[T/, lim (1+2Xg/m)""?

exp( /\b2m) B
f 1 exp (An;) B

= exp ()\ (tr(zw) + Mgvuw))

= exp ()\ (tr(EW) + .Uq‘;/ﬂw))

The last inequality uses the facts that Y7, b2n; = pl o, and >0 my = tr(5,,).
3) E[fo] < oc.
E[fo] = Eexp (A (tr(Z,, ) + HVTVMW))

(A fu(W* = W)S, (W = W)T 4 30) + (W = W)pe||F])

p
Li=1 =1

= Eexp </\ Zp: = W)is [+ papty | (W= W)E, + () >

|

(S0 + pap) 1 (W - W)Hj, + tr(ze)D

— exp (Ar(E.)) Eexp <>\ [H(Zm + popi?) (W - W)HiD < 00

2
The last inequality holds because E exp (/\ {H (Ex + ,ugc,uf)l/2 (W — W)H }) < o0 is our as-
F

sumption and exp (Atr(X.)) is a constant.

Denote £/ = RP*P such that W € E. Since W ~ m, we consider 7 as a probability measure . on
E with p(E) = 1. Then we can express E [ f,,] as a Lebesgue integral:

E[fm] = / fmdp

Also, condition (3) can be written as f  fodp < oo. Since the conditions (1), (2) and (3) hold, by
the Dominated Convergence Theorem (Theorem 11.32, (Rudin}[1976) EI) we have

lim fmd,u / lim fmd,u:/ ldp =1
Em%oo E

m—r o0

? Another version of the theorem is Theorem 5.3.3, 1998). We use Rudin’s version since it makes
the proof easier to understand.
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Or equivalently,
lim E[fn] = ]E[ lim fm} —E[l]=1

m—o0 m—r o0

Since In is continuous on (0, co), we can interchange lim and In. Therefore,

lim ¥, p(A,m) < lim mE[f,] =In lim E[f,]=In1=0
m—r00 m—r0o0

m—r oo

Proof of Lemmall}
Let X ~ N (u,0?), then for any t > 0,

2
Ex[tYy] = /exp (tZal > 21 exp (@202“)> dx
V2ro
! /exp tZax )2 dx (13)
2ro 202

Since £ > 3 and ay > 0, th:O a;xt — (””2;*22 is a polynomial of x with degree > 3, with leading
coefficient being positive, thus

(x—pw?) _
Il;rrgoexp (tZazw ~ o | T 00

=0

And the integral in Eq (I3) is infinity.

]
Proof of Theorem 3
(1) Denote V = Ey,[(I — W)(I — W)T], then
Ewp[RTP(W)] = *]wavalR RW|%] = Z]vap |R; — RW %]
i=1
— Z REw,[(I = W)(I —W)T|RT = ZR VRT
i=1
V is a function of ¢/ and S, i.e.,
V = Ewgl( = W)L = W) = I = B W] — Evy e [W7] + Eny o [WW7]
:I*Z/{*Z/[T+ L{L{T+d1ag ZSU,ZSQJ‘,...,ZSnj
j=1 j=1 =
D(p||m) can also be written as a function of I/ and S by
1 Uu—-U
D(pllm)=15 |n 2(2Ino —1) ZZ ”0720”1”
=1 j=1
Denote f(U, S|y, 0,\) = L 3" R;VRT + £ D(p|| 7 ), our optimization problem becomes
min U, S\Uy, 0, \) (14)

The optimal &/ and S has closed-form solution, which can be obtained by solving
U, S|y, 0,7) = 0 and F5 f (U, Sy, 0, A) = 0.
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First we show the partial derivatives of the + D( p|| 7 ) term:

0 ]. B (uij—(Z/{o)ij) 0 1 . 1 1

Then we discuss the partial derivatives of the - Zl 1 R V RT term. Given i, for any j,

m

%% ZRZVR;F ZRldlag (ZS1]<;7 282k7 728711@) RlT
Y =1 k=1 k=1

0 1
8&] m Z Rl’LS’Lj Rlz == ; R?Z =

Besides,
81/{17 m = t 8uij m — 1
Since
0 1 & o 1 & 1
s RUR] = — Ry; i‘R-:—RT,R*.
8uijml§ UER auljm; 1ilij Ry iR
2 U R = oo Rid)? = == (Rtheg)* = =3 Rus(Ri
Buijm; l l auijm;k:1( Uik au”m;( 1Usj) lz; 1i(Rillsy)
z Zm:(R RU.; =~ R%,RU
= %) xj = Al *j
Kt m
Therefore,

0 1 & 1 1 2 2
~—S>N " RVR =—-—RTR.,,— —RTR.,+ —RLRU,, = = (—RLR., + RLRU,;
uzg m lzzl 1 1 e mo + m *ZRZ/{ J m ( ] + *ZRZ/[ J)

Wrap up the above results, we get

0 T 1,1 1
~“RTR.._ —(— _ — 1
68@' f(ua8|u07 g, A) R R 2)\(8” 0,2) ( 5)
auijﬂ“"g'“o"” A= — (=RLR.; + RLRU.;) + s — Lh)iy) A;Q i) (16)
Therefore, the solution of < f(U,S|Uy,0,\) = 0is that, forany i = 1,2,.
1
Slj = W forj = 1,2,...7'” (17)
By Eq (I6) we have
9 2 . 1 o]’
e U,SUy,0,)) = E(_R R+R RZ/I)—i-W(U—L{ ) (18)

Thus the solution of o[ U, S|Uy,0,)) =0is

U= 1 ! - lRTRJr —U (19)
“\m 2)\02 m Ag2 0

Now we show that f (U, S|Uy, o, \) is a convex function, thus the solutions of S in Eq and U
in Eq are the global minimizer of Eq . Denote v € R2"* where for i = 1,2,..,nand j =
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1,2, ., V—1yns; = Uy and vz i_1yngj = Sij. Let Hy € R27°%27% be the Hessian matrix
where (Hy);; = af 37, Then we can write Hy = [61 g} where A = (RTR) @ I, + xi5 1,2
and B is an® x n? diagonal matrix with B(; _1)n4j,(i—1)ntj = m Here ® means Kronecker
product.

The Kronecker product has a property that, let {\;|: = 1, ..., m} be the eigenvalues of A € R™*™
and {y;]j = 1,...,n} be the eigenvalues of B € R™*™, then {\;p;|i = 1,...,m,j = 1,...,n } are
the eigenvalues of A ® B (Theorem 4.2.12, (Horn & Johnson,|1991)). Since RTRis positive semi-
definite and I,, is positive definite, (RT R) ® I,, is positive semi-definite. Thus A is positive definite.
Since all elements of S is positive, B is positive definite. Therefore, H is a positive definite matrix
for any U and S, which means f(U, S|Uo, o, A) is a convex function. Thus, the solutions of S in Eq
and U in Eq @) give the global minimum.

(2) Since applying diag(WW) = 0 to p and 7 is equivalent to set diag({) = 0, diag(S) = 0,

diag(Up) = 0, and diag(c2J) = 0, the D(p|| ) termin f(U, S|Uy, o, \) is changed to D( p|| 7 ) =
2

i {(n —n)2mo—1) =370 > L (InSiy — %) + % . In this case, Eq 1i holds

only fori # j.

We let S11, S22, ..., Spn be zero constants in f(U, S|Uy, o, \), and consider only the off-diagonal
elements of S to be variables. Then we construct the Lagrangian function as

L(ua Sa IL’|Z/[0, a, >‘) = f(u7 S|u07 a, >‘) + delag(u)

for some z € R™, and solve

oL , T

5, = diagU)]" =0 (20)
oL [0 T

= |au fU,S|Uy,0, ) + Diag(xz)| =0 Q21
oL _ 90 fU,S\Uy,o,A\) =0 fori,je{l,2,.,n},i#] (22)
aSij o 88” > 0,0, = sJ y Ly ey gy i

The optimal S is obtained by solving Eq (22) and set S;; = 0 for all i. The solution of Eq (22) is Eq
with ¢ # j. The optimal ¢/ is obtained by solving Eq (21I)) and Eq (20). By Eq (21)),

2
~(- RTR + RTRU) + T(“ U°) + Diag(z) = 0

1 1 1.
—=U= (m ) ( RTR+ o U0 — 2Dlag(ac)) (23)

Then we solve x to satisfy Eq (20),

1 5 1 -1 1
(E 2)\02) ( RR+2>\ 2”)

diag(U/) = diag

1/ 1 -t
— diag [2 (E 2)\02) Dlag(m)]

=di iRTR+ L . RTR+ Uo B iRTR+ L -
Rl A A2 2)\ 2 29 1\ o 2202
we get
1 1 N\ '/1 /1 1\t
= 2.di - —RTR+ —U, di =
v 18 <m 2)o? > (m + 2)\ 2 0> ©diag (m 202 ) ]

To show the solution of Eq (20), Eq 1)) and Eq (22) gives the global minimum of the problem Eq
under the constraint diag(W) = 0, we use the lemma that if the Hessian matrix Hj, where

(Hp)ij = 8? 907 is positive definite for any U/, S, x, then any solution of 57~ 8L =0, gé =0, gﬁ =0

will satisfy the second order sufficient conditions (Section 11.5, (Luenberger & Ye, 2008))), thus
becomes a local minimizer.

18
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It is easy to show that if we remove the dimensions corresponding to Si1, S22, ...Syy, of Hy and get
HY, € R =mx@n"=n) then H, will be equivalent to Hy. Thus Hy is always positive definite.
Since the solution of Eq (20), Eq @ and Eq (22) is unique, it gives the global minimum.

O
Proof of Theorem

Let P, € R™*"™ be two symmetric matrices, we write P = @Q if P — @ is positive semi-definite
and P > @ if P — @ is positive definite.

Let 7); be the jth largest eigenvalue of A and n(i) be the jth largest eigenvalue of A(). By Corollary
7.7.4 (c) of (Horn & Johnson, 2012), P = Q 1mphes n;(P) > 1;(Q) for any j. Since A — AW =
o2(£H%),:(2*)T = 0 for any i, we have n; > 77 ) for any 4, j.

) =

Since b)) = S (A1M)=1/2 )i we have

(b()) (@ _ )(.UZ)T( ) 1/2(5())TS (A ) 1/2 i
()T (ST (AD) 25D (TSI (S D) TIAD) 2 (SOt
= ()" (7)) (8w

exp [ 182" exp [ AT ST (S
n n €XP | 7%, n n €Xp 1-2Xn;

E. [e)‘Rm(W)} H H N1/2 H H

(@
j
(
j

Therefore,

AN\ 1/2
i=1j=1 (1 - 2An§’)> i=1j=1 (1 _ 2>\77§Z)) /
i no SEIHTEEN
11 o <A(“ a <Zj:1 1‘”") ' ) 12 (A1) (SO)T RO SO i)
B )\ /2 - N\ 1/2
pale e, (1 — 27 >) =T (1 — 2! >)

where A() = diag (

N—

1 1 1
1—2xn{" 7 1—2xn$0 T 1—2an ()

Similarly we have

irue “exp (A(ph)TSTAS ')
B [eAR (W)} = H n N1/2
i=1 Hj:l (1—2M;)

T 1 1 1
where A = diag (172/\771, ey v R 172/\%).

Now we show that STAS = (S)TA® SO for any 4. By Corollary 7.7.4 (a) of (Horn & Johnson,
2012),if P > 0 and @ > 0O, then P = @ if and only if Q! = P71, Since we assume 0 < A\ < S
we have 1 — 2)\v7j(-i) > 0and 1 — 2An; > 0 for any 4, j, thus all diagonal elements of A and A are

positive, implying that (S)TA® S » 0 and STAS > 0.
Since ((S@)TADSO) ™ = (SD)T (T — 20A1D) §O) = T—23A® and (STAS) "
we have

((s<i>)TI\<i>s(i))71 = (STAS)

=1—-2)\A,

T T AD =T 204 = A= AD)

Thus STAS = (SO)TAD SO implying that (u')TSTASp' > (p*)T(S@)TAD SO 1 holds for
any p'. Therefore,
e 0T (5RO H

E, [ AR™( W)} };[1 H (1 _ o) (Z))

1)T STAS )
( 2)\77])1/2

_ IE , |:€>\Rtrue(W):|

O
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B ALLOWING MULTIPLE TRAILS ON A

Since we do not know the optimal value of A, by the suggestions of (Alquier, [2021)), we can choose
a finite grid in (0, +00) and search X in the grid. Let L = {1, Ao, ..., A;} be the grid where each
A; > 0and [ = |L] is the cardinality of L.

P (VA €L, Ew,[R™(W)] < EwpR™(W)] + % {D(p” 7)+In %' + \Dﬁ,p(/\,m)D >1-4§

This is because

P (V)\ €L, Ew~p R™(W)] < Ew,[R™(W)] + % {D(p ||7)+1In %‘ + wﬁ,D(A,m)D
=1-P (3/\ €L, EwnpR™(W)] > Ewn~,[R*™(W)] + % [D(p [|7)+In % + \Pﬂ’D(A’m)D
‘Ll true emp 1 |L|
—1-P !1 Ewp[R™(W)] > Ewp[R™™(W)] + X {D(pll ™)+ In =2 \Ifﬂ,D(Aum)}
IL|
213 P (w201 > B B )]+ - [ Do) 410 4w
IL| 5
>1-— = 1-46

C THE ERROR BETWEEN i)r AND X,

We discuss how to measure the error between (X,.);; and (2,.);; for any 4, j. Suppose D is a bounded
distribution such that for r ~ D, r; € [a, b] for any i. Let ¢ = max{|a|, |b|}, then each element in

R']. R, is within the range [0, ¢?].

One way to measure the error is to use theoretical bounds based on concentration inequalities. For
example, by Hoeffding’s Inequality,

In (2

BT, s

2t%m/
< _
P( >t)_2€xp( 2 ><:>P< 2
where we let § = 2exp (—%) Such bounds are rigorous but tend to be vacuous. Further
theoretical bounds based on matrix concentration inequalities can be found in (Tropp et all 2015).
Another way is to use empirical bounds based on interval estimation. By the Popoviciu’s inequal-
ity (Bhatia & Davis, 2000), the variance of each element in R’} R), is within the range [0, ¢ /4]

Therefore, by central limit theorem, we have v/m/ ((XA],.),-]- - (E,.)i]) 4N (0,07;) for any i, j,

(S)is — (B0)ij (Sn)is — (Bn)ij| < c

where U?j < c%/4. For large enough m’, a 99.7% confidence interval would be

p ( () — (50)i] < j’:;) =P ((27‘)”’ — 362, < (B)ig < (B0)ij + 362)

4m am/
A 30'22] ~ 30'12]
> P (Er)ij I < (Er)ij < (Er)ij + T > 0.997

Note that this bound is not for theoretical use since it does not describe with how large m’ the bound
will be satisfied. One commonly used rule of thumb is m’ > 30.

Here we compare the two bounds: taking § = 0.003, m’ = 100000 and ¢ = 5, the first bound gives

% ~ 0.0285, while the second bound gives 3¢~ 0.00019.

2 4m/’

D RELATED WORKS

The earliest PAC-Bayes bound is proposed by (McAllester, [1998). (Alquier et al., 2016) proposed
an oracle PAC-Bayes bound based under Hoeffding assumption. (Germain et al., [2016) applied
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Alquier’s bound to linear regression problem under Gaussian data and parameter distribution as-
sumptions, but the bound does not converge for being independent of the number of samples.
(Shalaeva et all 2020) improved Germain’s bound by proposing a bound related to the number
of samples, and showed the bound converges as the number of samples increases. Most PAC-Bayes
bounds are theoretical and difficult to calculate in practice, and some research is focused on mak-
ing the bound more practical to compute. (Dziugaite & Roy}, 2017) proposed a practical way to
calculate Seeger’s bound (Langford & Seeger, 2001)) for neural networks, and showed the bound is
nonvacuous on MNIST dataset, where the bound is around 10x of the test error.

Recent years LAEs gains popularity in recommendation systems (particularly on implicit settings)
due to their simplicity and effectiveness. [2019) proposed the EASE model and showed it
surpasses the performance of deep neural network models on recommendation datasets under Recall
and NDCG metrics. Later proposed EDLAE which introduces a mask to the target
function to avoid the parameter matrix overfitting towards identity. (VanCura et al.| [2022)) proposed
ELSA which constructs the LAE with an item-item similarity matrix AA? — I with zero diagonal.

Most LAE based recommender models constraints the diagonal of the weight matrix to zero. The
zero diagonal constraint is closely related to the trace norm, which is considered as an effective
tool for matrix completion. (Srebro & Salakhutdinov} 2010) applied the weighted traced norm in
collaborative filtering. (Shamir & Shalev-Shwartz, 2014)) proposed a sample complexity bound for
the trace norm in matrix completion.

Another type of linear recommendation model is based on matrix factorization, which can be viewed
as a form of low-rank matrix completion (Candes & Taol, 2009} Recht, 2011}, [Chen et al.} 2014} [Sre-|
[bro & Shraibman], 2003}, [Foygel et al} 2011} [Shamir & Shalev-Shwartz, 2011). Matrix factorization
methods have been shown to be highly effective in explicit settings (Koren et al.,2009), where user
preferences are explicitly expressed (e.g., ratings). However, they have been found to be less ef-
fective than LAE models in implicit settings (Cremonesi & Jannach}, [2021}; Jin et al.}, 2021]), where
interactions are inferred from user behavior (e.g., clicks or purchases).

Some studies have investigated the generalizability of the matrix factorization models.
2004)) proposed a PAC bound based on covering number for collaborative filtering. Other general-

ization bounds include (Ledent et al.l 2021)) for inductive matrix completion and (Ledent & Alves)

[2024) for deep non-linear matrix completion.

E SUPPLEMENTAL EXPERIMENT RESULTS

Table 3: Details of the terms in the PAC-Bayes bound in Table[2]

Dataset MovieLens 20M | Netflix | Yelp2018 MSD
A 32 32 512 32
— 50 Eyy p[RS™ (W)] 789.86 1412.10 30.41 1151.06
7= D(pl|m) 0.0888 0.1011 0.0036 0.7033
approx (\IJ;,’D(/\)) 28310.00 46649.43 | 15910.84 | 41133.95
A 32 32 512 32
~ =100 Eyy p[RS™ (W)] 807.22 1412.92 29.77 1148.82
D(pl|m) 0.0889 0.1011 0.0037 0.7033
approx (\Il; D(/\)) 28439.91 46626.98 | 16068.41 | 41116.51
A 32 32 512 32
~ = 200 Eyy p[RS™ (W)] 827.25 1414.95 28.90 1149.86
D(pl|m) 0.0889 0.1011 0.0037 0.7033
approx (\Il; D(/\)) 28709.69 46618.04 | 16292.60 | 41131.17
A 32 32 512 32
~ = 400 Eyy p[RS™ (W)] 850.02 1419.18 27.86 1150.58
D(pl|m) 0.0891 0.1011 0.0039 0.7033
approx (\IJ; D(/\)) 29106.71 46652.54 | 16578.26 | 41213.43
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