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An Efficient Automatic Meta-Path Selection for Social Event
Detection via Hyperbolic Space

Anonymous Author(s)
ABSTRACT
Social events reflect changes in communities, such as natural dis-
asters and emergencies. Timely detection of these situations can
help residents and organizations in the community avoid danger
and reduce losses. The complex nature of social messages makes so-
cial event detection on social media challenging. Existing methods
usually construct social messages into heterogeneous information
graphs to facilitate learning their semantic and structural informa-
tion. However, they usually assume a fixed set of meta-paths, which
often cannot describe real-world data sets well. On the other hand,
a large number of social messages are not labeled due to expensive
labeling work, which leads to an increase in model training costs. In
order to solve the above challenges, we proposed a Heterogeneous
Information Graph representation via Hyperbolic space combined
with an Automatic Meta-path selection (GraphHAM) model, an
efficient model that automatically selects meta-path and combines
hyperbolic space to learn information on social media. In particular,
we apply an efficient automatic meta-path selection technique and
convert the selected meta-path into a vector. We then designed a
novel Hyperbolic Multi-Layer Perceptron to further learn the se-
mantic and structural information of social information. Extensive
experiments show that GraphHAM can achieve outstanding per-
formance on real-world data using only 20% of the whole dataset
as the training set.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • In-
formation systems→ Social networks.

KEYWORDS
Social Event Detection, Graph Neural Networks, Automatic Meta-
Path, Hyperbolic Space

1 INTRODUCTION
Social events can be defined as hot topics that people discuss on
social media [6]. It reflects a major impact on communities, such as
natural disasters and emergencies, and also reflects people’s atti-
tudes and reactions to some events, such as presidential elections
and institutional reforms. Social event detection extracts these influ-
ential events from the vast reservoir of online information, making
it a vital and indispensable process in understanding contemporary
societal dynamics. Today’s ubiquity of mobile devices means social
media platforms such as Twitter, Facebook, and Weibo are often the
first to witness events as they occur. Therefore, social media often
serves as an important source of information for relief organizations
and governments on emergencies and natural disasters, allowing
them to detect disasters at an early stage, monitor the development
of disasters, and carry out subsequent rescue operations [21]. Based
on the above reasons, social event detection in social media has

gained significant attention in both academic and industrial circles
[2, 6, 9, 22, 27, 40].

The difficulty of social event detection lies in text classification
or clustering, specifically classifying or clustering similar messages
into the same topic [2, 16]. However, unlike traditional text classifi-
cation, classifying text from social media has the following three
challenges: (1) Social media messages are not just text, usually con-
taining some other heterogeneous information, such as time, places,
people, and entities. In order to preserve the characteristics of social
media messages as much as possible, a common practice involves
building social media messages into Heterogeneous Information
Networks (HINs) [29]. Some methods[6, 22, 23] convert the HINs
into homogeneous graphs of specific patterns that are still rela-
tively rouge. The semantic features and structural features rich in
heterogeneous information graphs are complex, which makes it
difficult for the existing models to extract useful features from HINs.
The more advanced way to deal with HINs is to use meta-path [31],
which can intuitively exploit structural information in heteroge-
neous graphs. However, most of the existing models [35, 39] use
fixed meta-path sets, hindering their capacity to adequately express
real-world datasets. Thus, how to learn features from HINs is still
a thorny problem. (2) The spread of social media is mainly based
on mentions and forwardings between people, resulting in social
media data having a tree structure [1]. The data in the tree struc-
ture grows exponentially. However, existing social event detection
models are generally designed based on Euclidean space, and they
cannot capture tree structure data well [13, 37]. Therefore, how to
better learn features from tree-structured data is also a problem to
be solved. (3) Social media generates volumes of unlabeled data,
but the high costs associated with manual labeling make it imprac-
tical to annotate social media data in large quantities. Therefore,
a challenge lies in effectively training models with limited labeled
datasets.

In this paper, we propose a Heterogeneous Information Graph
representation via Hyperbolic space combined with an Automatic
Meta-path selection (GraphHAM) model, which combines a graph
neural network with efficient automatic meta-path selection tech-
nology and hyperbolic space representation to solve the above chal-
lenges. In particular, we only enumerate all meta-paths from the
selected points instead of enumerating meta-paths from all nodes
in the dataset, which greatly improves our efficiency. After that,
we embed the meta-path of each category through a hyperbolic
space representation model to solve the problem of heterogeneity.
Next, an attention mechanism is utilized to select the meta-path.
Finally, since we filtered out some nodes without significant con-
nections when constructing the heterogeneous information graph,
we embedded all text features through hyperbolic space as feature
supplements for the filtered-out nodes. The contributions of our
work can be summarized as follows:
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• We propose GraphHAM, an efficient heterogeneous infor-
mation graph learning framework combining the automatic
selection of meta-paths from the selected points and hy-
perbolic spaces representation for learning tree-structured
data.

• We solve the problem that the existing HIN-based social
media detection model manually sets the meta-path by effi-
cient node sampling and automatic meta-path selection. We
also apply hyperbolic space representation models in this
study to reduce the distortion of embedded tree-structured
data, which is ignored by existing social event detection
models. Verify which hyperbolic space model is suitable for
the dataset from social media.

• Extensive experiments show that GraphHAM is competi-
tive and improved compared to baseline models, achieving
good performance using only 20% of the data volume as
the training set.

2 RELATEDWORK
2.1 Social Event Detection
The development of social event detection models starts from social
event detection models based on topic detection, such as LDA [5]
and TF-IDF [28]. This type of model mainly focuses on classify-
ing similar texts into the same topic and calculates the similarity
between them by counting the co-occurring words that appear in
the text. However, this method is largely limited by the sparsity
of keywords, especially short texts on social media such as Face-
book and Twitter. The large number of short texts appearing on
social media has greatly reduced the performance of this type of
model in social media. To solve this problem, the researchers try
to let the model understand the meaning behind the words and
let the model learn the semantic information of the words. The
Word2Vec [19] is their method to let the model understand the
semantics of the words. Based on Word2Vec, researchers proposed
GPU-DMM [14] further to improve the model’s performance in
short text classification. However, the semantic improvement be-
hind simply understanding words is limited, and the sparseness of
words is still a key issue that hinders model improvement. It still
needs some additional information to supplement the information
loss caused by word sparseness. Therefore, researchers proposed
SGNS [30], which takes the relationship between words into model
learning. This model solves the problem of sparse words in short
texts by learning the semantics of the entire sentence.

However, traditional social event detectionmodels based on topic
detection only focus on text, and they ignore the essence of social
media: heterogeneity. If the model only learns text information, it
will lose a lot of structural information and semantic information
between entities. Therefore, researchers try to construct social
media data into a heterogeneous information network to retain as
much useful information as possible. Based on our knowledge, PP-
GCN [22] applies HIN to social media detection for the first time. It
learns the semantic information and structural information on HIN
through meta-path [31]. However, the meta-path set on PP-GCN is
designed manually, which has limitations and uncertainties. Even
if the meta-paths are designed by experienced experts, they cannot
perfectly describe real-world data. KPGNN [6] and FinEvent [23]

are the latest HIN-based social event detection models proposed
two years later, but they focus on incremental social event detection.
Their methods for learning HIN are still similar to PP-GCN and
have not been improved. Therefore, learning more correct features
from HIN is still a thorny problem that needs to be solved.

2.2 Automatic Meta-path Selection
The problem with meta-path is that it requires manual design by
experts based on prior knowledge. This design cannot perfectly
describe real-world data. In addition, the importance of each meta-
path in the data set is also different, and it is difficult to manually
define the weight of each meta-path. Therefore, how to automati-
cally select a meta-path from HIN has become a research hot spot
in many fields. Wei [36] proposed a model in 2018 that selects the
importance of meta-paths by maintaining the proximity between
nodes. In the same year, Wang [33] proposed an unsupervised
meta-path selection model that uses a minimum spanning tree
to rank meta-path importance. However, both of these problems
only consider the problem of information retrieval and do not con-
sider representation learning. GTN [38] is a GCN representation
learning model combined with meta-path selection. GTN selects
the meta-path based on the graph transformer layer. However, the
meta-path selection of the GTN model is performed on all nodes,
which means that all nodes need to be enumerated, which is very
resource-consuming. In addition, all nodes are projected in the same
feature space, which cannot distinguish the features of different
nodes well.

2.3 Hyperbolic Space Representation
Another disadvantage of the meta-path is that its length is limited.
For data with a tree structure like social media data [25], it is diffi-
cult to capture long-distance root-to-leaf relationships. On the other
hand, although embedding learning in Euclidean space has achieved
great success, embedding tree-structured data into Euclidean space
will cause distortion [12]. Since the data growth of tree structure is
exponential, but Euclidean space is not, this will cause the leaves far
away from the root to be very close and unrecognizable. Unlike Eu-
clidean spaces, the growth of hyperbolic spaces is also exponential.
Therefore, hyperbolic space is ideal for embedding tree-structured
data [10, 12]. However, there are no basic statistical algorithms in
hyperbolic spaces, such as calculations of vectors and matrices [12].
Therefore, some basic algorithms cannot be applied in hyperbolic
spaces. HNN [12] applies simple neural networks such as RNN to
hyperbolic space, but it only focuses on the structural information
of the graph and ignores node features. HGCN [7] applies GCN to
hyperbolic space based on HNN and implements GCN’s aggrega-
tion of nodes on hyperbolic space. Nevertheless, existing hyperbolic
space learning is based on homogeneous information networks,
and there are still some shortcomings in the application of het-
erogeneous information networks. Therefore, we need to design a
framework to apply hyperbolic space in the heterogeneous social
event detection environment.
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Figure 1: An overview of GraphHAM. GraphHAM contains four main parts: (a) HIN Modeling (b) Meta-path Sampling, (c) Nodes
Embedding, and (d) Selection via Attention.

3 PRELIMINARIES
In this section, we summarize the concepts related to the back-
ground of our work, including HIN, Meta-path, and hyperbolic
space representation.
Definition 1 HIN. A HIN is defined a graph G = (𝑉 , 𝐸,N , E,X).
Here 𝑉 and 𝐸 are the set of nodes and edges. N and E denote the
sets of node and edge types where |N | > 1 and |E | > 1. X is the set
of node features. Furthermore, there are two functions Φ : 𝑉 → N
and Ψ : 𝐸 → E mapping nodes and edges to their types.
Definition 2 Meta-path and Meta-path Instance. A meta-path
P = 𝑛1

𝑒1−−→ 𝑛2
𝑒2−−→ · · · 𝑒𝑙−→ 𝑛𝑙+1, where 𝑛𝑖 ∈ N and 𝑒 𝑗 ∈ E

and 𝑙 is the length of this meta-path. It describes the relation
𝑒 = (𝑒1, 𝑒2, · · · , 𝑒𝑙 ) between node types 𝑛 = (𝑛1, 𝑛2, · · · , 𝑛𝑙+1). A
meta-path instance 𝑝 is a real path that follows a certain meta-path
P in the heterogeneous graph G.
Definition 3 Hyperbolic Representation. The aim of hyperbolic
representation is to map the features from Euclidean space to hy-
perbolic space. We have two types of hyperbolic embedding models:
P for the PoincareBall model and H for the Hyperboloid model. For
the PincareBall model, we denote 𝐸𝑜P𝑑,𝑐 as the Euclidean space and
P𝑑,𝑐 as the hyperbolic representation via the PoincareBall model,
where 𝑜 is the center of the space, 𝑑 is the dimensions, and 𝑐 is the
curvature of this space. Thus, the mapping process from Euclidean
space to hyperbolic space is 𝑒𝑥𝑝𝑐𝑜 : 𝐸𝑜P𝑑,𝑐 → P𝑑,𝑐 , and the opposite
mapping is 𝑙𝑜𝑔𝑐𝑜 : P𝑑,𝑐 → 𝐸𝑜P

𝑑,𝑐 . Specifically, for a node 𝑎 ∈ 𝐸𝑜P
𝑑,𝑐

and 𝑎′ ∈ P𝑑,𝑐 , we have: 𝑒𝑥𝑝𝑐𝑜 (𝑎) = 𝑎′ and 𝑙𝑜𝑔𝑐𝑜 (𝑎′) = 𝑎, where

𝑒𝑥𝑝𝑐𝑜 (𝑎) = 𝑡𝑎𝑛ℎ(
√
𝑐 ∥𝑎∥) 𝑎

√
𝑐 ∥𝑎∥

, (1)

𝑙𝑜𝑔𝑐𝑜 (𝑎′) = 𝑎𝑟𝑡𝑎𝑛ℎ(
√
𝑐 ∥𝑎′∥) 𝑎′

√
𝑐 ∥𝑎′∥

. (2)

For the hyperboloid model, we denote 𝐸𝑜H𝑑,𝑐 as the Euclidean
space andH𝑑,𝑐 as the hyperbolic representation via the hyperboloid
model and the 𝑒𝑥𝑝𝑐𝑜 and 𝑙𝑜𝑔𝑐𝑜 functions are defined as:

𝑒𝑥𝑝𝑐𝑜 (𝑥) = 𝑐𝑜𝑠ℎ

(
∥𝑥 ∥
√
𝑐

)
𝑦′ +

√
𝑐 · 𝑠𝑖𝑛ℎ

(
∥𝑥 ∥
√
𝑐

)
𝑥

∥𝑥 ∥ , (3)

𝑙𝑜𝑔𝑐𝑜 (𝑥 ′) = 𝑑𝑐H (𝑥
′, 𝑦′)

𝑦′ + 1
𝑐 ⟨𝑥

′, 𝑦′⟩M𝑥 ′

∥𝑦′ + 1
𝑐 ⟨𝑥 ′, 𝑦′⟩M𝑥 ′∥

, (4)

where 𝑥 ′, 𝑦′ ∈ H𝑑,𝑐 , 𝑥 ∈ 𝐸𝑜H
𝑑,𝑐 with 𝑥 ′ ≠ 𝑦′, 𝑥 ≠ 0, and𝑑𝑐

H
(·) is the

function calculates the distance between two nodes in hyperbolic
space and ⟨., .⟩M is the Minkowski inner product.

4 METHODOLOGY
In this section, we introduce our frame Heterogeneous Informa-
tion Graph representation via Hyperbolic space combined with an
Automatic Meta-path selection, called GraphHAM, an overview of
this model shown in Fig. 1. In general, our framework contains two
main models: The text Model for text feature extraction and the
Heterogeneous Information Network(HIN) Model for HIN struc-
tural information learning. Specifically, Our model mainly follows
four main steps:

• First, we process the original data, count different points
and edges, assign them features, and finally build a HIN
based on the relationship between points and edges.

• Then, we randomly select a part of the nodes (𝑉𝑠 )in the HIN,
and then build a meta-path set from these sample nodes.

• We design the Hyperbolic Multilayer Perceptron (HMLP)
corresponding to different types of meta-paths, project
them into equal-length vectors and use an attention layer to
calculate the weight of each meta-path and the embedding
of nodes.

• In addition, we use additional HMLP to learn all text in-
formation as a supplement to the information deleted in
constructing HIN. Finally, we combine the nodes embed-
ding together and calculate the loss.

4.1 HIN Modeling
For data preprocessing, our main purposes are (1) to make full use
of social media data by extracting different types of elements from
messages, and (2) to construct relationships between different types
of elements. In order to meet the above purposes, we adopt a HIN,
which is a graph that contains multiple nodes and the relationships
between nodes. It can express different types of data in social media
and the relationships between them. Let’s take Twitter data as an
example. When given a tweet 𝑡𝑖 , we will extract the text information
in 𝑡𝑖 , delete special characters, emoji, and URL, and extract the
named entities 𝑒 𝑗 and the rest of the words after removing the stop

3
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words in the text. We will put 𝑡𝑖 and 𝑒 𝑗 into HIN as a type of nodes,
and add a type of edge between them. In order to better describe
social media, we add users 𝑢𝑘 as a node to HIN and connect them
with the tweets they have sent or the users mentioned by tweets.

The current three types of nodes do not have feature vectors
yet, so the next step is assigning them features. For the features of
tweets, we use the pre-trained 300-d GloVe [26] vectors 1 to convert
the words extracted from the tweets into feature vectors and assign
them to the tweet node. In addition, as time is an indispensable
feature, we also convert it into a feature vector and combine it with
the word feature vector to assign it to the tweet node.

For entity nodes, we use similar operations as tweet nodes to
convert entities into feature vectors using the pre-trained 300-d
GloVe. The difference is the way it combines time vectors. Since
there will be a large number of repeated entities in different tweets,
and they are distributed at different time nodes, we convert all the
time nodes where this entity appears into feature vectors and then
add them to take the mean. This aims to better estimate the time
when people are discussing the event a lot.

For user features, based on the protection of user information,
we did not extract any information about the user, including but not
limited to the user’s name, gender, address, beliefs, followers, and
other information related to the user. All we have is the user’s ID.
Therefore, we connected the tweets associated with each user ID,
filtered out users who were only connected to one tweet, and the
features of the remaining users will be the average of the features
of the tweets associated with them. In this way, we can also extract
what events the user is more concerned about when there is little
user information. After we operate on all tweets, HIN for social
media data is constructed.

4.2 Meta-path Sampling
As mentioned before, GTN’s automatic meta-path is enumerated
from all nodes. Inspired by GraphMSE [17], we adopt the meta-path
sampling part of GraphMSE. We only collect meta-path instances
from the sampled node set 𝑉𝑠 , where 𝑉𝑠 ⊂ 𝑉 . Then, the collection
of meta-path instances is not an enumeration. We intentionally
discard some meta-path instances by limiting the number of neigh-
bor nodes searched, shown in Fig.1. This alleviates over-fitting and
over-smoothing caused by exploring all neighbor nodes [15]. Exper-
iments show that the model can be trained well when the sampling
node set reaches 20% of all nodes.

4.3 Nodes Embedding
This section introduces how we embed meta-path instances into
feature vectors. First, we introduce the HMLP, which contains the
hyperbolic encoder inspired by HGCN [7]. We then introduce how
to embed node features from text models and HIN models into our
framework using HMLP in Section 4.3.2 − 4.3.4.

4.3.1 Hyperbolic Multilayer Perceptron (HMLP). In order to better
learn tree-structured data, we use hyperbolic space as the low-
dimensional space for embedding. However, as mentioned before,
there is no vector calculation in hyperbolic space, so we cannot

1https://spacy.io/models/en

directly apply MLP in hyperbolic space. Therefore, for the imple-
mentation of HMLP, we need to project the hyperbolic embedding
into Euclidean space for vector operations. For single-layer percep-
tron in Euclidean space, we have

E = 𝜎 (W𝑋 + 𝑏), (5)
where W is a 𝑉 ×𝑉 weight matrix, 𝑋 is the node feature on Eu-
clidean space, 𝜎 is the activate function and 𝑏 is the bias. Based on
the mapping relationship shown in the Definition 3, the vector
operations on hyperbolic space like:

W ⊗ X = 𝑒𝑥𝑝𝑐𝑜 (W𝑙𝑜𝑔𝑐𝑜 (X)), (6)
and

X ⊕ 𝑏 = 𝑒𝑥𝑝𝑐𝑜 (𝑙𝑜𝑔𝑐𝑜 (X) + 𝑏)), (7)
where X is the node feature on hyperbolic space, 𝑜 is the center of
the space, and 𝑐 is the curvature of the space. Thus, the single-layer
perceptron on hyperbolic space is:

H𝑆𝐿𝑃 = 𝑒𝑥𝑝𝑐𝑜 (𝜎1 (𝑙𝑜𝑔𝑐𝑜 (W1 ⊗ X ⊕ 𝑏1))), (8)
after that, we can deduce that the output of the two-layer perceptron
is:

H2𝐿𝑃 = 𝑒𝑥𝑝𝑐𝑜 (𝜎2 (𝑙𝑜𝑔𝑐𝑜 (W2 ⊗ H𝑆𝐿𝑃 ⊕ 𝑏2))). (9)

4.3.2 Meta-path Embedding. For a type of meta-path P𝑖 , there are
several meta-path instances 𝑝 𝑗 ∈ P𝑖 When we explore the neigh-
boring nodes of point 𝑣 . However, the features between different
types of nodes are heterogeneous, so we cannot simply sum or
average these features. Therefore, we concatenate these features
according to order [11]:

X𝑝 = 𝐶𝑂𝑁𝐶𝐴𝑇 (X𝑝1 ,X𝑝2 , · · · ,X𝑝𝑛 ) . (10)
Then, since there are meta-paths of different lengths and types, we
use different HMLPs to correspond one-to-one with each type of
meta-path to align the output vectors. For a type of meta-path 𝑃𝑖
from node 𝑣 , we have:

HP𝑖
(𝑣) =

∑︁
𝐻𝑀𝐿𝑃P𝑖

(𝐶𝑂𝑁𝐶𝐴𝑇 (X𝑝1 ,X𝑝2 , · · · ,X𝑝𝑛 )), (11)

where, P𝑖 = (𝑝1, 𝑝2, · · · , 𝑝𝑛). Then, we need to map this hyperbolic
representation to Euclidean space for the downstream task:

𝐻P𝑖
(𝑣) = D(HP𝑖

(𝑣)), (12)
where D(·) is a decoder for hyperbolic embedding.

4.3.3 Attention Layer. We adapted graph attention from GAT [32].
For a node 𝑣 , we have:

ℎ𝑣 = W1𝑋𝑣 +
∑︁
P𝑖 ∈P

𝛿𝑖𝐻P𝑖
(𝑣), (13)

𝛿𝑖 =
1
|𝑉 |

∑︁
𝑣∈𝑉

𝛿𝑣𝑖 , (14)

𝛿𝑣𝑖 =
𝑒𝑥𝑝 (−𝑒𝑣𝑖 )∑
𝑖 𝑒𝑥𝑝 (−𝑒𝑣𝑖 )

, (15)

𝑒𝑣𝑖 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝛿𝑇 𝑡𝑎𝑛ℎ( [ℎ𝑣 | |𝐻P𝑖
(𝑣)])),P𝑖 ∈ P . (16)

Now, we have the HIN node representation ℎ𝑣, 𝑣 ∈ 𝑉𝑠 from G
with attention weights of meta-paths 𝛼𝑖 ,P𝑖 ∈ P. The whole HIN
representation is:

𝐻ℎ =
∑︁
𝑣∈𝑉𝑠

ℎ𝑣 (17)
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4.3.4 Nodes Embedding Merge. Since we filter out users who are
only related to one tweet during HIN modeling, we will delete some
nodes, resulting in the loss of some information. So in this part, we
use the text information of the tweet as the input of HMLP and
learn the representation of all tweet nodes:

H𝑡 = 𝐻𝑀𝐿𝑃 (𝑋𝑡 ), (18)

𝐻𝑡 = D(H𝑡 ), (19)
where 𝐻𝑡 is the set of tweets representation, and 𝑋𝑡 is the set of
tweets features. Finally, we generate the final nodes embedding by
combining the 𝐻ℎ and 𝐻𝑡 :

𝐻𝑓 = 𝐻ℎ ⊕ 𝐻𝑡 , (20)

here, ⊕ is the method for combining these embeddings, it could be
sum, mean, or contact. The performance of these methods will be
demonstrated in the ablation studies.

4.4 Objective Function
The objective function we use in this work is cross-entropy with
labels 𝐿:

𝐿′ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐻𝑓 ), (21)

L𝐺𝑟𝑎𝑝ℎ𝐻𝐴𝑀 = −
𝑛∑︁
𝑖=0

𝑙𝑖𝑙𝑜𝑔𝑙
′
𝑖 , (22)

where, 𝐿′ is the prediction labels from final nodes embedding after
sofmax, and 𝑙𝑖 ∈ 𝐿, 𝑙 ′

𝑖
∈ 𝐿′.

5 EXPERIMENTS
In this section, we will present and discuss the experimental results
we designed. Our experiments focus on the impact of point classifi-
cation on our model under different settings. The experiments are
designed to answer several research questions:

• RQ 1: Is our model competitive compared to the baseline
models?

• RQ 2: How does the training ratio impact our model?
• RQ 3: Can hyperbolic space improve model performance?
• RQ 4: What role do text models and HIN models play in the

framework?
• RQ 5: How to choose the node embedding combination

method?
• RQ 6: What impact do hyperparameters have on the model?
• RQ 7: Is our model more efficient than the baseline model?

5.1 Experimental Settings
5.1.1 Datasets. The main target domain of our model is social
media, so we collected three real datasets through the Twitter API:
the Twitter2012 [18], CrisisLexT6 [20], and Kawarith [3] datasets.
The statistics of these datasets are shown in Table 1.

Table 1: The statistical information of datasets.

Dataset Nodes Features classes

Kawarith 4,860 302 6
CrisisLexT6 18,157 302 6
Twitter2012 68,841 302 503

We list the node type of these datasets, and after HIN modeling,
the statistics of HINs of these three datasets are shown in Table 2:

• Kawarith: Tweet(T), Entity(E), User(U).
• CrisisLexT6: Tweet(T), Entity(E), User(U).
• Twitter2012: Tweet(T), Entity(E), User(U).

Table 2: The statistical information of HINs.

Dataset Nodes Edges Meta-path

Kawarith-HIN 9,743 14,181 TE, TU, TUT, TET
CrisisLexT6-HIN 31.625 41,415 TE, TU, TUT, TET
Twitter2012-HIN 98,070 148,979 TE, TU, TUT, TET

5.1.2 Baseline. We compare our model with the following base-
lines:

• TF-IDF (2003) [28]: is based on the importance of word
frequency and is widely used in data mining and text data
recommendation [4];

• Word2Vec (2013) [19]: is a method used by many social
media detection models to understand the meaning behind
the text;

• FastText (2016): is a word vector calculation and text clas-
sification tool open-sourced by Facebook in 2016. It is not
very innovative in academic terms, but its advantages are
also very obvious. In text classification tasks, FastText can
often achieve accuracy comparable to that of deep networks,
but its training time is many orders of magnitude faster
than deep networks.

• Bert (2018) [8]: is the basis of many language learning
models. It is widely used in many tasks that require text
representation. Of course, this includes social event detec-
tion;

• GraphMSE (2021) [17]: is the start-of-the-art heteroge-
neous graph representation learning model with automati-
cally selects meta-path;

• FinEvent (2022) [24]: is the start-of-the-art HIN social
event detection model.

5.1.3 Parameter and Model Settings. We use 256-dimensional em-
beddings for the text model and 120-dimensional embeddings for
the HIN model. For GraphHAM, we set the learning rate at 0.01,
the neighborhood exploration limit number 𝜏 at 6 on the Kawarith
and CrisisLexT6, 2 on the Twitter2012, and the meta-path length
𝛾 at 3 on the Kawarith and CrisisLexT6, 2 on the Twitter2012. For
TD-IDF 2, Word2Vec3, FastText4, Bert 5, GraphMSE 6, and FinEvent
7 we use the open-source implementations. In particular, for the
representation learning models TD-IDF, Word2Vec, and Bert, we
only use pre-trained models to extract the representation of text in
the three datasets and directly divide the extracted representation
into the same training ratio as we set before. Finally, enter the lo-
gistic regression classifier to classify the nodes without adding any
2https://scikit-learn.org/stable/modules/feature_extraction.html
3https://radimrehurek.com/gensim/models/word2vec.html
4https://fasttext.cc/docs/en/python-module.html
5https://huggingface.co/docs/transformers/model_doc/bert
6https://github.com/pkuliyi2015/GraphMSE
7https://github.com/RingBDStack/FinEvent
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Table 3: Comparison experiment results of node classification of all models.

Kawarith

Tr. Ratio 5% 10% 20% 40% 70%
Metrics Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1
TF-IDF 0.6285±0.0086 0.5217±0.1152 0.7791±0.0646 0.7193±0.0859 0.8382±0.0376 0.8125±0.0047 0.9105±0.0175 0.9015±0.0208 0.9287±0.0097 0.9249±0.0110

Word2Vec 0.5447±0.0252 0.4315±0.0223 0.5816±0.0048 0.4523±0.0055 0.5900±0.0045 0.4728±0.0130 0.6248±0.0052 0.5151±0.1260 0.6564±0.0080 0.5623±0.0091
FastText 0.2501±0.0000 0.6670±0.0000 0.2519±0.0001 0.6930±0.0004 0.5612±0.0027 0.3467±0.0011 0.7201±0.0000 0.5684±0.0023 0.8512±0.0019 0.8206±0.0032
BERT 0.6522±0.0122 0.6164±0.0181 0.6849±0.0097 0.6448±0.0104 0.7247±0.0043 0.7048±0.0067 0.7565±0.0072 0.7313±0.0075 0.7695±0.0092 0.7502±0.0101

GraphMSE 0.1720±0.0778 0.1232±0.0490 0.1382±0.0002 0.1216±0.0010 0.9105±0.0002 0.8966±0.0011 0.9330±0.0016 0.9218±0.0022 0.9470±0.0008 0.9400±0.0003
FinEvent 0.7986±0.0185 0.8001±0.0100 0.8632±0.0000 0.8566±0.0002 0.8898±0.0200 0.8813±0.0200 0.9066±0.0250 0.8964±0.0237 0.9259±0.0087 0.9136±0.0132

GraphHAM 0.8512±0.0036 0.8262±0.0047 0.8818±0.0134 0.8632±0.0152 0.9151±0.0052 0.9026±0.0073 0.9340±0.0029 0.9224±0.0040 0.9510±0.0041 0.9457±0.0053
CrisisLexT6

TF-IDF 0.9064±0.0126 0.9063±0.0126 0.9216±0.0056 0.9209±0.0057 0.9265±0.0036 0.9255±0.0037 0.9316±0.0025 0.9307±0.0026 0.9365±0.0015 0.9356±0.0016
Word2Vec 0.7081±0.0062 0.7093±0.0068 0.7329±0.0057 0.7342±0.0047 0.7573±0.0027 0.7590±0.0030 0.7766±0.0053 0.7775±0.0053 0.7948±0.0043 0.7925±0.0034
FastText 0.6512±0.0072 0.6402±0.0120 0.8967±0.0000 0.8957±0.0000 0.9162±0.0002 0.9152±0.0001 0.9282±0.0004 0.9271±0.0004 0.9387±0.0009 0.9380±0.0009
BERT 0.7794±0.0054 0.7765±0.0058 0.7984±0.0053 0.7948±0.0055 0.8327±0.0018 0.8297±0.0017 0.8459±0.0028 0.8436±0.0029 0.8495±0.0038 0.8468±0.0036

GraphMSE 0.1475±0.0380 0.0997±0.0319 0.1538±0.0430 0.1136±0.0184 0.8911±0.0044 0.8656±0.0552 0.9065±0.0013 0.9061±0.0008 0.9100±0.0032 0.9094±0.0031
GraphHAM 0.8577±0.0220 0.8574±0.0219 0.8826±0.0094 0.8815±0.0096 0.9031±0.0010 0.9024±0.0017 0.9165±0.0017 0.9158±0.0017 0.9218±0.0027 0.9213±0.0023

Twitter2012

TF-IDF 0.3059±0.0077 0.0721±0.0038 0.4384±0.0069 0.1527±0.0055 0.5610±0.0008 0.2295±0.0050 0.6393±0.0006 0.2935±0.0007 0.6789±0.0026 0.3405±0.0035
Word2Vec 0.4480±0.0063 0.1653±0.0053 0.5025±0.0019 0.2004±0.0023 0.5348±0.0040 0.2372±0.0050 0.5685±0.0039 0.2741±0.0051 0.5714±0.0054 0.2813±0.0047
FastText 0.0999±0.0000 0.0073±0.0000 0.0989±0.0004 0.0013±0.0000 0.1333±0.0008 0.0036±0.0000 0.1537±0.0001 0.0055±0.0000 0.1725±0.0000 0.0070±0.0000
BERT 0.4817±0.0031 0.2451±0.0056 0.5695±0.0056 0.3433±0.0067 0.6262±0.0041 0.4272±0.0055 0.6638±0.0062 0.4841±0.0176 0.6889±0.0032 0.5158±0.0052

GraphMSE 0.0015±0.0004 0.0006±0.0004 0.0017±0.0003 0.0009±0.0002 0.7494±0.0019 0.5633±0.0077 0.7856±0.0040 0.6343±0.0070 0.8057±0.0046 0.6716±0.0094
GraphHAM 0.6887±0.0154 0.4492±0.0129 0.7538±0.0105 0.5457±0.0006 0.8028±0.0022 0.6392±0.0016 0.8290±0.0016 0.6776±0.0042 0.8414±0.0013 0.7100±0.0040

additional operations. Furthermore, since FinEvent clusters events,
our test metrics are for classification tasks. Therefore, we applied
the method from [34] to map FinEvent clustering results to virtual
labels and then converted them into a multi-classification prob-
lem. Note that we only tested the FinEvent model on the Kawarith
dataset as out-of-memory issues occurred on the other two datasets.
All experiments are conducted on a Macbook Air with an M1 chip.
The result reports the mean and standard deviations of 5 times
experiments.

5.2 GraphHAM Mode Performance Comparison
(RQ 1 and RQ 2)

The experimental results of GraphHAM and baseline models are
shown in Table 3. We set the training rate at 5%, 10%, 20%, 40%, and
70% for node classification task. For each training ratio, we set the
validation ratio to 10% and the rest to the testing ratio.

In general, we can see that GraphHAM performs better than all
baseline models on the Kawarith and Twitter2012 datasets. Only
on the CrisisLexT6 dataset, its performance is worse than the TF-
IDF and FastText, but it still achieves the best performance among
complex models. The reason is that the TF-IDF and FastText models
are more suitable for data sets with simple data structures and
fewer event types. Especially on the Twitter2012 dataset, FastText
is basically unable to learn any information. In addition, compared
to the strong baseline model GraphMSE, our model improves on all
percentages of the training set, especially at training ratios below
20%. At a training ratio of greater than or equal to 20%, it can also
be 0.32%, 1.13%, and 4.42% higher than GraphMSE on the Kawarith,
CrisislexT6 and Twitter2012 datasets respectively.

5.3 Ablation Studies
We conduct ablation experiments to verify the role of each compo-
nent in themodel, andwe use a training ratio of 20% for experiments
and report the mean and standard deviations of 5 times experiment
results on the validation set.

5.3.1 GraphHAM Performance in Different Space (RQ3). We run
GraphHAM-PoincareBall, GraphHAM-Hyperboloid, andGraphHAM-
Euclidean and test their node classification performance. GraphHAM-
PoincareBall means the model embeds nodes into hyperbolic space
via the PoincareBall model. Similarly, the GraphHAM-Hyperboloid
means model embeds nodes into the hyperbolic space through the
Hyperboloid model. GraphHAM-Euclidean means the model em-
beds nodes into the Euclidean space. The performance is shown in
Table 5. It is obvious that the hyperbolic space performs better than
the Euclidean space, and, in general, the PoincareBall model in the
hyperbolic space is more suitable for GraphHAM. Furthermore, we
found that the more complex the data, the more hyperbolic space
improves the model. For example, on the CrisisLexT6 and Kawarith
datasets, hyperbolic space improves by 3% and 4% compared to
Euclidean space. For the more complex Twitter2012 dataset, the hy-
perbolic space improved the model’s performance by 7%. Therefore,
we believe that the more complex the data, the deeper the tree-like
structure of the data will be, and the more hyperbolic space can
reduce distortion caused by data embedding.

5.3.2 The impact of the text model and the HIN model (RQ4). As
mentioned before, GraphHAM has a text model as an auxiliary
for heterogeneous models. We separately trained the text model
and HIN model in the framework with the overall framework to
compare the performance of node classification when the training
ratio was 20%. The results are shown in Table 4. We can find that
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Table 4: The impact of different models in GraphHAM framework at 10%, 20% and 40% training ratio.

Training Ratio 10% 20% 40%
Kawarith Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GraphHAM 0.9002±0.0015 0.8765±0.0028 0.9248±0.0030 0.9062±0.0070 0.9313±0.0000 0.9236±0.0003
GraphHAM w/o Text Model 0.2478±0.0531 0.1704±0.0696 0.9109±0.0015 0.8913±0.0094 0.9217±0.0015 0.9045±0.0010
GraphHAM w/o HIN Model 0.8487±0.0015 0.8088±0.0016 0.8723±0.0075 0.8430±0.008 0.8798±0.0060 0.8592±0.0067

CrisisLexT6 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GraphHAM 0.9099±0.0049 0.8861±0.0010 0.9116±0.0016 0.9021±0.0015 0.924±0.0021 0.9206±0.0013
GraphHAM w/o Text Model 0.1545±0.1108 0.1019±0.0792 0.9016±0.0024 0.8353±0.0870 0.9119±0.0020 0.9113±0.0005
GraphHAM w/o HIN Model 0.8332±0.0008 0.8293±0.0008 0.8692±0.0037 0.8665±0.0039 0.8841±0.0066 0.8844±0.0068

Twitter2012 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GraphHAM 0.7478±0.0045 0.5918±0.0540 0.8081±0.0011 0.6406±0.0016 0.8354±0.0015 0.6786±0.0021
GraphHAM w/o Text Model 0.0031±0.0015 0.0003±0.0002 0.7663±0.0041 0.6028±0.0013 0.8133±0.0026 0.7091±0.0074
GraphHAM w/o HIN Model 0.4677±0.0032 0.2147±0.0015 0.5003±0.0002 0.2131±0.0020 0.4988±0.0059 0.2159±0.0028

Table 5: GraphHAM performance in different space.

Kawarith Micro-F1 Macro-F1

GraphHAM-PincareBall 0.9174±0.0015 0.9035±0.0008
GraphHAM-Hyperboloid 0.9142±0.0182 0.8977±0.0136
GraphHAM-Euclidean 0.8734±0.0121 0.8628±0.0264

CrisisLexT6 Micro-F1 Macro-F1

GraphHAM-PincareBall 0.9035±0.0137 0.8924±0.0135
GraphHAM-Hyperboloid 0.9193±0.0008 0.9069±0.0004
GraphHAM-Euclidean 0.8882±0.0165 0.8735±0.0209

Twitter2012 Micro-F1 Macro-F1

GraphHAM-PincareBall 0.8067±0.0034 0.6347±0.0040
GraphHAM-Hyperboloid 0.7602±0.0004 0.6052±0.0016
GraphHAM-Euclidean 0.7333±0.0118 0.5787±0.0107

when we train one of the models alone, the performance is not as
good as when they are trained together. The HIN model accounts
for a larger proportion than the text model at 20% training ratio.
However, the role of these two models cannot be clearly seen by
looking at the 20% training ratio, so we have added the ratios near
the 20% ratio: 10% and 40%. We can find that 20% exists as an interval
point. When the training ratio is less than 20%, text models play a
key role, and the HIN model is basically unable to learn features.
When the training ratio reaches or even exceeds 20%, the HINmodel
begins to play a role and takes a dominant position, and the text
model plays an auxiliary role in helping the entire framework learn
information that the HIN model cannot capture.

5.3.3 The impact of the embedded combination of "SUM", "MEAN",
and "CONCAT" on themodel (R5). We runGraphHAM-SUM,GraphHAM-
MEAN, and GraphHAM-CONCAT to see the performance of node
classifications on the three datasets. Table 6 shows the result of
the experiments. It can be seen that for the Kawarith and Cri-
sisLexT6 datasets, the "MEAN" method performs better, but for
the Twitter2012 dataset, the "SUM" is the best-performing node
representation combined method.

For such results, we believe that the merged nodes embedding
method’s performance is related to the data’s complexity. For data of
simple complexity, such as the Kawarith and CrisisLexT6 datasets,
the "CONCAT" or "MEAN" method is more suitable for our frame-
work. Let’s review Table 4 again. At a training rate of 20%, the

Table 6: Nodes embedding combination methods.

Kawarith Micro-F1 Macro-F1

GraphHAM-SUM 0.9013±0.0030 0.8706±0.0011
GraphHAM-MEAN 0.9163±0.0060 0.9069±0.0020

GraphHAM-CONCAT 0.8994±0.0242 0.8756±0.0353
CrisisLexT6 Micro-F1 Macro-F1

GraphHAM-SUM 0.9066±0.0062 0.8991±0.0050
GraphHAM-MEAN 0.9122±0.0016 0.9021±0.0008

GraphHAM-CONCAT 0.9131±0.0012 0.8388±0.0739
Twitter2012 Micro-F1 Macro-F1

GraphHAM-SUM 0.8325±0.0064 0.6784±0.0001
GraphHAM-MEAN 0.8086±0.0016 0.6388±0.0007

GraphHAM-CONCAT 0.8274±0.0026 0.6803±0.0015

text and HIN models extract sufficient features. This is why the
"SUM" or "MEAN" method can perform well in these two datasets:
they can better extract the common features in the two models.
However, for the complex dataset Twitter2012, we can see from
the table that the performance of the text model and HIN model is
not as good as the above two datasets. This also means that they
extracted a few common features. If we use "MEAN" or "MEAN"
to combine this set of features, some features will be lost for the
entire framework. Therefore, the "SUM" method can better extract
features for complex data.

5.4 Hyperparameter Analysis (RQ6)
We analyze the hyperparameters of the model, which are the num-
ber of neighbor explorations around a node 𝜏 and the length of
the meta-path 𝛾 . We set 𝜏 = 1, 2, 3, 4, · · · , 9, 10, the result shown in
Fig.2(a). We found that, in general, the model with 𝜏 around 5 per-
forms satisfactorily in all the datasets. Specifically, for the Kawarith
and CrisisLexT6 datasets, when 𝜏 ≤ 6, the model’s performance
shows an increasing trend, and when 𝜏 > 6, the model’s perfor-
mance fluctuates. For the Twitter2012 dataset, the best performance
is when 𝜏 = 2, but the performance when 𝜏 ≤ 5 is also satisfactory,
and when 𝜏 > 5, there is a downward trend.

In addition, we analyze the length of the meta-path 𝛾 . The time
complexity of the model will increase exponentially as 𝛾 increases.
What we want is to explore how long 𝛾 is required for our model to
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Figure 2: Performances with different parameters in all
datasets at 20% training rate.
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Figure 3: The relationship between training ratio and training
time.

be satisfactory. The result is shown in the Fig.2(b). We found that
on the Kawarith and CrisislexT6 datasets, 𝛾 = 3 allowed the model
to achieve satisfactory performance. On the Twitter2012 dataset,
𝛾 = 2 can make the model perform well.

5.5 Time Efficiency(RQ7)

Table 7: Time efficiency analysis for allmodels at 20% training
ratio.

Kawarith (4,860)
TF-IDF Word2Vec FastText Bert GraphMSE FinEvent GraphHAM

Time 0.93s 0.95s 0.75s 480.17s 7.53s 310.21s 34.22s
CrisisLexT6 (18,157)

TF-IDF Word2Vec FastText Bert GraphMSE FinEvent GraphHAM
Time 1.15s 2.82s 7.18s 960.42s 15.12s −− 116.75s

Twitter2012 (68,841)
TF-IDF Word2Vec FastText Bert GraphMSE FinEvent GraphHAM

Time 3.71s 21.84s 125.52s 1581.62s 34.57s −− 480.41s

We mainly analyze the efficiency of our model from two aspects.
The first is the time required for our model training to reach con-
vergence for different training ratios. As shown in Fig. 3, we can
see that in the smaller datasets, the Kawarith (4,860 tweets) and the
CrisisLexT6 (18,157 tweets), our model’s training time increases
slowly as the training ratio increases. However, in the Twitter2012
(68,841 tweets) dataset, when the training ratio exceeds 20%, the
training time will show a trend close to exponential growth.

Then, we run all models on all datasets with a training ratio of
20%, and the training time is until the models reached convergence.
The results are shown in Table 7. We can see that their training
time is very fast for simple models such as TF-IDF, Word2Vec, and
FastText. However, compared with complex models such as Bert
and FinEvent, our model still has great efficiency improvements.
At 20% training ratio, the training time of our model is still slightly
inferior to GraphMSE, but we have better performance, especially
when the training ratio is less than 20%.

5.6 Dataset Complexity

(a) Kawarith (b) CrisisLexT6 (c) Twitter2012

Figure 4: Datasets’ word cloud.

In this section, we discuss the complexity of the dataset we used,
which has implications for many components of our model. We
apply the word cloud with the same settings to show the concentra-
tion of keywords in each dataset as shown in Fig.4. The word cloud
represents the frequency of word occurrence through the size of
the font and displays the frequency of different words in the data
through the number of words appearing per unit area. We can see
that only a few high-frequency words appear in the Kawarith data,
and the words in the entire data are also sparse. The high-frequency
words in CrisisLexT6 data are average and not sparse. This is why
TF-IDF and FastText models perform outstandingly on CrisisLexT6
data. In addition, the different words in the Twitter2012 dataset
have different frequencies, which reflects that this dataset is more
complicated than the above two datasets and results in the need to
learn heterogeneous information to capture more features. This is
the main reason why TF-IDF and FastText perform poorly on the
Twitter2012 dataset.

6 CONCLUSION
In this article, we propose a social media detection model that com-
bines the automatic selection of meta-path and hyperbolic space
representation: GraphHAM. Specifically, we apply hyperbolic space
representation to learn tree-structured data in the HIN environment
and use efficient sampling technology to improve model efficiency
greatly. Experimental results show that our model is highly compet-
itive with existing social event detection models in terms of model
performance and model efficiency. In addition, our model can per-
form well on all datasets we used and with a relatively low training
ratio. Our model can achieve satisfactory performance when the
training ratio reaches 20%. In the future, we plan to extend the
model to online social media detection environments, including
how to face incremental data streams and imbalanced data sets.
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