Towards Efficient Pre-training: Exploring FP4 Precision in Large
Language Models

Anonymous ACL submission

Abstract

The burgeoning computational demands for
training large language models (LLMs) neces-
sitate efficient methods, including quantized
training, which leverages low-bit arithmetic op-
erations to reduce costs. While FP8 precision
has shown potential, leveraging FP4 remains
challenging due to inherent quantization errors
and limited representation capability. Based
on the Transformer architecture, we present an
FP4 training scheme for LLMs, overcoming
these obstacles through mixed-precision quan-
tization strategies tailed for different modules
and training stages. This allows us to apply the
precision level suitable to distinct components
within the model, ensuring that multi-head at-
tention and linear layers are handled appropri-
ately. Our pretraining recipe ensures stability in
backpropagation by incorporating fine-grained
quantization methods with a target precision
training schedule. Experimental results demon-
strate that our FP4 training scheme achieves
accuracy comparable to BF16 and FP8, with
smaller theoretical computational cost. With
the advent of next-generation hardware sup-
porting FP4, our method sets the foundation for
efficient ultra-low precision training.

1 Introduction

Recent advancements in large language models,
including GPT (Radford, 2018; Floridi and Chiri-
atti, 2020; Achiam et al., 2023), DeepSeek (Liu
et al., 2024), Llama (Touvron et al., 2023) and
OPT (Zhang et al., 2023), have demonstrated strong
generalization capabilities across various tasks (Sti-
ennon et al., 2020; Alexey, 2020). Among these
advancements, pretraining on large-scale unlabeled
data has proven to be critical for ensuring model
performance (Radford, 2018; Dong et al., 2019). In-
creasing the model size and the dataset scale can en-
hance performance (Kaplan et al., 2020; Hoffmann
et al., 2022), but this improvement comes with sig-
nificant computational costs. To address this, nu-

merous methods have been proposed to accelerate
the pretraining process (Duan et al., 2024).Particu-
larly, low-precision computation serves as an effi-
cient acceleration technique. This approach quan-
tizes the inputs of computationally intensive opera-
tors to a specified low-bit width, leveraging low-bit
arithmetic units to speed up training.

Previous research on low-precision training
has primarily focused on deep learning models.
However, these methods do not fully consider
the characteristics of large language model pre-
training, which has unique training methods and
model architectures. The good news is that next-
generation hardware will support FP4 and FP8 for-
mat (Nvidia). Studies like (Peng et al., 2023; Mi-
cikevicius et al., 2022a; NVIDIA; Fishman et al.,
2024; Xi et al.) have demonstrated the capability of
8-bit computation for LLM pretraining. However,
the application of FP4 tensor cores in LLLM pre-
training remains unexplored. Compared to INT4,
FP4 offers a larger numerical representation space,
making it possible to further reduce the bit width in
large-scale model pretraining. However, the limited
number of bits in FP4 format introduces significant
quantization errors, making the application of FP4
to pretraining highly challenging.

From the perspective of LLM structure, it has
been observed that different modules and compu-
tational components exhibit varying levels of sen-
sitivity. Given the critical role of the multi-head
attention (MHA) mechanism in the Transformer
architecture, it is imperative to implement specific
strategies to ensure the accuracy of attention mod-
ules. As the volume of data continues to grow, the
gradient values tend to decrease, making FP4 quan-
tization more prone to underflow, thus hindering
parameter updates. Based on these observations,
we propose a novel FP4 mixed-precision large lan-
guage model pretraining recipe. Specifically, we
leverage a per-block quantization strategy and em-
ploy different quantization approaches across mod-

P — e ——

I I
I ! i
57.00% ! " EFPI6 | i :
" , all OFPS | i [. |
! FFN Linear 1 || mFP4 || i ! ! to FP4 | !
\ | [30% 100 | | H 1

1
| 1 — 1 o= |
! | St ! 3 | oIFP4 | :
| 3 = .- (Weight)
i Attn 1 {200 9 S, fivafion) -5 €ig !
! I (0% 8.61% ! pvation El ! ' I
| i | 10 | 1 |
: Attn Linear W : : Linear ‘“LL:: : :
4/0 o % 10
128.70% 14.30% ! 10% . ! (CayerNorm) | i
: (a): 002 002<x<0 =0 0<x<002 >002 Values 3§ 1o 15 2 3 : : :
r ! ! |
1 I I 1
TR O R @ | L = =
! 4 4 06 : 8.5-—* | i
I] 05 = P VA I I
o . 5 :§£ ention : [] FP16 module :
S .

! R | []FP8 module !
ro12 12 % I(~ Weight [
| ! '|_Gradient- [FP4 module 1
| e 0 ' |
| tokenld 4 8 12 4 '8 12 At Score (0)! e @y ©)

Figure 1: (a) shows the proportion of computational overhead for the main computation components of a transformer
block when using the LLaMA 7B configuration with a sequence length of 4K. (b) shows the distribution of
activations and gradients after the GPT-large model has been trained to approximately 10B tokens. (c) shows the
heatmap of attention scores when using different training strategies. (d) and (e) illustrate our training scheme, which

will be detailed in Section 3.

ules and training stages to enable FP4 model train-
ing. The approaches enable better exploitation of
the computational improvements brought by future
hardware advancements.

In this paper, we explored the use of FP4 pre-
cision in language model pretraining and, for the
very first time, proposed an effective mixed pre-
cious pretraining strategy. First, considering the
distinct requirements of different modules, we ap-
plied tailored quantization strategies to preserve
the precision of MHA execution. Second, as back-
propagation has shown high sensitivity to precision,
we employed finer-grained quantization methods to
ensure accurate parameter updates during the back-
ward pass. Finally, we adopted a 2-stage target
precision training schedule to eliminate the impact
of quantization noise on the model.

2 Related Work

Low-precision training enhances deep learning ef-
ficiency by reducing computational costs. Many
existing studies focus on the training of deep neu-
ral networks (DNNs) (Wang et al., 2018; Chmiel
et al., 2023; Sun et al., 2019; Xi et al., 2023; Fu
et al., 2021), whose architecture and performance
differ from LLM pre-training. In the context of
low-precision training for large model pre-training,
some progress has been made in FP8. For exam-
ple, (Micikevicius et al., 2022a) introduced new

FP8 floating-point formats (E4M3 and ESM2), and
(Fishman et al., 2024) extends FP8 to trillion-token
large-scale model pretraining. In terms of FP4 train-
ing, (Wang et al., 2025) improved FP4 computa-
tional precision using a differentiable quantization
estimator and outlier clamping and compensation
strategy. However, most existing methods fail to
fully account for the varying sensitivity to precision
across different model modules.

3 Methods

Our objective is to maximize the efficiency of low-
precision computations based on the characteris-
tics of LLMs. As shown in Fig.1(a), the compu-
tational cost of three key components in a trans-
former model is analyzed, with FFN accounting
for 57%. Considering both the computational cost
and impact on performance, we meticulously de-
sign three corresponding training schemes: 3.1
Attention-protected Neighbor Linear, 3.2 Gradient-
sensitive Linear, and 3.3 Target Precious Training
Schedule. These schemes fully leverage hardware
acceleration while keeping precision loss within an
acceptable range during training.

3.1 Attention-protected Neighbor Linear

As the core component of the Transformer model,
the attention mechanism is highly sensitive to pre-
cision. Quantization errors introduced by low-

precision training can accumulate over time, even-
tually disrupting the function of the attention mech-
anism. As shown in Fig. 1(c), an undisturbed at-
tention mechanism identifies tokens 0, 3, 6, and 9
as more important. However, under FP4 training,
the result becomes nearly uniformly distributed,
preventing the model from distinguishing which
tokens are significant. This makes it difficult for
the model to differentiate the importance of tokens,
thereby affecting the convergence speed.

To ensure the proper functioning of the attention
mechanism and enable the model to correctly eval-
uate the importance of each token, we employ FP8
precision for the computation of QKV and the out-
put projection to "protect” the accurate execution
of the attention mechanism, as shown in Fig. 1(d).

3.2 Gradient-sensitive FFN Linear

Weight gradient computation is more sensitive to
errors compared to forward computation, due to the
fact that both gradients and activations contribute
to the error. For gradients, since many values are
around 0.02, especially as training progresses and
gradient magnitudes decrease, underflow is likely
to occur. As can be seen in the left of Fig.1(b), there
is an 8.6% difference between FP4 and FP8/FP16,
thus requiring a more accurate representation. For
activations, we observe that underflow occurs ap-
proximately 18% of the time between FP4 and
FP8/FP16. This is largely due to the relatively large
range of values, as can be seen in the right of Fig.
1(b). Therefore, a more accurate representation is
also needed. Additionally, optimizers use the gra-
dients to update model parameters. Based on the
above discussion, for the weight gradient compu-
tation of model weights, we adopt FP8 precious
computation, as shown in the bottom left corner of
Fig.1(e).

Furthermore, for the activation gradient compu-
tation (the top right corner of Fig.1(e)), we find
that quantizing gradients significantly impacts the
convergence of model training. There is always
a nonlinear operation between the linear layers,
which requires more precise numerical representa-
tions. Furthermore, quantization errors accumulate
iteratively through the chain rule during backprop-
agation, ultimately hindering the convergence of
model training.

Lastly, in our experiments, we observed that
quantization noise increases as the model size and
the amount of data grow (a detailed explanation
can be found in Appendix B). This occurs because,

when the model reaches a certain level of accu-
racy, coarse-grained low-precision tensors can no
longer currently represent the parameter space and
input information. Therefore, we adopt a more
conservative quantization approach to maintain sta-
ble training in forward computation. As shown in
the top left corner of Fig.1(e). To ensure efficient
hardware implementation, we use per-block quan-
tization strategies where the block size is set to
128.

3.3 Target Precious Training Schedule

When using low-precision training throughout the
entire process, there tends to be a performance gap
between the low-precision model and the FP16
model, as shown in Fig.2. The validation loss
curves exhibit a parallel trend. Although the gap
between the two curves is very small, the difference
in downstream tasks, such as wikitext perplexity
(PPL), can be more pronounced, reaching up to
approximately 6.3 compared to the model trained
with FP16. This is likely due to compromises the
model makes to adapt to the noise introduced by
quantization during low-precision training. To ad-
dress this issue, we employ a Target Precious Train-
ing Schedule, which involves two stages: contin-
uing the FP4 pretraining process with FP16 for a
short period. This accounts for only 5% to 10%
of the total training steps, allowing the model to
return to an ideal state.

Loss
FP4-2-stage -
3.54 P S
FP4 Pae Loss ™«
—FP16 «
3.0
2.54
2.0
1.54

5 10 15
Num of Tokens (Billion)

o4

Figure 2: Loss curve for the Target Precious Training
Schedule.

4 Experiment

In this section, we evaluate the proposed FP4 train-
ing method across language models of various sizes.
The detailed model training configurations and hy-
perparameter settings are provided in Appendix
B. Section 4.1 presents the main results, showcas-
ing the model’s performance on downstream tasks.

Table 1: Comparison of FP4 and FP16 Training Results

Model Method Val Loss | Val PPL | Text Gen Natural Language Understanding (GLUE)
WikiText ‘ cola sst2 stsb te wnli qnli mnli qqp

GPT2 125M Ours 1.706 5.507 50.98 |0.2663 0.8704 0.7549/0.8322/0.7936 0.7681/0.7658 0.5704 0.3380 0.8473 0.7554/0.7705 0.8777/0.8403
FP16-baseline 1.705 5.503 50.14 |0.2290 0.8796 0.7647/0.8395/0.8021 0.7798/0.7808 0.5884 0.3099 0.8548 0.7613/0.7695 0.8799/0.8437
GPT2 335M Ours 1.549 4.705 37.62 |0.2565 0.8899 0.7647/0.8362/0.8004 0.8159/0.8122 0.6029 0.2535 0.8611 0.7798/0.7874 0.892/0.8572
i FP16-baseline 1.556 4.739 38.39 |0.3002 0.8819 0.7745/0.8419/0.8082 0.8266/0.8298 0.6209 0.1831 0.8726 0.7799/0.7889 0.8929/0.8508
GPT2 774M Ours 1.431 4.181 30.01 |0.3473 0.9002 0.7745/0.8472/0.8108 0.8305/0.8336 0.6498 0.2676 0.8742 0.7995/0.808 0.8984/0.8656
FP16-baseline 1.430 4.178 28.36 |0.3708 0.8922 0.7794/0.8454/0.8124 0.8347/0.8353 0.6498 0.2254 0.8911 0.8078/0.813 0.9012/0.8683

Section 4.2 presents the ablation study to demon-
strate the effectiveness of our training method.

4.1 Main Result

We validate the proposed FP4 pretraining method
on two large language models, using the widely
adopted GPT-2 and LLaMA architectures. The
GPT-2 and LLaMA models are pretrained on
the RedPajama-WikiText (Weber et al., 2025)
dataset within the Megatron framework and eval-
uate their text generation capabilities on wiki-
Text(Merity et al., 2016). Additionally, we assess
their natural language understanding abilities on
the GLUE(Wang, 2018) benchmark.

We train approximately 10B tokens on GPT-2-
small and GPT-2-mid and around 25B tokens on
GPT-2-large. The final validation loss and vali-
dation perplexity (PPL) are presented in Table 1,
showing that the pretraining results obtained with
our method exhibit almost no performance differ-
ence compared to models trained using FP16. In
addition to training loss, the downstream task per-
formance of the same pretrained models demon-
strates that the average accuracy of FP4-trained
models is comparable to that of FP16-trained mod-
els.

4.2 Ablation Study

We aim to investigate the effect of the module-wise
pretraining method introduced in Section 3. For
this ablation study, we train the LLaMA2-125M
model on approximately 5B tokens. The results
in the table indicate that different modules exhibit
varying levels of robustness to low precision. Ad-
ditionally, we compute the theoretical computation
cost for these methods and observe that our ap-
proach achieves a lower theoretical computation
cost (see Appendix B for details) while maintaining
higher performance.

Attention Linear | FEN Linear | FP4 Linear’ Backward | Training loss | Val loss | Val ppl | Computation cost
FP4 FP4 FP4 2.2659 1.7828 | 5.9467 57.1%
FP4 FP8 FP8 2.2211 1.7543 |5.7798 69.6%
FP8 FP4 FP4 2.2562 1.7549 | 5.7831 60.7%
FP8 FP4 FP8 22225 1.7415 | 5.7062 66.1%
FP16 FP16 FP16 2.1998 1.7097 | 5.5273 100%

Table 2: Ablation studies about different precious on
different modules

Attention FFN FFN Backward Target Precious Val loss Val ppl Comgulmiun
ost

FP8 FP4 FP8 no 1.3505 3.8596 67.5%
Llama 1B FP8 FP4 FP8 yes 1.3311 3.7855 69.7%
FP16 FP16 FP16 - 1.3296 3.7797 100%
FP8 FP4 FP8 no 1.6851 5.3933 68.2%
Llama 125M FP8 FP4 FP8 yes 1.6622 5.2670 71.4%
FP16 FP16 FP16 - 1.6567 5.2424 100%

Table 3: Ablation studies about target precious training
schedule

Furthermore, to demonstrate the effectiveness
of the 2-stage training schedule, we conducted the
following ablation experiment, using the same ex-
perimental setup as in Section 4.1. The results in
the table highlight the importance of the 2-stage
training schedule for large-scale model pretraining.

5 Conclusion

We propose an FP4 pre-training scheme for mod-
ern large language models. Based on the sensitivity
analysis of computational modules and training
stages, we adopt a tailored training recipe accord-
ing to the position of linear modules, together with
a Target Precious Training schedule, to ensure sta-
ble convergence. Experimental results show that
FP4-based training achieves comparable validation
loss and downstream task accuracy to traditional
FP16 training while reducing computational costs
by 30%. Additionally, our ablation studies con-
firm the importance of adaptive quantization strate-
gies across different model modules and training
stages, providing new insights for the further devel-
opment of low-precision training techniques and
efficient training of large language models on next-
generation hardware.

6 Limitation

First, due to computational resource limitations,
our method has not been validated on larger mod-
els and larger datasets to demonstrate its effective-
ness. Investigating such scalability remains a criti-
cal direction for future research. In addition, since
the model adopts a simulated FP4 approach, it is
unable to obtain an accurate increase in training
efficiency. Lastly, for the sensitive computational
components, we employed a simple strategy to en-
sure numerical precision. In future work, we will
explore more customized approaches to enable a
broader range of computations to utilize FP4.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Dosovitskiy Alexey. 2020. An image is worth 16x16
words: Transformers for image recognition at scale.
arXiv preprint arXiv: 2010.11929.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

Brian Chmiel, Ron Banner, Elad Hoffer, Hilla Ben-
Yaacov, and Daniel Soudry. 2023. Accurate neural
training with 4-bit matrix multiplications at standard
formats. In The Eleventh International Conference
on Learning Representations.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344-16359.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. Advances in neural information process-
ing systems, 32.

Jiangfei Duan, Shuo Zhang, Zerui Wang, Lijuan Jiang,
Wenwen Qu, Qinghao Hu, Guoteng Wang, Qizhen
Weng, Hang Yan, Xingcheng Zhang, et al. 2024.
Efficient training of large language models on dis-
tributed infrastructures: A survey. arXiv preprint
arXiv:2407.20018.

Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel
Soudry. 2024. Scaling fp8 training to trillion-token
llms. arXiv preprint arXiv:2409.12517.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30:681-694.

Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining
Ding, Vikas Chandra, and Yingyan Lin. 2021. Cpt:
Efficient deep neural network training via cyclic pre-
cision. arXiv preprint arXiv:2101.09868.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, et al. 2022. Training compute-
optimal large language models. arxiv. arXiv preprint
arXiv:2203.15556.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Tanishq Kumar, Zachary Ankner, Benjamin F Spector,
Blake Bordelon, Niklas Muennighoff, Mansheej Paul,
Cengiz Pehlevan, Christopher Ré, and Aditi Raghu-
nathan. 2024. Scaling laws for precision. arXiv
preprint arXiv:2411.04330.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Shih-yang Liu, Zechun Liu, Xijie Huang, Pingcheng
Dong, and Kwang-Ting Cheng. 2023. LIm-fp4: 4-bit
floating-point quantized transformers. arXiv preprint
arXiv:2310.16836.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Mar-
ius Cornea, Pradeep Dubey, Richard Grisenthwaite,
Sangwon Ha, Alexander Heinecke, Patrick Judd,
John Kamalu, et al. 2022a. Fp8 formats for deep
learning. arXiv preprint arXiv:2209.05433.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Mar-
ius Cornea, Pradeep Dubey, Richard Grisenthwaite,
Sangwon Ha, Alexander Heinecke, Patrick Judd,
John Kamalu, et al. 2022b. Fp8 formats for deep
learning. arXiv preprint arXiv:2209.05433.

https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602

Nvidia. Nvidia blackwell architecture techni-
cal brief. https://resources.nvidia.com/
en-us-blackwell-architecture.

NVIDIA. Transformer engine. https://github.com/
NVIDIA/TransformerEngine.

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao,
Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue Yang,
Bolin Ni, Jingcheng Hu, et al. 2023. Fp8-lm: Train-
ing fp8 large language models. arXiv preprint
arXiv:2310.18313.

Alec Radford. 2018. Improving language understanding
by generative pre-training.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008—
3021.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang
Wang, Swagath Venkataramani, Vijayalakshmi Viji
Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash
Gopalakrishnan. 2019. Hybrid 8-bit floating point
(hfp8) training and inference for deep neural net-
works. Advances in neural information processing
systems, 32.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alex Wang. 2018. Glue: A multi-task benchmark and
analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu
Chen, and Kailash Gopalakrishnan. 2018. Training
deep neural networks with 8-bit floating point num-
bers. Advances in neural information processing
systems, 31.

Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao,
Ziyue Yang, Baining Guo, Zhengjun Zha, and Peng
Cheng. 2025. Optimizing large language model
training using fp4 quantization. arXiv preprint
arXiv:2501.17116.

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan
Oren, Shane Adams, Anton Alexandrov, Xiaozhong
Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams,
et al. 2025. Redpajama: an open dataset for training
large language models. Advances in Neural Informa-
tion Processing Systems, 37:116462—116492.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Haocheng Xi, Yuxiang Chen, Kang Zhao, KAI JUN
TEH, Jianfei Chen, and Jun Zhu. Jetfire: Efficient
and accurate transformer pretraining with int8 data
flow and per-block quantization. In Forty-first Inter-
national Conference on Machine Learning.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu.
2023. Training transformers with 4-bit integers. Ad-

vances in Neural Information Processing Systems,
36:49146-49168.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2023.
Opt: Open pre-trained transformer language models,
2022. URL https://arxiv. org/abs/2205.01068, 3:19—
0.

https://resources.nvidia.com/en-us-blackwell-architecture
https://resources.nvidia.com/en-us-blackwell-architecture
https://resources.nvidia.com/en-us-blackwell-architecture
https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TransformerEngine
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

A FP4 Quantization

Quantization is the process of converting a data
type with more bits (e.g., 32- or 16-bit floating
points) into another data type with fewer bits (e.g.,
4-bit floating points). In integer quantization, the
real-valued variable X i is quantized to an integer
X717 with the following formula:

X
XINT =« \‘Clip (O[R’ Qmina Qmax>-‘ (1)

Similar to integer quantization, in float point
quantization, scaling and clipping of the values are
required before quantization, as follows.

Qmax - _Qmin - (2 - 2—m>226—b—1 (2)
C?max = anax (3)
X}% = Clip (XRa Qmina Qmax) (4)

Where the min/max value range of signed
floating-point quantization can be calculated from
Eq. (2), and the scaling factor o determines the
quantization granularity. Thus, we can determine
the upper and lower bounds of floating-point quan-
tization and perform the clip operation accordingly.

After scaling and clipping, we can quantize the
real value into a specific data format. Unlike INT
quantization, floating-point numbers have different
quantization levels for different values. Therefore,
we first need to determine the quantization step
size:

a=2"=9".4 (5)
. olloga [XRI/a1=m if |1og, | X|/a] > 1
91-m otherwise
(6)

Here, the quantization level v is determined by
'y /&, after which the floating-point number can
be quantized following the format of Eq. (8). A
detailed explanation can be found in (Micikevicius
et al., 2022b; Liu et al., 2023). Finally, the quanti-
zation formula can be expressed as follows:

XFPZCY'U{X}{—‘ (7

Q- v

B Training Detail

We conducted our experiments on the Mega-
tron (Shoeybi et al., 2019) framework and con-
ducted downstream evaluations using the trans-
formers (Wolf et al., 2020) and Im-evaluation-
harness (Gao et al., 2024), ensuring standardized

and reproducible benchmarking. Hyperparameters
remain consistent across precision settings for fair
comparison. The learning rate follows a warm-
up and cosine decay schedule, with the warm-up
phase spanning 0.15% of total steps and the learn-
ing rate gradually decreasing to 10% of its peak
over the remaining 90%. The peak learning rate
is 1 x 10~%, with a weight decay of 0.1 for Llama
models. For GPT models, the peak learning rate
is set to 6 x 104, with a weight decay of 0.1 For
the Adam optimizer, we use 51 = 0.9, fo = 0.95,
and € = 1 x 10~®. For llama models, the input
sequences are fixed at 2048 tokens, and the batch
size is 512, comprising approximately 1M tokens.
For GPT models, the input sequences are fixed at
1024 tokens, and the batch size is 480, comprising
approximately 0.5M tokens, detail model config
can be found in Table 4.

Parameter GPT-125M GPT-335M GPT-774M LLaMA-125M LLaMA-1B

Layers 12 24 36 12 48
Hidden Size 768 1024 1280 768 1280
Activation Function GELU GELU GELU SwiGLU SwiGLU
Normalization LayerNorm LayerNorm LayerNorm RMSNorm RMSNorm
FFN Hidden Size 3072 4096 5120 3072 3392
Sequence Length 1024 1024 1024 2048 2048
Attention Heads 12 16 20 12 20

Table 4: GPT and LLaMA Model Configurations

We quantize all of the linear layers in the MLP
and attention module to target precious, and leave
multi-head attention and activation function in
FP16 by employing FlashAttention(Dao et al.,
2022). The master copy of the weights is kept
in FP32. We quantize linear layers’ inputs to tar-
get precious prior to each matmul, but leave layer-
norm’s weight and bias to floating-point since they
are relatively small.

For the calculation of theoretical computation
cost, we first separately count the forward and
backward computation amounts for each part of a
Transformer block (considering only computations
related to matrix multiplications, as these account
for more than 95% of the total computation). Then,
based on the assumptions that FP8 achieves twice
the computation speed of FP16 and FP4 achieves
four times the computation speed of FP16, we com-
pute the theoretical time required for each matrix
multiplication. Finally, we obtain the theoretical
computation cost for each method.

Since the quantized weight @ is an estimate
of w, We directly use a straight-through estima-
tor(Bengio et al., 2013) directly passes the gradient

of w to w:

In our experiments, we found that different mod-
els have varying precision requirements. For the
GPT-125M model, applying a per-token and per-
channel FP4 quantization strategy for both forward
computation and weight gradient computation is
feasible. The final results are shown in Table 1.
The use of per-token and per-channel quantization
is designed to better align with matrix multiplica-
tion rules, allowing for efficient implementation on
accelerators. However, for the GPT-335M model,
the per-token and per-channel FP4 quantization
strategy becomes ineffective as the data volume
increases. In this case, switching to per-block FP4
quantization for weight gradient computation en-
ables training to proceed, with the final results also
presented in Table 1. For the GPT-770M model,
the quantization strategy used for GPT-335M be-
comes ineffective as training progresses. At this
point, modifying the forward computation to use
per-block FP4 quantization while increasing the
precision of weight gradient computation to FP8
ensures stable training. Additionally, we validated
the feasibility of the GPT-770M quantization strat-
egy(As we discuss in Section 3) on the LLaMA-
125M and LLaMA-1B models. It can be antici-
pated that as model size and data volume continue
to grow, the precision requirements for model train-
ing will become increasingly stringent(Kumar et al.,
2024). Ensuring that FP4 can support long-term,
large-scale pretraining of large models remains a
key direction for our future work.

	Introduction
	Related Work
	Methods
	Attention-protected Neighbor Linear
	Gradient-sensitive FFN Linear
	Target Precious Training Schedule

	Experiment
	Main Result
	Ablation Study

	Conclusion
	Limitation
	FP4 Quantization
	Training Detail

