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Abstract

The burgeoning computational demands for001
training large language models (LLMs) neces-002
sitate efficient methods, including quantized003
training, which leverages low-bit arithmetic op-004
erations to reduce costs. While FP8 precision005
has shown potential, leveraging FP4 remains006
challenging due to inherent quantization errors007
and limited representation capability. Based008
on the Transformer architecture, we present an009
FP4 training scheme for LLMs, overcoming010
these obstacles through mixed-precision quan-011
tization strategies tailed for different modules012
and training stages. This allows us to apply the013
precision level suitable to distinct components014
within the model, ensuring that multi-head at-015
tention and linear layers are handled appropri-016
ately. Our pretraining recipe ensures stability in017
backpropagation by incorporating fine-grained018
quantization methods with a target precision019
training schedule. Experimental results demon-020
strate that our FP4 training scheme achieves021
accuracy comparable to BF16 and FP8, with022
smaller theoretical computational cost. With023
the advent of next-generation hardware sup-024
porting FP4, our method sets the foundation for025
efficient ultra-low precision training.026

1 Introduction027

Recent advancements in large language models,028

including GPT (Radford, 2018; Floridi and Chiri-029

atti, 2020; Achiam et al., 2023), DeepSeek (Liu030

et al., 2024), Llama (Touvron et al., 2023) and031

OPT (Zhang et al., 2023), have demonstrated strong032

generalization capabilities across various tasks (Sti-033

ennon et al., 2020; Alexey, 2020). Among these034

advancements, pretraining on large-scale unlabeled035

data has proven to be critical for ensuring model036

performance (Radford, 2018; Dong et al., 2019). In-037

creasing the model size and the dataset scale can en-038

hance performance (Kaplan et al., 2020; Hoffmann039

et al., 2022), but this improvement comes with sig-040

nificant computational costs. To address this, nu-041

merous methods have been proposed to accelerate 042

the pretraining process (Duan et al., 2024).Particu- 043

larly, low-precision computation serves as an effi- 044

cient acceleration technique. This approach quan- 045

tizes the inputs of computationally intensive opera- 046

tors to a specified low-bit width, leveraging low-bit 047

arithmetic units to speed up training. 048

Previous research on low-precision training 049

has primarily focused on deep learning models. 050

However, these methods do not fully consider 051

the characteristics of large language model pre- 052

training, which has unique training methods and 053

model architectures. The good news is that next- 054

generation hardware will support FP4 and FP8 for- 055

mat (Nvidia). Studies like (Peng et al., 2023; Mi- 056

cikevicius et al., 2022a; NVIDIA; Fishman et al., 057

2024; Xi et al.) have demonstrated the capability of 058

8-bit computation for LLM pretraining. However, 059

the application of FP4 tensor cores in LLM pre- 060

training remains unexplored. Compared to INT4, 061

FP4 offers a larger numerical representation space, 062

making it possible to further reduce the bit width in 063

large-scale model pretraining. However, the limited 064

number of bits in FP4 format introduces significant 065

quantization errors, making the application of FP4 066

to pretraining highly challenging. 067

From the perspective of LLM structure, it has 068

been observed that different modules and compu- 069

tational components exhibit varying levels of sen- 070

sitivity. Given the critical role of the multi-head 071

attention (MHA) mechanism in the Transformer 072

architecture, it is imperative to implement specific 073

strategies to ensure the accuracy of attention mod- 074

ules. As the volume of data continues to grow, the 075

gradient values tend to decrease, making FP4 quan- 076

tization more prone to underflow, thus hindering 077

parameter updates. Based on these observations, 078

we propose a novel FP4 mixed-precision large lan- 079

guage model pretraining recipe. Specifically, we 080

leverage a per-block quantization strategy and em- 081

ploy different quantization approaches across mod- 082
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Figure 1: (a) shows the proportion of computational overhead for the main computation components of a transformer
block when using the LLaMA 7B configuration with a sequence length of 4K. (b) shows the distribution of
activations and gradients after the GPT-large model has been trained to approximately 10B tokens. (c) shows the
heatmap of attention scores when using different training strategies. (d) and (e) illustrate our training scheme, which
will be detailed in Section 3.

ules and training stages to enable FP4 model train-083

ing. The approaches enable better exploitation of084

the computational improvements brought by future085

hardware advancements.086

In this paper, we explored the use of FP4 pre-087

cision in language model pretraining and, for the088

very first time, proposed an effective mixed pre-089

cious pretraining strategy. First, considering the090

distinct requirements of different modules, we ap-091

plied tailored quantization strategies to preserve092

the precision of MHA execution. Second, as back-093

propagation has shown high sensitivity to precision,094

we employed finer-grained quantization methods to095

ensure accurate parameter updates during the back-096

ward pass. Finally, we adopted a 2-stage target097

precision training schedule to eliminate the impact098

of quantization noise on the model.099

2 Related Work100

Low-precision training enhances deep learning ef-101

ficiency by reducing computational costs. Many102

existing studies focus on the training of deep neu-103

ral networks (DNNs) (Wang et al., 2018; Chmiel104

et al., 2023; Sun et al., 2019; Xi et al., 2023; Fu105

et al., 2021), whose architecture and performance106

differ from LLM pre-training. In the context of107

low-precision training for large model pre-training,108

some progress has been made in FP8. For exam-109

ple, (Micikevicius et al., 2022a) introduced new110

FP8 floating-point formats (E4M3 and E5M2), and 111

(Fishman et al., 2024) extends FP8 to trillion-token 112

large-scale model pretraining. In terms of FP4 train- 113

ing, (Wang et al., 2025) improved FP4 computa- 114

tional precision using a differentiable quantization 115

estimator and outlier clamping and compensation 116

strategy. However, most existing methods fail to 117

fully account for the varying sensitivity to precision 118

across different model modules. 119

3 Methods 120

Our objective is to maximize the efficiency of low- 121

precision computations based on the characteris- 122

tics of LLMs. As shown in Fig.1(a), the compu- 123

tational cost of three key components in a trans- 124

former model is analyzed, with FFN accounting 125

for 57%. Considering both the computational cost 126

and impact on performance, we meticulously de- 127

sign three corresponding training schemes: 3.1 128

Attention-protected Neighbor Linear, 3.2 Gradient- 129

sensitive Linear, and 3.3 Target Precious Training 130

Schedule. These schemes fully leverage hardware 131

acceleration while keeping precision loss within an 132

acceptable range during training. 133

3.1 Attention-protected Neighbor Linear 134

As the core component of the Transformer model, 135

the attention mechanism is highly sensitive to pre- 136

cision. Quantization errors introduced by low- 137
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precision training can accumulate over time, even-138

tually disrupting the function of the attention mech-139

anism. As shown in Fig. 1(c), an undisturbed at-140

tention mechanism identifies tokens 0, 3, 6, and 9141

as more important. However, under FP4 training,142

the result becomes nearly uniformly distributed,143

preventing the model from distinguishing which144

tokens are significant. This makes it difficult for145

the model to differentiate the importance of tokens,146

thereby affecting the convergence speed.147

To ensure the proper functioning of the attention148

mechanism and enable the model to correctly eval-149

uate the importance of each token, we employ FP8150

precision for the computation of QKV and the out-151

put projection to "protect" the accurate execution152

of the attention mechanism, as shown in Fig. 1(d).153

3.2 Gradient-sensitive FFN Linear154

Weight gradient computation is more sensitive to155

errors compared to forward computation, due to the156

fact that both gradients and activations contribute157

to the error. For gradients, since many values are158

around 0.02, especially as training progresses and159

gradient magnitudes decrease, underflow is likely160

to occur. As can be seen in the left of Fig.1(b), there161

is an 8.6% difference between FP4 and FP8/FP16,162

thus requiring a more accurate representation. For163

activations, we observe that underflow occurs ap-164

proximately 18% of the time between FP4 and165

FP8/FP16. This is largely due to the relatively large166

range of values, as can be seen in the right of Fig.167

1(b). Therefore, a more accurate representation is168

also needed. Additionally, optimizers use the gra-169

dients to update model parameters. Based on the170

above discussion, for the weight gradient compu-171

tation of model weights, we adopt FP8 precious172

computation, as shown in the bottom left corner of173

Fig.1(e).174

Furthermore, for the activation gradient compu-175

tation (the top right corner of Fig.1(e)), we find176

that quantizing gradients significantly impacts the177

convergence of model training. There is always178

a nonlinear operation between the linear layers,179

which requires more precise numerical representa-180

tions. Furthermore, quantization errors accumulate181

iteratively through the chain rule during backprop-182

agation, ultimately hindering the convergence of183

model training.184

Lastly, in our experiments, we observed that185

quantization noise increases as the model size and186

the amount of data grow (a detailed explanation187

can be found in Appendix B). This occurs because,188

when the model reaches a certain level of accu- 189

racy, coarse-grained low-precision tensors can no 190

longer currently represent the parameter space and 191

input information. Therefore, we adopt a more 192

conservative quantization approach to maintain sta- 193

ble training in forward computation. As shown in 194

the top left corner of Fig.1(e). To ensure efficient 195

hardware implementation, we use per-block quan- 196

tization strategies where the block size is set to 197

128. 198

3.3 Target Precious Training Schedule 199

When using low-precision training throughout the 200

entire process, there tends to be a performance gap 201

between the low-precision model and the FP16 202

model, as shown in Fig.2. The validation loss 203

curves exhibit a parallel trend. Although the gap 204

between the two curves is very small, the difference 205

in downstream tasks, such as wikitext perplexity 206

(PPL), can be more pronounced, reaching up to 207

approximately 6.3 compared to the model trained 208

with FP16. This is likely due to compromises the 209

model makes to adapt to the noise introduced by 210

quantization during low-precision training. To ad- 211

dress this issue, we employ a Target Precious Train- 212

ing Schedule, which involves two stages: contin- 213

uing the FP4 pretraining process with FP16 for a 214

short period. This accounts for only 5% to 10% 215

of the total training steps, allowing the model to 216

return to an ideal state.
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Figure 2: Loss curve for the Target Precious Training
Schedule.

217
4 Experiment 218

In this section, we evaluate the proposed FP4 train- 219

ing method across language models of various sizes. 220

The detailed model training configurations and hy- 221

perparameter settings are provided in Appendix 222

B. Section 4.1 presents the main results, showcas- 223

ing the model’s performance on downstream tasks. 224
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Table 1: Comparison of FP4 and FP16 Training Results

Model Method Val Loss Val PPL Text Gen Natural Language Understanding (GLUE)

WikiText cola sst2 mrpc stsb rte wnli qnli mnli qqp

GPT2 125M
Ours 1.706 5.507 50.98 0.2663 0.8704 0.7549 / 0.8322 / 0.7936 0.7681 / 0.7658 0.5704 0.3380 0.8473 0.7554 / 0.7705 0.8777 / 0.8403

FP16-baseline 1.705 5.503 50.14 0.2290 0.8796 0.7647 / 0.8395 / 0.8021 0.7798 / 0.7808 0.5884 0.3099 0.8548 0.7613 / 0.7695 0.8799 / 0.8437

GPT2 335M
Ours 1.549 4.705 37.62 0.2565 0.8899 0.7647 / 0.8362 / 0.8004 0.8159 / 0.8122 0.6029 0.2535 0.8611 0.7798 / 0.7874 0.892 / 0.8572

FP16-baseline 1.556 4.739 38.39 0.3002 0.8819 0.7745 / 0.8419 / 0.8082 0.8266 / 0.8298 0.6209 0.1831 0.8726 0.7799 / 0.7889 0.8929 / 0.8508

GPT2 774M
Ours 1.431 4.181 30.01 0.3473 0.9002 0.7745 / 0.8472 / 0.8108 0.8305 / 0.8336 0.6498 0.2676 0.8742 0.7995 / 0.808 0.8984 / 0.8656

FP16-baseline 1.430 4.178 28.36 0.3708 0.8922 0.7794 / 0.8454 / 0.8124 0.8347 / 0.8353 0.6498 0.2254 0.8911 0.8078 / 0.813 0.9012 / 0.8683

Section 4.2 presents the ablation study to demon-225

strate the effectiveness of our training method.226

4.1 Main Result227

We validate the proposed FP4 pretraining method228

on two large language models, using the widely229

adopted GPT-2 and LLaMA architectures. The230

GPT-2 and LLaMA models are pretrained on231

the RedPajama-WikiText (Weber et al., 2025)232

dataset within the Megatron framework and eval-233

uate their text generation capabilities on wiki-234

Text(Merity et al., 2016). Additionally, we assess235

their natural language understanding abilities on236

the GLUE(Wang, 2018) benchmark.237

We train approximately 10B tokens on GPT-2-238

small and GPT-2-mid and around 25B tokens on239

GPT-2-large. The final validation loss and vali-240

dation perplexity (PPL) are presented in Table 1,241

showing that the pretraining results obtained with242

our method exhibit almost no performance differ-243

ence compared to models trained using FP16. In244

addition to training loss, the downstream task per-245

formance of the same pretrained models demon-246

strates that the average accuracy of FP4-trained247

models is comparable to that of FP16-trained mod-248

els.249

4.2 Ablation Study250

We aim to investigate the effect of the module-wise251

pretraining method introduced in Section 3. For252

this ablation study, we train the LLaMA2-125M253

model on approximately 5B tokens. The results254

in the table indicate that different modules exhibit255

varying levels of robustness to low precision. Ad-256

ditionally, we compute the theoretical computation257

cost for these methods and observe that our ap-258

proach achieves a lower theoretical computation259

cost (see Appendix B for details) while maintaining260

higher performance.261

Attention Linear FFN Linear FP4 Linear’ Backward Training loss Val loss Val ppl Computation cost

FP4 FP4 FP4 2.2659 1.7828 5.9467 57.1%
FP4 FP8 FP8 2.2211 1.7543 5.7798 69.6%
FP8 FP4 FP4 2.2562 1.7549 5.7831 60.7%
FP8 FP4 FP8 2.2225 1.7415 5.7062 66.1%
FP16 FP16 FP16 2.1998 1.7097 5.5273 100%

Table 2: Ablation studies about different precious on
different modules

Attention FFN FFN Backward Target Precious Val loss Val ppl Computation
Cost

Llama 1B
FP8 FP4 FP8 no 1.3505 3.8596 67.5%
FP8 FP4 FP8 yes 1.3311 3.7855 69.7%
FP16 FP16 FP16 - 1.3296 3.7797 100%

Llama 125M
FP8 FP4 FP8 no 1.6851 5.3933 68.2%
FP8 FP4 FP8 yes 1.6622 5.2670 71.4%
FP16 FP16 FP16 - 1.6567 5.2424 100%

Table 3: Ablation studies about target precious training
schedule

Furthermore, to demonstrate the effectiveness 262

of the 2-stage training schedule, we conducted the 263

following ablation experiment, using the same ex- 264

perimental setup as in Section 4.1. The results in 265

the table highlight the importance of the 2-stage 266

training schedule for large-scale model pretraining. 267

5 Conclusion 268

We propose an FP4 pre-training scheme for mod- 269

ern large language models. Based on the sensitivity 270

analysis of computational modules and training 271

stages, we adopt a tailored training recipe accord- 272

ing to the position of linear modules, together with 273

a Target Precious Training schedule, to ensure sta- 274

ble convergence. Experimental results show that 275

FP4-based training achieves comparable validation 276

loss and downstream task accuracy to traditional 277

FP16 training while reducing computational costs 278

by 30%. Additionally, our ablation studies con- 279

firm the importance of adaptive quantization strate- 280

gies across different model modules and training 281

stages, providing new insights for the further devel- 282

opment of low-precision training techniques and 283

efficient training of large language models on next- 284

generation hardware. 285
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6 Limitation286

First, due to computational resource limitations,287

our method has not been validated on larger mod-288

els and larger datasets to demonstrate its effective-289

ness. Investigating such scalability remains a criti-290

cal direction for future research. In addition, since291

the model adopts a simulated FP4 approach, it is292

unable to obtain an accurate increase in training293

efficiency. Lastly, for the sensitive computational294

components, we employed a simple strategy to en-295

sure numerical precision. In future work, we will296

explore more customized approaches to enable a297

broader range of computations to utilize FP4.298
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A FP4 Quantization473

Quantization is the process of converting a data474

type with more bits (e.g., 32- or 16-bit floating475

points) into another data type with fewer bits (e.g.,476

4-bit floating points). In integer quantization, the477

real-valued variable XR is quantized to an integer478

XINT with the following formula:479

XINT = α

⌊
Clip

(
XR

α
,Qmin, Qmax

)⌉
(1)480

Similar to integer quantization, in float point481

quantization, scaling and clipping of the values are482

required before quantization, as follows.483

Qmax = −Qmin = (2− 2−m)22
e−b−1 (2)484

485
Q̃max = αQmax (3)486

487

X ′
R = Clip

(
XR, Q̃min, Q̃max

)
(4)488

Where the min/max value range of signed489

floating-point quantization can be calculated from490

Eq. (2), and the scaling factor α determines the491

quantization granularity. Thus, we can determine492

the upper and lower bounds of floating-point quan-493

tization and perform the clip operation accordingly.494

After scaling and clipping, we can quantize the495

real value into a specific data format. Unlike INT496

quantization, floating-point numbers have different497

quantization levels for different values. Therefore,498

we first need to determine the quantization step499

size:500

α̃ = 2−b̃ = 2−b · α (5)501
502

v =

{
2⌊log2 |X

′
R|/α̃⌉−m if ⌊log2 |X ′

R|/α̃⌉ ≥ 1

21−m otherwise
(6)503

Here, the quantization level v is determined by504

x′R/α̃, after which the floating-point number can505

be quantized following the format of Eq. (8). A506

detailed explanation can be found in (Micikevicius507

et al., 2022b; Liu et al., 2023). Finally, the quanti-508

zation formula can be expressed as follows:509

XFP = α̃ · v ·
⌊
X ′

R

α̃ · v

⌉
(7)510

B Training Detail511

We conducted our experiments on the Mega-512

tron (Shoeybi et al., 2019) framework and con-513

ducted downstream evaluations using the trans-514

formers (Wolf et al., 2020) and lm-evaluation-515

harness (Gao et al., 2024), ensuring standardized516

and reproducible benchmarking. Hyperparameters 517

remain consistent across precision settings for fair 518

comparison. The learning rate follows a warm- 519

up and cosine decay schedule, with the warm-up 520

phase spanning 0.15% of total steps and the learn- 521

ing rate gradually decreasing to 10% of its peak 522

over the remaining 90%. The peak learning rate 523

is 1× 10−4, with a weight decay of 0.1 for Llama 524

models. For GPT models, the peak learning rate 525

is set to 6× 10−4, with a weight decay of 0.1 For 526

the Adam optimizer, we use β1 = 0.9, β2 = 0.95, 527

and ϵ = 1 × 10−8. For llama models, the input 528

sequences are fixed at 2048 tokens, and the batch 529

size is 512, comprising approximately 1M tokens. 530

For GPT models, the input sequences are fixed at 531

1024 tokens, and the batch size is 480, comprising 532

approximately 0.5M tokens, detail model config 533

can be found in Table 4.

Parameter GPT-125M GPT-335M GPT-774M LLaMA-125M LLaMA-1B

Layers 12 24 36 12 48
Hidden Size 768 1024 1280 768 1280
Activation Function GELU GELU GELU SwiGLU SwiGLU
Normalization LayerNorm LayerNorm LayerNorm RMSNorm RMSNorm
FFN Hidden Size 3072 4096 5120 3072 3392
Sequence Length 1024 1024 1024 2048 2048
Attention Heads 12 16 20 12 20

Table 4: GPT and LLaMA Model Configurations

534

We quantize all of the linear layers in the MLP 535

and attention module to target precious, and leave 536

multi-head attention and activation function in 537

FP16 by employing FlashAttention(Dao et al., 538

2022). The master copy of the weights is kept 539

in FP32. We quantize linear layers’ inputs to tar- 540

get precious prior to each matmul, but leave layer- 541

norm’s weight and bias to floating-point since they 542

are relatively small. 543

For the calculation of theoretical computation 544

cost, we first separately count the forward and 545

backward computation amounts for each part of a 546

Transformer block (considering only computations 547

related to matrix multiplications, as these account 548

for more than 95% of the total computation). Then, 549

based on the assumptions that FP8 achieves twice 550

the computation speed of FP16 and FP4 achieves 551

four times the computation speed of FP16, we com- 552

pute the theoretical time required for each matrix 553

multiplication. Finally, we obtain the theoretical 554

computation cost for each method. 555

Since the quantized weight w̃ is an estimate 556

of w, We directly use a straight-through estima- 557

tor(Bengio et al., 2013) directly passes the gradient 558
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of w̃ to w:559

∇wL(w̃)← ∇w̃L(w̃).560

In our experiments, we found that different mod-561

els have varying precision requirements. For the562

GPT-125M model, applying a per-token and per-563

channel FP4 quantization strategy for both forward564

computation and weight gradient computation is565

feasible. The final results are shown in Table 1.566

The use of per-token and per-channel quantization567

is designed to better align with matrix multiplica-568

tion rules, allowing for efficient implementation on569

accelerators. However, for the GPT-335M model,570

the per-token and per-channel FP4 quantization571

strategy becomes ineffective as the data volume572

increases. In this case, switching to per-block FP4573

quantization for weight gradient computation en-574

ables training to proceed, with the final results also575

presented in Table 1. For the GPT-770M model,576

the quantization strategy used for GPT-335M be-577

comes ineffective as training progresses. At this578

point, modifying the forward computation to use579

per-block FP4 quantization while increasing the580

precision of weight gradient computation to FP8581

ensures stable training. Additionally, we validated582

the feasibility of the GPT-770M quantization strat-583

egy(As we discuss in Section 3) on the LLaMA-584

125M and LLaMA-1B models. It can be antici-585

pated that as model size and data volume continue586

to grow, the precision requirements for model train-587

ing will become increasingly stringent(Kumar et al.,588

2024). Ensuring that FP4 can support long-term,589

large-scale pretraining of large models remains a590

key direction for our future work.591
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