
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAN TRANSFORMERS REASON LOGICALLY? A STUDY
IN SAT SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

We theoretically and empirically study the logical reasoning capabilities of LLMs
in the context of the Boolean satisfiability (SAT) problem. First, we construct
a non-uniform class of decoder-only Transformers that can solve 3-SAT using
backtracking and deduction via Chain-of-Thought (CoT). We prove its correctness
by showing trace equivalence to the well-known DPLL SAT-solving algorithm.
Second, to support the implementation of this abstract construction, we design
a compiler PARAT that takes as input a procedural specification and outputs a
transformer model implementing this specification. Third, rather than programming
a transformer to reason, we evaluate empirically whether it can be trained to do
so by learning directly from algorithmic traces (“reasoning paths”) of the DPLL
algorithm.

1 INTRODUCTION

Transformer-based Language Models (LLMs, Vaswani et al. (2017)) have demonstrated remarkable
success in a wide range of tasks framed in natural language, especially when using prompting
techniques such as Chain-of-Thought (CoT, Wei et al. (2022)). On the other hand, even the most
advanced LLMs face challenges in reliable multi-step reasoning, frequently hallucinating towards
nonsensical conclusions (Kambhampati et al. (2024)). Evaluating progress on logical deduction in
language models remains an ongoing challenge as researchers have continued to disagree on even a
reasonable definition of what constitutes “reasoning.”

This paper focuses on the question of LLM reasoning capability in what we believe is the simplest
and most mathematically precise setting: the Boolean satisfiability problem (SAT, Cook (1971)). SAT
problems provide an excellent starting point for studying the reasoning ability of LLMs given that (a)
natural language often encodes Boolean logic, and (b) we already have many useful algorithms that
implement logical deduction to solve SAT problems Biere et al. (2009). Notably, notwithstanding the
NP-completeness of SAT, humans implicitly solve simple boolean satisfaction problems in their daily
lives; scheduling a multi-person meeting across time zones, for example.

In this work we aim to rigorously investigate Transformers’ multi-step reasoning and backtracking
capability in solving formal logical reasoning problems, and we demonstrate through a theoretical
construction that decoder-only Transformers can reliably decide SAT instances.

Theorem 1.1 (Informal version of Theorem 4.5). For any p, c ∈ N+, there exist a decoder-only
Transformer with O(p2) parameters that can decide all 3-SAT instances of at most p variables and c
clauses using Chain-of-Thought reasoning.

To investigate the properties of our construction empirically, we design a compiler that converts
computational graphs of abstract sequence operations used in our construction into Transformer
model weights. We implemented the construction in PyTorch and empirically validated its correctness
on random 3-SAT instances. We also investigated its empirical properties such as the number of
generated CoT tokens.

Additionally, we perform training experiments to demonstrate that Transformers can effectively
learn from deductive reasoning and the backtracking process of the DPLL algorithm encoded as
Chain-of-Thought. We show that Transformers equipped with CoT can generalize between SAT
instances generated from different distributions within the same number of variables p. However,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(¬x2 ∨ ¬x4 ∨ ¬x1) ∧ (x3 ∨ x4 ∨ ¬x1) ∧ (¬x1 ∨ ¬x3 ∨ ¬x2) ∧

(x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x4 ∨ x2 ∨ x1) ∧ (x1 ∨ ¬x2 ∨ x4)

Model Input (3-SAT formula)

Transformer Chain-of-Thought from Theorem 4.5

Assume 2 Assume 1 -4 3 BackTrack

Assume 2 -1 -4 BackTrack

-2 Assume 3 Assume 4 1 SAT

Assume x2 = T Assume x1 = T Deduce x4 = F Deduce x3 = T Conflict

Keep x2 = T Learn x1 = F Deduce x4 = F Conflict Again

Learn x2 = F Assume x3 = T Assume x4 = T Deduce x1 = T Solved!

Model Output in typewriter font

Figure 1: Visualization of the Chain-of-Thought (CoT) process used by our model to solve the SAT
formula described in Theorem 4.5. The model autonomously performs trial-and-error reasoning,
making multiple attempts and backtracking upon encountering conflicts. Here, T represents True and
F represents False. Tokens in typewriter font denote the CoT generated by the model.

LLMs trained on SAT instances with CoT still struggle to solve instances with unseen number of
variables, demonstrating challenges in learning length-generalizable reasoning and opportunities to
incorporate compiled reasoning components in Transformer LLMs to improve reasoning capabilities.

Contributions We prove by theoretical construction that decoder-only Transformers can solve
3-SAT, a fundamental NP-Complete logical reasoning problem, by performing logical deduction
and backtracking using Chain-of-Thought (CoT). We show that Transformers can perform logical
deduction on all conditions (clauses) in parallel instead of checking each condition sequentially.
Nevertheless, the construction requires exponentially many CoT steps in the worst case, although it is
much faster on most typical examples.

We design PARAT, a compiler of high-level sequence operations written in Numpy-like syntax
into Transformer model weights, to empirically validate and analyze theoretical constructions of
Transformer algorithms.

We empirically demonstrate that the compiled SAT-solver model can solve SAT formulas up to 20
propositions and 88 clauses with perfect accuracy. Note that our goal is not to compete with modern
state-of-the-art SAT solvers. Rather, we answer a fundamental question about whether LLMs can
perform propositional reasoning with the 3-SAT problem. Finally, our training experiments suggest
that Chain-of-Thought allows Transformer-LLMs to achieve out-of-distribution generalization for the
same input lengths.

2 RELATED WORK

Theoretical Expressiveness of Transformers and Chain-of-Thought (CoT): Owing to the empir-
ical success of Transformer-based models, many researchers have investigated the capabilities of
the Transformer architecture from a theoretical perspective. This line of research focuses on what
types of computation can Transformer models simulate by providing theoretical constructions of
Transformer models with idealized assumptions. The seminal work of Liu et al. (2023) showed that
Transformers can simulate automata using a single pass over only a logarithmic number of layers

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

w.r.t. the number of states. Yao et al. (2021) demonstrated that transformers can perform parentheses
matching of at most k types of parentheses and D appearance of each (Dyckk,D) with D + 1 layers.

However, the computation power of one pass of the Transformer model is fundamentally limited
(Merrill & Sabharwal (2023)), and the success of Chain-of-Thought (CoT) reasoning (Wei et al.
(2022)) has sparked more recent research on how CoT can improve upon the expressiveness of
Transformer models. Pérez et al. (2019) proved that Transformers can emulate the execution of
single-tape Turing machines if each output vector is appended to the input vector sequence at the next
iteration. Giannou et al. (2023) showed that Transformers can recurrently simulate arbitrary programs
written in a one-instruction-set language if the output vector at every position of the Transformer
is passed as input to the model at the next iteration. Li et al. (2024) proved that Transformers can
simulate arbitrary boolean circuits using CoT by representing the circuit in the positional encoding
and is commonly perceived to have shown that Transformers with CoT can “solve all problems”.
In particular, transformers can decide all problems in P/poly ⊇ P with polynomial steps of CoT.
Merrill & Sabharwal (2024) showed that Transformers with averaging hard attention can decide all
regular languages with a linear number of CoT tokens and decide all problems in P with a polynomial
number of CoT tokens. Feng et al. (2023) shows that Transformer CoT can perform integer arithmetic,
solve linear equations, and perform dynamic programming for the longest increasing subsequence
and edit distance problems. These seminal works profoundly advanced our understanding of the
capabilities of Transformer models from a theoretical perspective.

How our work differs from the above-mentioned results: Many of the above papers are focused
on problems in P or P/poly, while 3-SAT is an NP-complete problem. It is widely believed that P
is a strict subset of NP, and it is not known whether NP is a subset of P/poly. In other words, our
results are not comparable to these earlier results.

Meanwhile, Pérez et al. (2019), Li et al. (2024), and Merrill & Sabharwal (2024) also show that
Transformers can simulate single-tape Turing Machines (TM) with CoT and can theoretically be
extended to arbitrary decidable languages. However, these constructions require at least one CoT
token for every step of TM execution. By contrast, our theoretical construction demonstrates that, for
certain classes of formal reasoning problems, Transformers can simulate algorithmic reasoning traces
at an abstract level with drastically reduced number of CoT tokens compared to step-wise emulation
of a single-tape TM. At each CoT Step, our construction performs deductive reasoning over the full
input in parallel while any single-tape TM must process each input token sequentially. Furthermore,
the CoT produced by our theoretical construction abstractly represents the human reasoning process
of trial and error, as demonstrated in Figure 1.

Compilation of Transformer Weights. Further, prior work on the theoretical construction of
Transformer models rarely provide practical implementations. Notably, Giannou et al. (2023) provide
an implementation of their construction and demonstrate its execution on several programs. However,
the model is initialized “manually” using prolonged sequences of array assignments, limiting its
extensibility to other theoretical frameworks.

More recently, Lindner et al. (2023) released Tracr, which compiles RASP (Weiss et al. (2021))
programs into decoder-only Transformer models. The “Restricted Access Sequence Processing
Language” (RASP, Weiss et al. (2021)) is a human-readable representation of a subset of operations
that Transformers can perform via self-attention and MLP layers. In our preliminary attempt to
implement a SAT solver model with Tracr, we identified several implementation inconveniences and
limitations of Tracr when scaling to more complex algorithms, which motivated the development
of our compiler. In particular: (1) Every “variable” (termed sop in Lindner et al. (2023)) in Tracr
must be either a one-hot categorical encoding or a single numerical value. This constraint makes
representing more complex vector structures highly inconvenient. Furthermore, each select
operation (i.e., self-attention) accepts only a single sop as the query and key vectors, whereas our
theoretical construction often requires incorporating multiple sops as queries and keys. (2) Tracr
represents position indices and many other discrete sops with a one-hot encoding, allocating a
residual stream dimension for each possible value of the sop. In particular, compiling models with a
context length of n requires O(n) additional embedding dimensions for each SOp that represents
a position index. (3) For each binary operation between one-hot encoded sops (such as position
indices), Tracr creates an MLP layer that first creates a lookup table of all possible value combinations
of the input sops. This results in an MLP layer of O(n3) parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

The Boolean satisfiability problem (SAT) is the problem of determining whether there exists an
assignment A of the variables in a Boolean formula F such that F is true under A. In this paper we
only consider 3-SAT instances in conjunctive normal form (CNF), where groups of at most 3 variables
and their negations (literals) can be joined by OR operators into clauses, and these clauses can then
be joined by AND operators. In our implementations we use the well-known DIMACS encoding for
CNF formulae whereby each literal is converted to a positive or negative integer corresponding to its
index, and clauses are separated by a 0 .

3.1 AUTOREGRESSIVE DECODER-ONLY TRANSFORMER ARCHITECTURE

The Transformer architecture Vaswani et al. (2017) is a foundational model in deep learning for
sequence modeling tasks. In our work, we focus on the autoregressive decoder-only Transformer,
which generates sequences by predicting the next token based on previously generated tokens. It
is a relatively complex architecture, and here we only give a precise but quite concise description,
and we refer the reader Vaswani et al. (2017) among many others for additional details. Given an
input sequence of tokens s = (s1, s2, . . . , sn) ∈ Vn, where V is a vocabulary, a Transformer model
M : V∗ → V maps s to an output token sn+1 ∈ V by composing a sequence of parameterized
intermediate operations. These begin with a token embedding layer, following by L transformer
blocks (layers), each block consisting of H attention heads, with embedding dimension demb, head
dimension dh, and MLP hidden dimension dmlp. Let us now describe each of these maps in detail.

Token Embedding and Positional Encoding. Each input token si is converted into a continuous
vector representation Embed(si) ∈ Rd using a fixed embedding map Embed(·). To incorporate
positional information, a positional encoding vector pi ∈ Rd is added to each token embedding. The
initial input to the first Transformer block is

x(0) ← (Embed(s1) + p1, Embed(s2) + p2, . . . , Embed(sn) + pn) ∈ Rn×d.

Transformer Blocks. For l = 1, . . . , L, each block l of the transformer processes an embedded
sequence x(l−1) ∈ Rn×d to produce another embedded sequence x(l) ∈ Rn×d. Each block consists
of a multi-head self-attention (MHA) mechanism and a position-wise feed-forward network (MLP).
We have a set of parameter tensors that includes MLP parameters W (l)

1 ∈ Rdemb×d∗
mlp , b(l)1 ∈ Rd∗

mlp ,
W

(l)
2 ∈ Rdmlp×d, and b

(l)
2 ∈ Rd, self-attention parameters W

(l,h)
Q , W

(l,h)
K , W

(l,h)
V ∈ Rd×dh for

every h = 1, . . . ,H , and multi-head projection matrix W
(l)
O ∈ R(Hdh)×demb . We will collectively

refer to all such parameters at layer l as Γ(l), whereas the self-attention parameters for attention head
h at layer l will be referred to as Γ(l,h). We can now process the embedded sequence x(l−1) to obtain
x(l) in two stages:

h(l) ← x(l−1) +MHA
(
x(l−1); Γ(l)

)
, and x(l) ← h(l) +MLP

(
h(l); Γ(l)

)
,

where

MHA
(
x; Γ(l)

)
:= Concat

(
Attention(x; Γ(l,1)), . . . ,Attention(x; Γ(l,H))

)
W

(l)
O

Attention(x; Γ(l,h)) := softmax
(
d
−1/2
h xW

(l,h)
Q (W

(l,h)
K x)⊤ +M

)
xW

(l,h)
V

MLP
(
h; Γ(l)

)
:= σ

(
hW

(l)
1 + b

(l)
1

)
W

(l)
2 + b

(l)
2 .

The n× n matrix M is used as a “mask” to ensure self-attention is only backward looking, so we set
M [i, j] =∞ for i ≥ j and M [i, j] = 0 otherwise. Finally, we use the ReGLU(·) : R2dmlp → Rdmlp

activation function σ(·) at each position. Tiven input u ∈ Rn×2dmlp , for each position i we split ui

into two halves ui,1, ui,2 ∈ Rd and, using ⊗ denotes element-wise multiplication, we define

σReGLU (ui) = ui,1 ⊗ ReLU (ui,2) . (1)

Output Layer. After the final Transformer block, the output representations are projected onto the
vocabulary space to obtain a score for each token. We assume that we’re using the greedy decoding
strategy, where the token with the highest score at the last input position is the model output.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: Greedy Decoding
Input: Model M : V∗ → V , prompt s1:n = (s1, s2, . . . , sn), stop tokens E ⊆ V , t← n

1 while t← t+ 1 do
2 st ←M(s1:t−1) ; // Obtain model output and append to string
3 if st ∈ E return s1:t
4 end

o = x(L)Wout + bout ∈ Rn×V , sn+1 = argmax
v

on,v ∈ V (2)

where Wout ∈ Rd×V , bout ∈ RV , V is the size of the vocabulary, on,v is the score for token v at the
last input position n.

Autoregressive Decoding and Chain-of-Thought. During generation, the Transformer model
is repeatedly invoked to generate the next token and appended to the input tokens, described in
Algorithm 1. In this paper, we refer to the full generated sequence of tokens as the Chain-of-
Thought, and the number of chain-of-thought tokens in Algorithm 1 is t− n.

4 TRANSFORMERS AND SAT: LOGICAL DEDUCTION AND BACKTRACKING

This section presents and explains our main results on Transformers’ capability in deductive reasoning
and backtracking with CoT. To rigorously state our results, we first formally define decision problems,
decision procedures, and what it means for a model to “solve” a decision problem using CoT:

Definition 4.1 (Decision Problem). Let V be a vocabulary, Σ ⊆ V be an alphabet, L ⊆ Σ∗ be a set
of valid input strings. We say that a mapping f : L→ {0, 1} is a decision problem defined on L.

Definition 4.2 (Decision Procedure). We say that an algorithm A is a decision procedure for the
decision problem f , if given any input string x from L, A halts and outputs 1 if f(x) = 1, and halts
and outputs 0 if f(x) = 0.

Definition 4.3 (Autoregressive Decision Procedure). For any map M : V∗ → V , which we refer to
as an auto-regressive next-token prediction model, and E = {E0, E1} ⊂ V , define procedure AM,E as
follows: For any input s1:n, run Algorithm 1 with stop tokens E . AM,E outputs 0 if s1:t ends with
E0 and AM,E output 1 otherwise. We say M autoregressively decides decision problem f if there is
some E ⊂ V for which AM,E decides f .

Definition 4.4 (3-SATp,c). Let DIMACS(p, c) denote the set of valid DIMACS encodings of 3-SAT
instances with at most p variables and c clauses with a prepended [BOS] token and an appended
[SEP] token. Define 3-SATp,c : DIMACS(p, c)→ {0, 1} as the problem of deciding whether the
3-SAT formula encoded in the input in DIMACS(p, c) encoding is satisfiable.

With the above definition, we’re ready to present a formal statement of our theoretical construction of
a Transformer model that performs SAT Solving:

Theorem 4.5 (Decoder-only Transformers can solve SAT). For any p, c ∈ N+, there exists a
Transformer model M : V∗ → V that autoregressively decides 3-SATp,c in no more than p · 2p+1

CoT iterations. M requires L = 7 layers, H = 5 heads, demb = O(p), and O(p2) parameters.

Remarks on Theorem 4.5

• The upper bound on the CoT length p · 2p+1 is a worst-case upper bound which assumes that
the model is unable to make any logical deductions have to try all 2p assignments. However,
this upper bound is never reached in practice, and in Figure 4 we show that the number of
CoT tokens is no greater than 8p · 20.08p for most formulas. If the number of backtracking
steps is bounded by T then the CoT is no longer than (2p+ 1)(T + 1)

• The worst-case CoT length is independent of the number of clauses c, which is due to
the parallel deduction over all clauses within the Transformer construction. Otherwise,
sequentially processing each clause would take at least c · 2O(p) number of steps.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Illustration of the encoding scheme E(C) and E(A) for clauses and partial assignments
from Definition 4.6 and Definition 4.7 with p = 4 varables.

• Positional encodings are not included in the number of parameters. The positional encoding
at position i is the numerical value i at a particular dimension.

• Each parameter can be represented with O(p+ log c) bits

We show our full proof via trace equivalence with abstract DPLL (Nieuwenhuis et al. (2005)) in
Appendix C. The construction uses adapted versions of lemmas from Feng et al. (2023) as basic
building blocks. Here we provide a proof sketch of the core operations in our theoretical construction.

Proof Sketch In Figure 1 we illustrate the CoT process used by our theoretical construction, which
uses CoT tokens to simulate various operations including unit propagation (i.e., logical deduction),
variable decision, and backtracking.

To process clauses and partial assignments with attention operations, the initial layers of the theoretical
construction compute the binary vector encodings of clauses and partial assignments and store them
in the hidden states. We formally define the encoding scheme for clauses and partial assignments
below:

Definition 4.6 (Encoding of clause). Let C be a clause. Define encoding E(C) ∈ {0, 1}2p of clause
C as the following: For v ∈ [p], E(C)v = 1 iff xv is a literal in C, and E(C)p+v = 1 iff ¬xv is a
literal in C. All positions in E(C) are 0 otherwise.

Definition 4.7 (Encoding of partial assignment). Let A : {x1, . . . , xp} → {True,False,None} be
a partial assignment. Define encoding E(A) ∈ {0, 1}2p of clause C as the following: For v ∈ [p],
E(A)v = 1 iff A(xv) = True , and E(A)p+v = 1 iff A(xv) = False. All positions in E(C) are 0
otherwise.

We also define a variant of the partial assignment encoding as an affine Transformers of E(A), which
sets both positions corresponding to a variable to 1 if the variable is unassigned:

Proposition 4.8. For partial assignment A, define Enot-false(A) = Mnot-false · E(A) + 12p where

Mnot-false =

[
0 −Ip
−Ip 0

]
∈ R2p×2p and 12p is the all ones vector. Then, for v ∈ [p]:

Enot-false(A)v = 1 iff A(xv) ∈ {True,None}, Enot-false(A)p+v = 1 iff A(xv) ∈ {False,None}.

We now show that the relationship between a 3-SAT formula and a partial assignment can be
established using their binary encoding:

Lemma 4.9. Let F be a 3-SAT formula over variables {x1, . . . , xp} with c clauses {C1, . . . , Cc}
and A a partial assignment defined on variables {x1, . . . , xp}, then the following properties hold:

1. Satisfiability Checking: The partial assignment A satisfies the formula F if and only if:

∀i ∈ [c], E(Ci) · E(A) ≥ 1.

2. Conflict Detection: The partial assignment A contradicts the formula F if and only if:

∃i ∈ [c], E(Ci) · Enot-false(A) = 0.

3. Deduction: If partial assignment A does not contradict formula F , then

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) A variable xv is implied to be true under A and F if:

∃i ∈ [c], E(Ci)·Enot-false(A) ≤ 1, E(Ci)v = 1, and E(A)v = E(A)p+v = 0.

(b) A variable xv is implied to be false under A and F if :

∃i ∈ [c], E(Ci)·Enot-false(A) ≤ 1, E(Ci)p+v = 1, and E(A)v = E(A)p+v = 0.

Recall that an attention head computes a query and key vector from the hidden states and the attention
weight between two positions is based on the dot product between the query vector of the source
position and the key vector of the target position. If the Transformer weights are configured such
that the query vectors are Figure 1 is E(A) or Enot-false(A) for partial assignments A in the Chain-of-
Thought illustrated, and the key vectors are E(Ci) for positions of clauses Ci in the formula, then
the attention weight (before softmax) would be proportional to E(Ci) ·E(A) or E(Ci) ·Enot-false(A)
respectively, which are values crucial for the operations in 4.9. We can then scale the attention
weights so that the the attention weights focus on only the extremal values of E(Ci) · E(A) or
E(Ci) ·Enot-false(A). We illustrate the consequence of this correlation with the following informal
lemma, which considers an idealized input that contains only the positions with encoding vectors and
auxiliary values:

Lemma 4.10 (Parallel Processing of Clauses, Informal). Let F be a 3-SAT formula over vari-
ables {x1, . . . , xp} with c clauses {C1, . . . , Cc} and A a partial assignment defined on variables
{x1, . . . , xp}. Let

Xencoding =

0 1 1

E(C1) 0 1
...

...
...

E(Cc) 0 1
E(A) 0 1

 ∈ R(c+2)×(2p+2)

which includes encoding of clauses in F and partial assignment A as well as added auxiliary
values. Let 1A|=F denote the indicator variable of whether A satisfy formula F , 1A̸|=F denote the
indicator variable of whether A constradict F , and eUP ∈ 0, 12p denote the encoding of all variable
assignments that can be deduced from A and F , then with Xencoding as input and any 1 > ϵ > 0
there exists:

• An attention head that outputs 1A|=F with approximation error bounded by ϵ

• An attention head that outputs 1A ̸|=F with approximation error bounded by ϵ

• An attention head followed by a MLP layer that outputs eUP with ∥ · ∥∞ error bounded by ϵ

and all weight values are bounded by O(poly(p, c, log(1/ϵ)))

Lemma 4.10 essentially shows that, when given the binary encoding of clauses and a partial assign-
ment, a single Transformer layer can perform satisfiability checking, conflict detection, and deduction
over all clauses in the formula in parallel, which is the core reasoning our theoretical construction
uses drastically less CoT tokens than step-wise simulation of Turing Machines.

The remaining parts of the construction performs indexing operations that translates DIMACS
encodings into our encoding of clauses and partial assignments and selects the correct output token
from the results of the operations described in Lemma 4.10.

5 COMPILER FOR COMPLEX TRANSFORMER ALGORITHMS

In the previous section, we presented a theoretical construction of a Transformer capable of solving
SAT instances through backtracking and parallel deduction. However, relying solely on theorems and
proofs can make it challenging to gain practical insights and verify correctness. To address this, we
introduce ParametricTransformer compiler and the corresponding PARAT language, which provides a
framework for converting theoretical constructions of Transformers into practical models to facilitate
empirical analysis and validation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The syntax of the PARAT language is a restricted subset of Python with the NumPy library. Every
variable v in PARAT is a 2-D NumPy array of shape n x d v, where n denotes the input number of
tokens and d v is the dimension of the PARAT variable v, which can be different for every variable
v.

A program in the PARAT language is composed of a linear sequence of statements (i.e., no control
flow such as loops or branching is allowed), where each statement assigns the value of an expression
to a variable. Let v 1, v 2, . . . denote PARAT variable names. Then, each statement involving
PARAT variables must be one of the following:

• Binary operations: v 1 + v 2, v 1 * v 2, v 1 - v 2

• Index operations: v 1[v 2, :], v 1[:, start:end], where start and end are
non-negative integers

• Function calls: A function from our predefined library of functions that takes as input
PARAT variables

The input variables of a PARAT program for vocabulary size V are tokens and indices, where
tokens is a V -dimensional PARAT variable containing one-hot token embeddings of the input
tokens, and indices is a 1-dimensional PARAT variable containing the numerical index of each
input token (i.e., the array [[1], [2], ..., [n]]).

The ParametricTransformer compiler takes in a program written in the PARAT language and a PARAT
variable out of dimension V and outputs a PyTorch Module object that implements a Transformer
model as defined in Section 2. The following condition is satisfied: For any possible input sequence
of tokens s in the vocabulary of length n, the token predicted by the Transformer model is the same as
the token corresponding to out[-1, :].argmax() (i.e., the token prediction at the last position)
when interpreting the PARAT program using the Python interpreter with the NumPy library.

5.1 ANALYSIS OF THE COMPILED SAT-SOLVING MODEL

With our compiler, we successfully compiled our theoretical construction in Theorem 4.5 using the
code in Appendix D. For p = 20 number of variables, the resulting Transformer has 7 layers, 5 atten-
tion heads, 502 embedding dimensions, and 5011862 parameters. With a concrete implementation of
our theoretical construction in PyTorch, we empirically investigate 3 questions (1) Does the compiled
model correctly decide SAT instances? (2) How many steps does the model take to solve actual
3-SAT instances? (3) How does error induced by soft attention affect reasoning accuracy? These
questions reveal further insights that are not available by observing the theoretical constructions alone
and demonstrate the additional values provided by PARAT.

Evaluation Datasets We evaluate our models on randomly sampled DIMACS encoding of 3-SAT
formulas. We focus on SAT formulas with exactly 3 literals in each clause, with the number of clauses
c between 4.1p and 4.4p, where p is the number of variables.

It is well-known that the satisfiability of such random 3-SAT formulas highly depends on the
clause/variable ratio, where a formula is very likely satisfiable if c/p ≪ 4.26 and unsatisfiable if
c/p ≫ 4.26 (Crawford & Auton (1996)). This potentially allows a model to obtain high accuracy
just by observing the statistical properties such as the c/p ratio. To address this, we constrain this
ratio for all formulas to be near the critical ratio 4.26. Furthermore, our “marginal” datasets contain
pairs of SAT vs UNSAT formulas that differ from each other by only a single literal. This means
that the SAT and UNSAT formulas in the dataset have almost no statistical difference in terms of c/p
ratio, variable distribution, etc., ruling out the possibility of obtaining SAT vs UNSAT information
solely via statistical properties.

We also use 3 different sampling methods to generate formulas of different solving difficulties to
evaluate our model:

• Marginal: Composed of pairs of formulas that differ by only one token.
• Random: Formulas are not paired by differing tokens and each clause is randomly generated.
• Skewed: Formulas where polarity and variable sampling are not uniform; For each literal,

one polarity is preferred over the other. Some literals are also preferred over others.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We generate the above 3 datasets for each variable number 4 ≤ p ≤ 20, resulting in 51 total datasets
of 2000 samples each. Each sample with p variables contains 16.4p to 17.6p input tokens, which is
at least 320 for p = 20.

Model Unless otherwise stated, the model we experiment with is compiled from the code in D
using PARAT with max number of variables p = 20, max number of clauses c = 88, and exactness
parameter β = 20. The model uses greedy decoding during generation.

Accuracy Our compiled model achieves perfect accuracy on all evaluation datasets described above.
This provides empirical justification for our theoretical construction for Theorem 4.5 as well as
PARAT. This result is included in Figure 3 to compare with trained models.

How many steps? We perform experiments to measure the empirical Chain-of-Thought length
required for solving SAT formulas of different sizes. For all formulas we evaluated, the maximum
CoT length is bounded by 8p·20.08p, which is significantly less than the theoretical bound of p·2(p+1).
This indicates that the model can use deduction to reduce the search space significantly. The figure
illustrating the results is in Appendix Figure 4.

Effect of Soft Attention In our previous evaluations, we used a sufficiently large ”exactness” value
β to ensure that the error from MEAN based operations does not affect the final output of greedy
sampling. The use of ”Averaging Hard Attention” is prevalent in previous works on theoretical
construction. However, how exactly does soft-attention affect the final reasoning output?

In Figure 5 we present the SAT/UNSAT prediction accuracy for models under 8 different “mean
exactness” β values on our “marginal” datasets ranging from 2.5 to 20. Recall that β controls how the
well soft attention approximates ”hard” attention in each self-attention layer. Our results demonstrate
that longer inputs generally require larger β values to achieve high accuracy. This may explain why
Transformers fail to learn generalizable algorithmic procedures, as the attention learned on smaller
formulas may be too ”soft” to generalize to larger inputs.

6 CAN TRANSFORMER LEARN SAT SOLVING FROM DATA?

Our previous sections showed that Transformer and weights exist for solving SAT instances using
CoT with backtracking and deduction. However, it is unclear to what extent Transformers can learn
such formal reasoning procedures by training on SAT formulas. Previously, Zhang et al. (2023)
showed that when using a single pass of a Transformer model (without CoT), Transformers fail to
generalize to logical puzzles sampled from different distributions even when they have the same
number of propositions.

This section provides proof-of-concept evidence that training on the Chain-of-Thought procedure with
deduction and backtracking described in Figure 1 can facilitate Out-of-Distribution generalization
within the same number of variables.

Datasets In Section 5.1 we introduced 3 different distributions over random 3-SAT formulas of
varying difficulties. For training data, we use the same sampling methods, but instead of having a
separate dataset for each variable number p, we pick 2 ranges p ∈ [6, 10] and p ∈ [11, 15], where
for each sample a random p value is picked uniformly random from the range. Each formula with
p variables contains 16.4p to 17.6p tokens. This results in 2× 3 training datasets, each containing
5× 105 training samples1, with balanced SAT vs UNSAT samples. For each formula, we generate
the corresponding chain of thought in the same format as Figure 1 using a custom SAT Solver. The
evaluation data is exactly the same as Section 5.1.

Model and Training We use the LLaMa (Touvron et al. (2023)) architecture with 70M and 160M
parameters for the training experiments, which uses Rotary Positional Encodings (RoPE) and SwiGLU
as the activation function for MLP layers. Following prior works (Feng et al. (2023)), we compute
cross-entropy loss on every token in the CoT but not the DIMACS encoding in the prompt tokens.
We provide further training details in Appendix A. We also permute the variable IDs for training
samples to ensure that the model sees all possible input tokens for up to 20 variables.

1The number of training samples is negligible compared to the total number of possible formulas. Note that
the number of clauses is at least 4p, each clause contains 3 literals and each literal has at least p choices. This
results in p12p possibilities, which is > 1056 for p = 6

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: Result of the Length generalization experiments, showing SAT/UNSAT prediction accuracy
of Transformer-LLM trained on the marginal, random, and skewed dataset on the marginal dataset
over 4-20 variables. Left: model trained on 6-10 variables. Right: model trained on 11-15 variables.

6.1 INTRA-LENGTH OOD GENERALIZATION

Table 1: Average accuracies (%) of SAT/UNSAT prediction for models trained and tested on different
datasets in the training regime for number of variables p ∈ [6, 10] and p ∈ [11, 15]. Columns denote
train datasets, and rows denote test datasets. Each accuracy is computed over 10000 total samples.

p ∈ [6, 10] p ∈ [11, 15]

Marginal Random Skewed Marginal Random Skewed

Marginal 99.88% 99.99% 99.99% 98.66% 99.70% 99.57%
Random 99.96% 100.00% 100.00% 99.11% 99.75% 99.55%
Skewed 99.96% 100.00% 99.99% 99.41% 99.74% 99.48%

Our first set of experiments evaluates the model’s performance on SAT formulas sampled from
different distributions from training, but the number of variables in formulas remains the same
(p ∈ [6, 10] and p ∈ [11, 15] for both train and test datasets).

As shown in Table 1, our trained models achieve near-perfect SAT vs UNSAT prediction accuracy
when tested on the same number of variables as the training data, even when on formulas sampled
from different distributions. Recall that the “marginal” dataset has SAT vs UNSAT samples differing
by a single token (out of at least 16p tokens in the input formula), which minimizes statistical evidence
that can be used for SAT/UNSAT prediction. Our experiments suggest that the LLM have very likely
learned general reasoning procedures using CoT that can be applied to all formulas with the same
number of variables as the data they are trained on.

6.2 LIMITATIONS IN LENGTH GENERALIZATION

The second experiment evaluates the model’s ability to generalize to formulas with a different number
of variables than seen during training. We use the model trained on 3 data distributions described in
section 6.1 and evaluate the marginal dataset with 4-20 variables, generated using the three methods
described, with 2,000 samples each. For this experiment, we evaluate the accuracy of the binary SAT
vs UNSAT prediction.

Results In Figure 3, our results indicate that performance degrades drastically beyond the training
regime when the number of variables increases. This shows that the model is unable to learn a
general SAT-solving algorithm that works for all inputs of arbitrary lengths, which corroborates
our theoretical result where the size of the Transformer for SAT-solving depends on the number of
variables. This further demonstrates the value of having a compiled Transformer that provably works
well on all inputs up to p variables for any given p.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (eds.). Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009. ISBN
978-1-58603-929-5. URL http://dblp.uni-trier.de/db/series/faia/faia185.
html.

Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison, Ranan B.
Banerji, and Jeffrey D. Ullman (eds.), Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pp. 151–158. ACM, 1971. doi:
10.1145/800157.805047. URL https://doi.org/10.1145/800157.805047.

James M. Crawford and Larry D. Auton. Experimental results on the crossover point in ran-
dom 3-sat. Artificial Intelligence, 81(1):31–57, 1996. ISSN 0004-3702. doi: https://doi.org/
10.1016/0004-3702(95)00046-1. URL https://www.sciencedirect.com/science/
article/pii/0004370295000461. Frontiers in Problem Solving: Phase Transitions and
Complexity.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing the
mystery behind chain of thought: A theoretical perspective. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dim-
itris Papailiopoulos. Looped transformers as programmable computers. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 11398–11442. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/giannou23a.html.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can’t plan, but can help planning
in LLM-modulo frameworks. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=Th8JPEmH4z.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

David Lindner, János Kramár, Sebastian Farquhar, Matthew Rahtz, Thomas McGrath, and Vladimir
Mikulik. Tracr: Compiled Transformers as a Laboratory for Interpretability, 2023. URL https:
//arxiv.org/abs/2301.05062.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=De4FYqjFueZ.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.
doi: 10.1162/tacl a 00562. URL https://aclanthology.org/2023.tacl-1.31.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=NjNGlPh8Wh.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract dpll and abstract dpll modulo
theories. In Franz Baader and Andrei Voronkov (eds.), Logic for Programming, Artificial Intelli-
gence, and Reasoning, pp. 36–50, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN
978-3-540-32275-7.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyGBdo0qFm.

11

http://dblp.uni-trier.de/db/series/faia/faia185.html
http://dblp.uni-trier.de/db/series/faia/faia185.html
https://doi.org/10.1145/800157.805047
https://www.sciencedirect.com/science/article/pii/0004370295000461
https://www.sciencedirect.com/science/article/pii/0004370295000461
https://proceedings.mlr.press/v202/giannou23a.html
https://openreview.net/forum?id=Th8JPEmH4z
https://openreview.net/forum?id=3EWTEy9MTM
https://arxiv.org/abs/2301.05062
https://arxiv.org/abs/2301.05062
https://openreview.net/forum?id=De4FYqjFueZ
https://aclanthology.org/2023.tacl-1.31
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=HyGBdo0qFm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ArXiv, abs/2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc., 2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 11080–11090. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/weiss21a.html.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention networks
can process bounded hierarchical languages. In Association for Computational Linguistics (ACL),
2021.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van Den Broeck. On
the paradox of learning to reason from data. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI ’23, 2023. ISBN 978-1-956792-03-4. doi:
10.24963/ijcai.2023/375. URL https://doi.org/10.24963/ijcai.2023/375.

A TRAINING DETAILS

We use Llama Touvron et al. (2023) models in the HuggingFace library. For the 70M model, we use
models with 6 layers, 512 embedding dimensions, 8 heads, 512 attention hidden dimensions, and
2048 MLP hidden dimensions. For the 140M model, we use 12 layers, 768 embedding dimensions,
12 heads, 768 attention hidden dimensions, and 3072 MLP hidden dimensions. Both models have 850
context size. We trained for 5 epochs on both datasets using the Adam optimizer with a scheduled
cosine learning rate decaying from 6× 10−4 to 6× 10−5 with β1 = 0.9 and β2 = 0.95.

B ADDITIONAL EXPERIMENT RESULTS

In Figure 4 we provide results on the number of Chain-of-Thought tokens required to solve randomly
generated SAT instances. In Figure 5 we provide results on how the SAT/UNSAT prediction accuracy
is affected by numerical errors introduced by softmax.

C PROOFS

C.1 NOTATION DETAILS

3-SAT SAT problems where the Boolean formula is expressed in conjunctive normal form (CNF)
with three literals per clause will be referred to as 3-SAT. A formula in CNF is a conjunction (i.e.
“AND”) of clauses, a clause is a disjunction (i.e. “OR”) of several literals, and each literal is either a
variable or its negation. In the case of 3-SAT, each clause contains at most three literals. An example
3-SAT formula with 4 variables and 6 clauses is:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ ¬x1)∧
(x1 ∨ ¬x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x4 ∨ ¬x1)

12

https://proceedings.mlr.press/v139/weiss21a.html
https://doi.org/10.24963/ijcai.2023/375

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 4: Chain-of-Thought Lengths generated by the compiled SAT-Solver Model vs the number of
boolean variables in sampled SAT formulas, y-axis in log scale. Solid lines denote the maximum CoT
length for each dataset while opaque, dashed lines denote the average CoT length. The empirical
maximum CoT length in our datasets is bounded by 8p · 20.08p

.

Figure 5: The impact of soft attention in Transformer layers on the SAT/UNSAT prediction accuracy.
β is a scaling factor that allows the soft attention operation to better simulate hard attention at the
cost of larger model parameter values in attention layers. The model achieves perfect accuracy on all
“marginal” datasets starting at β = 17.5, and for lower β values, accuracy is negatively correlated
with the number of variables in the datasets.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

In the above formula, (x1 ∨ ¬x2) is a clause, which contains the literals x1 and ¬x2.

The 3-SAT problem refers to determining if any assignment of truth values to the variables allows the
formula ϕ to evaluate as true. It is well-known that 3-SAT is NP-hard and is widely believed to be
unsolvable in polynomial time.

DIMACS Encoding The DIMACS format is a standardized encoding scheme for representing
Boolean formulas in conjunctive normal form (CNF) for SAT problems. Each clause in the formula
is represented as a sequence of integers followed by a terminating “0” (i.e. “0” represents ∧ symbols
and parentheses). Positive integers correspond to variables, while negative integers represent the
negations of variables. For instance, if a clause includes the literals x1, ¬x2, and x3, it would be
represented as ”1 -2 3 0” in the DIMACS format.

For the 3-SAT example in the previous paragraph, the corresponding DIMACS representation would
be:

1 -2 0 -1 2 -3 0 2 4 -1 0 1 -3 4 0 -2 -3 -4 0 -4 -1 0

C.2 USEFUL LEMMAS FOR TRANSFORMERS

In this section, we present adapted versions of several lemmas from Feng et al. (2023). Specifically,
an MLP with ReGLU can exactly simulate ReLU, linear operations, and multiplication without error.
For Self-attention lemmas, we directly adapt from Feng et al. (2023).

C.2.1 LEMMAS FOR MLP WITH REGLU ACTIVATION

This section shows several lemmas showing the capabilities of the self-attention operation and MLP
layers to approximate high-level vector operations. These high-level operations are later used as
building blocks for the Transformer SAT-solver. Specifically, with appropriate weight configurations,
a 2-layer MLP with ReGLU activation f(x) = W2[(W1x+ b)⊗ relu(V x+ c)] can approximate
the following vector operations for arbitrary input x:

• Simulate a 2-layer MLP with ReLU activation: W2 ReLU(W ′
1x+ b′1) + b′2

• Simulate any linear operation Wx

• Simulate element-wise multiplication: x1 ⊗ x2

Lemma C.1 (Simulating a 2-Layer ReLU MLP with ReGLU Activation). A 2-layer MLP with
ReGLU activation function can simulate any 2-layer MLP with ReLU activation function.

Proof. Let the ReLU MLP be defined as:

g(x) = W ′
2 ReLU(W ′

1x+ b′1) + b′2.

Set the weights and biases of the ReGLU MLP as follows:

W1 = 0, b1 = 1,

V = W ′
1, b2 = b′1,

W2 = W ′
2, b = b′2.

Then, the ReGLU MLP computes:

f(x) = W ′
2 [(0 · x+ 1)⊗ ReLU(W ′

1x+ b′1)] + b′2.

Simplifying:

f(x) = W ′
2 [1⊗ ReLU(W ′

1x+ b′1)] + b′2 = W ′
2 ReLU(W ′

1x+ b′1) + b′2 = g(x).

Thus, the ReGLU MLP computes the same function as the ReLU MLP.

Lemma C.2 (Simulating Linear Operations with ReGLU MLP). A 2-layer MLP with ReGLU
activation can compute any linear operation f(x) = Wx+ b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. To compute a linear function using the ReGLU MLP, we can set the activation to act as a
scalar multiplier of one. Set the weights and biases as:

W1 = W , b1 = b,

V = 0, b2 = 1,

W2 = I, b = 0.

Here, I is the identity matrix.

Since V x+ b2 = b2 = 1, we have:

ReLU(V x+ b2) = ReLU(1) = 1.

Then, the ReGLU MLP computes:

f(x) = I [(Wx+ b)⊗ 1] = Wx+ b.

Thus, any linear operation can be represented by appropriately setting W1, b1, and W2.

Lemma C.3 (Element-wise Multiplication via ReGLU MLP). A 2-layer MLP with ReGLU activation
can compute the element-wise multiplication of two input vectors x1 and x2, that is,

f(x) = x1 ⊗ x2,

where x = [x1;x2] denotes the concatenation of x1 and x2.

Proof. Let x = [x1;x2] ∈ R2n, where x1,x2 ∈ Rn.

Set the weights and biases:

W1 =

[
In
In

]
, b1 = 02n,

V =

[
In
−In

]
, b2 = 02n,

W2 = [In −In] , b = 0n.

Compute:

W1x+ b1 =

[
x1

x1

]
,

V x+ b2 =

[
x2

−x2

]
,

ReLU(V x+ b2) =

[
ReLU(x2)
ReLU(−x2)

]
.

The element-wise product:

(W1x+ b1)⊗ ReLU(V x+ b2) =

[
x1 ⊗ ReLU(x2)
x1 ⊗ ReLU(−x2)

]
.

Compute the output:

f(x) = W2 [(W1x+ b1)⊗ ReLU(V x+ b2)] + b

= x1 ⊗ ReLU(x2)− x1 ⊗ ReLU(−x2)

= x1 ⊗ (ReLU(x2)− ReLU(−x2))

= x1 ⊗ x2.

Thus, the ReGLU MLP computes f(x) = x1 ⊗ x2 without restrictions on x2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.2.2 CAPABILITIES OF THE SELF-ATTENTION LAYER

In this subsection, we provide 2 core lemmas on the capabilities of the self-attention layer from Feng
et al. (2023).

Let n ∈ N be an integer and let x1,x2, · · · ,xn be a sequence of vectors where xi = (x̃i, ri, 1) ∈
[−M,M]d+2, x̃i ∈ Rd, ri ∈ R, and M is a large constant. Let K,Q,V ∈ Rd′×(d+2) be any
matrices with ∥V ∥∞ ≤ 1, and let 0 < ρ, δ < M be any real numbers. Denote qi = Qxi,
kj = Kxj , vj = V xj , and define the matching set Si = {j ≤ i : |qi · kj | ≤ ρ}. Equipped with
these notations, we define two basic operations as follows:

• COPY: The output is a sequence of vectors u1, · · · ,un with ui = vpos(i), where pos(i) =
argmaxj∈Si

rj .
• MEAN: The output is a sequence of vectors u1, · · · ,un with ui = meanj∈Si vj .

Assumption C.4. [Assumption C.6 from Feng et al. (2023)] The matrices Q,K,V and scalars ρ, δ
satisfy that for all considered sequences x1,x2, · · · ,xn, the following hold:

• For any i, j ∈ [n], either |qi · kj | ≤ ρ or qi · kj ≤ −δ.

• For any i, j ∈ [n], either i = j or |ri − rj | ≥ δ.

Assumption C.4 says that there are sufficient gaps between the attended position (e.g., pos(i)) and
other positions. The two lemmas below show that the attention layer with casual mask can implement
both COPY operation and MEAN operation efficiently.

Lemma C.5 (Lemma C.7 from Feng et al. (2023)). Assume Assumption C.4 holds with ρ ≤ δ2

8M . For
any ϵ > 0, there exists an attention layer with embedding size O(d) and one causal attention head
that can approximate the COPY operation defined above. Formally, for any considered sequence
of vectors x1,x2, . . . ,xn, denote the corresponding attention output as o1,o2, . . . ,on. Then, we
have ∥oi − ui∥∞ ≤ ϵ for all i ∈ [n] with Si ̸= ∅. Moreover, the ℓ∞ norm of attention parameters is
bounded by O(poly(M, 1/δ, log(n), log(1/ϵ))).
Lemma C.6 (Lemma C.8 from Feng et al. (2023)). Assume Assumption C.4 holds with ρ ≤

δϵ
16M ln(4Mn

ϵ)
. For any 0 < ϵ ≤M , there exists an attention layer with embedding size O(d) and one

causal attention head that can approximate the MEAN operation defined above. Formally, for any
considered sequence of vectors x1,x2, . . . ,xn, denote the attention output as o1,o2, . . . ,on. Then,
we have ∥oi−ui∥∞ ≤ ϵ for all i ∈ [n] with Si ̸= ∅. Moreover, the ℓ∞ norm of attention parameters
is bounded by O(poly(M, 1/δ, log(n), log(1/ϵ))).

C.3 THEORETICAL CONSTRUCTION

Preprint Note: We’re in the process of reformatting the construction and proof for better organization

Notations

• p denotes the number of variables
• ti denotes the token at position i

• Tvars denotes the set of tokens that denote variables and their negations. i.e. ‘1’, ‘2’, . . . ,
‘n’, ‘-1’, ‘-2’, . . . , ‘-n’

• b denotes boolean variables

Proof. We first describe the encoding format of the formulas and the solution trace format before
going into the details of model construction.

Input Format. We consider 3-CNF-SAT formulas in the DIMACS representation, with an initial
[BOS] token and an ending [SEP] token. Each variable xi for i ∈ [n] has 2 associated tokens: i
and -i (e.g., 1 and -1), where the positive token indicates that the i-th variable appears in the clause
while the negative token indicates that the negation of the i-th variable appears in the clause. Clauses
are separated using the 0 token. For example, the formula

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(¬x2 ∨ ¬x4 ∨ ¬x1) ∧ (x3 ∨ x4 ∨ ¬x1) ∧ (¬x1 ∨ ¬x3 ∨ ¬x2)

∧(x1 ∨ ¬x2 ∨ ¬x4) ∧ (¬x4 ∨ x2 ∨ x1) ∧ (x1 ∨ ¬x2 ∨ x4)

would be represented as:

[BOS] -2 -4 -1 0 3 4 -1 0 -1 -3 -2 0 1 -2 -4 0 -4 2 1 0 1 -2 4 0
[SEP]

Solution Trace Format. The trace keeps track of the order of the assignments made and whether
each assignment is a decision (assumption) or a unit propagation (deduction). Literals with a
preceding D token are decision literals while other literals are from unit propagation. When the
model encounters a conflict between the current assignment and the formula, it performs a backtrack
operation denoted by [BT] and performs another attempt with the last decision literal negated. In
particular, compared to Figure 1, we used D to abbreviate Assume and use [BT] to abbreviate
Backtrack

As an example, the solution trace for the above SAT formula would be:
[SEP] D 2 D 1 -4 3 [BT] D 2 D -1 -4 [BT] -2 D 3 D 4 -1 SAT

Embedding Layer. Our token set consists of one token for each variable and its negation, the
separator token 0, and a special token D to denote where decisions are made. The positional encoding
occupies a single dimension and contains the numerical value of the position of the token in the string.
(i.e. there exists a dimension pos such that the position embedding of position i is i · epos)

Layer 1. The first layer prepares for finding the nearest separator token and D token. Let i denote
the position index of tokens:

1. Compute isep where isep = i if the corresponding token ti ∈ {‘0’, ‘[SEP]’, ‘[BT]’} and
isep = 0 otherwise

2. Similarly, compute iD where iD = i if the corresponding token ti = D and isep = 0 otherwise.

3. Compute (i− 1)2, i2 for index equality comparison

The first 2 operations can both be computed using a single MLP layer that multiplies between i from
the positional encoding using Lemma C.3. Similarly, the 3rd operation is a multiplication operation
that can be performed with Lemma C.3.

Layer 2. This layer uses 2 heads to perform the following tasks:

1. Copy the index and type of the last separator token and stores

psepi
′ = max{j : j ≤ i, tj ∈ {‘0’, ‘[SEP]’, ‘[BT]’}}

b0 = (tj = ‘0’)
b[SEP] = (tj = ‘[SEP]’)
b[BT] = (tj = ‘[BT]’)

for j = psepi
′

2. (Backtrack) Compute the position of the nearest D token pDi = max{j : j ≤ i, tj = ‘D’}

3. Compute (psepi
′)2 for index operation

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Task 1 can be achieved via the COPY operation from Lemma C.5 with qi = 1, ki = isep, vj =
(j, I[tj = ‘0’], I[tj = ‘[SEP]’], I[tj = ‘[UP]’], I[tj = ‘[BackTrack]’]).

Task 2 is highly similar to task 1 and can be achieved using COPY with qi = 1, ki = iD, vj = (j)

Task 3 is a multiplication operation that can be performed using Lemma C.3.

Layer 3 This layer uses 1 head to copy the several values from the previous token to the current
token. Specifically, this layer computes:

1. The position of the previous separator token, not including the current position:

psepi = max{j : j < i, tj ∈ {‘0’, ‘[SEP]’,‘[UP]’, ‘[BackTrack]’}}

2. Dermine if the previous token is D: bdecision = (ti−1 = ‘D’) i.e., whether the current token
is a decision variable

3. (Induction) Compute the offset of the current token to the previous separator token dsepi =
i− psepi

′

4. Compute (psepi)2, for equality comparison at the next layer.

Task 1 and 2 is done by copying psepi
′ and I[ti = ‘D’] from the previous token. Specifially, we use

the COPY operation from Lemma C.5 with qi = ((i− 1)2, i− 1, 1) and kj = (−1, 2j,−j2) which
determines i − 1 = j via −((i − 1) − j)2 = 0 and vj = (psepi

′, I[ti = ‘D’]). Task 4 is a local
multiplication operation that can be implemented via Lemma C.3.

Layer 4. This layer uses 2 heads to perform the following tasks:

1. Compute the sum of all variable token embeddings after the previous separator to encode a
vector representation of assignments and clauses at their following separator token.

ri =
∑

j>psep
i ,tj∈Tvars

eid(tj) =
∑

psep
j =psep

i ,tj∈Tvars

eid(tj)

2. (Induction) Compute the position of the second-to-last separator psep−i = max{j : j <
psepi , tj ∈ {‘0’, ‘[SEP]’,‘[UP]’, ‘[BackTrack]′}} = psep

psep
i

′ and the corresponding

current position in the previous state p−i = psep−i + dsepi . As a special case for the first state,
we also add 4 to p−i if b[SEP] is true, i.e. p−i = psep−i + dsepi + 4 · b[SEP]. The additional 4
is the number of variables per clause + 1 to ensure that we don’t consider the last clause as
an assignment.

3. (Backtrack) Compute the position of the nearest D token to the last separator token pD−i =
pD
psep
i

′

4. Compute bexceed = (p−i > pD−i + 1), this denotes whether we’re beyond the last decision
of the previous state.

5. Compare (pD-i ≤ p−i) for bBT finished at the next layer.

6. Compare if pD-i = p−i for the bbacktrack operator.

7. Compute b′copy = (p−i < psepi
′ − 1)

Task 1 is achieved using a MEAN operation with qi = ((psepi)2, psepi , 1), kj =
((−1, 2psepj ,−(psepj)2), vj = eid(tj) for tj ∈ Tvars. This attention operations results in ri

i−psep
i

The MLP layer then uses Lemma C.3 to multiply the mean result by i− psepi to obtain the ri.

Task 2 is achieved using the COPY operation with qi = ((psepi)2, psepi , 1), kj = (−1, 2j,−j2) and
vj = psepi

′. The MLP layer then performs the addition operation the computes p−i by Lemma C.2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Similarly, Task 3 is achieved using the COPY operation with qi = ((psepi)2, psepi , 1), kj =
(−1, 2j,−j2) and vj = pDi .

Layer 5. The third layer uses 5 heads to perform the following tasks:

1. Determine whether the current assignment ri satisfies the formula. bsat

2. Determine whether the current assignment ri results in a contradiction with a clause of the
formula bcont

3. Find clauses with at least 2 False literals and sum up the unassigned literals in these clauses.
This would result in all the variables that can be currently determined via unit propagation.
eUP

4. Compute bfinal = bexceed ∧ bdecision

5. Compare bno decision = (pDi ≤ psepi), which denotes whether the current state contains no
decision variables

6. Compute bBT finished = (pD-i ≤ p−i) ∧ b[BackTrack]

7. Compare p−i with pD−i − 1 by storing p−i ≤ pD−i − 1 and p−i ≥ pD−i − 1 (to check for
equality at the next layer)

8. Compare bbacktrack = (p−i = pD−i − 1)

To describe the operations performed in this layer, we interpret the ri vectors computed in the previous
layer as a 2n-dimensional binary encoding of the clause/assignment preceding token i. The value at
dimension 2j − 1 is 1 if the clause/assignment contains variable j (1-indexed) in positive polarity
and the value at dimension 2j is one iff the clause/assignment contains variable j is in negative
polarity. For example, the clause 1 -2 4 is represented as the binary vector r = [1, 0, 0, 1, 0, 0, 1, 0]
when the number of variables is n = 4. The r representation for each clause is at the ‘0’ separator
following the clause in the input format.

We now define the linear transformation T [vtrue,vfalse,vnone] ∈ R2n×2n where
vtrue,vfalse,vnone ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. The transformation takes every pair of val-
ues in r corresponding to each variable, determines whether the variable is true, false, or none-
existent in the clause/assignment represented by r, and replaces each pair with the corresponding
vtrue,vfalse,vnone value.

For example, when r = [1, 0, 0, 1, 0, 0, 1, 0], applying T [(1, 1), (1, 0), (0, 1)] will result in
[1, 1, 1, 0, 0, 1, 1, 1]. Also, T [(1, 0), (0, 1), (0, 0)] is equivalent to the identity operation. Intuitively,
the transformation changes 2-element binary vectors representing true, false, and non-existence
within the clause/assignment. The transformation is used to construct query and key matrices to
satisfy the desired properties of the assignment-clause dot product.

Parallel Deduction over Clauses Task 1 (checking satisfiability) is achieved via an MEAN
Lemma C.6 with qi = (ri, 1) and kj = M(−rj , c(1)j) and vj = 1[tj = ‘[BOS]’], where

c
(1)
j =

0 tj = ‘0’,
−0.5 tj = ‘[BOS]’
−M otherwise

and M is a sufficiently large constant to approximate hard-max with the softmax operation.

Correctness: Consider the case where ri denotes the binary encoding of the current assignment and
rj denotes the binary encoding of a clause at a ‘0’ separator position. Then ri · rj denotes the number
of common literals in the assignment and the clause, i.e. how many literals in the clause are True
according to the assignment ri. Therefore, the clause is satisfied by the assignment ending at position
i as long as ri · rj ≥ 1. Since we only consider the rj values at the ‘0’ separators as the binary
encoding of the clause, all these positions have c

(1)
j = 0. Therefore, qi · kj = −Mri · rj , which is

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 for non-satisfied clauses and < −M for satisfied clauses. Also notice that since c
(1)
j = −0.5 for

j = 1 (i.e. the first [BOS] token), so qi · k1 = −M
2 . If the formula is satisfied, all clauses must

be satisfied, and each clause must have attention score qi · kj < −M while the [BOS] token has
attention score −M

2 . For sufficiently large M , we can view the softmax operation as selecting the
value vector of the largest attention score item, which is [BOS]. Since v1 = 1[t1 = ‘[BOS]’ = 1,
the result of the attention head will be 1. Conversely, if at least one clause is not satisfied, then
qi · kj = 0 for that particular clause. As such, the [BOS] token will not be selected and the result of
the attention operation will be 0.

Similarly, task 2 (Detecting Conflict) is also achieved via MEAN(Lemma C.6) with qi =

(T [(1, 0), (0, 1), (1, 1)]ri, 1), kj = M(−rj , c(1)j), vj = 1 − 1[tj = ‘[BOS]’], where the defini-

tion of M and c
(1)
j is the same as Task 1.

For task 3 (unit propagation), apply MEAN (Lemma C.6) with qi = (T [(0, 1), (1, 0), (0, 0)]ri, 1),
kj = M(rj , c

(2)
j), vj = crj where

c
(2)
j =

0 tj = ‘0’,
1.5 tj = ‘[BOS]’
−M otherwise

Let the attention result be oUP . The MLP layer then computes eUP = ReLU(oUP)−ReLU(oUP −
1)− T [(1, 1), (1, 1), (0, 0)]ri via Lemma C.1.

Correctness: Here we show that, if the assignment at position i does not make the formula unsatisfied,
then the resulting vector is approximately a binary encoding of all literals that can be unit-propagated.
Consider again the case where ri denotes the binary encoding of the current assignment and rj
denotes the binary encoding of a clause at a ‘0’ separator position. Here qi · kj denotes M times the
number of false literals in clause j according to the current assignment i. Since each clause has three
variables, if a clause has three false assignments, then the formula is unsatisfied by the assignment
and thus requires no further unit propagation. Therefore, we consider the case where each clause has
at most 2 opposing assignments.

If there are no clauses with 2 opposing assignments, then all clause attention logits qi · kj will be
at most M , while the attention logit to the [BOS] token will be c

(2)
1 = 1.5M . Since M is a large

number, most attention weights will be assigned to [BOS] after the softmax operation and result in a
zero embedding vector.

If at least one clause has 2 opposing assignments, all these clauses will have attention logits qi ·
k ≈ 2M . Therefore, the attention value will be evenly distributed on all clauses with 2 opposing
assignments. The resulting attention output o[UP] will be the average of embedding of all clauses
with 2 opposing assignments, multiplied by c since vj = c · rj . Since there are at most c clauses, the
number of attended clauses is at most c, and the divisor when computing the average is at most c.
Therefore, the resulting o[UP] will be a embedding vector where every literal that appeared in at least
one clause with 2 false literals have their corresponding position assigned to a ≥ 1 value.

Layer 6 This layer does the remaining boolean operators required for the output. In particular,

• bunsat = bno decision ∧ bcont

• b[BT] = bcont ∧ ¬(ti = [BT])

• Compute a vector that is equal to bbacktrack · eBT , which is equal to eBT if bbacktrack is
True and 0 otherwise. This is to allow the operation at the output layer for backtracking

Note that ∧ can be implemented as a single ReLU operation for tasks 1 and 2 that can be implemented
with Lemma C.1, and task 3 is a multiplication operation implemented with Lemma C.3

Layer 7 This layer performs a single operation with the MLP layer: Compute bcopy · ecopy , which
gates whether ecopy should be predicted based on bcopy . This enables condition 5 at the output layer.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Output Projection The final layer is responsible for producing the output of the model based on
the computed output of the pervious layers. We constructed prioritized conditional outputs, where the
model outputs the token according to the first satisfied conditional in the order below:

1. If bsat output SAT

2. If bcont ∧ bno decision output UNSAT

3. If bcont ∧ ¬(ti = [BackTrack]) output ‘[BackTrack]’

4. (BackTrack) If bbacktrack, output the negation of the token from position pD−i + 1

5. (Induction) If bcopy , copy token from position p−i + 1 as output (ecopy)

6. output a unit propagation variable, if any.

7. output D if the current token is not D

8. output a unassigned variable

For the output layer, we use l[TOKEN] to denote the output logit of [TOKEN]. Since the final output of
the model is the token with the highest logit, we can implement output priority by assigning outputs
of higher priority rules with higher logits than lower priority rules. Specifically, we compute the
output logits vector using the output layer linear transformation as:

27 · bsat · eSAT + 26 · bcont · e[BackTrack] + 25 · bunsat · eUNSAT
+24·bbacktrack·eBT+23·bcopy·ecopy+22·eUnitPropVar+21·(1−1[ti = ‘D′])·eD+20·T [(0, 0), (0, 0), (1, 1)]ri

Proposition C.7. There exists a transformer with 7 layers, 5 heads, O(p) embedding dimension, and
O(p2) weights that, on all inputs s ∈ DIMACS(p, c), predicts the same token as the output as the
above operations. Furthermore, let lctx = 4c + p · 2p be the worst-case maximum context length
required to complete SAT-solving, then all weights are within poly(lctx) and can be represented
within O(p+ log c) bits.

We only argue from a high level why this is true due to the complexity of the construction. In the
above construction, we demonstrate how each operation can be approximated by a Self-attention or
MLP layer. We can set the embedding dimension to the sum of dimensions of all the intermediate
values and allocate for every intermediate values a range of dimensions that’s equal to the dimension
of the variables. All dimensions are initialized to 0 in the positional encoding of the transformer
except for the dimensions assigned to the positional index i. Similarly, only the dimensions assigned
to the one-hot token representation are initialized in the token embeddings. At each layer, the
self-attention heads and MLP layers extract the variable values from the residual stream and perform
the operations assigned to them at each layer.

The only intermediate values whose dimensions are dependent on p are the vectors for one-hot
encodings and storing binary encodings of clauses and assignments. They all have size 2p. Therefore,
the number of total allocated embedding sizes is also O(p).

Furthermore, shows that all parameter values are polynomial with respect to the context length and
the inverse of approximation errors. Note that we need only guarantee the final error is less than
1 to prevent affecting the output token. Furthermore, we can choose all parameter values so that
they are multiples of 0.5. As such, all parameters are within poly(lctx) and can be represented by
O(log(lctx)) = O(p+ log c)

C.4 CORRECTNESS

Note: This section assumes prior knowledge in propositional logic and SAT solving, including an
understanding of the DPLL algorithm. For a brief explanation of the notations in this section, please
refer to (Nieuwenhuis et al. (2005)). For more general knowledge, please refer to (Biere et al. (2009)).

We prove that the above model autoregressive solves 3-SATp,c by showing that it uses the CoT to
simulate the “Abstract DPLL Procedure”.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.4.1 ABSTRACT DPLL

In this section, we provide a description of abstract DPLL. Since the focus of this paper is not to
show the correctness of the DPLL algorithm but rather how our model’s CoT is equivalent to it, we
only present the main results from Nieuwenhuis et al. (2005) and refer readers to the original work
for proof of the theorems.

Let M be an ordered trace of variable assignments with information on whether each assignment is
an decision literal (i.e. assumption) or an unit propagation (i.e., deduction).

For example, the ordered trace 3d 1 2 4d 5 denotes the following sequence of operations:

Assume x3 = T → Deduce x1 = T → Deduce x2 = F → Assume x4 = T → Deduce x5 = T .

Let F denote the a SAT formula in CNF format (which includes 3-SAT), C denote a clause (e.g.,
x1 ∨ ¬x2 ∨ x3), l denote a single literal (e.g., ¬x2), and ld denote a decision literal. Let M |= F
denote that the assignment in M satisfies the formula F .

Definition C.8 (State in the DPLL Transition System). A state S ∈ S in the DPLL transition system
is either:

• The special states SAT,UNSAT, indicating that the formula satisfiable or unsatisfiable

• A pair M ∥ F , where:

– F is a finite set of clauses C1∧C2 · · ·∧Cc (a conjunctive normal form (CNF) formula),
and

– M is a sequence of annotated literals l1 ◦ l2 · · · ◦ li for some i ∈ [n] representing
variable assignments, where ◦ denotes concatenation. Annotations indicate whether a
literal is a decision literal (denoted by ld) or derived through unit propagation.

We denote the empty sequence of literals by ∅, unit sequences by their only literal, and the concatena-
tion of two sequences by simple juxtaposition. While M is a sequence, it can also be viewed as a set
of variable assignments by ignoring annotations and order.

Definition C.9 (Adapted from Definition 1 of Nieuwenhuis et al. (2005)). The Basic DPLL system
consists of the following transition rules S =⇒ S:

UnitPropagate :

M ∥F ∧ (C ∨ l) =⇒ M ◦ l ∥F ∧ (C ∨ l) if
{
M |= ¬C,
l is undefined in M.

Decide :

M ∥F =⇒ M ◦ ld ∥F if
{
l or ¬l occurs in a clause of F,
l is undefined in M.

Backjump :

M ◦ ld ◦N ∥F =⇒ M ◦ l′ ∥F if

There is some clause C ∨ l′ s.t.
F |= C ∨ l′, M |= ¬C,
l′ is undefined in M,

l′ or ¬l′ occurs in a clause of F.

Fail :

M ∥F ∧ C =⇒ UNSAT if
{
M |= ¬C,
M contains no decision literals.

Success :

M ∥F =⇒ SAT if M |= F

We also use S =⇒∗ S′ to denote that there exist S1, S2, . . . , Si such that S =⇒ S1 =⇒ · · · =⇒
Si =⇒ S′. Also S =⇒! S′ denote that S =⇒∗ S′ and S′ is a final state (SAT or UNSAT).

Explanation of the Backjump Operation:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The Backjump operation allows the DPLL algorithm to backtrack to a previous decision and learn a
new literal. In particular, F |= C ∨ l′ means that, for some clause C, every assignment that satisfies
F must either satisfy C (i.e., contain the negation of each literal in C) or contain l′ as an assignment.
However, if M |= ¬C, which means that M conflicts with C and thus contains the negation of each
literal in C, then if we want some assignment containing M to still satisfy F , then the assignment
must also include the literal l′ as an assignment to ensure that it satisfies C ∨ l′, a requirement for
satisfying F .

In our construction, we only consider the narrower set of BackTrack operations that find the last
decision and negate it:

Lemma C.10. [Corrollary of Lemma 6 from Nieuwenhuis et al. (2005)] Assume that ∅ ∥ F =⇒∗

M ◦ ld ◦N ∥F , the BackTrack operation:

M ◦ ld ◦N ∥F =⇒ M ◦ ¬l ∥F if

There exists clause C in F such that
M ◦ ld ◦N |= ¬C
Ncontains no decision literals

is always a valid Backjump operation in Definition C.9.

Definition C.11 (Run of the DPLL Algorithm). A run of the DPLL algorithm on formula F is a
sequence of states S0 =⇒ S1 =⇒ · · · =⇒ ST such that:

• S0 is the initial state ∅ ∥ F

• For each i = 0, 1, . . . , n− 1, the transition Si =⇒ Si+1 is valid according to the transition
rules of the DPLL system in Definition C.9 (e.g., UnitPropagate, Decide, Backjump, or
Fail);

• Sn is a final state that is either SAT or UNSAT

Note that the above definition is simply the expansion of ∅ ∥ F =⇒! ST .

The following theorem states that the DPLL procedure always decides the satisfiability of CNF
formulas:

Lemma C.12. [Theorem 5 and Theorem 9 Combined from Nieuwenhuis et al. (2005)] The Basic
DPLL system provides a decision procedure for the satisfiability of CNF formulas F . Specifically:

1. ∅ ∥ F =⇒! UNSAT if and only if F is unsatisfiable.

2. ∅ ∥ F =⇒! SAT if and only if F is satisfiable.

3. There exist no infinite sequences of the form ∅ ∥ F =⇒ S1 =⇒ · · ·

C.4.2 TRACE EQUIVALENCE AND INDUCTIVE PROOF

We demonstrate that our Transformer in Theorem 4.5 solves SAT by showing that the CoT produced
by the Transformer is ”trace equivalent” to an abstract DPLL algorithm with some heuristic. We first
provide definition of “trace equivalence”:

Definition C.13 (Trace Equivalence of Algorithms). Let A and B be two algorithms. Let ΣA and
ΣB be the sets of possible states of A and B, respectively. We say that algorithms A and B are trace
equivalent if there exists a bijective mapping ϕ : ΣA → ΣB , independent of the input, such that for
every input s, the traces produced by A and B satisfy the following:

If the execution of A on input s produces the trace TrA(s) = [σA
1 , σ

A
2 , . . . , σ

A
n], and the execution of

B on the same input s produces the trace TrB(s) = [σB
1 , σB

2 , . . . , σB
n], then for all i ∈ {1, 2, . . . , n},

σB
i = ϕ(σA

i).

That is, the sequences of states of A and B are in one-to-one correspondence via the fixed mapping
ϕ, and corresponding states are related by this mapping for every input s.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We first show how to convert a chain of thought of the model into a state in the abstract DPLL
algorithm. Consider the following model input and Chain-of-Thought trace:

[BOS] -2 -4 -1 0 3 4 -1 0 -1 -3 -2 0 1 -2 -4 0 -4 2 1 0 1 -2 4 0
[SEP] D 2 D 1 -4 3 [BT] D 2 D -1 -4

Recall that [BT] denotes backtracking and D denotes that the next token is a decision literal.

Note that the prompt input ends at [SEP] and the rest is the Chain-of-Though produced by the
model.

We want to convert this trace to a state S = M∥F such that F is the CNF formula in the DIAMCS
encoding in the prompt input and M is the ”assignment trace” at the last attempt (i.e., after the
last [BT] token.). As such, M correspond to the D 2 D -1 -4 portion of the trace and thus
M = 2d 1̄d 4̄ as described in Appendix C.4.1. We formalize this process as follows:

Definition C.14 (Translating CoT to Abstract DPLL State). For any number of variables p ∈ N+, let
V be the set of tokens:

V = {-i, i | i ∈ [p] } ∪ {D, [SEP], [BOS], [BT], 0, SAT, UNSAT }.

Define a mapping fS : V∗ → S ∪{error} that converts a sequence of tokens R ∈ V∗ into an abstract
DPLL state as follows:

1. If R ends with SAT or UNSAT, then set MS(R) to SAT or UNSAT accordingly.

2. Else if R contains exactly one [SEP] token, split R at [SEP] into RDIMACS and RTrace.

3. Parse RDIMACS into a CNF formula F , assuming it starts with [BOS] and ends with 0. If
parsing fails, set MS(R) = fail.

4. Initialize an empty sequence M to represent variable assignments and set a flag
isDecision← False.

5. Process each token t in RTrace sequentially:

• If t = D, set isDecision← True.
• Else if t = [BT], remove literals from M up to and including the last decision literal

(i.e., perform backtracking).
• Else if t = i or -i for some i ∈ [n]:

– Let l be the literal corresponding to xi = T if t = i, or xi = F if t = -i.
– If l is already assigned in M with a conflicting value, set MS(R) = fail.
– Else, append l to M , annotated as a decision literal if isDecision = True, or as a

unit propagation otherwise.
– Reset isDecision← False.

• Else, set MS(R) = error.

6. Return the state M ∥ F .

7. If any of the above steps fail, set MS(R) = fail.

We now present the inductive lemma:

Lemma C.15 (Inductive Lemma). For any p, c ∈ N+, for any input FDIMACS ∈ DIMACS(p, c)
of length n, let F be the boolean formula in CNF form encoded in FDIMACS. Let A be the model
described in section C.3 with parameters p, c. Let (s1:n, s1:n+1, . . .) be the trace of s when running
the Greedy Decoding Algorithm 1 with model A and input prompt s1:n = FDIMACS. For every i ∈ N+,
if fS(s1:n+i) = S and S /∈ {SAT,UNSAT, error}, then there exist j ∈ N+ and S′ ∈ S such that
S =⇒ S′ and fS(s1:n+i+j) = S′.

We now show trace equivalence between the model A and some instantiating of the abstract DPLL
with a specific heuristic:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Definition C.16. For any heuristic h : S → L where L is the set of literals, let DPLLh denote an
instantiation of the abstract DPLL algorithm that selects h(S) as the decision literal when performing
Decide and only performs the BackTrack operation for Backjump. h(S) is a valid heuristic if
DPLLh always abides by the Decide transition.
Lemma C.17. (Trace Simulation) There exists a valid heuristic h : S→ L for which the Transformer
model A is trace equivalent to DPLLh on all inputs in DIMACS(p, c)

Proof. We aim to show that there exists a valid heuristic h : S → L such that the Transformer model
A is trace equivalent to DPLLh on all inputs in DIMACS(p, c).

Define the heuristic h as follows: For any state S ∈ S, let h(S) be the literal that the Transformer
model A selects as its next decision literal when in state S.

Formally, given that the model A outputs tokens corresponding to decisions, unit propagations,
backtracks, etc., and that these tokens can be mapped to transitions in the abstract DPLL system via
the mapping MS (as per the Translating CoT to Abstract DPLL State definition), we set:

h(S) =

{
the decision literal chosen by A in state S, if A performs a Decide transition,
undefined, otherwise.

This heuristic is valid because A always abides by the Decide transition rules, ensuring h(S) selects
a literal that occurs in F and is undefined in M , satisfying the conditions of a valid heuristic.

Define a mapping ϕ : ΣA → ΣB , where ΣA is the set of possible states of model A, and ΣB is the
set of possible states of DPLLh, such that for any state S in the execution trace of A, ϕ(S) = S.
That is, we identify the states of A with the corresponding states in DPLLh by mapping the sequence
of assignments and the formula F directly.

Proof of Trace Equivalence:

We proceed by induction on the number of steps in the execution trace.

Base Case (i = 0):

At the beginning, both algorithms start from the initial state with no assignments:

For A : SA
0 = ∅ ∥ F, and For DPLLh : SB

0 = ∅ ∥ F.

Clearly, ϕ(SA
0) = SB

0 .

Inductive Step:

Assume that after k steps, the states correspond via ϕ:

ϕ(SA
k) = SB

k .

We need to show that after the next transition, the states still correspond, i.e., ϕ(SA
k+1) = SB

k+1.

Suppose the model A applies a UnitPropagate operation, transitioning from state SA
k to SA

k+1 by
adding a literal l deduced via unit propagation.

Since unit propagation is deterministic and depends solely on the current assignment M and formula
F , DPLLh will also apply the same UnitPropagate operation, transitioning from SB

k to SB
k+1 by

adding the same literal l.

Thus, ϕ(SA
k+1) = SB

k+1.

Suppose the model A applies a Decide operation, transitioning from SA
k to SA

k+1 by adding a decision
literal l = h(SA

k).

By the definition of the heuristic h, DPLLh also selects l as the decision literal in state SB
k . Both

algorithms make the same decision and transition to the same next state.

Therefore, ϕ(SA
k+1) = SB

k+1.

Suppose the model A applies a Backjump operation, backtracking to a previous state and assigning
a new literal.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Since DPLLh performs only the BackTrack operation for Backjump (as per the definition), and A
simulates this operation, both algorithms backtrack in the same manner and update their assignments
accordingly.

Thus, ϕ(SA
k+1) = SB

k+1.

If the model A reaches a terminal state indicating SAT or UNSAT, then so does DPLLh, since their
sequences of transitions have been identical up to this point.

In all cases, the next state of model A corresponds to the next state of DPLLh under the mapping ϕ.
Therefore, by induction, the execution traces of A and DPLLh are such that for all i,

ϕ(SA
i) = SB

i .

Since the heuristic h selects the same decision literals as the model A, and A always abides by the
Decide transition (as per its design), h is a valid heuristic according to the definition provided.

D CODE FOR THEORETICAL CONSTUCTION

1 def nearest_token_id(tok_emb: OneHotTokEmb, vocab: List[str],
2 targets: List[str], indices: Indices=indices):
3 # Get the token ids of the target tokens
4 target_tok_ids = [vocab.index(target) for target in targets]
5 # Get whether the current token is one of the target tokens
6 # by summing the one-hot embedding
7 target_token_embs = Concat([tok_emb[:, target_tok_id]
8 for target_tok_id in target_tok_ids])
9 in_targets = target_token_embs.sum(axis=1)

10 # Filter the indices to only include the target tokens
11 filtered_index = indices * in_targets
12 return filtered_index.max()

26

	Introduction
	Related Work
	Preliminaries
	Autoregressive Decoder-Only Transformer Architecture

	Transformers and SAT: logical deduction and backtracking
	Compiler for Complex Transformer Algorithms
	Analysis of the Compiled SAT-Solving Model

	Can Transformer Learn SAT Solving from Data?
	Intra-length OOD Generalization
	Limitations in Length Generalization

	Training Details
	Additional Experiment Results
	Proofs
	Notation Details
	Useful Lemmas for Transformers
	Lemmas for MLP with ReGLU activation
	Capabilities of the Self-Attention Layer

	Theoretical Construction
	Correctness
	Abstract DPLL
	Trace Equivalence and Inductive Proof

	Code for Theoretical Constuction

