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ABSTRACT

Despite the unprecedented success of text-to-image diffusion models, controlling
the number of depicted objects using text is surprisingly hard. This is important for
various applications from technical documents, to children’s books to illustrating
cooking recipes. Generating object-correct counts is fundamentally challenging
because the generative model needs to keep a sense of separate identity for every
instance of the object, even if several objects look identical or overlap, and then
carry out a global computation implicitly during generation. It is still unknown if
such representations exist. To address count-correct generation, we first identify
features within the diffusion model that can carry the object identity information.
We then use them to separate and count instances of objects during the denoising
process and detect over-generation and under-generation. We fix the latter by
training a model that predicts both the shape and location of a missing object, based
on the layout of existing ones, and show how it can be used to guide denoising
with correct object count. Our approach, CountGen, does not depend on external
source to determine object layout, but rather uses the prior from the diffusion
model itself, creating prompt-dependent and seed-dependent layouts. Evaluated on
two benchmark datasets, we find that CountGen strongly outperforms the count-
accuracy of existing baselines.

CountGen
(ours)

“A photo of six 
kittens sitting on a 

branch”
“A photo of five 
eggs in a carton”

“A realistic photo of 
Goldilocks and three 

bears eating a porridge”
“an illustration of 
four ninja turtles”

SDXL

“A realistic photo of 
seven dwarves dancing 

in the forest”

Figure 1: CountGen generates the correct number of objects specified in the input prompt while
maintaining a natural layout that aligns with the prompt.

1 INTRODUCTION

Text-to-image diffusion models provide an accessible way to control the generation of visual content.
A major failure mode is their inability to count, that is, they often fail to generate the correct number
of items in response to text prompts. For instance, when asked to generate an image of Goldilocks
and the three bears, models may generate only two bears (Figure 1). Counting failures are particularly
frustrating: The accuracy is surprisingly low, and mistakes are often obvious for people to detect.
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To illustrate the difficulty of the problem, consider some naive attempts to work around it. First,
one can manually design layouts per count, to determine the spatial organization and the number
of objects, then provide it as a conditioning signal to a generative model (Dahary et al., 2024b).
This approach would fail to generate prompt-dependent layouts, which is highly desirable. One
could also try asking large vision-language models to propose layouts (e.g., Chen et al. (2023); Feng
et al. (2023)), but these approaches do not use the visual prior information that text-to-image models
already collected, and, as we show below, their performance is rather poor for the counting task.

Why is it so hard for diffusion models to count while they generate? First, counting objects requires
that models capture “objectness" – the high-level coherent representation of something being a
separate entity, even if surrounded by other similar entities. Capturing objectness is by itself a hard
task in image understanding (Alexe et al., 2012; Kuo et al., 2015), and long studied in cognitive
psychology (Spelke, 1990). It is currently not known to what extent diffusion models represent
objectness of entities they generate. A second main challenge is that text-to-image diffusion models
struggle with controlling spatial layout just from text. Producing a correct number of objects requires
obeying a global and complex spatial relation between entities in an image (Chefer et al., 2023;
Dahary et al., 2024a).

To address the problem of accurate count generation we describe several new contributions, which
together form our method CountGen. First, we analyze the representations of the self-attention layers
in SDXL (Podell et al., 2023), and identify features that capture objectness and instance identity.
We then use these features to develop ways to detect instances of objects during the denoising
process, find their spatial layout and count them. Specifically, we localize the features that correspond
to objects using the cross-attention maps and cluster them to form object instance segmentation.
Importantly, we do not have to wait for an image to be fully generated, and we can accurately count
the number of objects already at an intermediate step of the denoising process.

Given this new capability to count the number of objects being generated during the denoising process,
we further develop methods to correct generation when the count does not match the prompt. First,
we train a layout-modification network we call ReLayout. It takes a spatial layout of k objects and
generates a similar spatial layout with one more instance of an object added in a natural location for
the input layout. For example, given a row of five kittens sitting on a branch, it learned to add a sixth
kitten to the same row. This model is trained using image-pair samples generated by the diffusion
model itself. Finally, we show how to use the new layouts in a new test-time-optimization procedure.

We evaluate CountGen on text prompts from the T2I-CompBench (Huang et al., 2023) which includes
prompts with numbers. CountGen greatly improves accuracy, as evident by human evaluation
experiments, from 29% accuracy for SDXL to 48% by our method. It also improves over all other
baseline methods including large commercial models like the recent DALL-E 3 (Betker et al., 2023).
To support future work in this field, we design and release a dataset that can be evaluated automatically.
Specifically, we release CoCoCount, a set of prompts based on COCO classes(Lin et al., 2014),
which can easily be evaluated using COCO-trained object detectors, like YOLO (Wang et al., 2024).
CountGen also significantly improves over all baseline methods on CoCoCount, importantly from
26% accuracy for SDXL to 52% by our method.

In summary, this paper makes the following new contributions (1) We identify novel features that
represent objectness and instance identity in SDXL (Podell et al., 2023). (2) We design an inference-
time optimization to guide SDXL to generate an accurate number of instances for an object. (3) We
describe a learning approach to automatically modify layouts to add a new instance of an object
while preserving the structure of the scene. (4) We achieve state-of-the-art results in count-accurate
generation.

2 RELATED WORK

Generating images with accurate object count. Numerous papers noted that text-to-image diffusion
models often fail to produce images that accurately match text prompts, especially when these prompts
specify an exact number of objects (Kang et al., 2023; Zhang et al., 2023; Paiss et al., 2023; Wen
et al., 2024; Battash et al., 2024; Feng et al., 2023; Lee et al., 2023; Fan et al., 2023; Sun et al., 2023;
Rassin et al., 2022; Dahary et al., 2024a; Rassin et al., 2024; Chefer et al., 2023). Various efforts
were made to improve the accuracy of these models. Most relevant to our work, Kang et al. (2023)
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proposed a classifier-guidance approach to improve object count accuracy. The method “counts”
instances at each diffusion step using a pretrained counting network and adjusts the denoising process
using gradient guidance. However, it requires using an additional U-Net in every denoising step.

An important line of work suggests breaking the generation process into two steps: (1) Text-to-layout -
setting a spatial location for every object instance; and (2) Layout-to-image - generating an image with
the correct object count using the given layout. Text-to-Layout: Several studies used large language
models (LLMs) to propose spatial layouts (Chen et al., 2023; Phung et al., 2023; Feng et al., 2023;
Gani et al., 2024). LayoutGPT (Feng et al., 2023) injects visual commonsense into the LLM prompt
which enables it to generate desirable layouts. Gani et al. (2024) suggest decomposing complex
prompts into smaller prompts before injecting them into the LLM. Layout-to-image: Providing a
predefined layout with the exact number of subjects helps ensure that the generated images reflect
the intended count (Chen et al., 2023; Yang et al., 2023). Bounded Attention (Dahary et al., 2024a)
addresses this challenge by channeling attention to bounding boxes corresponding to object instances.
However, this approach requires users to manually provide the bounding boxes for all the instances
of each object. In contrast to these separate-step approaches, CountGen, addresses the two steps of
count-accurate generation. It first corrects the layout that emerges during generation so it contains
the correct number of instances. It then uses a novel test-time optimization method to generate a
count-accurate image.

Controlling text-to-image models through attention-based loss. To address the issue of object
neglect—when objects mentioned in a text prompt fail to appear in the generated image— Chefer
et al. (2023) developed a novel loss function that ensures all objects in the prompt are reflected in
the cross-attention maps used during image generation. Rassin et al. (2024) tackled the challenge
of incorrect attribute association by designing a loss function that binds the cross-attention maps of
subjects and their attributes more effectively. Inspired by these advancements, CountGen includes
a novel cross-attention maps loss function designed to ensure the generation adheres closely to the
input layout.

"A photo of six
kittens sitting
on a branch"

SDXL
Layout Guided

SDXL

ReLayout
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Figure 2: Architecture outline: Given a prompt that includes a quantity, we begin generating a
corresponding image using pretrained SDXL until timestep t = 500. We then perform Instance
Localization, where we combine cross-attention maps corresponding with the object, and self-
attention features extracted at timestep t to generate object clusters for each generated object. Then
we apply ReLayout, which generates an object layout with the correct number of instances, while
preserving the composition of the extracted layout. Finally, we perform Layout Guided generation,
which applies an inference time optimization based on the layout through cross-attention loss Lcross
and self-attention masking.
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Figure 3: PCA visualization. to explore the no-
tion of objectness inside SDXL latent space, we
visualize dimension-reduced self-attention fea-
ture maps from various layers across the network
at timestep t = 500. We notice that although
most layers do not exhibit a clear separation of
objects, layer lup52 displays a robust separation
indicated by different object instances having
distinct colors. Visualization across different
timesteps is shown in the appendix, Figure 10.
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Figure 4: Correcting under-generation. we
show examples for the ReLayout correction of
cases where SDXL generates less objects than
specified in the prompt. It is evident that the
generated layouts are natural and obey the same
composition of the original generation, with the
correct number of objects.

3 OUR APPROACH: COUNTGEN

Our method, CountGen, aims to enhance text-conditioned image generators to accurately produce the
intended number of objects for complex input prompts. Our methodology involves a two-step process:
initially, we generate a natural layout that specifies where and how objects should appear in the
image Section 3.2. That layout is based on a layout that emerges naturally from the text-conditioned
generation (Section 3.1). At the second step (Section 3.3), we use this layout as a blueprint to generate
the final image.

3.1 DISCOVER OBJECT-INSTANCE LAYOUT DURING EARLY GENERATION

To count object instances during generation, one must first find an internal representation that captures
the separate identity of different object instances. It is not known if this representation exists in
diffusion models like SDXL. We now discuss this representation and then show how we can detect
the layout of object instances during early generation.

An emerging instance-identity representation in SDXL. We begin by exploring the notion of
‘objectness’ in SDXL. While previous work (Chefer et al., 2023; Hertz et al., 2023; Tewel et al., 2023)
utilized the cross-attention mechanism to localize objects of a given class in generated images, little
research has been conducted on whether the model encodes information about object instances and
how to distinguish between different instances of an object. We tackle this problem by exploring a
variety of features across different layers and timesteps of the diffusion process to determine if and
where the model encodes instance-level information. Figure 3 illustrates this analysis using PCA
visualization of self-attention features from various layers across SDXL at timestep t = 500, which
shows the most robust instance representation (See appendix Figure 10). While most layers do not
exhibit separability at the instance level, we notice that layer lup52 tends to generate different features
for different instances of the same object, with each instance having its distinct color. Based on
this finding, we select the self-attention features from layer lup52 at timestep t = 500 to serve as our
instance-level features.

Identifying object instances. Building on the findings of Hertz et al. (2023), which show that
cross-attention maps can pinpoint a token’s position in a generated image, we create a foreground
mask for each object described in the prompt. By contrasting these foreground masks, derived from
the cross-attention, with the self-attention features, we effectively segregate pixels associated with
objects from those belonging to the background. Subsequently, we cluster the object-associated
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pixels from the self-attention map into distinct masks for each object. This approach allows us to
refine our object representations and enhance the accuracy of the generated layouts.

Formally, let Aself
l,t , Across

l,t represent the self-attention and cross-attention maps, respectively, for
layer l at timestep t within our diffusion network. We aggregate cross-attention maps associated with
the tokens corresponding to the objects specified in the input prompt. We then use these cross-attention
maps to extract a foreground mask M based on dynamic thresholding M = Otsu(Across

l,t ), where Otsu
applies the Otsu thresholding method (Otsu, 1979; Tewel et al., 2024) to determine foreground (object)
pixels. We define pk ⊆ Aself

l,t as the set of features from the self-attention map that are identified
as foreground by mask M . We then cluster these patches: Clusters = DBSCAN(pk, ϵ), where
DBSCAN(·, ϵ) is the DBSCAN (Ester et al., 1996) clustering algorithm with a dynamic parameter
ϵ. Finally, the initial layout L is created by grouping the object clusters: L =

⋃
C∈Clusters C.

At the end of this process, we obtain a set of masks, one for each object being generated. This is
illustrated in Figure 2, left gray box.

3.2 RELAYOUT: CORRECTING THE NUMBER OF OBJECTS IN THE MASK

We now introduce our layout-correction component, ReLayout, which preserves the overall scene
composition while correcting the number of objects. For example, Figure 2 depicts an image
generated using the prompt “a photo of six cats”, but only four cats were generated. Our ReLayout
generates a new layout with the correct number of instances while keeping the overall composition of
the kittens sitting in a row. More examples are shown in Figure 4.

The input to the ReLayout is an object-layout described in Section 3.1, from which we initially infer
the number of generated instances. Next, our ReLayout component takes one of two corrective actions
based on the discrepancy between the generated and expected counts. In cases of over-generation,
where more instances were generated than requested, ReLayout deterministically removes the smallest
instances to achieve the desired cluster count. We find that this simple strategy produces appealing
results. In cases of under-generation, a more intricate challenge arises: the ReLayout must insert
new instances to the scene in a way that preserves the original scene structure. This process involves
a sophisticated understanding of different object layouts—like the stark contrast between linearly
arrayed bottles and the clustered arrangement of elephants—to seamlessly augment the layout. In
Section 3.2.1, we detail our approach for handling under-generation. In cases where the number of
instances is correct, the ReLayout maintains the initial layout.

3.2.1 HANDLING UNDER-GENERATION

To address under-generation issues, we train a U-Net model to predict a new layout, represented as a
multi-channel mask, from an existing layout. In practice, each forward pass of the U-Net generates
a mask with an additional instance. This process is applied in iterations until the mask reflects the
correct number of instances. In what follows we provide detailed information on the architecture and
training of our U-Net model.

Creating a training dataset. To train our ReLayout U-Net, we need a dataset of layout pairs with k
and k+1 objects, that maintain the same scene composition. We begin with the empirical observation
that slight variations in the object count specified in the prompt—while keeping the starting noise
and the rest of the prompt consistent—typically results in images with similar layouts, as shown
in appendix Figure 9. This consistency is crucial as it allows us to generate a training dataset of
layout pairs where each pair has a similar object composition, differing by only one object, thereby
preserving the overall scene structure.

Following this observation, we generate a set of ~10K pairs of images of Ik and Ik+1, where each pair
consists of images that differ by only one in the number of objects depicted. Each pair is generated
with random fixed seeds and prompts that fit the same template, such as "a photo of two cats" versus
"a photo of three cats”. To confirm that each image pair accurately represents an k and k + 1 object
scenario, we extract object masks Mk and Mk+1 as described in Section 3.1, and verify the object
count in one image is exactly one more than in its paired image. Overall, the final dataset for training
consists of pairs of binary masks (Mk,Mk+1), representing the U-Net task of learning to generate a
mask with k + 1 objects from a mask with k objects.

5
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Matching objects. To train the U-Net, we need to establish a correspondence between each object
i in Mk to its new position in Mk+1. We aim to find a matching that minimizes the shift in objects
positions. We use the Hungarian algorithm (Kuhn, 1955) to find the optimal matching. More details
in Appendix C.1.

Training the U-Net module. We trained the U-Net architecture by adapting it to handle 9 input
channels – corresponding to the source tensor Mk ∈ {0, 1}W×H×k with k objects, and output 10
channels – for the target tensor with k + 1 objects, to support counts up to 10. We optimized the
U-Net parameters using two loss functions: (1) A Dice loss (Sudre et al., 2017) between a predicted
masks M̂k+1 and the target masks Mk+1 of that object; and (2) Mask-to-mask overlap loss, designed
to reduce the overlap between output masks of different instances. Specifically, this was computed as
1− LDice between all pairs of predicted masks M̂ i

k+1, M̂ j
k+1.

L = LDICE + λLoverlap (1)
with λ being a weighing hyperparameter. Detailed definitions are provided in Appendix C.2, and
evaluation of ReLayout is in Appendix C.3.

Inference. At inference time, as a pre-processing step, we first add padding to input masks. After
each iteration, we gradually and consistently increase the padding size around the original masks.
This operation is beneficial when we need to add a large number of objects, as it creates a “zoom-out”
effect, making space for new objects.

We also slightly erode instance masks after the ReLayout module is applied, to improve separation of
contacting objects.

3.3 COUNTGEN IMAGE: LAYOUT-BASED IMAGE GENERATION

Provided with correct object mask layouts (Section 3.2), our goal is to guide the image generation
process to adhere to the input layout. Given a mask for each object in the desired layout, we apply an
inference time optimization to match the layout in the generated image. To optimize object layouts
at inference time, we propose a dual approach: object layout loss to encourage object creation in
the foreground, i.e. pixels within the object masks, and self-attention masking to prevent object
generation in the background.

Object layout loss. Consider the optimization of object placement within layouts using a weighted
binary cross-entropy loss. Given c, the aggregated cross-attention scores, and m, a binary mask
denoting object presence (foreground), the weighted binary cross-entropy loss is computed pixel-wise
and is defined as follows:

L(c,m) = −
∑
i

wi (mi log ci + (1−mi) log(1− ci)) ,

where ci is the cross-attention score at pixel i, mi is the value of the binary mask at pixel i, and wi is
the weight assigned to each pixel i where wi = 10 if mi = 1, otherwise wi = 1. During the SDXL
generation process, each step takes a noised latent Xt as input. For the first 25 generation steps, we
propagate gradients from the object layout loss to Xt, updating it to reduce the loss.

Self-attention masking. The object-layout loss encourages objects to be generated in the fore-
ground, but when applied on itself, generated objects may appear outside the object masks (Figure 6).
To address this, we mask the self-attention connections between pixels in the background to pixels in
the foreground. By disrupting these links, we stop the information flow from the objects to the rest of
the image and prevent the model from forming objects in the background. Formally, at layer l and
timestep t, the masked self-attention S

∗(l)
t is defined as:

S
∗(l)
t [i, j] =

{
0 if i ∈ B(l) and j ∈ F (l),

S
(l)
t [i, j] otherwise.

where i and j are pixels indices, B(l) and F (l) represents the set of pixels belonging to the background
and the foreground respectively, and S

(l)
t is the self-attention map at layer l and timestep t. We

discuss implementation details and computational efficiency in Appendix A.
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4 EXPERIMENTS

Compared methods. We compare CountGen against seven baseline methods: (1) SDXL (Podell
et al., 2023); (2) Repeated Object: SDXL, with a modified prompt, where an object is repeated in
the prompt the number of times it is required to generate, as in replacing “three cats” with “a cat and
a cat and a cat”. This is a naive approach that parallels prompts like “A cat and a dog”. (3) Reason
Out Your Layout: (Chen et al., 2023) uses GPT-3.5 (Brown et al., 2020) to generate layouts then
trained an adapter to integrate it to SD-1.4 (Rombach et al., 2022); (4) DALL-E 3 (Betker et al.,
2023); (5) Random masks + BoundedAttn : generate a layout with the correct amount of clusters
placed randomly in the image and apply a layout-guidance generation method on top; (6) Counting
Guidance (Kang et al., 2023) : boost generation of SD with a counting network; (7) RPG (Yang
et al., 2024): generates the layout using GPT-4 and then uses SDXL.

Full details on how we used these baselines are given in Appendix B.3. We also compared our
layout-to-image phase, CountGen-Image, described in section Section 3.3 with Bounded Attention
(Dahary et al., 2024a).

Datasets. We evaluate our method and the baselines using two datasets. (1) T2I-Compbench-
Count. A subset of T2I-Compbench (Huang et al., 2023), which is a benchmark for open-world
compositional text-to-image generation. This subset specifically includes 218 prompts that specify a
single object and its number (between 2 to 10). (2) CoCoCount (ours). We generate a dataset with
automatic evaluation in mind. Specifically, we sample classes from COCO, which are more favorable
to accurate and automatic detection by methods, like YOLOv9 (Wang et al., 2024). We design simple
prompts around these classes, with a number between 2 and 10. In total, there are 200 prompts with
various classes, numbers and scenes. See full details in Appendix C.4.

Count accuracy evaluation. We evaluate the results of CountGen and the baselines using human
and automatic evaluation method, which is standardized and reproducible. In both settings, we seek
to identify if the number of instances generated by the object matches the request in the prompt.

Human evaluation. We quantified the count-accuracy of our method and baselines using human raters.
Raters were asked for every image: (1) Is the object in the image?; (2) Are its instances well-formed?;
(3) How many instances of the object are in the image? If the answer to question (1) or (2) is “no”,
then we do not ask question (3). We provide details on the platform, rater selection and pay, and
screenshots of the task in Appendix D.1.

Automatic evaluation. For automatic evaluation, we use the YOLOv9 model (Wang et al., 2024)
with its default settings, as it represents the current state-of-the-art in the YOLO object detection
benchmarks. To extract the number of objects in the image, we simply count the number of detected
bounding-boxes corresponding to the target object.

Image quality evaluation. Forcing the diffusion model to obey the count in the text prompt is
inevitably expected to reduce the naturalness and visual appeal of generated images, simply because
more constraints are added. This effect has been observed in other studies using test-time optimization
(Rassin et al., 2024; Chefer et al., 2023). We evaluate the image quality of CountGen by presenting
human raters with two images, by CountGen and SDXL, and asking them to select whether one
image is more natural and well-formed than the other or to indicate that both images are equally good.

5 RESULTS

Quantitative results. Table 1 compares CountGen with competing baselines, showing its significant
improvement over baselines in both CoCoCount and T2I-compbench-Count. Figure 7, and Figure 12
show CountGen outperforms all baselines for all values, except for two and three instances, where
DALL-E 3 slightly outperforms. We hypothesize that DALL-E 3 is larger and was trained on higher-
quality data than SDXL (our base model). In terms of image quality, out of 200 comparisons, in
only 23 cases the majority of the raters preferred SDXL over our model. This indicates there is no
significant loss of quality. We also include the confusion matrix figure of CountGen based on human
evaluation in Figure 17.
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Table 1: Generated count accuracy. Values are the percent of generated images that have the correct
number of objects, for CoCoCount and T2I-Compbench-Count.

CoCoCount T2I-Compbench
Model YOLOv9 Human Human

Accuracy Accuracy Accuracy

SDXL 28 26 29
Repeated Object 17 18 14
Reason Out Your Layout 21 26 15
DALL-E 3 25 38 36
Random masks + BoundedAttn 29 30 35
Counting Guidance 21 22 22
RPG 21 28 25
CountGen (ours) 50 52 48

CountGen
(ours)

“A photo of 
ten 

backpacks 
on the grass”

Repeated 
Object

Reason Out 
Your Layout

DALL-E 3 SDXL CountGen Layout + 
Bounded Attention

“A photo of 
seven birds 

on the 
ground”

“A photo of 
five cows on 

the road”

“A photo of 
five bowls on 
the ground”

Figure 5: Qualitative comparisons. We evaluated CountGen against DALLE 3, Reason Out Your
Layout, SDXL, Repeated Object SDXL and Counten Layout + Bounded Attention. Our method
successfully generates the correct number of objects, while other methods struggle in some or all of
the examples. Additional results are shown in the supplemental material.

Qualitative results. Figure 5 shows examples of prompts and the images generated by various
methods. In contrast to other methods, CountGen consistently generates the correct object number.

6 ABLATION STUDY

Contribution of CountGen-Layout and CountGen-Image. Table 2 quantifies the contribution of
each of these components to the overall accuracy, by replacing it with a baseline alternative. Compared
with a baseline (Random Masks + Bounded Attention) our first phase CountGen-Layout improves
accuracy measured by people by 14% (from 30 to 44), and our second phase CountGen-Image by
12%. Together, the two components add up to improve accuracy by 21 points.

Layout guided generation ablation study. The second phase of our method, CountGen-Image,
consists of two components: self-attention masking and object layout loss, as described at Section 3.3.
To evaluate the contribution of each component, we deactivate it and compare the results. In Figure 6,
we qualitatively observe that removing the layout loss leads to the objects scattering in the image, not

8
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Layout w/o Loss Ours
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Masking

Figure 6: Component ablation. We ablate over
two components of the layout-guided generation
model: the optimization loss and Self-Attention
Masking. Disabling the loss causes the gener-
ated image to deviate from the required layout.
Removing the Self-Attention masking typically
causes objects to appear outside of the layout
foreground.
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Figure 7: Accuracy, as a function of the num-
ber of generated objects. Accuracy evaluated
by human raters, over the set of 200 evaluation
images. CountGen (blue) outperforms all meth-
ods for n > 3, and is on par with DALL-E 3 for
2 and 3 objects.

constrained by the required mask. When removing the self-attention masking the objects tend to obey
the mask unwanted object instances occur in the background.

We confirm these observations quantitatively in Table 3, where we evaluate the adherence of the
generated image to the input mask. We use YOLOv9 to detect the bounding boxes of generated objects
and compare them to the input mask using three metrics: Precision is the percentage of bounding
boxes that highly overlap (IOU>0.6) the mask (union of all object masks), Recall is the percentage
of mask pixels that are covered by bounding boxes, and IOU is measured between the boxes and
the mask. Our findings align with the qualitative observation: removing the self-attention masking
leads to a worse precision score, meaning objects are generated in the background. Removing the
layout loss leads to low recall and IOU, meaning poor adherence to the mask. CountGen-Image,
employing both components, achieves balanced results by generating objects in accordance with the
mask. Overall, these results emphasize the critical roles that both components in ensuring accurate
adherence to the input mask.

Pipeline analysis. We identified three primary sources of failure within our pipeline, as described
in Table 6: (1) Instance Localization—The number of clusters identified by DBSCAN is incorrect,
differing from what is generated if the full denoising process is performed; (2) CountGen—The num-
ber of instances in its output is incorrect compared to the target number; (3) Layout Guidance—The
guidance does not produce the target count.

Notably, the CountGen module consistently adds an extra object mask in every case, suggesting that
the error are related to either clustering or layout guidance. Out of all the failures, 47 were due to
Instance localization and 49 were due to loss. Over-generation occurred mostly for target count k
bigger than 5, whereas layout-guidance issues are more frequent with target counts ≤ 5. Among

Table 2: Model components Accuracy (%).

CoCoCount Compbench
Text → Layout → YOLOv9 Human Human
Layout Image Acc. Acc. Acc.

CountGen CountGen 50 52 48
CountGen B-Attn 40 42 40
Random CountGen 37 44 42
Random B-Attn 29 30 35

Table 3: CountGen-Layout components. Error
bars represent standard error across 200 images.

Method Precision Recall IOU

CountGen 59 ±3.1 82 ±2.5 52 ±1.2
- SA masking 48 ±3.1 81 ±2.7 51 ±1.5
- Layout loss 49 ±2.9 64 ±2.5 36 ±1.4
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the Instance localization failures, we observed that 31% of the errors occurred when more than 15
instances were generated in the original image.

Sensitivity analysis of Instance-level Features. To quantitatively evaluate the performance of our
instance-localization step we compare the bounding box predictions extracted from our method’s
instance localization masks to ground truth bounding boxes. We manually annotate these instance-
level bounding boxes on a subset of 85 images taken from the CoCoCount dataset. We report standard
precision and recall metrics over a range of timesteps (Table 4) and layers (Table 5). The time and
layer that we selected on set-aside data, generalize well to the test data, and these hyper-parameters
out-perform other choices.

Table 4: Precision and Recall across different timestamps.

Metric t=900 t=800 t=600 t=500 (Ours) t=400 t=200 t=0
Precision 0.81 0.88 0.88 0.92 0.90 0.90 0.83

Recall 0.51 0.79 0.84 0.92 0.93 0.93 0.89

Table 5: Precision and Recall across different layers.

Metric down_10 down_40 mid_120 mid_136 up_48 up_52 (Ours) up_70 up_100
Precision 0.27 0.27 0.26 0.39 0.39 0.92 0.67 0.45

Recall 0.56 0.56 0.10 0.16 0.15 0.92 0.67 0.35

7 LIMITATIONS

Occasionally, our optimization (Section 3.3) results in multiple instances of an object in an area
intended for just one by the layout. In other cases CountGen generates plain backgrounds compared
to SDXL (Figure 8). In addition, the scope of our experiments may seem narrow, since we focus
on generating scenes with up to 10 instances and a single object per prompt. Nevertheless, we have
shown in Section 5 that even this setup is highly challenging to contemporary models, especially as
the number of instances required to generate grows, as evident by the massive drop in performance,
even for DALL-E 3 (see Figure 7).

8 CONCLUSIONS

The task of generating images that depict the number of requested objects correctly is a hard task. It
requires models to capture “objectness", and obey global spatial constraints, at the same time they
generate a well-formed natural image. Current text-to-image diffusion models perform poorly in this
task (Table 1), especially when asked to generate more than three objects (Figure 7).

Our CountGen approach took three steps to address this task. First, we identified a notion of
objectness from the self-attention layers of the diffusion model. Then, we trained a U-Net model that
learned to correct the number of instances of an object in a given layout, whether it is removing or
adding instances of an object such that the structure of the layout is preserved. Third, we developed a
layout-guidance optimization method method to generate images from the corrected layout.

Together, this approach almost doubled the counting accuracy from 26% in standard SDXL to 52%
using our method applied to SDXL. We expect the lessons learned from this method, specifically the
features that represent objectness and the process of learning to automatically fix a layout, to become
useful in other problems of structured generation like spatial constraints in text-to-image models or
spatio-temporal constraints in video generation.
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9 ETHICS STATEMENT

For crowdsourcing experiments and research with human subjects, the paper includes the full text of
instructions given to participants and screenshots. Our protocols are described in the main paper and
screenshots of the experiments and questions for raters are included in our supplemental material.
The following qualifications were used to choose annotators

• HIT Approval Rate (%) for all Requesters’ HITs is greater than equal to 99.

• Number of HITs Approved is greather than 5000.

• Annotator successfully passed a qualification test.

10 REPRODUCIBILITY STATEMENT

Our method, CountGen, is thoroughly described in Section 3. Compute details and hyperparameters
are provided in Appendices A and B. Detailed definitions for training the U-Net are provided in
Appendix C.2, and evaluation of ReLayout is in Appendix C.3.
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A APPENDIX

Efficiency. CountGen takes ~36 seconds on average to generate an image on a single A100 80GB.
We arrive at this number by iterating over CoCoCount. To put in context, Bounded-Attention (Dahary
et al., 2024a) takes ~55 seconds and requires bounding boxes as input, while our solution is not
input-dependent. SDXL takes ~8 seconds.

Compute. All experiments were conducted over a period of a week on a single A100 80GB.

B IMPLEMENTATION DETAILS & REPRODUCIBILITY

B.1 COUNT NUMBER EXTRACTION

To accurately extract count numbers from the textual prompts, we employ spaCy’s dependency graph
parser (Honnibal & Montani, 2017) to identify and isolate indices of related subjects and numeric
modifiers. This methodology is inspired by the approach detailed in "Linguistic Binding in Diffusion
Models" by Rassin et al. (2024), which demonstrates the automated extraction of subjects and their
attribute modifiers. We have adapted this technique to specifically recognize numeric modifiers, both
spelled out (e.g., "five dogs") and in numeral form (e.g., "5 dogs"). This adaptation ensures that each
numeric modifier is correctly associated with its corresponding noun, thereby facilitating accurate
cross attention in our model’s processing pipeline.

B.2 COUNTGEN

Layout guided generation. In our implementation, the self-attention masking is applied at
timesteps t ∈ [1000, 900], in the decoder layers of the U-Net. The object layout loss is applied at
timesteps t ∈ [1000, 500], in all layers of the U-Net. Our pipeline used the Attend-and-Excite (Chefer
et al., 2023) code base as a starting point.

ReLayout. The ReLayout U-Net was built upon the U-Net Implementation of (Buda et al., 2019).
We trained the U-Net with a learning-rate of 8e-6, a batch-size of size 32 and the Adam optimizer. The
intersection penalty is set to 0.25 and the Dice penalty is set to 1. During training we apply a horizontal
flip augmentation across all masks, and shuffle augmentation where we randomly re-arrange the input
channels.

Instance identification. In the DBSCAN clustering algorithm, we used a dynamic epsilon value in
the range of [0.1, 0.2] and used cosine similarity as the distance metric.

B.3 COMPARED METHODS

Each prompt in CoCoCount and T2I-CompBench-Count was assigned a unique random seed and
was used by all baselines and CountGen.

We compared CountGen with the following baselines:

SDXL (Podell et al., 2023). We used the stable-diffusion-xl-base-1.0 model.

Repeated Object. In this baseline, we used the same model and seeds as in SDXL but modified the
prompts. We repeated the object in the prompt as many times as the target count. For example, “a
photo of three cats” was changed to “a photo of a cat and a cat and a cat”.

Reason Out Your Layout (Chen et al., 2023). This baseline has two main steps. First, it leverages
GPT-3.5-turbo to generate spatially reasonable coordinates to be used as a bounding box for
each instance of an object (i.e., “a photo of three cats” results in three bounding boxes, one for each
cat). Second, it uses the generated layout to guide the generation process. We followed the prompt
used by the authors, however, it seems that the responses by GPT-3.5-turbo and the author’s
parser are not completely cohesive, which at times leads to zero bounding boxes. We count such
cases as failures. For the CoCoCount experiment, it successfully generated 134/200 images, and for
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Figure 8: Limitations. Failure modes of CountGen.
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Figure 9: A training set for a Re-
Layout. We created pairs of images
using SDXL, using the same seed
and prompts that only differ by ob-
ject count. We filtered out images
that did not conform to the prompt,
using the techniques described in
Section 3.1. The resulting image
pairs preserve the scene and layout
except adding one object.

T2I-CompBench-Count, just 89/200. Failures were counted as errors in the reported results. We did
not need to make changes to the code to run it.

DALL-E 3 (Betker et al., 2023). We used the OpenAI API interface for the DALL-E 3 model with
“standard” image quality. We did not use seeds in this baseline.

Random masks + BoundedAttn (Dahary et al., 2024a). Given a prompt with a required number
of object instances, we create a corresponding layout with the correct number of objects randomly
placed in the image plane in a way they do not intersect one another. Then we used Bounded Attention
to generate an image condinitioned on that layout.

Counting Guidance (Kang et al., 2023). The authors provided us with their code. We did not need
to change it to run our experiments.

RPG (Yang et al., 2024). We used the official code, with SDXL and GPT-4 for our experiments.

C EXTENDED DETAILS ON COUNTGEN

C.1 RELAYOUT: MATCHING OBJECTS

We aim to understand how M i
k transitions to M i

k+1. Specifically, for each object i ∈ 1, . . . , k in
the original Mk layout, our ReLayout objective is designed to predict how the corresponding mask
M i

k changes in the new image M i
k+1, and additionally where to insert the added object k + 1. This

design encourages the model to slightly modify existing objects while preserving spatial and shape
consistency across the images.
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Figure 10: PCA visualization across timestamps to explore the notion of objectness inside SDXL
latent space, we visualize a dimension-reduced self-attention feature maps across different timestamps
range from t = 900 to t = 100. Initially, up to timestamp t = 500, clear separation is not observed
in some objects (e.g., some eggs appear in similar colors). However, starting from t = 500, a distinct
separation emerges, with each object clearly distinguished by different shades.

To this end, we first have to establish a correspondence between the object masks (Mk,Mk+1). We
employ the Hungarian algorithm (Kuhn, 1955) to find the optimal one-to-one matching between
masks in the two images based on the overlap and similarity of the masks. This algorithm effectively
pairs each object in Mk with a corresponding object in Mk+1. The object in Mk+1 that remains
unmatched represents the additional object introduced in the new image, providing a clear identifier
for the increment in object count.

C.2 LOSSES FOR TRAINING THE RELAYOUT

We use two training losses:

Dice Loss: measures the overlap between the predicted mask and target mask across all channels
containing objects:

Li
Dice = 1−

2
∑

p∈P M i
k+1(p) ·M∗i

k+1(p)∑
p∈P (M

i
k+1(p) +M∗i

k+1(p))
(2)

Here, p iterates over all pixels P in the masks, and i ranges over all possible object channels. For all
k + 1 channels, the total dice loss is:

LDice =

k+1∑
i=1

Li
Dice (3)

Intersection Loss: To ensure distinctiveness among the predicted masks and to minimize overlap
between different object masks, the intersection loss for all possible pairs of different masks in the
output mask containing objects is given by:

LOverlap =

k+1∑
i=1

k+1∑
j ̸=i

2
∑

p∈P M i
k+1(p) ·M

j
k+1(p)∑

p∈P (M
i
k+1(p) +M j

k+1(p))
(4)

C.3 RELAYOUT EVALUATION

We use two metrics for the evaluation:

Extra mask median score. To calculate the extra mask size score, we first find the median size
(Smedian) of all object masks. We then compare this to the size of the new mask (Sextra). The score is
defined as:

Score =
min(Sextra, Smedian)

max(Sextra, Smedian)
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which gives a value between 0 and 1. A score closer to 1 indicates that the new object’s size is more
similar to the median-sized object. For ReLayout, the score is 0.705, indicating that the new object
has become more similar in size to the other objects in the scene.

Average intersection score. This metric measures the average intersection between an object i and
all other object masks j, normalized by the size of object i. A lower score indicates less overlap
between objects. During training, this score decreased to 0.18, indicating small intersection between
the objects.
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Figure 11: Accuracy, as a function of the
number of generated objects. Accuracy
evaluated by human raters, over the set of
200 evaluation images. CountGen (blue) out-
performs all methods for n > 3, and is on par
with DALL-E 3 for 2 and 3 objects.
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Figure 12: Accuracy, as a function of the
number of generated objects. Accuracy
evaluated by YOLOv9, over the set of 200
evaluation images. Here, CountGen (blue)
outperforms all methods.

Table 6: Failure Analysis across Different Target Counts

Target Count Instance Localization Failures Loss Failures Total Failures
2 2 3 5
3 4 10 14
4 5 9 14
5 8 7 15
7 11 8 19

10 17 12 29

C.4 DATASETS

CoCoCount. To create this set, we first select at random 20 classes from MSCOCO (Lin et al.,
2014). We then sample from six counting categories: 2,3,4,5,7, and 10. The two and three categories
contain 34 samples, while the rest contain 33. Our prompts consist of the pattern “a photo of {number}
{object}” with an optional variation of scenes: “on the grass”, “on the road”, or “on the ground”,
which we incorporate for 50% of the prompts, also randomly. In total, we have 200 prompts. Below
are the complete lists from which elements were chosen:

Objects: ’car’, ’airplane’, ’bird’, ’cat’, ’dog’, ’horse’, ’sheep’, ’cow’, ’elephant’, ’bear’, ’backpack’,
’tie’, ’sports ball’, ’baseball glove’, ’cup’, ’bowl’, ’apple’, ’donut’, ’cell phone’, ’clock’. Counting
Categories: ’two’, ’three’, ’four’, ’five’, ’seven’, ’ten’. Scenes: ’on the grass’, ’on the road’, ’on the
ground’.

D EVALUATION

Automatic evaluation. We use the implementation by Ultralytics YOLO of YOLOv9e (large).

17
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D.1 HUMAN EVALUATION

We use the Amazon Mechanical Turk platform and ensure the evaluation is of high quality by hiring
raters with a minimum of 5,000 approved HITs and an approval rate exceeding 98%. Each example
was shown to three raters and the majority selection was taken. The compensation was $15 per hour.
Screenshots of the count precision task can be viewed in Figure 13, Figure 14, Figure 15 and the
image fidelity task in Figure 16.

Figure 13: Instructions for the Image Evaluation Task - Part 1.

Figure 14: Instructions for the Image Evaluation Task - Part 2.

Figure 15: Example task to count the number of objects and assess their well-formedness.
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Figure 16: Example task to compare image fidelity based on prompt matching and naturalness.
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Figure 17: Confusion matrix from human evaluation (Section 4) of the count accuracy experiment for
CountGen. As noted in Figure 15, evaluators could indicate if they were unsure of their response
("N/A" in the table).
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