
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAKE IT COUNT: TEXT-TO-IMAGE GENERATION WITH
AN ACCURATE NUMBER OF OBJECTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the unprecedented success of text-to-image diffusion models, controlling
the number of depicted objects using text is surprisingly hard. This is important for
various applications from technical documents, to children’s books to illustrating
cooking recipes. Generating object-correct counts is fundamentally challenging
because the generative model needs to keep a sense of separate identity for every
instance of the object, even if several objects look identical or overlap, and then
carry out a global computation implicitly during generation. It is still unknown if
such representations exist. To address count-correct generation, we first identify
features within the diffusion model that can carry the object identity information.
We then use them to separate and count instances of objects during the denoising
process and detect over-generation and under-generation. We fix the latter by
training a model that predicts both the shape and location of a missing object, based
on the layout of existing ones, and show how it can be used to guide denoising
with correct object count. Our approach, CountGen, does not depend on external
source to determine object layout, but rather uses the prior from the diffusion
model itself, creating prompt-dependent and seed-dependent layouts. Evaluated on
two benchmark datasets, we find that CountGen strongly outperforms the count-
accuracy of existing baselines.

CountGen
(ours)

“A photo of six
kittens sitting on a

branch”
“A photo of five
eggs in a carton”

“A realistic photo of
Goldilocks and three

bears eating a porridge”
“an illustration of
four ninja turtles”

SDXL

“A realistic photo of
seven dwarves dancing

in the forest”

Figure 1: CountGen generates the correct number of objects specified in the input prompt while
maintaining a natural layout that aligns with the prompt.

1 INTRODUCTION

Text-to-image diffusion models provide an accessible way to control the generation of visual content.
A major failure mode is their inability to count, that is, they often fail to generate the correct number
of items in response to text prompts. For instance, when asked to generate an image of Goldilocks
and the three bears, models may generate only two bears (Figure 1). Counting failures are particularly
frustrating: The accuracy is surprisingly low, and mistakes are often obvious for people to detect.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To illustrate the difficulty of the problem, consider some naive attempts to work around it. First,
one can manually design layouts per count, to determine the spatial organization and the number
of objects, then provide it as a conditioning signal to a generative model (Dahary et al., 2024b).
This approach would fail to generate prompt-dependent layouts, which is highly desirable. One
could also try asking large vision-language models to propose layouts (e.g., Chen et al. (2023); Feng
et al. (2023)), but these approaches do not use the visual prior information that text-to-image models
already collected, and, as we show below, their performance is rather poor for the counting task.

Why is it so hard for diffusion models to count while they generate? First, counting objects requires
that models capture “objectness" – the high-level coherent representation of something being a
separate entity, even if surrounded by other similar entities. Capturing objectness is by itself a hard
task in image understanding (Alexe et al., 2012; Kuo et al., 2015), and long studied in cognitive
psychology (Spelke, 1990). It is currently not known to what extent diffusion models represent
objectness of entities they generate. A second main challenge is that text-to-image diffusion models
struggle with controlling spatial layout just from text. Producing a correct number of objects requires
obeying a global and complex spatial relation between entities in an image (Chefer et al., 2023;
Dahary et al., 2024a).

To address the problem of accurate count generation we describe several new contributions, which
together form our method CountGen. First, we analyze the representations of the self-attention layers
in SDXL (Podell et al., 2023), and identify features that capture objectness and instance identity.
We then use these features to develop ways to detect instances of objects during the denoising
process, find their spatial layout and count them. Specifically, we localize the features that correspond
to objects using the cross-attention maps and cluster them to form object instance segmentation.
Importantly, we do not have to wait for an image to be fully generated, and we can accurately count
the number of objects already at an intermediate step of the denoising process.

Given this new capability to count the number of objects being generated during the denoising process,
we further develop methods to correct generation when the count does not match the prompt. First,
we train a layout-modification network we call ReLayout. It takes a spatial layout of k objects and
generates a similar spatial layout with one more instance of an object added in a natural location for
the input layout. For example, given a row of five kittens sitting on a branch, it learned to add a sixth
kitten to the same row. This model is trained using image-pair samples generated by the diffusion
model itself. Finally, we show how to use the new layouts in a new test-time-optimization procedure.

We evaluate CountGen on text prompts from the T2I-CompBench (Huang et al., 2023) which includes
prompts with numbers. CountGen greatly improves accuracy, as evident by human evaluation
experiments, from 29% accuracy for SDXL to 48% by our method. It also improves over all other
baseline methods including large commercial models like the recent DALL-E 3 (Betker et al., 2023).
To support future work in this field, we design and release a dataset that can be evaluated automatically.
Specifically, we release CoCoCount, a set of prompts based on COCO classes(Lin et al., 2014),
which can easily be evaluated using COCO-trained object detectors, like YOLO (Wang et al., 2024).
CountGen also significantly improves over all baseline methods on CoCoCount, importantly from
26% accuracy for SDXL to 52% by our method.

In summary, this paper makes the following new contributions (1) We identify novel features that
represent objectness and instance identity in SDXL (Podell et al., 2023). (2) We design an inference-
time optimization to guide SDXL to generate an accurate number of instances for an object. (3) We
describe a learning approach to automatically modify layouts to add a new instance of an object
while preserving the structure of the scene. (4) We achieve state-of-the-art results in count-accurate
generation.

2 RELATED WORK

Generating images with accurate object count. Numerous papers noted that text-to-image diffusion
models often fail to produce images that accurately match text prompts, especially when these prompts
specify an exact number of objects (Kang et al., 2023; Zhang et al., 2023; Paiss et al., 2023; Wen
et al., 2024; Battash et al., 2024; Feng et al., 2023; Lee et al., 2023; Fan et al., 2023; Sun et al., 2023;
Rassin et al., 2022; Dahary et al., 2024a; Rassin et al., 2024; Chefer et al., 2023). Various efforts
were made to improve the accuracy of these models. Most relevant to our work, Kang et al. (2023)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

proposed a classifier-guidance approach to improve object count accuracy. The method “counts”
instances at each diffusion step using a pretrained counting network and adjusts the denoising process
using gradient guidance. However, it requires using an additional U-Net in every denoising step.

An important line of work suggests breaking the generation process into two steps: (1) Text-to-layout -
setting a spatial location for every object instance; and (2) Layout-to-image - generating an image with
the correct object count using the given layout. Text-to-Layout: Several studies used large language
models (LLMs) to propose spatial layouts (Chen et al., 2023; Phung et al., 2023; Feng et al., 2023;
Gani et al., 2024). LayoutGPT (Feng et al., 2023) injects visual commonsense into the LLM prompt
which enables it to generate desirable layouts. Gani et al. (2024) suggest decomposing complex
prompts into smaller prompts before injecting them into the LLM. Layout-to-image: Providing a
predefined layout with the exact number of subjects helps ensure that the generated images reflect
the intended count (Chen et al., 2023; Yang et al., 2023). Bounded Attention (Dahary et al., 2024a)
addresses this challenge by channeling attention to bounding boxes corresponding to object instances.
However, this approach requires users to manually provide the bounding boxes for all the instances
of each object. In contrast to these separate-step approaches, CountGen, addresses the two steps of
count-accurate generation. It first corrects the layout that emerges during generation so it contains
the correct number of instances. It then uses a novel test-time optimization method to generate a
count-accurate image.

Controlling text-to-image models through attention-based loss. To address the issue of object
neglect—when objects mentioned in a text prompt fail to appear in the generated image— Chefer
et al. (2023) developed a novel loss function that ensures all objects in the prompt are reflected in
the cross-attention maps used during image generation. Rassin et al. (2024) tackled the challenge
of incorrect attribute association by designing a loss function that binds the cross-attention maps of
subjects and their attributes more effectively. Inspired by these advancements, CountGen includes
a novel cross-attention maps loss function designed to ensure the generation adheres closely to the
input layout.

"A photo of six
kittens sitting
on a branch"

SDXL
Layout Guided

SDXL

ReLayout

Cross-Attention
Mask

Self-Attention
Features

D
B
S
C
A
N

Attention-Guided Instance-Localization

Instance
Localization

ReLayout Layout Guided SDXL

U-Net

P
a
d
d
in
g

R
e
size

U-Net

Object removal

P
a
d
d
in
g

R
e
size

Iterative object addition

Diffusion Step

"k
it
t
e
n
s
"

"k
it
t
e
n
s
"

Cross-

Attention

Self-Attention

Masking

Figure 2: Architecture outline: Given a prompt that includes a quantity, we begin generating a
corresponding image using pretrained SDXL until timestep t = 500. We then perform Instance
Localization, where we combine cross-attention maps corresponding with the object, and self-
attention features extracted at timestep t to generate object clusters for each generated object. Then
we apply ReLayout, which generates an object layout with the correct number of instances, while
preserving the composition of the extracted layout. Finally, we perform Layout Guided generation,
which applies an inference time optimization based on the layout through cross-attention loss Lcross
and self-attention masking.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

l52

l130

l42

l78l48

l8
up down down

mid up up

Figure 3: PCA visualization. to explore the no-
tion of objectness inside SDXL latent space, we
visualize dimension-reduced self-attention fea-
ture maps from various layers across the network
at timestep t = 500. We notice that although
most layers do not exhibit a clear separation of
objects, layer lup52 displays a robust separation
indicated by different object instances having
distinct colors. Visualization across different
timesteps is shown in the appendix, Figure 10.

Original
Image

Corrected
Layout

Original
Layout

Corrected
Image

Fi
ve

 B
al

ls
Fi

ve
 M

el
on

s
Fo

ur
 C

up
ca

ke
s

Figure 4: Correcting under-generation. we
show examples for the ReLayout correction of
cases where SDXL generates less objects than
specified in the prompt. It is evident that the
generated layouts are natural and obey the same
composition of the original generation, with the
correct number of objects.

3 OUR APPROACH: COUNTGEN

Our method, CountGen, aims to enhance text-conditioned image generators to accurately produce the
intended number of objects for complex input prompts. Our methodology involves a two-step process:
initially, we generate a natural layout that specifies where and how objects should appear in the
image Section 3.2. That layout is based on a layout that emerges naturally from the text-conditioned
generation (Section 3.1). At the second step (Section 3.3), we use this layout as a blueprint to generate
the final image.

3.1 DISCOVER OBJECT-INSTANCE LAYOUT DURING EARLY GENERATION

To count object instances during generation, one must first find an internal representation that captures
the separate identity of different object instances. It is not known if this representation exists in
diffusion models like SDXL. We now discuss this representation and then show how we can detect
the layout of object instances during early generation.

An emerging instance-identity representation in SDXL. We begin by exploring the notion of
‘objectness’ in SDXL. While previous work (Chefer et al., 2023; Hertz et al., 2023; Tewel et al., 2023)
utilized the cross-attention mechanism to localize objects of a given class in generated images, little
research has been conducted on whether the model encodes information about object instances and
how to distinguish between different instances of an object. We tackle this problem by exploring a
variety of features across different layers and timesteps of the diffusion process to determine if and
where the model encodes instance-level information. Figure 3 illustrates this analysis using PCA
visualization of self-attention features from various layers across SDXL at timestep t = 500, which
shows the most robust instance representation (See appendix Figure 10). While most layers do not
exhibit separability at the instance level, we notice that layer lup52 tends to generate different features
for different instances of the same object, with each instance having its distinct color. Based on
this finding, we select the self-attention features from layer lup52 at timestep t = 500 to serve as our
instance-level features.

Identifying object instances. Building on the findings of Hertz et al. (2023), which show that
cross-attention maps can pinpoint a token’s position in a generated image, we create a foreground
mask for each object described in the prompt. By contrasting these foreground masks, derived from
the cross-attention, with the self-attention features, we effectively segregate pixels associated with
objects from those belonging to the background. Subsequently, we cluster the object-associated

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

pixels from the self-attention map into distinct masks for each object. This approach allows us to
refine our object representations and enhance the accuracy of the generated layouts.

Formally, let Aself
l,t , Across

l,t represent the self-attention and cross-attention maps, respectively, for
layer l at timestep t within our diffusion network. We aggregate cross-attention maps associated with
the tokens corresponding to the objects specified in the input prompt. We then use these cross-attention
maps to extract a foreground mask M based on dynamic thresholding M = Otsu(Across

l,t), where Otsu
applies the Otsu thresholding method (Otsu, 1979; Tewel et al., 2024) to determine foreground (object)
pixels. We define pk ⊆ Aself

l,t as the set of features from the self-attention map that are identified
as foreground by mask M . We then cluster these patches: Clusters = DBSCAN(pk, ϵ), where
DBSCAN(·, ϵ) is the DBSCAN (Ester et al., 1996) clustering algorithm with a dynamic parameter
ϵ. Finally, the initial layout L is created by grouping the object clusters: L =

⋃
C∈Clusters C.

At the end of this process, we obtain a set of masks, one for each object being generated. This is
illustrated in Figure 2, left gray box.

3.2 RELAYOUT: CORRECTING THE NUMBER OF OBJECTS IN THE MASK

We now introduce our layout-correction component, ReLayout, which preserves the overall scene
composition while correcting the number of objects. For example, Figure 2 depicts an image
generated using the prompt “a photo of six cats”, but only four cats were generated. Our ReLayout
generates a new layout with the correct number of instances while keeping the overall composition of
the kittens sitting in a row. More examples are shown in Figure 4.

The input to the ReLayout is an object-layout described in Section 3.1, from which we initially infer
the number of generated instances. Next, our ReLayout component takes one of two corrective actions
based on the discrepancy between the generated and expected counts. In cases of over-generation,
where more instances were generated than requested, ReLayout deterministically removes the smallest
instances to achieve the desired cluster count. We find that this simple strategy produces appealing
results. In cases of under-generation, a more intricate challenge arises: the ReLayout must insert
new instances to the scene in a way that preserves the original scene structure. This process involves
a sophisticated understanding of different object layouts—like the stark contrast between linearly
arrayed bottles and the clustered arrangement of elephants—to seamlessly augment the layout. In
Section 3.2.1, we detail our approach for handling under-generation. In cases where the number of
instances is correct, the ReLayout maintains the initial layout.

3.2.1 HANDLING UNDER-GENERATION

To address under-generation issues, we train a U-Net model to predict a new layout, represented as a
multi-channel mask, from an existing layout. In practice, each forward pass of the U-Net generates
a mask with an additional instance. This process is applied in iterations until the mask reflects the
correct number of instances. In what follows we provide detailed information on the architecture and
training of our U-Net model.

Creating a training dataset. To train our ReLayout U-Net, we need a dataset of layout pairs with k
and k+1 objects, that maintain the same scene composition. We begin with the empirical observation
that slight variations in the object count specified in the prompt—while keeping the starting noise
and the rest of the prompt consistent—typically results in images with similar layouts, as shown
in appendix Figure 9. This consistency is crucial as it allows us to generate a training dataset of
layout pairs where each pair has a similar object composition, differing by only one object, thereby
preserving the overall scene structure.

Following this observation, we generate a set of ~10K pairs of images of Ik and Ik+1, where each pair
consists of images that differ by only one in the number of objects depicted. Each pair is generated
with random fixed seeds and prompts that fit the same template, such as "a photo of two cats" versus
"a photo of three cats”. To confirm that each image pair accurately represents an k and k + 1 object
scenario, we extract object masks Mk and Mk+1 as described in Section 3.1, and verify the object
count in one image is exactly one more than in its paired image. Overall, the final dataset for training
consists of pairs of binary masks (Mk,Mk+1), representing the U-Net task of learning to generate a
mask with k + 1 objects from a mask with k objects.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Matching objects. To train the U-Net, we need to establish a correspondence between each object
i in Mk to its new position in Mk+1. We aim to find a matching that minimizes the shift in objects
positions. We use the Hungarian algorithm (Kuhn, 1955) to find the optimal matching. More details
in Appendix C.1.

Training the U-Net module. We trained the U-Net architecture by adapting it to handle 9 input
channels – corresponding to the source tensor Mk ∈ {0, 1}W×H×k with k objects, and output 10
channels – for the target tensor with k + 1 objects, to support counts up to 10. We optimized the
U-Net parameters using two loss functions: (1) A Dice loss (Sudre et al., 2017) between a predicted
masks M̂k+1 and the target masks Mk+1 of that object; and (2) Mask-to-mask overlap loss, designed
to reduce the overlap between output masks of different instances. Specifically, this was computed as
1− LDice between all pairs of predicted masks M̂ i

k+1, M̂ j
k+1.

L = LDICE + λLoverlap (1)
with λ being a weighing hyperparameter. Detailed definitions are provided in Appendix C.2, and
evaluation of ReLayout is in Appendix C.3.

Inference. At inference time, as a pre-processing step, we first add padding to input masks. After
each iteration, we gradually and consistently increase the padding size around the original masks.
This operation is beneficial when we need to add a large number of objects, as it creates a “zoom-out”
effect, making space for new objects.

We also slightly erode instance masks after the ReLayout module is applied, to improve separation of
contacting objects.

3.3 COUNTGEN IMAGE: LAYOUT-BASED IMAGE GENERATION

Provided with correct object mask layouts (Section 3.2), our goal is to guide the image generation
process to adhere to the input layout. Given a mask for each object in the desired layout, we apply an
inference time optimization to match the layout in the generated image. To optimize object layouts
at inference time, we propose a dual approach: object layout loss to encourage object creation in
the foreground, i.e. pixels within the object masks, and self-attention masking to prevent object
generation in the background.

Object layout loss. Consider the optimization of object placement within layouts using a weighted
binary cross-entropy loss. Given c, the aggregated cross-attention scores, and m, a binary mask
denoting object presence (foreground), the weighted binary cross-entropy loss is computed pixel-wise
and is defined as follows:

L(c,m) = −
∑
i

wi (mi log ci + (1−mi) log(1− ci)) ,

where ci is the cross-attention score at pixel i, mi is the value of the binary mask at pixel i, and wi is
the weight assigned to each pixel i where wi = 10 if mi = 1, otherwise wi = 1. During the SDXL
generation process, each step takes a noised latent Xt as input. For the first 25 generation steps, we
propagate gradients from the object layout loss to Xt, updating it to reduce the loss.

Self-attention masking. The object-layout loss encourages objects to be generated in the fore-
ground, but when applied on itself, generated objects may appear outside the object masks (Figure 6).
To address this, we mask the self-attention connections between pixels in the background to pixels in
the foreground. By disrupting these links, we stop the information flow from the objects to the rest of
the image and prevent the model from forming objects in the background. Formally, at layer l and
timestep t, the masked self-attention S

∗(l)
t is defined as:

S
∗(l)
t [i, j] =

{
0 if i ∈ B(l) and j ∈ F (l),

S
(l)
t [i, j] otherwise.

where i and j are pixels indices, B(l) and F (l) represents the set of pixels belonging to the background
and the foreground respectively, and S

(l)
t is the self-attention map at layer l and timestep t. We

discuss implementation details and computational efficiency in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

Compared methods. We compare CountGen against seven baseline methods: (1) SDXL (Podell
et al., 2023); (2) Repeated Object: SDXL, with a modified prompt, where an object is repeated in
the prompt the number of times it is required to generate, as in replacing “three cats” with “a cat and
a cat and a cat”. This is a naive approach that parallels prompts like “A cat and a dog”. (3) Reason
Out Your Layout: (Chen et al., 2023) uses GPT-3.5 (Brown et al., 2020) to generate layouts then
trained an adapter to integrate it to SD-1.4 (Rombach et al., 2022); (4) DALL-E 3 (Betker et al.,
2023); (5) Random masks + BoundedAttn : generate a layout with the correct amount of clusters
placed randomly in the image and apply a layout-guidance generation method on top; (6) Counting
Guidance (Kang et al., 2023) : boost generation of SD with a counting network; (7) RPG (Yang
et al., 2024): generates the layout using GPT-4 and then uses SDXL.

Full details on how we used these baselines are given in Appendix B.3. We also compared our
layout-to-image phase, CountGen-Image, described in section Section 3.3 with Bounded Attention
(Dahary et al., 2024a).

Datasets. We evaluate our method and the baselines using two datasets. (1) T2I-Compbench-
Count. A subset of T2I-Compbench (Huang et al., 2023), which is a benchmark for open-world
compositional text-to-image generation. This subset specifically includes 218 prompts that specify a
single object and its number (between 2 to 10). (2) CoCoCount (ours). We generate a dataset with
automatic evaluation in mind. Specifically, we sample classes from COCO, which are more favorable
to accurate and automatic detection by methods, like YOLOv9 (Wang et al., 2024). We design simple
prompts around these classes, with a number between 2 and 10. In total, there are 200 prompts with
various classes, numbers and scenes. See full details in Appendix C.4.

Count accuracy evaluation. We evaluate the results of CountGen and the baselines using human
and automatic evaluation method, which is standardized and reproducible. In both settings, we seek
to identify if the number of instances generated by the object matches the request in the prompt.

Human evaluation. We quantified the count-accuracy of our method and baselines using human raters.
Raters were asked for every image: (1) Is the object in the image?; (2) Are its instances well-formed?;
(3) How many instances of the object are in the image? If the answer to question (1) or (2) is “no”,
then we do not ask question (3). We provide details on the platform, rater selection and pay, and
screenshots of the task in Appendix D.1.

Automatic evaluation. For automatic evaluation, we use the YOLOv9 model (Wang et al., 2024)
with its default settings, as it represents the current state-of-the-art in the YOLO object detection
benchmarks. To extract the number of objects in the image, we simply count the number of detected
bounding-boxes corresponding to the target object.

Image quality evaluation. Forcing the diffusion model to obey the count in the text prompt is
inevitably expected to reduce the naturalness and visual appeal of generated images, simply because
more constraints are added. This effect has been observed in other studies using test-time optimization
(Rassin et al., 2024; Chefer et al., 2023). We evaluate the image quality of CountGen by presenting
human raters with two images, by CountGen and SDXL, and asking them to select whether one
image is more natural and well-formed than the other or to indicate that both images are equally good.

5 RESULTS

Quantitative results. Table 1 compares CountGen with competing baselines, showing its significant
improvement over baselines in both CoCoCount and T2I-compbench-Count. Figure 7, and Figure 12
show CountGen outperforms all baselines for all values, except for two and three instances, where
DALL-E 3 slightly outperforms. We hypothesize that DALL-E 3 is larger and was trained on higher-
quality data than SDXL (our base model). In terms of image quality, out of 200 comparisons, in
only 23 cases the majority of the raters preferred SDXL over our model. This indicates there is no
significant loss of quality. We also include the confusion matrix figure of CountGen based on human
evaluation in Figure 17.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Generated count accuracy. Values are the percent of generated images that have the correct
number of objects, for CoCoCount and T2I-Compbench-Count.

CoCoCount T2I-Compbench
Model YOLOv9 Human Human

Accuracy Accuracy Accuracy

SDXL 28 26 29
Repeated Object 17 18 14
Reason Out Your Layout 21 26 15
DALL-E 3 25 38 36
Random masks + BoundedAttn 29 30 35
Counting Guidance 21 22 22
RPG 21 28 25
CountGen (ours) 50 52 48

CountGen
(ours)

“A photo of
ten

backpacks
on the grass”

Repeated
Object

Reason Out
Your Layout

DALL-E 3 SDXL CountGen Layout +
Bounded Attention

“A photo of
seven birds

on the
ground”

“A photo of
five cows on

the road”

“A photo of
five bowls on
the ground”

Figure 5: Qualitative comparisons. We evaluated CountGen against DALLE 3, Reason Out Your
Layout, SDXL, Repeated Object SDXL and Counten Layout + Bounded Attention. Our method
successfully generates the correct number of objects, while other methods struggle in some or all of
the examples. Additional results are shown in the supplemental material.

Qualitative results. Figure 5 shows examples of prompts and the images generated by various
methods. In contrast to other methods, CountGen consistently generates the correct object number.

6 ABLATION STUDY

Contribution of CountGen-Layout and CountGen-Image. Table 2 quantifies the contribution of
each of these components to the overall accuracy, by replacing it with a baseline alternative. Compared
with a baseline (Random Masks + Bounded Attention) our first phase CountGen-Layout improves
accuracy measured by people by 14% (from 30 to 44), and our second phase CountGen-Image by
12%. Together, the two components add up to improve accuracy by 21 points.

Layout guided generation ablation study. The second phase of our method, CountGen-Image,
consists of two components: self-attention masking and object layout loss, as described at Section 3.3.
To evaluate the contribution of each component, we deactivate it and compare the results. In Figure 6,
we qualitatively observe that removing the layout loss leads to the objects scattering in the image, not

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Layout w/o Loss Ours
w/o SA

Masking

Figure 6: Component ablation. We ablate over
two components of the layout-guided generation
model: the optimization loss and Self-Attention
Masking. Disabling the loss causes the gener-
ated image to deviate from the required layout.
Removing the Self-Attention masking typically
causes objects to appear outside of the layout
foreground.

2 3 4 5 7 10
Number of Objects

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

SDXL
Reason Layout
DALL-E 3
Object Repetition
Counting Guidance
RPG
CountGen (Ours)

Figure 7: Accuracy, as a function of the num-
ber of generated objects. Accuracy evaluated
by human raters, over the set of 200 evaluation
images. CountGen (blue) outperforms all meth-
ods for n > 3, and is on par with DALL-E 3 for
2 and 3 objects.

constrained by the required mask. When removing the self-attention masking the objects tend to obey
the mask unwanted object instances occur in the background.

We confirm these observations quantitatively in Table 3, where we evaluate the adherence of the
generated image to the input mask. We use YOLOv9 to detect the bounding boxes of generated objects
and compare them to the input mask using three metrics: Precision is the percentage of bounding
boxes that highly overlap (IOU>0.6) the mask (union of all object masks), Recall is the percentage
of mask pixels that are covered by bounding boxes, and IOU is measured between the boxes and
the mask. Our findings align with the qualitative observation: removing the self-attention masking
leads to a worse precision score, meaning objects are generated in the background. Removing the
layout loss leads to low recall and IOU, meaning poor adherence to the mask. CountGen-Image,
employing both components, achieves balanced results by generating objects in accordance with the
mask. Overall, these results emphasize the critical roles that both components in ensuring accurate
adherence to the input mask.

Pipeline analysis. We identified three primary sources of failure within our pipeline, as described
in Table 6: (1) Instance Localization—The number of clusters identified by DBSCAN is incorrect,
differing from what is generated if the full denoising process is performed; (2) CountGen—The num-
ber of instances in its output is incorrect compared to the target number; (3) Layout Guidance—The
guidance does not produce the target count.

Notably, the CountGen module consistently adds an extra object mask in every case, suggesting that
the error are related to either clustering or layout guidance. Out of all the failures, 47 were due to
Instance localization and 49 were due to loss. Over-generation occurred mostly for target count k
bigger than 5, whereas layout-guidance issues are more frequent with target counts ≤ 5. Among

Table 2: Model components Accuracy (%).

CoCoCount Compbench
Text → Layout → YOLOv9 Human Human
Layout Image Acc. Acc. Acc.

CountGen CountGen 50 52 48
CountGen B-Attn 40 42 40
Random CountGen 37 44 42
Random B-Attn 29 30 35

Table 3: CountGen-Layout components. Error
bars represent standard error across 200 images.

Method Precision Recall IOU

CountGen 59 ±3.1 82 ±2.5 52 ±1.2
- SA masking 48 ±3.1 81 ±2.7 51 ±1.5
- Layout loss 49 ±2.9 64 ±2.5 36 ±1.4

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the Instance localization failures, we observed that 31% of the errors occurred when more than 15
instances were generated in the original image.

Sensitivity analysis of Instance-level Features. To quantitatively evaluate the performance of our
instance-localization step we compare the bounding box predictions extracted from our method’s
instance localization masks to ground truth bounding boxes. We manually annotate these instance-
level bounding boxes on a subset of 85 images taken from the CoCoCount dataset. We report standard
precision and recall metrics over a range of timesteps (Table 4) and layers (Table 5). The time and
layer that we selected on set-aside data, generalize well to the test data, and these hyper-parameters
out-perform other choices.

Table 4: Precision and Recall across different timestamps.

Metric t=900 t=800 t=600 t=500 (Ours) t=400 t=200 t=0
Precision 0.81 0.88 0.88 0.92 0.90 0.90 0.83

Recall 0.51 0.79 0.84 0.92 0.93 0.93 0.89

Table 5: Precision and Recall across different layers.

Metric down_10 down_40 mid_120 mid_136 up_48 up_52 (Ours) up_70 up_100
Precision 0.27 0.27 0.26 0.39 0.39 0.92 0.67 0.45

Recall 0.56 0.56 0.10 0.16 0.15 0.92 0.67 0.35

7 LIMITATIONS

Occasionally, our optimization (Section 3.3) results in multiple instances of an object in an area
intended for just one by the layout. In other cases CountGen generates plain backgrounds compared
to SDXL (Figure 8). In addition, the scope of our experiments may seem narrow, since we focus
on generating scenes with up to 10 instances and a single object per prompt. Nevertheless, we have
shown in Section 5 that even this setup is highly challenging to contemporary models, especially as
the number of instances required to generate grows, as evident by the massive drop in performance,
even for DALL-E 3 (see Figure 7).

8 CONCLUSIONS

The task of generating images that depict the number of requested objects correctly is a hard task. It
requires models to capture “objectness", and obey global spatial constraints, at the same time they
generate a well-formed natural image. Current text-to-image diffusion models perform poorly in this
task (Table 1), especially when asked to generate more than three objects (Figure 7).

Our CountGen approach took three steps to address this task. First, we identified a notion of
objectness from the self-attention layers of the diffusion model. Then, we trained a U-Net model that
learned to correct the number of instances of an object in a given layout, whether it is removing or
adding instances of an object such that the structure of the layout is preserved. Third, we developed a
layout-guidance optimization method method to generate images from the corrected layout.

Together, this approach almost doubled the counting accuracy from 26% in standard SDXL to 52%
using our method applied to SDXL. We expect the lessons learned from this method, specifically the
features that represent objectness and the process of learning to automatically fix a layout, to become
useful in other problems of structured generation like spatial constraints in text-to-image models or
spatio-temporal constraints in video generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

9 ETHICS STATEMENT

For crowdsourcing experiments and research with human subjects, the paper includes the full text of
instructions given to participants and screenshots. Our protocols are described in the main paper and
screenshots of the experiments and questions for raters are included in our supplemental material.
The following qualifications were used to choose annotators

• HIT Approval Rate (%) for all Requesters’ HITs is greater than equal to 99.

• Number of HITs Approved is greather than 5000.

• Annotator successfully passed a qualification test.

10 REPRODUCIBILITY STATEMENT

Our method, CountGen, is thoroughly described in Section 3. Compute details and hyperparameters
are provided in Appendices A and B. Detailed definitions for training the U-Net are provided in
Appendix C.2, and evaluation of ReLayout is in Appendix C.3.

REFERENCES

Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. Measuring the objectness of image windows.
IEEE transactions on pattern analysis and machine intelligence, 34(11):2189–2202, 2012.

Barak Battash, Amit Rozner, Lior Wolf, and Ofir Lindenbaum. Obtaining favorable layouts for
multiple object generation, 2024.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Mateusz Buda, Ashirbani Saha, and Maciej A Mazurowski. Association of genomic subtypes of
lower-grade gliomas with shape features automatically extracted by a deep learning algorithm.
Computers in Biology and Medicine, 109, 2019. doi: 10.1016/j.compbiomed.2019.05.002.

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models. ACM Transactions on
Graphics (TOG), 42(4):1–10, 2023.

Xiaohui Chen, Yongfei Liu, Yingxiang Yang, Jianbo Yuan, Quanzeng You, Li-Ping Liu, and Hongxia
Yang. Reason out your layout: Evoking the layout master from large language models for text-to-
image synthesis, 2023.

Omer Dahary, Or Patashnik, Kfir Aberman, and Daniel Cohen-Or. Be yourself: Bounded attention
for multi-subject text-to-image generation, 2024a.

Omer Dahary, Or Patashnik, Kfir Aberman, and Daniel Cohen-Or. Be yourself: Bounded attention
for multi-subject text-to-image generation. arXiv preprint arXiv:2403.16990, 2024b.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, KDD’96, pp. 226–231. AAAI Press, 1996.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-tuning
text-to-image diffusion models. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=8OTPepXzeh.

Weixi Feng, Wanrong Zhu, Tsu-Jui Fu, Varun Jampani, Arjun Reddy Akula, Xuehai He, S Basu,
Xin Eric Wang, and William Yang Wang. LayoutGPT: Compositional visual planning and
generation with large language models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=Xu8aG5Q8M3.

Hanan Gani, Shariq Farooq Bhat, Muzammal Naseer, Salman Khan, and Peter Wonka. LLM blueprint:
Enabling text-to-image generation with complex and detailed prompts. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=mNYF0IHbRy.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-or. Prompt-
to-prompt image editing with cross-attention control. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
_CDixzkzeyb.

Matthew Honnibal and Ines Montani. spacy 2: Natural language understanding with bloom em-
beddings, convolutional neural networks and incremental parsing. To appear, 7(1):411–420,
2017.

Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive
benchmark for open-world compositional text-to-image generation, 2023.

Wonjun Kang, Kevin Galim, and Hyung Il Koo. Counting guidance for high fidelity text-to-image
synthesis, 2023.

H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955. doi: https://doi.org/10.1002/nav.3800020109. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109.

Weicheng Kuo, Bharath Hariharan, and Jitendra Malik. Deepbox: Learning objectness with convo-
lutional networks. In Proceedings of the IEEE international conference on computer vision, pp.
2479–2487, 2015.

Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
feedback, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on
Systems, Man, and Cybernetics, 9(1):62–66, 1979. doi: 10.1109/TSMC.1979.4310076.

Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar Mosseri, Michal Irani, and Tali Dekel.
Teaching clip to count to ten. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3170–3180, 2023.

Quynh Phung, Songwei Ge, and Jia-Bin Huang. Grounded text-to-image synthesis with attention
refocusing, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023.

12

https://openreview.net/forum?id=8OTPepXzeh
https://openreview.net/forum?id=Xu8aG5Q8M3
https://openreview.net/forum?id=mNYF0IHbRy
https://openreview.net/forum?id=mNYF0IHbRy
https://openreview.net/forum?id=_CDixzkzeyb
https://openreview.net/forum?id=_CDixzkzeyb
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Royi Rassin, Shauli Ravfogel, and Yoav Goldberg. DALLE-2 is seeing double: Flaws in word-to-
concept mapping in Text2Image models. In Jasmijn Bastings, Yonatan Belinkov, Yanai Elazar,
Dieuwke Hupkes, Naomi Saphra, and Sarah Wiegreffe (eds.), Proceedings of the Fifth Black-
boxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 335–345, Abu
Dhabi, United Arab Emirates (Hybrid), December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.blackboxnlp-1.28. URL https://aclanthology.org/2022.
blackboxnlp-1.28.

Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, and Gal Chechik.
Linguistic binding in diffusion models: Enhancing attribute correspondence through attention map
alignment. Advances in Neural Information Processing Systems, 36, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Elizabeth S Spelke. Principles of object perception. Cognitive science, 14(1):29–56, 1990.

Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso. Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep
Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support:
Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017,
Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings 3,
pp. 240–248. Springer, 2017.

Jiao Sun, Deqing Fu, Yushi Hu, Su Wang, Royi Rassin, Da-Cheng Juan, Dana Alon, Charles
Herrmann, Sjoerd van Steenkiste, Ranjay Krishna, and Cyrus Rashtchian. Dreamsync: Aligning
text-to-image generation with image understanding feedback, 2023.

Yoad Tewel, Rinon Gal, Gal Chechik, and Yuval Atzmon. Key-locked rank one editing for text-to-
image personalization, 2023.

Yoad Tewel, Omri Kaduri, Rinon Gal, Yoni Kasten, Lior Wolf, Gal Chechik, and Yuval Atzmon.
Training-free consistent text-to-image generation. arXiv preprint arXiv:2402.03286, 2024.

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to learn
using programmable gradient information. arXiv preprint arXiv:2402.13616, 2024.

Song Wen, Guian Fang, Renrui Zhang, Peng Gao, Hao Dong, and Dimitris N. Metaxas. Improving
compositional text-to-image generation with large vision-language models, 2024. URL https:
//openreview.net/forum?id=E2ePtpKJpy.

Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering text-
to-image diffusion: Recaptioning, planning, and generating with multimodal llms. In International
Conference on Machine Learning, 2024.

Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin Lin, Chenfei Wu, Nan Duan, Zicheng
Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Reco: Region-controlled text-to-image generation.
In CVPR, 2023.

Ruisu Zhang, Yicong Chen, and Kangwook Lee. Zero-shot improvement of object counting with
CLIP. In R0-FoMo:Robustness of Few-shot and Zero-shot Learning in Large Foundation Models,
2023. URL https://openreview.net/forum?id=AJiBZ1BPH5.

13

https://aclanthology.org/2022.blackboxnlp-1.28
https://aclanthology.org/2022.blackboxnlp-1.28
https://openreview.net/forum?id=E2ePtpKJpy
https://openreview.net/forum?id=E2ePtpKJpy
https://openreview.net/forum?id=AJiBZ1BPH5

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

Efficiency. CountGen takes ~36 seconds on average to generate an image on a single A100 80GB.
We arrive at this number by iterating over CoCoCount. To put in context, Bounded-Attention (Dahary
et al., 2024a) takes ~55 seconds and requires bounding boxes as input, while our solution is not
input-dependent. SDXL takes ~8 seconds.

Compute. All experiments were conducted over a period of a week on a single A100 80GB.

B IMPLEMENTATION DETAILS & REPRODUCIBILITY

B.1 COUNT NUMBER EXTRACTION

To accurately extract count numbers from the textual prompts, we employ spaCy’s dependency graph
parser (Honnibal & Montani, 2017) to identify and isolate indices of related subjects and numeric
modifiers. This methodology is inspired by the approach detailed in "Linguistic Binding in Diffusion
Models" by Rassin et al. (2024), which demonstrates the automated extraction of subjects and their
attribute modifiers. We have adapted this technique to specifically recognize numeric modifiers, both
spelled out (e.g., "five dogs") and in numeral form (e.g., "5 dogs"). This adaptation ensures that each
numeric modifier is correctly associated with its corresponding noun, thereby facilitating accurate
cross attention in our model’s processing pipeline.

B.2 COUNTGEN

Layout guided generation. In our implementation, the self-attention masking is applied at
timesteps t ∈ [1000, 900], in the decoder layers of the U-Net. The object layout loss is applied at
timesteps t ∈ [1000, 500], in all layers of the U-Net. Our pipeline used the Attend-and-Excite (Chefer
et al., 2023) code base as a starting point.

ReLayout. The ReLayout U-Net was built upon the U-Net Implementation of (Buda et al., 2019).
We trained the U-Net with a learning-rate of 8e-6, a batch-size of size 32 and the Adam optimizer. The
intersection penalty is set to 0.25 and the Dice penalty is set to 1. During training we apply a horizontal
flip augmentation across all masks, and shuffle augmentation where we randomly re-arrange the input
channels.

Instance identification. In the DBSCAN clustering algorithm, we used a dynamic epsilon value in
the range of [0.1, 0.2] and used cosine similarity as the distance metric.

B.3 COMPARED METHODS

Each prompt in CoCoCount and T2I-CompBench-Count was assigned a unique random seed and
was used by all baselines and CountGen.

We compared CountGen with the following baselines:

SDXL (Podell et al., 2023). We used the stable-diffusion-xl-base-1.0 model.

Repeated Object. In this baseline, we used the same model and seeds as in SDXL but modified the
prompts. We repeated the object in the prompt as many times as the target count. For example, “a
photo of three cats” was changed to “a photo of a cat and a cat and a cat”.

Reason Out Your Layout (Chen et al., 2023). This baseline has two main steps. First, it leverages
GPT-3.5-turbo to generate spatially reasonable coordinates to be used as a bounding box for
each instance of an object (i.e., “a photo of three cats” results in three bounding boxes, one for each
cat). Second, it uses the generated layout to guide the generation process. We followed the prompt
used by the authors, however, it seems that the responses by GPT-3.5-turbo and the author’s
parser are not completely cohesive, which at times leads to zero bounding boxes. We count such
cases as failures. For the CoCoCount experiment, it successfully generated 134/200 images, and for

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

“A photo of
four cats”

C
ou

nt
G

en
La

yo
ut

“A photo of five
backpacks”

“A photo of five
apples”

Merged Instances Plain BackgroundDuplicated Instances

La
yo

ut
C

ou
nt

G
en

C
ou

nt
G

en
SD

X
L

Figure 8: Limitations. Failure modes of CountGen.

T
w

o
ho
rs
es

T
hr

ee
 h
or
se
s

Fo
ur

 B
oa
ts

Fi
ve

 B
oa
ts

T
w

o
T
ie
s

T
hr

ee
 T
ie
s

T
hr

ee
 O
ra
ng
es

Fo
ur

 O
ra
ng
es

Figure 9: A training set for a Re-
Layout. We created pairs of images
using SDXL, using the same seed
and prompts that only differ by ob-
ject count. We filtered out images
that did not conform to the prompt,
using the techniques described in
Section 3.1. The resulting image
pairs preserve the scene and layout
except adding one object.

T2I-CompBench-Count, just 89/200. Failures were counted as errors in the reported results. We did
not need to make changes to the code to run it.

DALL-E 3 (Betker et al., 2023). We used the OpenAI API interface for the DALL-E 3 model with
“standard” image quality. We did not use seeds in this baseline.

Random masks + BoundedAttn (Dahary et al., 2024a). Given a prompt with a required number
of object instances, we create a corresponding layout with the correct number of objects randomly
placed in the image plane in a way they do not intersect one another. Then we used Bounded Attention
to generate an image condinitioned on that layout.

Counting Guidance (Kang et al., 2023). The authors provided us with their code. We did not need
to change it to run our experiments.

RPG (Yang et al., 2024). We used the official code, with SDXL and GPT-4 for our experiments.

C EXTENDED DETAILS ON COUNTGEN

C.1 RELAYOUT: MATCHING OBJECTS

We aim to understand how M i
k transitions to M i

k+1. Specifically, for each object i ∈ 1, . . . , k in
the original Mk layout, our ReLayout objective is designed to predict how the corresponding mask
M i

k changes in the new image M i
k+1, and additionally where to insert the added object k + 1. This

design encourages the model to slightly modify existing objects while preserving spatial and shape
consistency across the images.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

t900

t500

t700

t100t300

t800 t900 t700t800

t500 t100t300

Figure 10: PCA visualization across timestamps to explore the notion of objectness inside SDXL
latent space, we visualize a dimension-reduced self-attention feature maps across different timestamps
range from t = 900 to t = 100. Initially, up to timestamp t = 500, clear separation is not observed
in some objects (e.g., some eggs appear in similar colors). However, starting from t = 500, a distinct
separation emerges, with each object clearly distinguished by different shades.

To this end, we first have to establish a correspondence between the object masks (Mk,Mk+1). We
employ the Hungarian algorithm (Kuhn, 1955) to find the optimal one-to-one matching between
masks in the two images based on the overlap and similarity of the masks. This algorithm effectively
pairs each object in Mk with a corresponding object in Mk+1. The object in Mk+1 that remains
unmatched represents the additional object introduced in the new image, providing a clear identifier
for the increment in object count.

C.2 LOSSES FOR TRAINING THE RELAYOUT

We use two training losses:

Dice Loss: measures the overlap between the predicted mask and target mask across all channels
containing objects:

Li
Dice = 1−

2
∑

p∈P M i
k+1(p) ·M∗i

k+1(p)∑
p∈P (M

i
k+1(p) +M∗i

k+1(p))
(2)

Here, p iterates over all pixels P in the masks, and i ranges over all possible object channels. For all
k + 1 channels, the total dice loss is:

LDice =

k+1∑
i=1

Li
Dice (3)

Intersection Loss: To ensure distinctiveness among the predicted masks and to minimize overlap
between different object masks, the intersection loss for all possible pairs of different masks in the
output mask containing objects is given by:

LOverlap =

k+1∑
i=1

k+1∑
j ̸=i

2
∑

p∈P M i
k+1(p) ·M

j
k+1(p)∑

p∈P (M
i
k+1(p) +M j

k+1(p))
(4)

C.3 RELAYOUT EVALUATION

We use two metrics for the evaluation:

Extra mask median score. To calculate the extra mask size score, we first find the median size
(Smedian) of all object masks. We then compare this to the size of the new mask (Sextra). The score is
defined as:

Score =
min(Sextra, Smedian)

max(Sextra, Smedian)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

which gives a value between 0 and 1. A score closer to 1 indicates that the new object’s size is more
similar to the median-sized object. For ReLayout, the score is 0.705, indicating that the new object
has become more similar in size to the other objects in the scene.

Average intersection score. This metric measures the average intersection between an object i and
all other object masks j, normalized by the size of object i. A lower score indicates less overlap
between objects. During training, this score decreased to 0.18, indicating small intersection between
the objects.

2 3 4 5 7 10
Number of Objects

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

SDXL
Reason Layout
DALL-E 3
Object Repetition
Counting Guidance
RPG
CountGen (Ours)

Figure 11: Accuracy, as a function of the
number of generated objects. Accuracy
evaluated by human raters, over the set of
200 evaluation images. CountGen (blue) out-
performs all methods for n > 3, and is on par
with DALL-E 3 for 2 and 3 objects.

2 3 4 5 7 10
Number of Objects

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

SDXL
Reason Layout
DALL-E 3
Object Repetition
Counting Guidance
RPG
CountGen (Ours)

Figure 12: Accuracy, as a function of the
number of generated objects. Accuracy
evaluated by YOLOv9, over the set of 200
evaluation images. Here, CountGen (blue)
outperforms all methods.

Table 6: Failure Analysis across Different Target Counts

Target Count Instance Localization Failures Loss Failures Total Failures
2 2 3 5
3 4 10 14
4 5 9 14
5 8 7 15
7 11 8 19

10 17 12 29

C.4 DATASETS

CoCoCount. To create this set, we first select at random 20 classes from MSCOCO (Lin et al.,
2014). We then sample from six counting categories: 2,3,4,5,7, and 10. The two and three categories
contain 34 samples, while the rest contain 33. Our prompts consist of the pattern “a photo of {number}
{object}” with an optional variation of scenes: “on the grass”, “on the road”, or “on the ground”,
which we incorporate for 50% of the prompts, also randomly. In total, we have 200 prompts. Below
are the complete lists from which elements were chosen:

Objects: ’car’, ’airplane’, ’bird’, ’cat’, ’dog’, ’horse’, ’sheep’, ’cow’, ’elephant’, ’bear’, ’backpack’,
’tie’, ’sports ball’, ’baseball glove’, ’cup’, ’bowl’, ’apple’, ’donut’, ’cell phone’, ’clock’. Counting
Categories: ’two’, ’three’, ’four’, ’five’, ’seven’, ’ten’. Scenes: ’on the grass’, ’on the road’, ’on the
ground’.

D EVALUATION

Automatic evaluation. We use the implementation by Ultralytics YOLO of YOLOv9e (large).

17

https://github.com/ultralytics/ultralytics

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.1 HUMAN EVALUATION

We use the Amazon Mechanical Turk platform and ensure the evaluation is of high quality by hiring
raters with a minimum of 5,000 approved HITs and an approval rate exceeding 98%. Each example
was shown to three raters and the majority selection was taken. The compensation was $15 per hour.
Screenshots of the count precision task can be viewed in Figure 13, Figure 14, Figure 15 and the
image fidelity task in Figure 16.

Figure 13: Instructions for the Image Evaluation Task - Part 1.

Figure 14: Instructions for the Image Evaluation Task - Part 2.

Figure 15: Example task to count the number of objects and assess their well-formedness.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 16: Example task to compare image fidelity based on prompt matching and naturalness.

N/A 1 2 3 4 5 6 7 8 9 10 11+

Generated

1
2

3
4

5
6

7
8

9
10

11
+

Ta
rg

et

0 0 0 0 0 0 0 0 0 0 0 0

0 3 29 2 0 0 0 0 0 0 0 0

4 1 2 20 5 2 0 0 0 0 0 0

5 0 0 3 19 5 0 1 0 0 0 0

5 0 0 0 3 18 5 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 1 1 14 5 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

9 1 0 0 1 1 1 1 2 3 4 10

0 0 0 0 0 0 0 0 0 0 0 0
0

5

10

15

20

25

Figure 17: Confusion matrix from human evaluation (Section 4) of the count accuracy experiment for
CountGen. As noted in Figure 15, evaluators could indicate if they were unsure of their response
("N/A" in the table).

19

	Introduction
	Related Work
	Our approach: CountGen
	Discover object-instance Layout during early generation
	ReLayout: Correcting the Number of Objects in the Mask
	Handling Under-generation

	CountGen Image: Layout-based Image Generation

	Experiments
	Results
	Ablation Study
	Limitations
	Conclusions
	Ethics Statement
	Reproducibility Statement
	Appendix
	Implementation Details & Reproducibility
	Count number extraction
	CountGen
	Compared Methods

	Extended Details on CountGen
	ReLayout: Matching Objects
	Losses for Training the ReLayout
	ReLayout Evaluation
	Datasets

	Evaluation
	Human Evaluation

