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Abstract

Large vision-language models (LVLMs) per-001
form outstandingly across various multimodal002
tasks. However, their ability to evaluate gen-003
erated content remains limited, and training004
vision-language reward models (VLRMs) with005
preference data is computationally expensive.006
This paper explores a training-free alterna-007
tive by merging text-based reward models008
(RMs) with LVLMs to create VLRMs. Our009
approach shows that integrating these models010
leads to improved performance over LVLMs’011
scoring and text-based RMs, offering an effi-012
cient method for incorporating textual prefer-013
ences into LVLMs.014

1 Introduction015

Large vision-language models (LVLMs) have016

shown exceptional performance across a wide017

range of multimodal tasks (Hurst et al., 2024; Team018

et al., 2024; Anthropic, 2024), primarily due to the019

implementation of reinforcement learning from hu-020

man feedback (RLHF) (Ouyang et al., 2022), which021

utilizes preference data (Sun et al., 2024; Li et al.,022

2024b). This process often requires the use of re-023

ward models (RMs). However, LVLMs still strug-024

gle to assess generated content effectively (Chen025

et al., 2024a; Li et al., 2024a), and training an RM026

with preference data is resource-intensive.027

In this work, we investigate an alternative ap-028

proach: Can knowledge derived from text-only pref-029

erence data be transferred to LVLMs without addi-030

tional training? Several state-of-the-art LVLMs are031

built upon pre-trained language models with vision032

encoders and adapters (Dubey et al., 2024; Team,033

2025; Lu et al., 2024). This architectural design034

suggests that textual preferences learned by text-035

based RMs may potentially integrate into LVLMs036

through parameter merging.037

Building on this idea, we propose merging038

LVLMs with text-based RMs to create vision-039

language reward models (VLRMs), as illustrated040
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LVLM

Merge
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Figure 1: Framework for merging a text-based RM with
an LVLM. LVLMs excel at visual tasks, while text-
based RMs struggle to provide accurate rewards without
visual cues. We transfer textual preferences to the vision-
language understanding, resulting in a VLRM.

in Figure 1. Our approach leverages existing RMs 041

and LVLMs, eliminating the need for costly multi- 042

modal preference data collection and training. We 043

explore various merging strategies, ranging from 044

simple weighted averaging (Wortsman et al., 2022) 045

to advanced techniques such as task arithmetic (Il- 046

harco et al., 2023), TIES (Yadav et al., 2024), and 047

DARE (Yu et al., 2024a). 048

We assess performance using VL-RewardBench 049

(Li et al., 2024a) and Best-of-N sampling with 050

TextVQA (Singh et al., 2019) and MMMU- 051

Pro (Yue et al., 2024b). The results show that 052

our combined VLRMs outperform scoring through 053

LVLMs and reward generation with text-based 054

RMs. Our approach offers a training-free method 055

for transferring textual preferences to LVLMs via 056

model merging, and we provide a detailed analysis 057

of merging strategies, demonstrating its effective- 058

ness across multiple benchmarks. 059

2 Related Work 060

Preference Dataset A common approach to 061

train a reward model is to use the Bradley–Terry 062
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model (Bradley and Terry, 1952), which relies on063

paired data for learning. In NLP, many high-quality064

preference datasets are already available (Stien-065

non et al., 2020; Bai et al., 2022; Ethayarajh et al.,066

2022; Köpf et al., 2023; Cui et al., 2024; Zhu et al.,067

2024; Wang et al., 2024). Similarly, in the vision-068

language domain, several preference datasets have069

been introduced (Yu et al., 2024b,c; Chen et al.,070

2024b; Wijaya et al., 2024; Li et al., 2024c; Zhou071

et al., 2024; Xiao et al., 2024). In this work, we072

explore the potential of transferring textual prefer-073

ences to LVLMs in a training-free manner, specifi-074

cally through model merging.075

LVLM-as-a-Judge & Evaluation LVLM-as-076

a-Judge refers to utilizing strong large vision-077

language models for evaluation and judgment.078

These LVLMs can be either closed-source (Ope-079

nAI, 2023; Hurst et al., 2024; Team et al., 2024;080

Anthropic, 2024) or open-source (Lee et al., 2024;081

Dubey et al., 2024; Deitke et al., 2024; Team, 2025).082

To assess LVLMs as generative reward models,083

Chen et al. (2024a) established benchmarks and084

found that LVLMs exhibit high agreement with085

humans in pairwise comparison judgments, but per-086

form poorly in scoring evaluation and batch rank-087

ing tasks. Recently, VL-RewardBench (Li et al.,088

2024a) introduced challenging cases and complex089

multimodal reasoning tasks, revealing that most off-090

the-shelf LVLMs struggle with such evaluations.091

Model Merging Model merging is a common,092

training-free method for combining skills from093

multiple models within the parameter space. A094

basic approach involves simple weighted averag-095

ing (Wortsman et al., 2022), while more advanced096

techniques have been developed (Yadav et al., 2024;097

Yu et al., 2024a; Yang et al., 2024). These tech-098

niques have already proven effective in reward099

modeling (Rame et al., 2024; Lin et al., 2024) and100

LLM-as-a-judge (Kim et al., 2024) in NLP. Re-101

cently, REMEDY (Zhu et al., 2025) introduced102

strategies for merging LVLMs. In contrast, our103

work focuses on merging textual reward models104

into the language modeling components of LVLMs.105

3 Methodology106

We propose a training-free method to transfer tex-107

tual preferences from a text-based RM θRM to a108

LVLM θLVLM through model merging.109

Since both models originate from the same110

pre-trained language model θPRE, we merge mod-111

ules that appear in both models and preserve the112

LVLM’s vision capabilities and text-based RM re- 113

ward function, resulting in a VLRM that can as- 114

sess textual and visual content without additional 115

training. Below, we outline the components and 116

merging strategies involved. 117

3.1 Model Components 118

The pre-trained language model consists of: 119

θPRE = {θPRE
emb , θ

PRE
trans, θ

PRE
lm }, 120

where θPRE
emb is the embedding layer, θPRE

trans is the 121

transformer, and θPRE
lm is the language modeling 122

head, which maps the final hidden state of the trans- 123

former to the vocabulary. 124

The LVLM expands upon this with: 125

θLVLM = {θLVLM
venc , θLVLM

adapt , θLVLM
emb , θLVLM

trans , θLVLM
lm }, 126

where θLVLM
venc is the vision encoder, and θLVLM

adapt is the 127

adapter that integrates the vision encoder outputs 128

into the language model. 129

Similarly, the text-based RM is defined as: 130

θRM = {θRM
emb, θ

RM
trans, θ

RM
rm }, 131

where θRM
rm is the reward modeling head, which 132

projects the transformer’s final hidden state to a 133

scalar value as the reward for a given input. 134

3.2 Merging Strategies 135

We explore four merging strategies. 136

Weighted Averaging The weighted averaging 137

strategy is defined as: 138

θMERGE
trans = λ · θLVLM

trans + (1− λ) · θRM
trans, 139

where λ is a hyperparameter that controls the 140

weight distribution between the two terms. 141

Task Arithmetic Task arithmetic strategy is de- 142

fined as: 143

τLVLM = θLVLM
trans − θPRE

trans,

τRM = θRM
trans − θPRE

trans,

θMERGE
trans = λ · τLVLM + λ · τRM,

144

where τLVLM represents the task vector derived 145

from instruction tuning, and τRM is the task vector 146

obtained from reward modeling. The hyperparame- 147

ter λ controls the contribution of the task vectors. 148

TIES & DARE For the TIES and DARE strate- 149

gies, we simplify the expression to: 150

θMERGE
trans = λ · f(τLVLM, d) + λ · f(τRM, d), 151

where f(·) denotes the function for trimming, se- 152

lecting, and rescaling the task vector, and d is the 153

density determining how many parameters are re- 154

tained. The two strategies apply different methods 155

for trimming, selecting, and rescaling. See Ap- 156

pendix A for more details on TIES and DARE. 157
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VL-RewardBench TextVQA MMMU-Pro

Method General Hallucination Reasoning Overall Macro Avg. Overall Standard Vision

Llama-3.2-Vision 33.3* 38.4* 56.6* 42.9* 42.8* 46.4 28.8 19.8
Tulu-2.5-RM 43.2 31.4 54.1 38.9 42.9 42.6 29.8 21.4

Random 50.0 50.0 50.0 50.0 50.0 48.2 29.2 18.4
Cascade 44.8 37.8 57.2 43.8 46.6 43.2 30.9 23.4

Linear 39.3 52.3 54.4 51.0 48.7 54.7 27.8 22.1
Task Vec. 48.6 59.4 59.7 57.9 55.9 59.0 31.0 22.7
TIES 43.7 58.2 58.5 56.2 53.5 64.2 29.1 22.6
DARE + Task Vec. 49.2 61.7 61.0 59.7 57.3 58.8 30.3 22.4
DARE + TIES 49.2 59.1 58.2 57.4 55.5 57.3 31.6 22.0

Table 1: Comparison of merging methods across the VL-RewardBench, TextVQA, and MMMU-Pro datasets using
TULU-2.5-RM for merging. *Indicates results from Li et al. (2024a).

3.3 Merged VLRM158

The merged embedding parameters, θMERGE
emb are159

obtained following standard embedding merging160

techniques outlined in MergeKit (Goddard et al.,161

2024), as detailed in Appendix A.162

Finally, the merged VLRM θMERGE is obtained163

by combining several components:164

θMERGE = {θLVLM
venc , θLVLM

adapt , θMERGE
emb , θMERGE

trans , θRM
rm },165

As a result, the merged VLRM can be used to pro-166

vide rewards for both text and image content.167

4 Experiments168

4.1 Experimental Setup169

4.1.1 Models170

In this paper, we employ Llama-3.2-11B-Vision171

-Instruct (Dubey et al., 2024) as our LVLM, re-172

ferred to as Llama-3.2-Vision. For text-based173

RMs, we use Llama-3.1-Tulu-2-8B-uf-mean-174

rm (Ivison et al., 2024) and Llama-3.1-Tulu-3-175

8B-RM (Lambert et al., 2024), which we denote176

as Tulu-2.5-RM and Tulu-3-RM, respectively. All177

models derive from the same pre-trained language178

model Llama-3.1-8B. Our main results focus on179

Tulu-2.5-RM since it outperforms Tulu-3-RM on180

several VQA tasks with text-based input. Please181

refer to Appendix E for the model details.182

4.1.2 Model Merging183

We use MergeKit for model merging and apply184

several techniques: weighted averaging, task arith-185

metic, TIES, and DARE—labeled as Linear, Task186

Vec., TIES, and DARE, respectively. Additionally,187

we explore combining DARE with task arithmetic188

and TIES for a more thorough analysis. To de-189

termine the optimal merging hyperparameters, we190

conduct a hyperparameter search and sample 400191

instances from the RLAIF-V (Yu et al., 2024c)192

training set as our validation set. More details are193

provided in Appendix A.194

4.2 Reward Model Evaluation 195

4.2.1 VL-RewardBench 196

We assess the merged VLRMs using VL- 197

RewardBench (Li et al., 2024a), a benchmark that 198

includes three domains: general multimodal in- 199

structions, hallucination-related tasks, and multi- 200

modal reasoning tasks. Each instance includes a 201

multimodal query that consists of an image and a 202

user prompt, along with a chosen response and a 203

rejected response. 204

4.2.2 Best-of-N Sampling 205

We assess our reward model’s effectiveness in 206

enhancing performance through reranking us- 207

ing Best-of-N sampling, where N = 8 in our 208

work. This method scores and ranks re- 209

sponses to check if the highest-scoring one 210

matches the correct answer. Specifically, we 211

use Llama-3.2-11B-Vision-Instruct to gener- 212

ate eight candidates for the TextVQA (Singh et al., 213

2019) and MMMU-Pro (Yue et al., 2024b) datasets. 214

See Appendix B for dataset details. 215

4.3 Main Results 216

Table 1 demonstrates the effectiveness of merg- 217

ing methods for combining an LVLM with 218

a text-based RM. The baseline approaches in- 219

clude Llama-3.2-Vision, which utilizes the 220

LVLM for direct scoring—pairwise scoring in 221

VL-RewardBench and verbalized scoring in Best- 222

of-N sampling tasks. Another baseline method, 223

Tulu-2.5-RM, utilizes the text-based RM that fo- 224

cuses solely on evaluating the textual elements of 225

questions and responses. We also incorporate a 226

Random baseline that randomly selects responses. 227

Furthermore, we implement a Cascade approach 228

that employs a two-stage process: it first uses 229

the LVLM to generate text descriptions of images 230

based on the given question, then passes these de- 231
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VL-RB TextVQA MMMU-Pro

Method Overall Overall Standard Vision

Linear 51.0 54.7 27.8 22.1
w/o image input 39.8 45.8 29.1 21.6

Task Vec. 57.9 59.0 31.0 22.7
w/o image input 44.9 38.7 31.8 21.0

TIES 56.2 64.2 29.1 22.6
w/o image input 42.7 40.9 31.2 21.0

DARE + Task Vec. 59.7 58.8 30.3 22.4
w/o image input 44.5 36.2 32.1 20.8

DARE + TIES 57.4 57.3 31.6 22.0
w/o image input 45.6 36.9 32.1 20.8

Table 2: Comparison of merging methods with and
without image input, using Tulu-2.5-RM for merging.
VL-RB stands for VL-RewardBench.

scriptions with the original text inputs through the232

text-based RM to produce final scores.233

As shown in Table 1, merged VLRMs234

consistently outperform Llama-3.2-Vision and235

Tulu-2.5-RM across nearly all merging methods236

and benchmarks. This result demonstrates that237

combining a text-based RM with an LVLM effec-238

tively transfers textual preferences without train-239

ing. Different merging strategies achieve the high-240

est scores in different benchmarks, but overall,241

more advanced methods outperform simpler ones,242

highlighting the advantages of structured merg-243

ing techniques. Additionally, in several bench-244

marks, merged VLRMs surpass or match the strong245

Cascade baseline, suggesting that model merging246

captures more information than merely cascading247

two models. Notably, in VL-RewardBench, our248

merged VLRMs even exceed the performance of249

the 90B LVLM and achieve results comparable to250

commercial models. A similar trend emerges when251

using Tulu-3-RM as the text-based RM; further de-252

tails are provided in Appendix G.1.253

4.4 Analysis254

Without Image Input To further investigate255

whether the merged VLRMs effectively use the256

vision encoder, we conduct an ablation study by257

evaluating the models without image input. As258

shown in Table 2, most models with image input259

outperform those without it across various merg-260

ing techniques. This result suggests that the vi-261

sion encoder plays an active role after merging,262

with performance gains not solely attributed to the263

text-based RM. These findings highlight how merg-264

ing methods effectively combine textual and visual265

information. However, image input does not im-266

prove performance in the MMMU-Pro Standard267

(a) VL-RewardBench (b) MMMU-Pro (Standard)

Figure 2: Effect of Dare + Task Vec. merging hyper-
parameters with Tulu-2.5-RM as the text-based RM.

set, likely because this set emphasizes reasoning, 268

where reward assessments depend more on textual 269

coherence than visual understanding, limiting the 270

vision encoder’s contribution. A similar trend oc- 271

curs when using Tulu-3-RM as the text-based RM; 272

see Appendix G.2 for details. 273

Effect of Merging Hyperparameters We also 274

investigate how merging hyperparameters impacts 275

performance. Figure 2 presents the results of 276

searching for d within the range [0.2, 0.4, 0.6, 0.8] 277

and λ within [0.5, 0.7, 1.0] for DARE + Task Vec.. 278

Our findings indicate that optimal hyperparameter 279

values vary across benchmarks. For example, in 280

VL-RewardBench, λ values do not have a signifi- 281

cant effect, but in the MMMU-Pro standard set, we 282

observe that λ = 1.0 performs best. This variation 283

indicates that the choice of hyperparameters affects 284

the performance of the final merged VLRM differ- 285

ently across tasks. Consequently, it highlights the 286

importance of a well-curated validation set when 287

selecting the optimal hyperparameters, which could 288

be further explored in future research. 289

Furthermore, our results for d align with previ- 290

ous studies on TIES and DARE: even when task 291

vectors are trimmed to lower rates (e.g., 0.4, 0.2), 292

the merged VLRMs maintain strong performance, 293

consistent with the findings on LLM merging. For 294

further hyperparameter search results across other 295

methods and benchmarks, refer to Appendix G.3. 296

5 Conclusion 297

This work presents a training-free approach for inte- 298

grating text-based RMs into LVLMs through model 299

merging. Our method enables the efficient trans- 300

fer of textual preferences without the expensive 301

multimodal preference data collection or additional 302

training. Experimental results show that our ap- 303

proach outperforms LVLM scoring and text-based 304

RMs in multimodal reward assessment tasks. 305
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Limitations306

Our study has several limitations. First, we focused307

on a specific 11B vision-language model paired308

with an 8B text-based reward model, primarily due309

to limitations in computational resources. Addition-310

ally, we focused solely on the LLaMA architecture311

and did not explore alternatives like Qwen (Bai312

et al., 2023a,b) due to the absence of a suitable313

Qwen-based reward model for our experiments.314

Furthermore, we did not perform extensive abla-315

tion studies on the validation set. Our experimental316

results highlight the importance of a well-curated317

validation set in selecting optimal hyperparameters,318

which could be explored further in future research.319

Finally, due to the sensitivity of RLHF to hyperpa-320

rameter tuning and our computational constraints,321

we did not implement algorithms like PPO (Schul-322

man et al., 2017). Future work could explore inte-323

grating RLHF with merged VLRMs to assess its324

potential impact.325

Ethics Statement326

Our approach leverages pre-trained language and327

reward models, which may inherit biases from the328

training data. While merging models can enhance329

efficiency, it does not inherently mitigate existing330

biases. We encourage further research to evaluate331

and address potential biases in merged models to332

ensure fairness across diverse user groups.333
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A Merging Details638

Weighted Averaging Wortsman et al. (2022)639

showed that combining the weights of multiple640

models fine-tuned with varying hyperparameter set-641

tings often leads to improved accuracy and robust-642

ness. In this work, we employ a weighted averag-643

ing strategy as a straightforward method to merge644

a large vision-language model with a text-based645

reward model. The weighted averaging strategy is646

formally defined as:647

θMERGE
trans = λ · θLVLM

trans + (1− λ) · θRM
trans,648

where λ is a hyperparameter that determines the649

weight distribution between the two models. We650

explore λ values in the range: [0.0, 0.1, 0.2, 0.3,651

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].652

Task Arithmetic Ilharco et al. (2023) demon-653

strated that the task vector, obtained by subtracting654

the weights of a pre-trained model from those of655

the same model after fine-tuning for a specific task,656

defines the task direction. Utilizing this task vec-657

tor can improve task performance. We also apply658

the task arithmetic approach to develop a vision-659

language reward model. The task arithmetic strat-660

egy is formally defined as:661

τLVLM = θLVLM
trans − θPRE

trans,

τRM = θRM
trans − θPRE

trans,

θMERGE
trans = λ · τLVLM + λ · τRM,

662

where τLVLM denotes the task vector derived from663

instruction tuning, and τRM refers to the task vec-664

tor obtained from reward modeling. The hyperpa-665

rameter λ controls the relative contribution of task666

vectors. We explore λ values in the range: [0.0, 0.1,667

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].668

TIES Yadav et al. (2024) consider the interfer-669

ence between parameters from different models670

during the model merging process. Their approach671

consists of three main steps. First, they prune task672

vector values based on magnitude, retaining only673

a proportion d of the task vector. Second, they674

resolve sign conflicts by calculating the total mag-675

nitude of parameter values in positive and negative676

directions and selecting the direction with the larger677

total magnitude. Only values that match the cho-678

sen sign are retained. Finally, they compute the679

mean of the retained values to determine the final680

parameter value. The TIES method can be simply681

expressed as: 682

θMERGE
trans = λ · f(τLVLM, d) + λ · f(τRM, d), 683

where f(·) denotes the function for trimming, se- 684

lecting, and rescaling the task vector, and d is the 685

density determining how many parameters are re- 686

tained. We search for optimal values of λ within 687

the range [0.5, 0.7, 1.0] and d within the range [0.2, 688

0.4, 0.6, 0.8]. 689

DARE Yu et al. (2024a) also addresses the inter- 690

ference between parameters from different mod- 691

els during the model merging process. They ran- 692

domly drop delta parameters with a probability of 693

p and rescale the remaining ones by 1/(1−p). The 694

DARE method can be combined with both the Task 695

Arithmetic and TIES approaches. When combined 696

with Task Arithmetic, a proportion p of task vectors 697

is randomly dropped, and the remaining ones are 698

rescaled by 1/(1− p). When DARE is combined 699

with TIES, a proportion p of task vectors is ran- 700

domly dropped, and the sign of each parameter is 701

determined by comparing the total magnitude in 702

the positive and negative directions. The sign cor- 703

responding to the larger total magnitude is selected, 704

and only values matching this sign are retained. 705

Their mean is then computed as the final parameter 706

value, and the result is rescaled by 1/(1− p). The 707

DARE method can also be expressed as: 708

θMERGE
trans = λ · f(τLVLM, d) + λ · f(τRM, d), 709

where d represents the density, determining the 710

proportion of retained parameters, with d = 1− p. 711

We search for optimal values of λ within the range 712

[0.5, 0.7, 1.0] and d within the range [0.2, 0.4, 0.6, 713

0.8]. 714

Merging Embeddings We follow the embedding 715

merging procedure from MergeKit (Goddard et al., 716

2024). The process is as follows: 717

1. If a token exists in the pre-trained model, we 718

use its embedding from that model. 719

2. If a token appears in only one model (either 720

the LVLM or the text-based RM), we use its 721

embedding from that model. 722

3. If a token appears in multiple models, we com- 723

pute the average of its embeddings. 724

Notably, the pre-trained model is not required 725

for the weighted averaging method. Therefore, we 726

omit the first step when applying this merging ap- 727

proach. 728
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Merging Hyperparameter Selection We select729

the merging hyperparameter by using a sampled730

set of 400 instances from the RLAIF-V (Yu et al.,731

2024c) training set as our validation set. In case of732

a tie in scores, an additional 100 sampled instances733

will be used for evaluation. Results are discussed734

in Appendix G.3.735

B Dataset Details736

VL-RewardBench VL-RewardBench (Li et al.,737

2024a) is a benchmark comprising 1,250 high-738

quality examples spanning three domains: gen-739

eral multimodal instructions, hallucination-related740

tasks, and multimodal reasoning tasks. Each exam-741

ple includes a multimodal query—consisting of an742

image and a user prompt—along with a selected743

response and a rejected response.744

TextVQA TextVQA (Singh et al., 2019) is a745

dataset designed to evaluate the ability of visual746

question-answering (VQA) models to read and rea-747

son about text within images. We use its validation748

set, which contains 5,000 instances, to assess our749

merged VLRMs.750

MMMU-Pro MMMU-Pro (Yue et al., 2024b)751

is an advanced benchmark designed to assess the752

understanding and reasoning abilities of multi-753

modal models. It is derived from the original754

MMMU (Yue et al., 2024a) dataset and consists755

of two subsets: a standard set, which includes im-756

age and text queries with 10 answer options, and a757

vision set, which features a vision-only input sce-758

nario. In the vision set, the questions are embedded759

within screenshots or photos, with no explicit text760

provided.761

RLAIF-V RLAIF-V (Yu et al., 2024c) prefer-762

ence dataset is created by generating multiple can-763

didate responses for a given prompt and image us-764

ing various random seeds. Each response is divided765

into individual claims, which are then assessed us-766

ing an open-source large vision-language model.767

This model assigns confidence scores to each claim,768

which are combined to form an overall response769

score. Preference pairs are generated by comparing770

the response scores for the same prompt, select-771

ing the preferred response and the less favorable772

one based on the score differences. Pairs with sig-773

nificant length disparities are excluded to avoid774

bias. We select 400 instances from this preference775

dataset to serve as our validation set for selecting776

the hyperparameters of merging methods.777

C Best-of-N Sampling Details 778

We use lmms-eval (Zhang et al., 2024) for response 779

generation with the Best-of-N sampling technique. 780

For the TextVQA dataset, we set both the tempera- 781

ture and top-p to 1.0, sampling 8 responses. To en- 782

courage concise answers, we append “Answer the 783

question using a single word or phrase.” after the 784

generation prompt. For the MMMU-Pro dataset, 785

we also set the temperature and top p to 1.0, with 786

a maximum token limit of 4096, to sample 8 re- 787

sponses. Additionally, we apply chain-of-thought 788

(CoT) for generating both answers and their rea- 789

soning. 790

D Prompt Template 791

For Best-of-N sampling using LLaMA-3.2-Vision 792

as the generative reward model, the prompt tem- 793

plate is provided in Table 3. For image caption- 794

ing with LLaMA-3.2-Vision and reward modeling 795

using Tulu-3-RM and Tulu-2.5-RM, the detailed 796

prompt template can also be found in Table 3. 797

E Open-Source Model Details 798

Llama-3.2-11B-Vision-Instruct Llama-3.2 799

-11B-Vision-Instruct (Dubey et al., 2024) is an 800

11B-parameter LVLM consisting of three main 801

components: a vision encoder, an adapter, and a 802

pre-trained language model. The language model is 803

based on Llama-3.1-8B-Instruct. The adapter 804

incorporates cross-attention layers to integrate im- 805

age representations into the language model. Dur- 806

ing adapter training, the language model remains 807

frozen, enabling seamless drop-in replacement 808

for Llama-3.1 series models without requiring re- 809

training. 810

Tulu-2.5-RM Tulu-2.5-RM (Ivison et al., 2024) 811

is a reward model initialized from Llama-3.1-8B 812

and fine-tuned using the Tulu 2 recipe (Ivison et al., 813

2023). It is adapted for reward modeling by re- 814

placing the language modeling head with a linear 815

layer and fine-tuning it on preference data from di- 816

verse sources, including Ultrafeedback (Cui et al., 817

2024), Nectar (Zhu et al., 2024), HH-RLHF (Bai 818

et al., 2022), and AlpacaFarm (Dubois et al., 2023), 819

among others. 820

Tulu-3-RM Tulu-3-RM (Lambert et al., 2024) 821

is another reward model initialized from 822

Llama-3.1-8B and fine-tuned following the Tulu 3 823

recipe (Lambert et al., 2024). Like Tulu-2.5-RM, 824

it is adapted for reward modeling by replacing 825
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the language modeling head with a linear layer.826

However, Tulu-3-RM is trained on a mixture827

of on-policy and off-policy preference data828

collected through an enhanced version of the829

Ultrafeedback (Cui et al., 2024) pipeline. This830

dataset includes prompts from various sources,831

such as the SFT dataset in the Tulu 3 recipe,832

WildChat (Zhao et al., 2024), Ultrafeedback (Cui833

et al., 2024), and synthetic persona-augmented834

instructions.835

F Qualitative Results836

We investigate reward model behavior before and837

after merging, and we evaluate qualitatively on838

VL-RewardBench. Tables 4 and 5 present re-839

sults for Tulu-2.5-RM, while Tables 6 and 7 show840

Tulu-3-RM. Red text indicates misalignment with841

the image. Before merging, the text-based reward842

model made incorrect predictions. After merging,843

the vision-language reward models correctly iden-844

tified the better response. In most cases, more ad-845

vanced merging methods—such as task arithmetic,846

TIES, and DARE—produce larger reward differ-847

ences between chosen and rejected responses than848

simple weighted averaging.849

G Full Results850

G.1 Main Results851

The main results of merging with Tulu-2.5-RM852

are discussed in Section 4.3 of the main text. As853

shown in Table 1, merged VLRMs consistently854

outperform Llama-3.2-Vision and Tulu-2.5-RM855

across nearly all merging methods and benchmarks.856

Notably, in VL-RewardBench, they show the great-857

est improvement in the Hallucination domain. In858

Best-of-N evaluation, they perform well in both859

TextVQA and MMMU-Pro. Additionally, merged860

VLRMs match or surpass the strong Cascade base-861

line, suggesting that merging captures more infor-862

mation than simply cascading two models.863

A similar trend is observed when merging with864

Tulu-3-RM. As shown in Table 8, merged VLRMs865

outperform Llama-3.2-Vision and Tulu-3-RM866

across most methods and benchmarks. In VL-867

RewardBench, they improve mainly in the Gen-868

eral and Hallucination domains. For Best-of-N869

evaluation, they perform well in MMMU-Pro,870

but only a few achieve results comparable to871

Llama-3.2-Vision in TextVQA, likely due to872

Tulu-3-RM’s weaker performance in this task.873

While merging with Llama-3.2-Vision enhances874

performance over Tulu-3-RM, it does not surpass 875

Llama-3.2-Vision’s score. Additionally, merged 876

VLRMs exceed the strong Cascade baseline in 877

other benchmarks and remain competitive with it 878

in TextVQA. 879

In Table 11, we compare our merged VLRMs 880

with large open-source LVLMs and commercial 881

systems on VL-RewardBench. Surprisingly, our 882

merged VLRMs outperform 90B LVLMs and 883

achieve performance comparable to commercial 884

models, demonstrating the effectiveness of trans- 885

ferring textual preferences from text-based RMs to 886

LVLMs. 887

G.2 Without Image Input 888

We conduct an ablation study by evaluating 889

models without image input. Full results with 890

Tulu-2.5-RM are shown in Table 9. Models with 891

image input consistently outperform those with- 892

out it across various merging techniques, suggest- 893

ing that the vision encoder actively contributes af- 894

ter merging rather than performance gains being 895

solely due to the text-based RM. This indicates that 896

merged VLRMs effectively utilize the vision en- 897

coder in most cases. Notably, in VL-RewardBench, 898

merged VLRMs match or surpass those without 899

image input, especially in the hallucination do- 900

main, where image input significantly improves 901

performance. In Best-of-N evaluation, models with 902

image input perform better in the TextVQA and 903

MMMU-Pro Vision sets. However, in the MMMU- 904

Pro Standard set, image input does not provide an 905

advantage, likely because this set emphasizes text 906

reasoning, where reward assessments depend more 907

on textual coherence than visual information. 908

Full results with Tulu-3-RM are shown in 909

Table 10, following a similar trend. In VL- 910

RewardBench, merged VLRMs outperform those 911

without image input in the hallucination domain 912

and are comparable to or surpass them in general 913

and reasoning domains. Image input also enhances 914

Best-of-N evaluation, particularly in TextVQA and 915

MMMU-Pro Vision. However, in the MMMU-Pro 916

Standard, image input does not provide a clear ad- 917

vantage, reaffirming that this set prioritizes text 918

reasoning over visual input. 919

G.3 Effect of Merging Hyperparameters 920

In this study, we optimize hyperparameter merg- 921

ing using sampled instances from RLAIF-V. The 922

results, based on 400 sampled RLAIF-V instances 923

used as a validation set, are presented in Tables 12 924
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to 21. Bold text highlights the best performance,925

while text with * indicates cases where scores are926

tied. In these cases, an additional 100 samples are927

used, and * marks the top-performing result among928

them.929

Figures 3 to 12 show the effect of hyperparame-930

ters across various benchmarks, merging methods,931

and text-based RMs. The results reveal that op-932

timal hyperparameters differ across these factors,933

emphasizing the importance of a well-constructed934

validation set. Future research could further ex-935

plore this. For example, Figure 3 shows the results936

of searching for λ values between 0 and 1 for the937

Linear method using Tulu-2.5-RM. In the VL-938

RewardBench, a mid-range λ produces the best939

performance, while in the MMMU-Pro vision set,940

a smaller λ yields better results. This variation941

suggests that hyperparameter choices influence the942

performance of the final merged VLRMs differ-943

ently depending on the task.944

Moreover, we observe a trend consistent with945

prior studies (Yadav et al., 2024; Yu et al., 2024a):946

even when task vectors are reduced to lower rates947

(e.g., 0.4, 0.2), merged VLRMs continue to per-948

form well, aligning with findings on LLM merging.949
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Best-of-N Sampling Prompt template for Llama-3.2-Vision
<|start_header_id|>system<|end_header_id|>
You are a highly capable multimodal AI assistant tasked with evaluating answers to visual questions.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Please analyze the following image and question, then evaluate the provided answer:

Question:

{INSTRUCTION}

Answer:

{RESPONSE}

Evaluate the answer based on the following criteria:
1. Accuracy: How well does the answer align with the visual information in the image?
Score: [1 (Poor) to 5 (Excellent)]

2. Completeness: Does the answer fully address all aspects of the question?
Score: [1 (Poor) to 5 (Excellent)]

3. Clarity: Is the answer well-articulated and easy to understand?
Score: [1 (Poor) to 5 (Excellent)]

4. Relevance: Does the answer directly relate to the question and the image?
Score: [1 (Poor) to 5 (Excellent)]

After your evaluation, please include:
1. Reasoning: A detailed explanation for each criterion, highlighting why you assigned the given score.
2. Overall Assessment: Provide a n overall quality score (1 to 5) for the answer.
<|eot_id|>
Image Captioning Prompt template using Llama-3.2-Vision
<|start_header_id|>system<|end_header_id|>
You are a highly capable multimodal AI assistant tasked with evaluating answers to visual questions.
<|eot_id|><|start_header_id|>user<|end_header_id|>

{IMAGE} Please describe this image according to the given question: {INSTRUCTION}
<|eot_id|>
Prompt template for reward modeling
<|start_header_id|>user<|end_header_id|>

{INSTRUCTION}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{RESPONSE}
<|eot_id|>

Table 3: Prompt template for best-of-n sampling, image captioning and reward modeling.
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Image:

Query: Describe this image in detail.
Response 1:
The image showcases a lively scene of a couple of kids playing soccer on a field. They are kicking a sports
ball around while several people, including young men and other onlookers, are watching and enjoying
the game.

The spectators are spread throughout the scene, with some standing in different spots around the grassy
area. There are also numerous chairs set up in the vicinity, possibly for the audience to take a rest or
gather at a later time. Furthermore, various personal items, such as backpacks and a handbag, can be
observed near the chairs.

Additionally, a few cars and an umbrella are present in the background, hinting at an outdoor, casual
setting for this friendly soccer match.
Response 2:
The image showcases a lively scene of a couple of kids playing soccer on a field. They are kicking a sports
ball around while several people, including young men and other onlookers, are watching and enjoying
the game. The spectators are spread throughout the scene, with some standing in different spots around
the grassy area. There are also numerous chairs set up in the vicinity, possibly for the audience to take
a rest or gather at a later time. Moreover, the soccer goalposts stand tall, ready for the players to score.
Additionally, the grassy terrain adds to the natural charm of the setting, making it an ideal place for a
friendly soccer match.
Score comparison:

Method Response 1 Score Response 2 Score
Tulu-2.5-RM 2.17188 2.27930
Linear 1.89551 1.60156
Task Vec. 3.50391 1.82422
TIES 2.67773 1.96387
DARE + Task Vec. 3.51758 1.69141
DARE + TIES 3.44336 1.65430

Table 4: Qualitative results on VL-RewardBench using TULU-2.5-RM for merging.
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Image:

Query: What is still on the tray?
Response 1:
There are still two portions of fries left on the tray.
Response 2:
There are still two hot dogs and some fries left on the tray.
Score comparison:

Method Response 1 Score Response 2 Score
Tulu-2.5-RM 0.56885 1.20508
Linear 0.60986 0.38477
Task Vec. 2.47461 0.55273
TIES 1.76953 1.10840
DARE + Task Vec. 2.5918 0.62988
DARE + TIES 2.46484 0.43701

Table 5: Qualitative results on VL-RewardBench using TULU-2.5-RM for merging.
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Image:

Query: How many bananas are there in the image?
Response 1:
In the picture, there are at least 26 bananas. The bananas are divided into several bunches, which may
indicate that they vary in size and ripeness.
Response 2:
There are 47 bananas in the picture. The bananas are divided into several bunches, which may indicate
that their size and ripeness are different.
Score comparison:

Method Response 1 Score Response 2 Score
Tulu-3-RM 1.4043 2.33594
Linear 1.33984 0.51074
Task Vec. 5.58203 4.90234
TIES 7.99219 7.55469
DARE + Task Vec. 4.35938 2.88672
DARE + TIES 5.51953 5.20312

Table 6: Qualitative results on VL-RewardBench using TULU-3-RM for merging.
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Image:

Query: Describe this image in detail.
Response 1:
In the image, there is a twin-propeller airplane parked on the tarmac, surrounded by a crowd of people.
Some people seem to be disembarking from the plane, while others are walking around in the vicinity.
There are at least 15 people in total, spread out near the airplane.

Luggage is being unloaded, with a suitcase visible near the center of the scene and a handbag located
towards the right side. It appears that the passengers are either arriving at their destination or preparing to
board the aircraft, as the luggage is being sorted and attended to.
Response 2:
In the image, the flight crew consisting of a pilot and co-pilot can be seen conversing near the twin-
propeller airplane parked on the tarmac. A crowd of people surrounds them, with some individuals
disembarking from the plane and others preparing to board. Ground support equipment such as baggage
carts and fuel trucks are visible in the background near the airport terminal building. Luggage is being
unloaded and sorted, with a suitcase and handbag visible in the foreground. The blue stripe on the airplane
adds a pop of color to the scene. It appears that the passengers are either arriving at their destination or
preparing to depart on their journey. An information sign can be seen towards the left side of the image.
Score comparison:

Method Response 1 Score Response 2 Score
Tulu-3-RM 3.94531 4.74219
Linear 3.66016 2.74414
Task Vec. 5.23828 2.99219
TIES 7.72656 5.67188
DARE + Task Vec. 4.67188 2.24414
DARE + TIES 5.79688 2.88477

Table 7: Qualitative results on VL-RewardBench using TULU-3-RM for merging.
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VL-RewardBench TextVQA MMMU-Pro

Method General Hallucination Reasoning Overall Macro Avg. Overall Standard Vision

Llama-3.2-Vision 33.3* 38.4* 56.6* 42.9* 42.8* 46.4 28.8 19.8
Tulu-3-RM 45.4 36.6 56.6 43.0 46.2 27.4 29.4 20.4

Random 50.0 50.0 50.0 50.0 50.0 48.2 29.2 18.4
Cascade 54.1 40.5 57.2 46.7 50.6 38.3 31.3 23.7

Linear 47.5 51.0 55.0 51.5 51.2 45.8 29.1 19.0
Task Vec. 63.4 66.4 57.5 63.7 62.4 36.0 31.6 20.9
TIES 59.0 74.1 50.9 66.0 61.4 28.3 30.7 20.6
DARE + Task Vec. 63.4 68.9 58.5 65.4 63.6 36.1 30.2 20.9
DARE + TIES 63.9 65.6 57.2 63.2 62.2 56.9 31.4 21.8

Table 8: Comparison of merging methods across the VL-RewardBench, TextVQA, and MMMU-Pro datasets using
TULU-3-RM for merging. *Indicates results from Li et al. (2024a).

VL-RewardBench TextVQA MMMU-Pro

Method General Hallucination Reasoning Overall Macro Avg. Overall Standard Vision

Linear 39.3 (-2.2) 52.3 (+20.8) 54.4 (-4.1) 51.0 (+11.2) 48.7 (+4.9) 54.7 (+8.9) 27.8 (-1.3) 22.1 (+0.5)
w/o image input 41.5 31.5 58.5 39.8 43.8 45.8 29.1 21.6

Task Vec. 48.6 (+4.3) 59.4 (+20.4) 59.7 (+0.6) 57.9 (+13.0) 55.9 (+8.4) 59.0 (+20.3) 31.0 (-0.8) 22.7 (+1.7)
w/o image input 44.3 39.0 59.1 44.9 47.5 38.7 31.8 21.0

TIES 43.7 (-1.1) 58.2 (+23.0) 58.5 (-0.6) 56.2 (+13.5) 53.5 (+7.1) 64.2 (+23.3) 29.1 (-2.1) 22.6 (+1.6)
w/o image input 44.8 35.2 59.1 42.7 46.4 40.9 31.2 21.0

DARE + Task Vec. 49.2 (+4.4) 61.7 (+23.4) 61.0 (+2.2) 59.7 (+15.2) 57.3 (+10.0) 58.8 (+22.6) 30.3 (-1.8) 22.4 (+1.6)
w/o image input 44.8 38.3 58.8 44.5 47.3 36.2 32.1 20.8

DARE + TIES 49.2 (+3.3) 59.1 (+19.2) 58.2 (-0.6) 57.4 (+11.8) 55.5 (+7.3) 57.3 (+20.4) 31.6 (-0.5) 22.0 (+1.2)
w/o image input 45.9 39.9 58.8 45.6 48.2 36.9 32.1 20.8

Table 9: Full results comparing merging methods with and without image input, using TULU-2.5-RM for merging.

VL-RewardBench TextVQA MMMU-Pro

Method General Hallucination Reasoning Overall Macro Avg. Overall Standard Vision

Linear 47.5 (-1.1) 51.0 (+1.1) 55.0 (0.0) 51.5 (+0.5) 51.2 (0.0) 45.8 (+25.5) 29.1 (+0.5) 19.0 (-1.3)
w/o image input 48.6 49.9 55.0 51.0 51.2 20.3 28.6 20.3

Task Vec. 63.4 (+3.8) 66.4 (+19.3) 57.5 (+4.4) 63.7 (+13.2) 62.4 (+9.1) 36.0 (+1.2) 31.6 (-0.1) 20.9 (+0.3)
w/o image input 59.6 47.1 53.1 50.5 53.3 34.8 31.7 20.6

TIES 59.0 (-0.6) 74.1 (+33.5) 50.9 (-3.2) 66.0 (+19.2) 61.4 (+10.0) 28.3 (-0.3) 30.7 (-1.0) 20.6 (-0.9)
w/o image input 59.6 40.6 54.1 46.8 51.4 28.6 31.7 21.5

DARE + Task Vec. 63.4 (+3.8) 68.9 (+18.4) 58.5 (+2.2) 65.4 (+12.1) 63.6 (+8.2) 36.1 (-5.8) 30.2 (-1.9) 20.9 (+0.7)
w/o image input 59.6 50.5 56.3 53.3 55.4 41.9 32.1 20.2

DARE + TIES 63.9 (+8.7) 65.6 (+20.9) 57.2 (+1.9) 63.2 (+14.2) 62.2 (+10.4) 56.9 (+29.2) 31.4 (+0.6) 21.8 (+1.4)
w/o image input 55.2 44.7 55.3 49.0 51.8 27.7 30.8 20.4

Table 10: Full results comparing merging methods with and without image input, using TULU-3-RM for merging.
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Method General Hallucination Reasoning Overall Macro Avg.

Open-Source Models*

Llama-3.2-Vision-11B-Instruct 33.3 38.4 56.6 42.9 42.8
Llama-3.2-Vision-90B-Instruct 42.6 57.3 61.7 56.2 53.9
Qwen2-VL-72B-Instruct 38.1 32.8 58.0 39.5 43.0
Molmo-72B-0924 33.9 42.3 54.9 44.1 43.7
NVLM-D-72B 38.9 31.6 62.0 40.1 44.1

Proprietary Models*

Gemini-1.5-Flash (2024-09-24) 47.8 59.6 58.4 57.6 55.3
Gemini-1.5-Pro (2024-09-24) 50.8 72.5 64.2 67.2 62.5
Claude-3.5-Sonnet (2024-06-22) 43.4 55.0 62.3 55.3 53.6
GPT-4o-mini (2024-07-18) 41.7 34.5 58.2 41.5 44.8
GPT-4o (2024-08-06) 49.1 67.6 70.5 65.8 62.4

Using TULU-2.5-RM for merging

Linear 39.3 52.3 54.4 51.0 48.7
Task Vec. 48.6 59.4 59.7 57.9 55.9
TIES 43.7 58.2 58.5 56.2 53.5
DARE + Task Vec. 49.2 61.7 61.0 59.7 57.3
DARE + TIES 49.2 59.1 58.2 57.4 55.5

Using TULU-3-RM for merging

Linear 47.5 51.0 55.0 51.5 51.2
Task Vec. 63.4 66.4 57.5 63.7 62.4
TIES 59.0 74.1 50.9 66.0 61.4
DARE + Task Vec. 63.4 68.9 58.5 65.4 63.6
DARE + TIES 63.9 65.6 57.2 63.2 62.2

Table 11: Full results on VL-RewardBench, compared with current strong large vision-language models. *Indicates
results from Li et al. (2024a).

(a) VL-RewardBench (b) TextVQA (c) MMMU-Pro (Standard) (d) MMMU-Pro (Vision)

Figure 3: Full results of merging Llama-3.2-Vision and Tulu-2.5-RM (Linear)

(a) VL-RewardBench (b) TextVQA (c) MMMU-Pro (Standard) (d) MMMU-Pro (Vision)

Figure 4: Full results of merging Llama-3.2-Vision and Tulu-2.5-RM (Task Vec.)
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(a) VL-RewardBench (b) TextVQA (c) MMMU-Pro (Standard) (d) MMMU-Pro (Vision)

Figure 5: Full results of merging Llama-3.2-Vision and Tulu-2.5-RM (TIES)

(a) VL-RewardBench (b) TextVQA (c) MMMU-Pro (Standard) (d) MMMU-Pro (Vision)

Figure 6: Full results of merging Llama-3.2-Vision and Tulu-2.5-RM (DARE + Task Vec.)

(a) VL-RewardBench (b) TextVQA (c) MMMU-Pro (Standard) (d) MMMU-Pro (Vision)

Figure 7: Full results of merging Llama-3.2-Vision and Tulu-2.5-RM (DARE + TIES)

(a) VL-RewardBench (b) TextVQA (c) MMMU-Pro (Standard) (d) MMMU-Pro (Vision)

Figure 8: Full results of merging Llama-3.2-Vision and Tulu-3-RM (Linear)
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(a) VL-RewardBench (b) TextVQA (c) MMMU-Pro (Standard) (d) MMMU-Pro (Vision)

Figure 9: Full results of merging Llama-3.2-Vision and Tulu-3-RM (Task Vec.)

(a) VL-RewardBench (b) TextVQA (c) MMMU-Pro (Standard) (d) MMMU-Pro (Vision)

Figure 10: Full results of merging Llama-3.2-Vision and Tulu-3-RM (TIES)

(a) VL-RewardBench (b) TextVQA (c) MMMU-Pro (Standard) (d) MMMU-Pro (Vision)

Figure 11: Full results of merging Llama-3.2-Vision and Tulu-3-RM (DARE + Task Vec.)

(a) VL-RewardBench (b) TextVQA (c) MMMU-Pro (Standard) (d) MMMU-Pro (Vision)

Figure 12: Full results of merging Llama-3.2-Vision and Tulu-3-RM (DARE + TIES)
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λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Overall Acc. 49.8 52.3 50.3 52.5 52.0 49.0 47.3 46.5 46.5 50.3 47.0

Table 12: Linear merging using Tulu-2.5-RM as the text-based RM, evaluated on sampled RLAIF-V.

λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Overall Acc. 55.3 50.0 53.3 54.5 53.5 49.3 52.8 54.0 53.8 54.8 55.3*

Table 13: Task Vec. merging using Tulu-2.5-RM as the text-based RM, evaluated on sampled RLAIF-V.

λ 1.0 0.7 0.5

d 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

Overall Acc. 53.5 53.8* 52.3 50.0 53.5 53.8 52.3 50.3 53.5 53.8 52.3 50.0

Table 14: TIES merging using Tulu-2.5-RM as the text-based RM, evaluated on sampled RLAIF-V.

λ 1.0 0.7 0.5

d 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

Overall Acc. 55.3 56.5 54.5 55.3 54.5 54.0 53.5 55.8 49.0 49.3 51.8 54.8

Table 15: DARE + Task Vec. merging using Tulu-2.5-RM as the text-based RM, evaluated on sampled RLAIF-V.

λ 1.0 0.7 0.5

d 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

Overall Acc. 55.5 56.0* 56.0 55.5 53.3 54.3 53.8 52.3 51.5 49.8 51.5 51.8

Table 16: DARE + TIES merging using Tulu-2.5-RM as the text-based RM, evaluated on sampled RLAIF-V.

λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Overall Acc. 51.5 46.8 50.3 49.3 52.0 50.8 49.3 47.3 49.5 49.3 51.3

Table 17: Linear merging using Tulu-3-RM as the text-based RM, evaluated on sampled RLAIF-V.

λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Overall Acc. 49.3 53.5 49.8 49.8 51.0 51.0 53.8 53.0 53.0 50.3 55.3

Table 18: Task Vec. merging using Tulu-3-RM as the text-based RM, evaluated on sampled RLAIF-V.

λ 1.0 0.7 0.5

d 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

Overall Acc. 53.5 53.3 54.0 51.0 53.8 54.3 54.3* 51.5 53.5 53.3 54.0 51.0

Table 19: TIES merging using Tulu-3-RM as the text-based RM, evaluated on sampled RLAIF-V.

λ 1.0 0.7 0.5

d 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

Overall Acc. 54.8 55.8 55.3 58.0 53.8 53.8 52.3 50.3 50.0 50.3 51.0 51.5

Table 20: DARE + Task Vec. merging using Tulu-3-RM as the text-based RM, evaluated on sampled RLAIF-V.

λ 1.0 0.7 0.5

d 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

Overall Acc. 55.8 55.8 56.0 56.8 52.8 52.5 52.5 52.3 55.3 53.8 48.0 54.5

Table 21: DARE + TIES merging using Tulu-3-RM as the text-based RM, evaluated on sampled RLAIF-V.
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