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Abstract001

Controllable Dialogue Generation (CDG) en-002
ables chatbots to generate responses with de-003
sired attributes, and weighted decoding meth-004
ods have achieved significant success in the005
CDG task. However, using a fixed constant006
value to manage the bias of attribute proba-007
bilities makes it challenging to find an ideal008
control strength that satisfies both control-009
lability and fluency. To address this issue,010
we propose a novel dynamic control strength011
method that considers the uncertainty of the012
model’s generation and classification probabil-013
ities. Specifically, we dynamically adjust the014
control strength at each generation step based015
on the entropy of the language model’s next016
token probabilities and the entropy of the at-017
tribute classifier’s probability estimates. Ex-018
perimental results on various existing models019
demonstrate that our decoding method achieves020
high control performance while maintaining flu-021
ency compared to existing decoding strategies022
across all models. Additionally, our approach023
alleviates the probability interpolation issue in024
multi-attribute controlled generation, yielding025
superior performance.026

1 Introduction027

Recently, Controllable Dialogue Generation (CDG)028

(Zhang et al., 2023; Zeng et al., 2023) has been029

proposed to enhance the realism and accuracy of030

responses generated by conversational models, im-031

proving the user experience. CDG enables chatbots032

to generate responses tailored to desired attributes033

like emotion and dialog-act. Among studies on con-034

trollable generation, weighted decoding methods035

(Yang and Klein, 2021; Arora et al., 2022) have036

achieved significant success.037

In the field of controllable generation, training-038

based methods such as alignment tuning and039

weighted decoding approaches (Yang and Klein,040

2021; Arora et al., 2022) have achieved notable041

success. While alignment tuning suffers from the042

Figure 1: Controllable Dialog Generation method based
on dynamic weighting with Eco Decoding. By dynam-
ically determining the weights between the language
model probability distribution and the attribute con-
trol probability distribution, it is possible to perform
attribute control while maintaining fluency.

disadvantage of requiring the entire model to be 043

retrained, weighted decoding can be easily applied 044

during the inference stage and enables the genera- 045

tion of controlled responses by training an attribute 046

classifier with relatively little data. Consequently, 047

we focused on this weighted decoding strategy to 048

effectively generate controllable responses. 049

In weight decoding methods, generating re- 050

sponses controlled by desired attributes involves 051

the adjustment of the next token probability dis- 052

tribution modeled by the language model. This is 053

achieved by multiplying the attribute probability of 054

the generated response obtained from the attribute 055

classifier and the next token probability. In this pro- 056

cess, the control strength is used as the exponent 057

of the attribute probability to control attribute bias. 058

As the control strength increases, the generated to- 059

kens become more dependent on the token rank of 060

attribute probability. 061

Multiplying the attribute probability alters the 062

probability distribution of the language model, 063

which can affect language modeling performance. 064

When static control strength is used, the same con- 065

trol probability is continuously reflected in the gen- 066

erated sentence, even if the sentence has already 067
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received sufficient attribute control or if specific068

words need to be generated for fluency. This can069

lead to a trade-off between controllability and flu-070

ency. Furthermore, the fact that the appropriate con-071

trol strength varies depending on the situation is an072

important issue. If this is not properly accounted073

for, it can lead to decreased efficiency. Figure 1074

shows an example of a failed response generation075

with these fixed static control strength.076

In this paper, we propose the Entropy-based077

COntrol strength decoding method, named ECO078

decoding, to resolve the aforementioned problem079

with static control strength. Our method can gener-080

ate controlled responses that achieve high control-081

lability as well as maintain text fluency. During the082

decoding process, the entropy (Shannon, 2001) of083

each probability distribution from language model084

and the attribute classification model is calculated085

at every generation step, and calculated entropy086

is used as a dynamic factor to adjust the control087

strength on the response probabilities at each gen-088

eration step.089

Specifically, with respect to the language090

model’s probability distribution, if a particular to-091

ken is assigned a high probability, which implies092

low entropy, it is considered contextually and syn-093

tactically appropriate. To maintain fluency, the094

language model’s prediction is given priority. In095

contrast, when token probabilities are uniformly096

distributed, implying high entropy, the model is097

considered less confident, and to achieve a higher098

degree of control, the bias toward the attribute prob-099

abilities is increased.100

This dynamic control method effectively bal-101

ances the language model’s fluency with the at-102

tribute classifier’s controllability, thereby achieving103

an optimal trade-off between naturalness and the104

desired attribute expression in the final generated105

sentences. To validate our intuition, we experiment106

with three existing controllable generation models107

using the DailyDialog (Li et al., 2017) dataset. Ex-108

perimental results demonstrate that ECO decoding109

achieves high controllability while maintaining text110

fluency across all models.111

Our main contributions are as follows:112

1. We raise the issue of static control strength113

in existing weighted decoding methods and114

propose a dynamic control strength approach115

to generate responses with high controllability116

as well as maintain fluency.117

2. We show that the ECO decoding methodol-118

ogy enables multi attribute control over single 119

attribute based weighted decoding methodolo- 120

gies. 121

3. Experimental results show that the ECO 122

decoding method outperforms the existing 123

weighted decoding methods for all existing 124

controllable generation models. 125

2 Related Work 126

2.1 Weighted Decoding 127

Controllable dialogue generation aims to gener- 128

ate a response, R = {r1, r2, ..., rN}, with desired 129

attributes, given dialogue history h and attribute 130

c, using a pre-trained auto-regressive model (e.g. 131

GPT2, (Radford et al., 2019), DialoGPT (Zhang 132

et al., 2020)). Emotion and dialog-act can be at- 133

tributes for controllable dialogue generation. 134

To condition on attribute c, the response genera- 135

tion given a dialogue can be formulated as follows: 136

P (R|h, c) =
N∏
i=1

P (ri|r<i, h, c) (1) 137

Using Bayesian factorization, P (ri|r<i, h, c) can 138

be converted into the following equation. 139

P (ri|r<i, h, c) ∝ P (ri|r<i, h)P (c|r≤i, h)
λ (2) 140

where the first term P (ri|r<i, h) represents the 141

next token probability modeled by a language 142

model, and the second term P (c|r≤i, h) represents 143

the attribute probability of the generated response 144

obtained from the attribute classifier. In addition, 145

control strength λ is added to the exponential term 146

of the attribute probabilities to control attribute 147

bias. 148

When dealing with multi-attribute control, Equa- 149

tion 3 can be extended by introducing the product 150

of multiple attribute classifiers, assuming that the 151

attributes are conditionally independent: 152

P (ri|r<i, h, C) ∝ P (ri|r<i, h)
∏
cj∈C

P (cj |r≤i, h)
λ

(3) 153

where C denotes the set of target attributes. The 154

product of probabilities is typically implemented 155

as the sum of logits. 156

2.2 Weighted Decoding Models 157

FUDGE Yang and Klein, 2021 trained a clas- 158

sification model for partial sequences through an 159
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Figure 2: An illustration of controllable dialogue generation using the weighted decoding method.

external attribute classifier. Specifically, for each160

training example {(x, c)}, where x is sentence and161

c is class label, the classifier is trained on all partial162

sequences {(x1:i, c)} at each step. During infer-163

ence, at a given time step i, the classifier predicts164

the probability that appending the top k candidate165

tokens to the generated text will satisfy the attribute166

c in future generations.167

Director Arora et al., 2022 addressed the ineffi-168

ciency issue of requiring a external model during169

inference. It integrates the language model and170

attribute classification functionality into a single171

model, overcoming the inefficiency of the external172

classifier evaluating the attribute for every candi-173

date token. To address this issue, an additional174

classification head is introduced, which takes the175

last hidden state as input and computes the prob-176

ability that each token in the vocabulary satisfies177

the specified attribute. This allows for the effective178

incorporation of attribute information without the179

need for a external classifier.180

DASC Zhang et al., 2023 addressed the computa-181

tional inefficiency issues arising from dual-head ar-182

chitectures. DASC introduces Attribute Token Em-183

bedding and Attribute Semantic Embedding con-184

cepts, employing a semantic space-based weighted185

decoding mechanism to reduce the number of pa-186

rameters while improving computational efficiency.187

Each token is associated with an embedding that188

captures its attribute semantics, and these embed-189

dings are projected into an attribute semantic space190

via attribute-specific linear layers. This design fa-191

cilitates smooth control over multiple attributes and192

enables effective interpolation among attribute em-193

beddings, allowing more diverse range of attribute 194

combinations. 195

3 Methodology 196

3.1 Entropy-based Control Strength 197

The existing weighted decoding methods apply 198

a fixed control strength and they are not flexible 199

enough to handle situations where stronger or no 200

more control is needed. In such cases, they may 201

fail to control attribute, or even if they succeed, the 202

fluency and grammar may degraded. To solve this 203

problem, we propose the ECO decoding method 204

that utilizes the entropy of the probability distri- 205

bution to dynamically adjust the control strength. 206

Dynamic control strength allows to achieve higher 207

attribute control rates, while maintaining genera- 208

tion quality, including context and grammar. 209

Entropy is a measure of the uncertainty of a prob- 210

ability distribution, which is lower when the proba- 211

bility distribution is focused on a specific value and 212

higher when it is more evenly distributed. Given 213

this property, the higher the entropy of the next 214

token probability distribution is, the more likely it 215

is to contain a variety of plausible candidates. This 216

is an advantageous property for exploring plausible 217

options that satisfy desired attribute. Based on this 218

insight, a novel mechanism of dynamically control- 219

ling strength is developed by weighting probability 220

distributions from language models and it controls 221

each property inversely to their entropy score. That 222

is, distributions with lower uncertainty are more 223

strongly reflected. Figure 2 shows how ECO decod- 224

ing is working by using dynamic control strength 225

based on both of the language model entropy and 226
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Model Accuracy Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
Emotion

DialoGPT - 9.00 8.53 0.58 0.76 90.21
FUDGE 76.98 9.06 8.60 0.60 0.75 90.30
+ ECO decoding 81.03 (+4.05) 9.13 (+0.07) 8.64 (+0.04) 0.62 (+0.02) 0.75 (-) 90.34 (+0.04)

Director 79.94 8.83 8.37 0.59 0.70 90.23
+ ECO decoding 82.82 (+2.88) 8.82 (-0.01) 8.34 (-0.03) 0.59 (-) 0.71 (+0.01) 90.30 (+0.07)

DASC 74.65 8.25 7.87 0.58 0.70 90.30
+ ECO decoding 75.74 (+1.09) 8.22 (-0.03) 7.79 (-0.08) 0.58 (-) 0.71 (+0.01) 90.39 (+0.09)

Dialog-act
DialoGPT - 9.14 8.66 0.57 0.78 91.24
FUDGE 41.07 9.21 8.75 0.59 0.78 90.98
+ ECO decoding 46.42 (+5.35) 9.21 (-) 8.79 (+0.04) 0.62 (+0.03) 0.79 (+0.01) 91.00 (+0.02)

Director 70.96 10.43 9.94 0.62 0.78 91.18
+ ECO decoding 71.56 (+0.60) 10.46 (+0.03) 9.96 (+0.02) 0.63 (+0.01) 0.79 (+0.01) 91.15 (-0.03)

DASC 42.59 9.53 9.03 0.59 0.75 91.13
+ ECO decoding 47.17 (+4.58) 9.52 (-0.01) 9.05 (+0.02) 0.60 (+0.01) 0.76 (+0.01) 91.13 (-)

Table 1: Evaluation results for a single attribute of emotion or dialog-act on the DailyDialog test set. The scores in
brackets indicate the performance gap between static control and dynamic control settings.

the attribute entropy. ECO decoding can be ap-227

plied to the existing weighted decoding methods228

and requires no additional modules or training.229

Language Model Entropy Dynamic control230

strength αx,i is separately calculated for i-th gen-231

eration step, and it can have different values while232

a sentence is generated. To calculate control233

strength, we select the top-k candidate tokens.234

From the probability distribution Plm,i of the lan-235

guage model, we construct the set S, which con-236

sists of the k tokens with the highest probabilities.237

Let P ′
lm,i denote the partial probability distribution238

of top-k tokens in S.239

P ′
lm,i = {Plm(t|r<i, h)|t ∈ S} (4)240

To convert the partial probability distribution241

P ′
lm,i into a probability distribution, we recom-242

pute the probability distribution of the top-k tokens243

using a softmax function with temperature τlm.244

elm,i = Entropy(Softmax(P ′
lm,i/τlm)) (5)245

Attribute Entropy Weighted decoding method-246

ologies for CDG utilize attribute classifier Pc to247

reflect attributes. For each candidate token t in248

the top-k token set S, concatenates the current se-249

quence r<i with t and computes the probability250

Pc,i([r<i; t], h) which represents the probability of251

token t being part of the generated response while252

aligning with the target attribute to be controlled.253

The set P ′
c,i is the probabilities of the target at- 254

tribute for all candidate tokens in top-k token set S. 255

The attribute entropy ec,i is computed based on a 256

probability distribution normalized by softmax the 257

set of attribute probabilities P ′
c,i over τc, where τc 258

is the attribute temperature for softmax. 259

P ′
c,i = {Pc([r<i; t], h)|t ∈ S} (6) 260

ec,i = Entropy(Softmax(P ′
c,i/τc)) (7) 261

Entropy Based Control Strength To assign 262

higher weights to probability distributions with 263

higher entropy, we utilize a control strength for- 264

mula with an inverse function structure, as shown 265

in Equation 8. The control strength αx,i is applied 266

to both the language model probability distribution 267

Plm and the attribute probability distribution Pc. 268

The language model probability distribution and 269

the attribute probability distribution are reflected 270

by a power of their respective weight αx,i. The at- 271

tribute probability distribution additionally reflects 272

the strength scale factor λ. The value of λ allows 273

to adjust whether to focus more on attribute con- 274

trol or language modeling performance. The final 275

probability distribution for generating the next to- 276

ken P (ri|r<i, h, c) is computed by multiplying the 277

two weighted probability distributions as shown in 278

Equation 9. If each of the control strength alpha 279

values were fixed at 1, the same result would be 280
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Model Accuracy(Emo) Accuracy(Act) Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
DialoGPT - - 9.00 8.53 0.58 0.76 90.21
FUDGE 66.17 44.17 8.21 7.82 0.57 0.74 90.20
+ ECO decoding 66.41 (+0.24) 45.57 (+1.40) 8.20 (-0.01) 7.81 (-0.01) 0.58 (+0.01) 0.74 (-) 90.21 (+0.01)

Director 80.48 60.65 9.41 8.99 0.58 0.73 90.22
+ ECO decoding 81.18 (+0.7) 61.20 (+0.65) 9.49 (+0.08) 8.97 (-0.02) 0.58 (-) 0.74 (+0.01) 90.23 (+0.01)

DASC 75.19 51.17 8.22 7.67 0.60 0.77 90.05
+ ECO decoding 77.22 (+2.03) 54.12 (+2.95) 7.60 (-0.62) 7.15 (-0.52) 0.61 (+0.01) 0.78 (+0.01) 90.19 (+0.14)

Table 2: Evaluation results for multiple attributes setting on the DailyDialog test set. The scores in brackets indicate
the performance gap between static control and dynamic control settings.

obtained as with the traditional weighted decoding281

methodologies.282

αx,i = 1 + (
1

1 + ex,i
) (8)283

P (ri|r<i, h, c) ∝ Plm(ri|r<i, h)
αlm,i

× Pc(c|r≤i, h)
λ∗αc,i

(9)284

3.2 Multiple Attribute Control Strength285

Existing weighted decoding methodologies strug-286

gle to control multiple attributes simultaneously287

due to their fixed control strength. When using a288

fixed control strength for each attribute, the search289

space of attribute control strengths grows exponen-290

tially. Furthermore, even when control strength is291

applied, effectively incorporating more than two292

attributes remains a main challenge. In contrast,293

our proposed ECO-decoding method enables CDG294

to control generation by reformulating the final295

probability distribution based on multiple attributes.296

Dynamic control strength αx,i adjusts the weight297

of probability distributions at each generation step298

based on the entropy of the language model and the299

entropy of each attribute, allowing more flexible300

and adaptive multi-attribute control. When C is the301

set of controlling attributes, the multiple attribute302

control formula for ECO-decoding is as follows:303

P (ri|r<i, h, C) ∝ Plm(ri|r<i, h)
αlm,i

×
∏
cj∈C

Pcj (cj |r≤i, h)
λ∗αcj ,i (10)304

4 Experiments305

4.1 Datasets306

Daily Dialog (Li et al., 2017) is an English open-307

domain dialogue dataset with two controllable at-308

tributes: emotion and dialog-act. For dialogues,309

each utterance is regarded as the response, and all310

preceding utterances are used as the corresponding 311

dialogue history. For the dialog-act attribute, it con- 312

sists of training (75,957), validation (7,059), and 313

test (6,740) dialogues, and it is composed of four 314

classes (inform, question, directive, and commis- 315

sive). For the emotion attribute, experiments were 316

conducted with 6 classes (anger, disgust, fear, hap- 317

piness, sadness, and surprise), excluding the "no 318

emotion" attribute value. The dataset consisted of 319

training (13,681), validation (882), and test (1,286) 320

dialogues. 321

4.2 Experimental Settings 322

Language Model We use DialoGPT (Zhang 323

et al., 2020), pre-trained on a large-scale dialogue 324

corpus, as the baseline model. For most of our ex- 325

periments, the DialoGPT-small (176M) is used, but 326

the DialoGPT-large (1.1B) is used for comparison 327

across different sizes. In addition, we also use a 328

Llama2-7B (Touvron et al., 2023) to evaluate the 329

applicability of ECO decoding in LLM. 330

Weighted Decoding Methods We evaluate and 331

compare the performances of ECO decoding with 332

those of various controllable generation mod- 333

els with weighted decoding methods, including 334

FUDGE (Yang and Klein, 2021), Director (Arora 335

et al., 2022), and DASC (Zhang et al., 2023), and 336

all of them use DialoGPT as the backbone model 337

for comparison. 338

Implementation Details For the three weighted 339

decoding method, the language model is frozen and 340

each attribute classifier is trained on the training 341

dataset. FUDGE is trained for 30 epochs with a 342

batch size of 8 and a learning rate of 2e-5 for each 343

attribute. For the Director, each attribute is fine- 344

tuned for 20 epochs with a batch size of 32 and 345

a learning rate of 1e-5. For DASC, each attribute 346

is fine-tuned for 30 epochs with a batch size of 347

4 and a learning rate of 1e-5. All methods use 348
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Model Accuracy Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
Small Model (176M)

DialoGPT - 9.00 8.53 0.58 0.76 90.21
Director 79.94 8.83 8.37 0.59 0.70 90.23
+ ECO decoding 82.82 (+2.88) 8.82 (-0.01) 8.34 (-0.03) 0.59 (-) 0.71 (+0.01) 90.30 (+0.07)

Large Model(1.1B)
DialoGPT - 11.54 10.89 0.75 0.73 87.28
Director 75.66 11.76 11.15 0.74 0.73 87.18
+ ECO decoding 76.05 (+0.39) 11.82 (+0.06) 11.23 (+0.08) 0.74 (-) 0.73 (-) 87.25 (+0.07)

Large Language Model (7B)
Llama2 - 15.23 12.99 0.35 0.08 90.60
Director 75.43 15.95 13.74 0.35 0.80 90.51
+ ECO decoding 75.66 (+0.23) 15.88 (-0.07) 13.63 (-0.03) 0.35(-) 0.80 (-) 90.55 (+0.04)

Table 3: Evaluation results for attributes of emotion on the DailyDialog test set with various size of model. The
scores in brackets indicate the performance gap between static control and dynamic control settings.

Model Accuracy Interest Sensible
Emotion

Director 2.82 2.96 2.75
+ ECO decoding 3.19 (+0.37) 3.16 (+0.20) 3.15 (+0.40)

Dialog-act
Director 3.04 2.93 2.78
+ ECO decoding 3.42 (+0.38) 3.41 (+0.48) 3.36 (+0.58)

Table 4: Human Evaluation on DailyDailog test set
(single attribute)

greedy search (Li et al., 2016b), and the maximum349

sequence length is set to 128. All experiments are350

run on a single NVIDIA GeForce RTX 3090.351

4.3 Evaluation Metrics352

Automatic Evaluation To evaluate the controlla-353

bility, we train RoBERTa (Liu et al., 2019) based354

evaluators using the DailyDialog training data to355

estimate attribute accuracy. The two evaluators356

achieved accuracies of 89.66% and 80.60% on the357

test set for emotion and dialog-act, respectively.358

Note that the attribute evaluator is independent359

from the attribute classifier used in the weight de-360

coding model. For the generation quality, we use361

ROUGE-1 and ROUGE-L (Lin, 2004) scores to362

evaluate match scores between generated responses363

and ground-truth references. We evaluate the di-364

versity of generated responses using 1-gram and365

2-gram distinctness(Li et al., 2016a), referred to366

as Dist-1 and Dist-2. For grammar checking, We367

utilize the probability of grammaticality given by a368

RoBERTa-based CoLA grammaticality model (Liu369

et al., 2019; Warstadt et al., 2019; Morris et al.,370

2020).371

Human Evaluation Experiments on the Direc- 372

tor model, which showed the best performance in 373

emotion and dialog-act attributes, conducted hu- 374

man evaluation based on sampling 10 contexts for 375

each attribute value from the test set. We evaluate 376

our generated responses based on three aspects: (1) 377

Accuracy: Response is generated according to the 378

desired attribute. (2) Interest: Response is specific 379

and novel, and it can lead to more engaging con- 380

versation. (3) Sensible: Response is grammatically 381

correct and contextually coherent. We asked three 382

expert evaluators to rate each metric on a scale of 1 383

to 5, with higher scores being better. 384

4.4 Experimental Results 385

Single Attribute Control Table 1 presents the 386

results of evaluation on how effectively the pro- 387

posed ECO decoding, which leverages dynamic 388

weighting, enhances the controllability of dialogue 389

generation models while maintaining fluency. We 390

first determine a baseline grammar score using out- 391

puts generated by the Backbone Model without 392

any attribute control. For each controllable gener- 393

ation model (FUDGE, Director, and DASC), we 394

then search for the optimal control strength λ that 395

achieves a grammar score comparable to this base- 396

line. Based on the selected λ, we evaluate Accu- 397

racy, Dist, and ROUGE. 398

The results indicate that applying ECO decod- 399

ing consistently improves the accuracy for emotion 400

and dialog-act attributes, outperforming methods 401

that rely on static control strengths. Notably, un- 402

like existing decoding approaches, ECO decoding 403

achieves these improvements without degrading 404

the grammar score. Moreover, while maintaining a 405
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grammar score close to the baseline, ECO decod-406

ing preserves or even slightly improves the Dist407

and ROUGE metrics. The experimental results408

demonstrate that ECO decoding leverages dynamic409

weighting to more actively reflect specific attributes410

in the generated responses while simultaneously411

maintaining grammatical fluency and overall re-412

sponse quality.413

Multi Attribute Control Multi attribute control414

typically involves combining attribute probabilities415

via multiplication. Consequently, when interpolat-416

ing across multiple distributions (Lin and Riedl,417

2021; Kumar et al., 2021), differences in scale418

and calibration can make it difficult to maintain a419

proper balance, often leading to a decline in overall420

controllability compared to single-attribute control.421

In Table 2, multi attribute control for the Emo-422

tion attribute achieves grammar performance on423

par with single-attribute control, yet exhibits a de-424

crease in overall controllability. Conversely, multi-425

attribute control for the Dialo-act attribute appears426

to yield higher controllability relative to single at-427

tribute control. However, this does not necessarily428

indicate an actual improvement in controllability;429

rather, it likely reflects the selection of a relatively430

lower grammar score baseline due to differences in431

the experimental data.432

Compared to methods using a fixed control433

strength, experimental results show that applying434

ECO decoding can alleviate the interpolation prob-435

lem, thereby improving controllability for both436

Emotion and Dialo-act attributes. Furthermore,437

similar to single-attribute control, experimental re-438

sults demonstrate that dynamic weighting helps439

consistently maintain and enhance grammatical flu-440

ency and overall response quality in multi-attribute441

generation.442

Language Model Scaling Table 3 shows the re-443

sults of evaluating the performance of the Director444

method and ECO decoding on models of different445

sizes.The results show that in all cases, from the446

smallest 176M model to the 7B model, the ECO447

method achieves higher grammar scores while448

maintaining good control over attributes. This sug-449

gests that applying ECO decoding to traditional450

weighted decoding methods can achieve better per-451

formance regardless of model size.452

Human Evaluation Table 4 presents the human453

evaluation results. Similar to the automatic eval-454

uation results, the ECO decoding approach con-455

Figure 3: The single attribute control performance of
the existing weighted decoding method (red) and ECO
decoding (green) with respect to changes in the control
strength λ. The y-axis represents grammar, and the x-
axis represents accuracy. The blue dot line represents
uncontrolled dialogpt’s grammar score.

Figure 4: The multi attribute control performance of
the existing weighted decoding method (red) and ECO
decoding (green) with respect to changes in the control
strength λ. The y-axis represents grammar, and the x-
axis represents accuracy. The blue dot line represents
uncontrolled dialogpt’s grammar score.

sistently outperformed traditional methods in gen- 456

erating consistent and controlled responses. For 457

both emotion and dailog-act, accuracy increased by 458

at least 12.5%, and for sensible, performance im- 459

proved by more than 14%. In addition, evaluation 460

of interest metrics confirmed that when ECO de- 461

coding is applied to traditional weighted decoding 462

methods, it can generate engaging responses that 463

drive conversations. 464

Robustness Test The control strength coefficient 465

lambda determines the proportion of weights in the 466

probability distribution of the attribute classifier. 467
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Therefore, a larger lambda will tend to generate468

tokens that are more attribute-specific, resulting469

in a trade-off between increased attribute accuracy470

and decreased grammar score.471

Figure 3 shows the results of applying tradi-472

tional weighted decoding methodology and ECO-473

decoding for varying the control strength coeffi-474

cient lambda in a single attribute control setting.475

The experiments were conducted based on the Di-476

rector and DASC method for two attributes, emo-477

tion and dialog-act, and the red line is for the Di-478

rector and DASC. The green line is for the appli-479

cation of ECO decoding with each method and the480

blue bashed line is the grammar score of vanila Di-481

aloGPT without attribute control according to each482

dataset. In all experiments, we observed a trade-483

off between grammar and accuracy, and showed484

that for the same grammar score, ECO decoding485

achieves higher attribute accuracy by dynamically486

applying weights. In other words, for the same con-487

trol degree, ECO decoding produces higher quality488

responses. This demonstrates that our approach489

has a strong capability in controllable generation to490

maintain fluency while enhancing controllability,491

regardless of the λ values.492

Figure 4 shows the performance by lambda in493

the multi attribute control setting. The results are494

the same for multi attribute as for single, with ECO495

decoding for each methodology resulting in higher496

controllability and grammar scores. The interest-497

ing thing is that the Director model is not a struc-498

tured model for multi attribute control, and because499

of this, there is some performance variation by500

lambda.501

In almost all cases using the dialoGPT-small502

model, we observed a trend of grammar score in-503

crease and then decrease as the lambda value in-504

creases. Due to the increase in grammaticality at505

low λ ranges, some experimental results showed506

higher grammar score with attribute control than507

dialoGPT without attribute control. This was not508

observed when using larger models such as Llama2,509

which could be thought of as a slight inconsistency510

in the performance of small language models. For511

fairness, all experimental results measured gram-512

mar score and attribute accuracy after the lambda513

value where the trade-off occurs.514

5 Conclusions515

In this paper, we introduce an entropy-based dy-516

namic control strength approach, ECO decoding,517

to overcome the limitation of static control strength 518

in the previous weighted decoding methods. ECO 519

decoding can be easily adapted to any weighted 520

decoding methodology, and the advantage is that 521

no additional training is required for ECO decod- 522

ing. Our approach enables the generation of re- 523

sponses with enhanced controllability while main- 524

taining fluency, and extends to a wide variety of 525

multi-attribute environments. Both automated and 526

human evaluations have shown that ECO decod- 527

ing performs consistently well when applied across 528

a range of controllable generation methods, and 529

has been shown to perform well enough on large 530

models such as Llama2-7B. 531

Limitations 532

Our method improves control performance while 533

maintaining fluency using entropy-based control 534

strength in single attribute conditions. However, 535

we need to validate the effectiveness of the pro- 536

posed method in multi-attribute conditions. In a 537

multi-attribute setting, it is necessary to consider 538

not only the uncertainty of the language model’s 539

generation probabilities but also the degree of influ- 540

ence of each attribute’s probability in adjusting the 541

control strength. These topics should be addressed 542

as future work. 543

Ethics Statement 544

The proposed method aims to enhance the interest 545

and accuracy of responses generated by chatbots 546

to improve user experience. However, this method 547

could be potentially used for malicious purposes. 548

In our experiments, we focus on attributes like 549

emotion and dialog-act, but if malicious desired 550

attributes such as bias are used, the model could be 551

induced to generate inappropriate responses. There- 552

fore, generating controlled responses using mali- 553

cious attributes should be restricted. 554
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