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Abstract

Controllable Dialogue Generation (CDG) en-
ables chatbots to generate responses with de-
sired attributes, and weighted decoding meth-
ods have achieved significant success in the
CDG task. However, using a fixed constant
value to manage the bias of attribute proba-
bilities makes it challenging to find an ideal
control strength that satisfies both control-
lability and fluency. To address this issue,
we propose a novel dynamic control strength
method that considers the uncertainty of the
model’s generation and classification probabil-
ities. Specifically, we dynamically adjust the
control strength at each generation step based
on the entropy of the language model’s next
token probabilities and the entropy of the at-
tribute classifier’s probability estimates. Ex-
perimental results on various existing models
demonstrate that our decoding method achieves
high control performance while maintaining flu-
ency compared to existing decoding strategies
across all models. Additionally, our approach
alleviates the probability interpolation issue in
multi-attribute controlled generation, yielding
superior performance.

1 Introduction

Recently, Controllable Dialogue Generation (CDG)
(Zhang et al., 2023; Zeng et al., 2023) has been
proposed to enhance the realism and accuracy of
responses generated by conversational models, im-
proving the user experience. CDG enables chatbots
to generate responses tailored to desired attributes
like emotion and dialog-act. Among studies on con-
trollable generation, weighted decoding methods
(Yang and Klein, 2021; Arora et al., 2022) have
achieved significant success.

In the field of controllable generation, training-
based methods such as alignment tuning and
weighted decoding approaches (Yang and Klein,
2021; Arora et al., 2022) have achieved notable
success. While alignment tuning suffers from the
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Figure 1: Controllable Dialog Generation method based
on dynamic weighting with Eco Decoding. By dynam-
ically determining the weights between the language
model probability distribution and the attribute con-
trol probability distribution, it is possible to perform
attribute control while maintaining fluency.

disadvantage of requiring the entire model to be
retrained, weighted decoding can be easily applied
during the inference stage and enables the genera-
tion of controlled responses by training an attribute
classifier with relatively little data. Consequently,
we focused on this weighted decoding strategy to
effectively generate controllable responses.

In weight decoding methods, generating re-
sponses controlled by desired attributes involves
the adjustment of the next token probability dis-
tribution modeled by the language model. This is
achieved by multiplying the attribute probability of
the generated response obtained from the attribute
classifier and the next token probability. In this pro-
cess, the control strength is used as the exponent
of the attribute probability to control attribute bias.
As the control strength increases, the generated to-
kens become more dependent on the token rank of
attribute probability.

Multiplying the attribute probability alters the
probability distribution of the language model,
which can affect language modeling performance.
When static control strength is used, the same con-
trol probability is continuously reflected in the gen-
erated sentence, even if the sentence has already



received sufficient attribute control or if specific
words need to be generated for fluency. This can
lead to a trade-off between controllability and flu-
ency. Furthermore, the fact that the appropriate con-
trol strength varies depending on the situation is an
important issue. If this is not properly accounted
for, it can lead to decreased efficiency. Figure 1
shows an example of a failed response generation
with these fixed static control strength.

In this paper, we propose the Entropy-based
COntrol strength decoding method, named ECO
decoding, to resolve the aforementioned problem
with static control strength. Our method can gener-
ate controlled responses that achieve high control-
lability as well as maintain text fluency. During the
decoding process, the entropy (Shannon, 2001) of
each probability distribution from language model
and the attribute classification model is calculated
at every generation step, and calculated entropy
is used as a dynamic factor to adjust the control
strength on the response probabilities at each gen-
eration step.

Specifically, with respect to the language
model’s probability distribution, if a particular to-
ken is assigned a high probability, which implies
low entropy, it is considered contextually and syn-
tactically appropriate. To maintain fluency, the
language model’s prediction is given priority. In
contrast, when token probabilities are uniformly
distributed, implying high entropy, the model is
considered less confident, and to achieve a higher
degree of control, the bias toward the attribute prob-
abilities is increased.

This dynamic control method effectively bal-
ances the language model’s fluency with the at-
tribute classifier’s controllability, thereby achieving
an optimal trade-off between naturalness and the
desired attribute expression in the final generated
sentences. To validate our intuition, we experiment
with three existing controllable generation models
using the DailyDialog (Li et al., 2017) dataset. Ex-
perimental results demonstrate that ECO decoding
achieves high controllability while maintaining text
fluency across all models.

Our main contributions are as follows:

1. We raise the issue of static control strength
in existing weighted decoding methods and
propose a dynamic control strength approach
to generate responses with high controllability
as well as maintain fluency.

2. We show that the ECO decoding methodol-

ogy enables multi attribute control over single
attribute based weighted decoding methodolo-
gies.

3. Experimental results show that the ECO
decoding method outperforms the existing
weighted decoding methods for all existing
controllable generation models.

2 Related Work
2.1 Weighted Decoding

Controllable dialogue generation aims to gener-
ate a response, R = {ry, 7o, ..., N}, with desired
attributes, given dialogue history h and attribute
¢, using a pre-trained auto-regressive model (e.g.
GPT2, (Radford et al., 2019), DialoGPT (Zhang
et al., 2020)). Emotion and dialog-act can be at-
tributes for controllable dialogue generation.

To condition on attribute c, the response genera-
tion given a dialogue can be formulated as follows:

N
P(R|h,c) = [[ P(rilr<i, b, ) (1)
i=1
Using Bayesian factorization, P(r;|r<;, h,c) can
be converted into the following equation.

P(ri|r<i, h,c) o< P(rilr<i, h)P(c|r<;, h)’\ 2)

where the first term P(r;|r<;, h) represents the
next token probability modeled by a language
model, and the second term P(c|r<;, h) represents
the attribute probability of the generated response
obtained from the attribute classifier. In addition,
control strength X is added to the exponential term
of the attribute probabilities to control attribute
bias.

When dealing with multi-attribute control, Equa-
tion 3 can be extended by introducing the product
of multiple attribute classifiers, assuming that the
attributes are conditionally independent:

P(rilr<i b, C) o P(rilr<i,h) T Plejlr<i, h)?
c;jeC
3)
where C' denotes the set of target attributes. The
product of probabilities is typically implemented
as the sum of logits.

2.2 Weighted Decoding Models

FUDGE Yang and Klein, 2021 trained a clas-
sification model for partial sequences through an
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Figure 2: An illustration of controllable dialogue generation using the weighted decoding method.

external attribute classifier. Specifically, for each
training example {(x, ¢)}, where z is sentence and
c is class label, the classifier is trained on all partial
sequences {(x1.,c)} at each step. During infer-
ence, at a given time step i, the classifier predicts
the probability that appending the top k candidate
tokens to the generated text will satisfy the attribute
c in future generations.

Director Arora et al., 2022 addressed the ineffi-
ciency issue of requiring a external model during
inference. It integrates the language model and
attribute classification functionality into a single
model, overcoming the inefficiency of the external
classifier evaluating the attribute for every candi-
date token. To address this issue, an additional
classification head is introduced, which takes the
last hidden state as input and computes the prob-
ability that each token in the vocabulary satisfies
the specified attribute. This allows for the effective
incorporation of attribute information without the
need for a external classifier.

DASC Zhang et al., 2023 addressed the computa-
tional inefficiency issues arising from dual-head ar-
chitectures. DASC introduces Attribute Token Em-
bedding and Attribute Semantic Embedding con-
cepts, employing a semantic space-based weighted
decoding mechanism to reduce the number of pa-
rameters while improving computational efficiency.
Each token is associated with an embedding that
captures its attribute semantics, and these embed-
dings are projected into an attribute semantic space
via attribute-specific linear layers. This design fa-
cilitates smooth control over multiple attributes and
enables effective interpolation among attribute em-

beddings, allowing more diverse range of attribute
combinations.

3 Methodology

3.1 Entropy-based Control Strength

The existing weighted decoding methods apply
a fixed control strength and they are not flexible
enough to handle situations where stronger or no
more control is needed. In such cases, they may
fail to control attribute, or even if they succeed, the
fluency and grammar may degraded. To solve this
problem, we propose the ECO decoding method
that utilizes the entropy of the probability distri-
bution to dynamically adjust the control strength.
Dynamic control strength allows to achieve higher
attribute control rates, while maintaining genera-
tion quality, including context and grammar.
Entropy is a measure of the uncertainty of a prob-
ability distribution, which is lower when the proba-
bility distribution is focused on a specific value and
higher when it is more evenly distributed. Given
this property, the higher the entropy of the next
token probability distribution is, the more likely it
is to contain a variety of plausible candidates. This
is an advantageous property for exploring plausible
options that satisfy desired attribute. Based on this
insight, a novel mechanism of dynamically control-
ling strength is developed by weighting probability
distributions from language models and it controls
each property inversely to their entropy score. That
is, distributions with lower uncertainty are more
strongly reflected. Figure 2 shows how ECO decod-
ing is working by using dynamic control strength
based on both of the language model entropy and



Model Accuracy Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
Emotion
DialoGPT - 9.00 8.53 0.58 0.76 90.21
FUDGE 76.98 9.06 8.60 0.60 0.75 90.30
+ ECO decoding  81.03 +405)  9.13 007 8.64 004y 0.62 002  0.75 ¢ 90.34 (+0.04)
Director 79.94 8.83 8.37 0.59 0.70 90.23
+ ECO decoding  82.82 (+28%)  8.82 (-0.01) 8.34 003y  0.59 ¢ 0.71 o001 90.30 (+0.07)
DASC 74.65 8.25 7.87 0.58 0.70 90.30
+ ECO decoding  75.74 +1.09)  8.22 003y  7.79 008y 0.58 ¢ 0.71 001 90.39 (+0.09)
Dialog-act

DialoGPT - 9.14 8.66 0.57 0.78 91.24
FUDGE 41.07 9.21 8.75 0.59 0.78 90.98
+ ECO decoding 46.42 (+535 9.21 ¢ 8.79 004 0.62 003  0.79 00 91.00 (+0.02)
Director 70.96 10.43 9.94 0.62 0.78 91.18
+ ECO decoding  71.56 (+0.60) 10.46 +0.03) 9.96 002y  0.63 oony  0.79 oon  91.15 0.03)
DASC 42.59 9.53 9.03 0.59 0.75 91.13
+ ECO decoding  47.17 +458)  9.52 coony  9.05 002y 0.60 o001y  0.76 o001y  91.13 ¢

Table 1: Evaluation results for a single attribute of emotion or dialog-act on the DailyDialog test set. The scores in
brackets indicate the performance gap between static control and dynamic control settings.

the attribute entropy. ECO decoding can be ap-
plied to the existing weighted decoding methods
and requires no additional modules or training.

Language Model Entropy Dynamic control
strength o, ; is separately calculated for ¢-th gen-
eration step, and it can have different values while
a sentence is generated. To calculate control
strength, we select the top-k candidate tokens.
From the probability distribution P, ; of the lan-
guage model, we construct the set .S, which con-
sists of the k tokens with the highest probabilities.
Let P, ; denote the partial probability distribution

1

of top-k tokens in .S.
Plimi = {Pim(tlr<i, D[t € S} )

To convert the partial probability distribution
P’ Im,i 1nto a probability distribution, we recom-
pute the probability distribution of the top-k tokens
using a softmax function with temperature 7;,,,.

eim,i = Entropy(Softmaz(P im.i/Tim)) (5)

Attribute Entropy Weighted decoding method-
ologies for CDG utilize attribute classifier P, to
reflect attributes. For each candidate token ¢ in
the top-k token set S, concatenates the current se-
quence r.; with ¢ and computes the probability
P, i([r<i;t], h) which represents the probability of
token ¢ being part of the generated response while
aligning with the target attribute to be controlled.

The set P’.; is the probabilities of the target at-
tribute for all candidate tokens in top-k token set .S.
The attribute entropy e.; is computed based on a
probability distribution normalized by softmax the
set of attribute probabilities P’ c,i over 7., where 7.
is the attribute temperature for softmax.

Plc,i = {Pc([’l“<i;t],h)’t c S} (6)

€ci = Entropy(Softmax(P’c’i/TC)) @)

Entropy Based Control Strength To assign
higher weights to probability distributions with
higher entropy, we utilize a control strength for-
mula with an inverse function structure, as shown
in Equation 8. The control strength o, ; is applied
to both the language model probability distribution
Py, and the attribute probability distribution F..
The language model probability distribution and
the attribute probability distribution are reflected
by a power of their respective weight o, ;. The at-
tribute probability distribution additionally reflects
the strength scale factor A. The value of A allows
to adjust whether to focus more on attribute con-
trol or language modeling performance. The final
probability distribution for generating the next to-
ken P(r;|r<;, h,c) is computed by multiplying the
two weighted probability distributions as shown in
Equation 9. If each of the control strength alpha
values were fixed at 1, the same result would be



Model Accuracy(Emo) Accuracy(Act) Rouge-1 Rouge-L Dist-1 Dist-2 Grammar
DialoGPT - - 9.00 8.53 0.58 0.76 90.21
FUDGE 66.17 44,17 8.21 7.82 0.57 0.74 90.20
+ ECO decoding  66.41 (+0.24) 45.57 (+1.40) 8.20 001y  7.81 coony 0.58 woon  0.74 ¢ 90.21 +0.01)
Director 80.48 60.65 9.41 8.99 0.58 0.73 90.22
+ ECO decoding  81.18 0.7 61.20 (+0.65) 9.49 +008) 8.97 002y 0.58 (» 0.74 o001 90.23 +0.01)
DASC 75.19 51.17 8.22 7.67 0.60 0.77 90.05
+ ECO decoding  77.22 203 54.12 (+2.95) 7.60 062y 7.15 052 0.61 ooy 0.78 001y  90.19 +0.14)

Table 2: Evaluation results for multiple attributes setting on the DailyDialog test set. The scores in brackets indicate
the performance gap between static control and dynamic control settings.

obtained as with the traditional weighted decoding
methodologies.

1
ami:1+(

’ 1+ ew-) ®

P(ri|r<i, h,c) o< Py (ri|r<g, h)*mi

X PC(C‘TSZ', h))‘*ac’i

()]

3.2 Multiple Attribute Control Strength

Existing weighted decoding methodologies strug-
gle to control multiple attributes simultaneously
due to their fixed control strength. When using a
fixed control strength for each attribute, the search
space of attribute control strengths grows exponen-
tially. Furthermore, even when control strength is
applied, effectively incorporating more than two
attributes remains a main challenge. In contrast,
our proposed ECO-decoding method enables CDG
to control generation by reformulating the final
probability distribution based on multiple attributes.
Dynamic control strength « ; adjusts the weight
of probability distributions at each generation step
based on the entropy of the language model and the
entropy of each attribute, allowing more flexible
and adaptive multi-attribute control. When C'is the
set of controlling attributes, the multiple attribute
control formula for ECO-decoding is as follows:

P(ri|r<i,h,C) < Py (ri|r<i, h)*tm?
< TT Py el

Cj eC

(10)

4 Experiments

4.1 Datasets

Daily Dialog (Li et al., 2017) is an English open-
domain dialogue dataset with two controllable at-
tributes: emotion and dialog-act. For dialogues,
each utterance is regarded as the response, and all

preceding utterances are used as the corresponding
dialogue history. For the dialog-act attribute, it con-
sists of training (75,957), validation (7,059), and
test (6,740) dialogues, and it is composed of four
classes (inform, question, directive, and commis-
sive). For the emotion attribute, experiments were
conducted with 6 classes (anger, disgust, fear, hap-
piness, sadness, and surprise), excluding the "no
emotion" attribute value. The dataset consisted of
training (13,681), validation (882), and test (1,286)
dialogues.

4.2 Experimental Settings

Language Model We use DialoGPT (Zhang
et al., 2020), pre-trained on a large-scale dialogue
corpus, as the baseline model. For most of our ex-
periments, the DialoGPT-small (176M) is used, but
the DialoGPT-large (1.1B) is used for comparison
across different sizes. In addition, we also use a
Llama2-7B (Touvron et al., 2023) to evaluate the
applicability of ECO decoding in LLM.

Weighted Decoding Methods We evaluate and
compare the performances of ECO decoding with
those of various controllable generation mod-
els with weighted decoding methods, including
FUDGE (Yang and Klein, 2021), Director (Arora
et al., 2022), and DASC (Zhang et al., 2023), and
all of them use DialoGPT as the backbone model
for comparison.

Implementation Details For the three weighted
decoding method, the language model is frozen and
each attribute classifier is trained on the training
dataset. FUDGE is trained for 30 epochs with a
batch size of 8 and a learning rate of 2e-5 for each
attribute. For the Director, each attribute is fine-
tuned for 20 epochs with a batch size of 32 and
a learning rate of le-5. For DASC, each attribute
is fine-tuned for 30 epochs with a batch size of
4 and a learning rate of le-5. All methods use



Model Accuracy Rouge-1 Rouge-L.  Dist-1 Dist-2 Grammar
Small Model (176M)
DialoGPT - 9.00 8.53 0.58 0.76 90.21
Director 79.94 8.83 8.37 0.59 0.70 90.23
+ ECO decoding  82.82 (+283) 8.82 (-0.01) 8.34 003 059 0.71 woon  90.30 +0.07)
Large Model(1.1B)
DialoGPT - 11.54 10.89 0.75 0.73 87.28
Director 75.66 11.76 11.15 0.74 0.73 87.18
+ ECO decoding  76.05 +039) 11.82 006) 11.23 008y 0.74 ¢ 0.73 ¢ 87.25 +0.07)
Large Language Model (7B)

Llama2 - 15.23 12.99 0.35 0.08 90.60
Director 75.43 15.95 13.74 0.35 0.80 90.51
+ ECO decoding 75.66 +0.23 15.88 0.0 13.63 003y 0.35¢0 0.80 ) 90.55 +0.04)

Table 3: Evaluation results for attributes of emotion on the DailyDialog test set with various size of model. The
scores in brackets indicate the performance gap between static control and dynamic control settings.

Model Accuracy Interest Sensible
Emotion
Director 2.82 2.96 2.75
+ ECO decoding  3.19 (+0.37)  3.16 (+0.20) 3.15 (+0.40)
Dialog-act
Director 3.04 2.93 2.78
+ ECO decoding 3.42 (+0.38) 3.41(+0.48) 3.36 (+0.58)

Table 4: Human Evaluation on DailyDailog test set
(single attribute)

greedy search (Li et al., 2016b), and the maximum
sequence length is set to 128. All experiments are
run on a single NVIDIA GeForce RTX 3090.

4.3 Evaluation Metrics

Automatic Evaluation To evaluate the controlla-
bility, we train ROBERTa (Liu et al., 2019) based
evaluators using the DailyDialog training data to
estimate attribute accuracy. The two evaluators
achieved accuracies of 89.66% and 80.60% on the
test set for emotion and dialog-act, respectively.
Note that the attribute evaluator is independent
from the attribute classifier used in the weight de-
coding model. For the generation quality, we use
ROUGE-1 and ROUGE-L (Lin, 2004) scores to
evaluate match scores between generated responses
and ground-truth references. We evaluate the di-
versity of generated responses using 1-gram and
2-gram distinctness(Li et al., 2016a), referred to
as Dist-1 and Dist-2. For grammar checking, We
utilize the probability of grammaticality given by a
RoBERTa-based CoLLA grammaticality model (Liu
et al., 2019; Warstadt et al., 2019; Morris et al.,
2020).

Human Evaluation Experiments on the Direc-
tor model, which showed the best performance in
emotion and dialog-act attributes, conducted hu-
man evaluation based on sampling 10 contexts for
each attribute value from the test set. We evaluate
our generated responses based on three aspects: (1)
Accuracy: Response is generated according to the
desired attribute. (2) Interest: Response is specific
and novel, and it can lead to more engaging con-
versation. (3) Sensible: Response is grammatically
correct and contextually coherent. We asked three
expert evaluators to rate each metric on a scale of 1
to 5, with higher scores being better.

4.4 Experimental Results

Single Attribute Control Table 1 presents the
results of evaluation on how effectively the pro-
posed ECO decoding, which leverages dynamic
weighting, enhances the controllability of dialogue
generation models while maintaining fluency. We
first determine a baseline grammar score using out-
puts generated by the Backbone Model without
any attribute control. For each controllable gener-
ation model (FUDGE, Director, and DASC), we
then search for the optimal control strength A that
achieves a grammar score comparable to this base-
line. Based on the selected A\, we evaluate Accu-
racy, Dist, and ROUGE.

The results indicate that applying ECO decod-
ing consistently improves the accuracy for emotion
and dialog-act attributes, outperforming methods
that rely on static control strengths. Notably, un-
like existing decoding approaches, ECO decoding
achieves these improvements without degrading
the grammar score. Moreover, while maintaining a



grammar score close to the baseline, ECO decod-
ing preserves or even slightly improves the Dist
and ROUGE metrics. The experimental results
demonstrate that ECO decoding leverages dynamic
weighting to more actively reflect specific attributes
in the generated responses while simultaneously
maintaining grammatical fluency and overall re-
sponse quality.

Multi Attribute Control Multi attribute control
typically involves combining attribute probabilities
via multiplication. Consequently, when interpolat-
ing across multiple distributions (Lin and Riedl,
2021; Kumar et al., 2021), differences in scale
and calibration can make it difficult to maintain a
proper balance, often leading to a decline in overall
controllability compared to single-attribute control.

In Table 2, multi attribute control for the Emo-
tion attribute achieves grammar performance on
par with single-attribute control, yet exhibits a de-
crease in overall controllability. Conversely, multi-
attribute control for the Dialo-act attribute appears
to yield higher controllability relative to single at-
tribute control. However, this does not necessarily
indicate an actual improvement in controllability;
rather, it likely reflects the selection of a relatively
lower grammar score baseline due to differences in
the experimental data.

Compared to methods using a fixed control
strength, experimental results show that applying
ECO decoding can alleviate the interpolation prob-
lem, thereby improving controllability for both
Emotion and Dialo-act attributes. Furthermore,
similar to single-attribute control, experimental re-
sults demonstrate that dynamic weighting helps
consistently maintain and enhance grammatical flu-
ency and overall response quality in multi-attribute
generation.

Language Model Scaling Table 3 shows the re-
sults of evaluating the performance of the Director
method and ECO decoding on models of different
sizes.The results show that in all cases, from the
smallest 176M model to the 7B model, the ECO
method achieves higher grammar scores while
maintaining good control over attributes. This sug-
gests that applying ECO decoding to traditional
weighted decoding methods can achieve better per-
formance regardless of model size.

Human Evaluation Table 4 presents the human
evaluation results. Similar to the automatic eval-
uation results, the ECO decoding approach con-
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Figure 3: The single attribute control performance of
the existing weighted decoding method (red) and ECO
decoding (green) with respect to changes in the control
strength A. The y-axis represents grammar, and the x-
axis represents accuracy. The blue dot line represents
uncontrolled dialogpt’s grammar score.
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sistently outperformed traditional methods in gen-
erating consistent and controlled responses. For
both emotion and dailog-act, accuracy increased by
at least 12.5%, and for sensible, performance im-
proved by more than 14%. In addition, evaluation
of interest metrics confirmed that when ECO de-
coding is applied to traditional weighted decoding
methods, it can generate engaging responses that
drive conversations.

Robustness Test The control strength coefficient
lambda determines the proportion of weights in the
probability distribution of the attribute classifier.



Therefore, a larger lambda will tend to generate
tokens that are more attribute-specific, resulting
in a trade-off between increased attribute accuracy
and decreased grammar score.

Figure 3 shows the results of applying tradi-
tional weighted decoding methodology and ECO-
decoding for varying the control strength coeffi-
cient lambda in a single attribute control setting.
The experiments were conducted based on the Di-
rector and DASC method for two attributes, emo-
tion and dialog-act, and the red line is for the Di-
rector and DASC. The green line is for the appli-
cation of ECO decoding with each method and the
blue bashed line is the grammar score of vanila Di-
aloGPT without attribute control according to each
dataset. In all experiments, we observed a trade-
off between grammar and accuracy, and showed
that for the same grammar score, ECO decoding
achieves higher attribute accuracy by dynamically
applying weights. In other words, for the same con-
trol degree, ECO decoding produces higher quality
responses. This demonstrates that our approach
has a strong capability in controllable generation to
maintain fluency while enhancing controllability,
regardless of the A values.

Figure 4 shows the performance by lambda in
the multi attribute control setting. The results are
the same for multi attribute as for single, with ECO
decoding for each methodology resulting in higher
controllability and grammar scores. The interest-
ing thing is that the Director model is not a struc-
tured model for multi attribute control, and because
of this, there is some performance variation by
lambda.

In almost all cases using the dialoGPT-small
model, we observed a trend of grammar score in-
crease and then decrease as the lambda value in-
creases. Due to the increase in grammaticality at
low A ranges, some experimental results showed
higher grammar score with attribute control than
dialoGPT without attribute control. This was not
observed when using larger models such as Llama2,
which could be thought of as a slight inconsistency
in the performance of small language models. For
fairness, all experimental results measured gram-
mar score and attribute accuracy after the lambda
value where the trade-off occurs.

5 Conclusions

In this paper, we introduce an entropy-based dy-
namic control strength approach, ECO decoding,

to overcome the limitation of static control strength
in the previous weighted decoding methods. ECO
decoding can be easily adapted to any weighted
decoding methodology, and the advantage is that
no additional training is required for ECO decod-
ing. Our approach enables the generation of re-
sponses with enhanced controllability while main-
taining fluency, and extends to a wide variety of
multi-attribute environments. Both automated and
human evaluations have shown that ECO decod-
ing performs consistently well when applied across
a range of controllable generation methods, and
has been shown to perform well enough on large
models such as Llama2-7B.

Limitations

Our method improves control performance while
maintaining fluency using entropy-based control
strength in single attribute conditions. However,
we need to validate the effectiveness of the pro-
posed method in multi-attribute conditions. In a
multi-attribute setting, it is necessary to consider
not only the uncertainty of the language model’s
generation probabilities but also the degree of influ-
ence of each attribute’s probability in adjusting the
control strength. These topics should be addressed
as future work.

Ethics Statement

The proposed method aims to enhance the interest
and accuracy of responses generated by chatbots
to improve user experience. However, this method
could be potentially used for malicious purposes.
In our experiments, we focus on attributes like
emotion and dialog-act, but if malicious desired
attributes such as bias are used, the model could be
induced to generate inappropriate responses. There-
fore, generating controlled responses using mali-
cious attributes should be restricted.
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A Cases of ECO decoding

Dialogue history

A Let's program your courses. Since you have had English literature,
you should take American literature and American prose and fiction. You
transcript indicate that your English background is strong, so | don’t think
you have any problem with it.

B : How many credits for each course?

A : Three, you also should take two three-credit-course in education
department.

Response generation

Desired attribute : Commissive

Director

| B : three credits... You're gonna have to take two thirds of course. . . I

+ ECO decoding

| B : Thanks, I'll take that course. l

Figure 5: In case where the response fails to satisfy the
desired attribute with the existing method but satisfies
the desired attribute using ECO decoding.

Dialogue history

A: | want something sweet after dinner.

B : What do you have in mind?

Response generation

Desired attribute : Inform

Director

| A: I'm not sure what | want in return.

+ ECO decoding

| A I'm going to eat a whole box of cereal.

Figure 6: In case where it fails to generate a context-
consistent response with the existing method but gener-
ates a context-consistent response using ECO decoding.

B Licenses

The DailyDialog dataset is licensed under CC
BY-NC-SA 4.0 License. The DialoGPT model
is licensed under Contributor License Agreement
(CLA) and Llama2 model is licensed under Meta
Llama 2 Community License Agreement. The
RoBERTa-based CoLLA grammaticality model is
licenced under MIT License.
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