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Abstract

While tokenization is a key step in language mod-
eling, with effects on model training and perfor-
mance, it remains unclear how to effectively eval-
uate tokenizer quality. One proposed dimension
of tokenizer quality is the extent to which tok-
enizers preserve linguistically meaningful sub-
words, aligning token boundaries with morpho-
logical boundaries within a word. Here, we ex-
pand on previous work and develop datasets for
86 languages, which can be used to study tok-
enizer quality crosslinguistically. We also develop
a new evaluation framework, addressing limita-
tions of previous evaluations and providing flexi-
ble evaluation for 71 of those languages. We then
correlate out alignment scores with downstream
task performance for five pre-trained languages
models on seven tasks, with at least one task in
each of the languages in our sample. We find that
morphological alignment does not explain very
much variance in model performance, suggesting
that morphological alignment alone does not mea-
sure dimensions of tokenization quality relevant
to model performance.

1. Introduction

Tokenization is the first step of language modeling, in which
strings of text are segmented into discrete units in the tok-
enizer’s vocabulary. Tokenization has been shown to have
effects on speed and efficiency of language model training
(Dagan et al., 2024; Ali et al., 2024; Asgari et al., 2025), per-
formance (Ali et al., 2024), and inference cost and latency
(Ahia et al., 2023; Petrov et al., 2023). Despite this, it is still
unclear how to best evaluate tokenizers. Finding reliable in-
trinsic tokenizer evaluation would be enormously valuable,
as it would enable tokenizer selection before model training,
leading to significant computational and financial savings.
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One of the most frequently used intrinsic tokenizer evalua-
tions is compression. Compression is often measured as the
number of tokens it takes to encode a text given a particular
tokenizer. It is relatively easy to measure, as it requires
simply tokenizing a text and calculating token counts. One
metric of compression is fertility, i.e. the number of tokens
per word (Rust et al., 2021). Fertility is simple to imple-
ment but can be difficult to generalize crosslinguistically, as
wordhood is often operationalized as whitespace-separated
orthographic units. Not all languages use whitespaces, e.g.
Mandarin Chinese, Thai, and Khmer. Corpus token count
(CTC; Schmidt et al., 2024) is the total tokens it takes to
represent a text for a given tokenizer. CTC can be compared,
therefore across tokenizers of different types, vocabulary
sizes, etc. It has also been used to compare compression
crosslinguistically, by calculating CTC over parallel text in
order to determine crosslinguistic differences in compres-
sion (Arnett & Bergen, 2025).

Some have argued that increased compression increases the
information density for a sequence of fixed length, which
could lead to improved model performance (Deletang et al.,
2024). There has been empirical evidence to support the
claim that more tokenizer compression is correlated with
better task performance (Goldman et al., 2024; Gallé, 2019).
However, more recent work has shown that there is no robust
relationship between tokenizer compression and language
model performance (Schmidt et al., 2024).

Other intrinsic tokenizer evaluations have been proposed,
such as Rényi efficiency (Zouhar et al., 2023), which
takes into account frequency distribution. More optimal
Rényi efficiency is associated with having more compres-
sion for higher-frequency items and less compression for
lower-frequency items. Zouhar et al. (2023) released the
tokenization-scorer package to support calculation
of Rényi efficiency for any tokenized text. However, later
work argues it may not provide a holistic metric of good
tokenization quality (Cognetta et al., 2024).

Another property of tokenizers that has been studied is how
morphologically aligned tokenization is, or to what extent
do token boundaries align with morpheme boundaries for
a given word. For example, the English word ‘books’ is
composed of the stem ‘book’ and the plural suffix ‘-s’. The
morphologically aligned segmentation would be [book + s].
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Non-aligned segmentations include [boo + ks] or [bo + oks].

There are several studies which show that morphologically
aligned tokenization is associated with improved perfor-
mance on a variety of NLP tasks (Park et al., 2020; Vasiu
& Potolea, 2020; Bostrom & Durrett, 2020; Hofmann et al.,
2021; Nzeyimana & Niyongabo Rubungo, 2022; Erkaya,
2022; Toraman et al., 2023; Drik & Forgac, 2024; Libovicky
& Helcl, 2024; Jabbar, 2024; Uzan et al., 2024; Bauwens &
Delobelle, 2024; Asgari et al., 2025). Despite the volume
of work on this topic, it is still difficult to conclude whether
morphological alignment of tokenizers generally improves
downstream performance. Prior work varies widely in lan-
guage coverage, model architectures, amount of supervision
(zero shot through full supervised finetuning), and evalua-
tion metrics (e.g. perplexity versus performance on various
downstream tasks).

Batsuren et al. (2024) developed an evaluation in which the
tokenization of a given word was classified according to
whether words were split into morphemic tokens or non-
morphemic tokens, or were stored whole as a single token.
The authors found that morphemic tokenization was cor-
related with better performance. MorphScore (Arnett &
Bergen, 2025) expands on this idea and measures how often
tokenizer boundaries align with morpheme boundaries for
22 languages. However, the authors found that MorphScore
was not predictive of model performance (Arnett & Bergen,
2025). Arnett et al. (2024) found that morphemic tokeniza-
tion had only a small effect on performance at a subject-verb
agreement task in Spanish. There is also evidence from a
variety of different languages that morphologically aligned
tokenization did not benefit model performance (Machéacek
et al., 2018; Saleva & Lignos, 2021; Choo & Kim, 2023).

MorphScore is limited, however. While relatively diverse,
the language coverage does not include many high-resource
languages that are commonly represented in language model
research, e.g. French or German. There are also design
choices in the creation of MorphScore that limit its potential
utility. The items in MorphScore do not have any con-
text. While this does not impact tokenization which uses
whitespace pre-tokenization, this makes it impossible to
accurately evaluate morphological alignment of superword
tokenizers, e.g. SuperBPE (Liu et al., 2025) and Bound-
lessBPE (Schmidt et al., 2025). Other information from the
Universal Dependencies (UD), which were used to create
MorphScore was also not included, such as part-of-speech
(POS) information or morphological information.

MorphScore also does not take into consideration item fre-
quency. As discussed in Zouhar et al. (2023), optimal tok-
enization may be dependent on frequency distribution. It
may be more important for tokenization of more frequent
items to be morphologically aligned, as they occur more
often. Or, it may be more important for low-frequency items
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Figure 1. Geographical coverage of language sample.

to be tokenized morphemically, as lower-frequency words
are more likely to be segmented into multiple tokens using
popular tokenization algorithms like Byte-Pair Encoding
(BPE; Gage, 1994; Sennrich et al., 2016).

An expanded and updated evaluation of morphological align-
ment of tokenizers is key to determining under which set-
tings morphologically aligned tokenization contributes to
better model performance. Given the mixed evidence in
previous work, a more comprehensive study is necessary.
In this paper, we propose a modified and expanded version
of MorphScore. We create evaluations for tokenizers in 71
languages. We test the effects of various design decisions,
such as including frequency information and the scoring
of single-token words on our tokenizer evaluation. Our
datasets also include sentential context, POS information,
and the morphological information included in UD. While
we do not analyze these factors here, we include them in
order to enable a broad range of future work.

2. Creating Evaluation Datasets

Data. All datasets are built using the annotations from
Universal Dependencies'. The exact treebanks we used
are listed in Appendix A. For each language, we chose the
largest available treebank and used all available splits (train,
dev, and test). For each annotated word, we use the word-
form and the lemma to determine a proposed segmentation.
For example, for the wordform ‘launched’, the provided
lemma is ‘launch’. Therefore, by identifying the longest
shared sequence between the wordform and lemma, we de-

1https ://universaldependencies.org/


https://universaldependencies.org/

Morphologically Aligned Tokenizers

termine ‘launch’ to be the stem and ‘-ed’ to be the affix.
Any preceding and subsequent characters are treated as the
prefix and suffix, respectively. Thus, the gold segmenta-
tion will have at least two morphemes (the stem and an
affix) and at most three morphemes (a prefix, stem, and
suffix).Following, Arnett & Bergen (2025), we only select
cases where there the wordform can be recomposed by con-
catenating the proposed stem and the affixes, in order to
remove irregular forms and examples of non-concatenative
morphology, where determining a gold segmentation is less
straightforward.

Following MorphScore, we used only examples where the
identified stem did not undergo suppletion, umlaut, etc., and
the wordform could be composed of the stem and either a
prefix, as suffix, or both. We observe that without this crite-
rion, we could get gold segementations that would not be
informative about the quality of tokenization. For example,
the infinitival form of the verb ‘to be’ in Afrikaans is wees.
The present form for all persons and numbers is is. Under
our segmentation approach, the stem would be identified
as -s and the proposed gold segmentation would be [i + s].
However, is is an irregular form and it should not be thought
of as having the stem -s.

In the process of creating and filtering the datasets, despite
having very large treebanks, there were not sufficient re-
maining items from any of the Semitic languages (Amharic,
Arabic, and Hebrew) or most isolating languages (e.g. Chi-
nese, Vietnamese, and Thai), which are introflexive lan-
guages. In these languages, many morphological processes
are encoded using non-concatenative morphology. In partic-
ular, these languages often use root template patterns, where
a group of consonants is used for a series of related words.
Changing the intervening vowels changes the meaning, e.g.
from verb to noun (cf. kataba ‘he wrote’ and katib ‘writer’;
Figure 2). Recent work has sought solutions for effective
tokenization in languages with these morphological patterns
(Gazit et al., 2025).

Isolating languages like Vietnamese and Chinese are not
included, because there are not sufficient affixation patterns
to create the kind of examples that are selected for by our

Arabic root k-t-b (w-<-<l)

(a) <X
kataba
'he wrote'

(b) s
katib
'writer'

Figure 2. Example of root template pattern in Arabic.

dataset creation process. In these languages, most words do
not have overt morphological markings for number, tense,
etc. Therefore, this approach only covers fusional and ag-
glutinative languages. Future work could focus on how
to determine gold segmentations for both irregular items,
such as the example from Afrikaans, and non-concatenative
morphology.

Once our datasets were created, we filtered out languages
for which there were fewer than 100 items. This leaves
a set of 71 languages. Their geographical distribution is
shown in Figure 1 and all languages are listed in Appendix
A. We release the unfiltered datasets, including those that
ultimately had too few examples to be scored, on Hugging
Face.”

Scoring. We expand on MorphScore by incorporating
both boundary-level and subword-level evaluations. Specifi-
cally, we calculate:

* macro average boundary precision and recall

* micro and macro average subword precision, recall,
and F1

Boundary metrics evaluate whether the predicted tokeniza-
tion correctly identifies morpheme boundaries, focusing
solely on boundary placement. In contrast, subword metrics
assess whether the predicted subword spans exactly match
gold morphemes.

For example, if the gold segmentation is [book + s] and
the predicted tokens are [boo + k + s], only the boundary
between ‘k’ and ‘s’ is correct. This yields a boundary pre-
cision of 1/2 and a boundary recall of 1/1. However, for
subword metrics, only the token ‘s’ matches a gold mor-
pheme exactly, resulting in a subword precision of 1/3 and
recall of 1/2. The code for running scoring is released on
GitHub’.

Oversegmentation and Accuracy. If morphological
alignment is measured using accuracy, then a tokenizer can
achieve a perfect alignment score by segmenting a word
into characters. For example segmenting ‘books’ into [b + o
+ 0 + k + s] leads to an accurate segmentation. This should
not be considered a morphologically aligned tokenization.
The Llama tokenizers, for several of the languages with
non-Latin scripts, tokenize words into tokens more granular
than characters, e.g. separating characters and diacritics
or decomposing into bytes. Therefore, oversegmentation
leads to high accuracy. We find that tokenizing words into
more tokens is strongly correlated with morphological align-
ment as measured with accuracy. In contrast to Arnett &
Bergen (2025), we use precision and recall as evaluation

2Link removed to preserve anonymity.
3Link removed to preserve anonymity.
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metrics. Precision, in particular, penalizes tokenizers for
oversegmentation.

3. Effect of Design Decisions

Here, we explore the effects of two parameters of the scoring
function on alignment score and how they interact with each
other. Our goal is to determine the optimal default settings
for evaluating morphological alignment.

Frequency Scaling. One parameter we set is whether we
weight the morphological alignment score by the wordform
frequency, as measured in the UD treebank we used to create
the dataset for a given language. Higher-frequency items
would be weighted more heavily in the final score than
lower-frequency items. Taken frequency distribution into
account could lead to a more informative measurement of
tokenization quality.

We also test whether there is a correlation between an item’s
frequency and the likelihood that a tokenizer segments it in a
morphologically aligned way. We compute Spearman’s rank
correlation coefficient across all items and find a weak but
statistically significant correlation (p =0.119, p < 0.0001).
The relationship is positive, so more frequent items are more
likely to be morphemically segmented.

One-Token Words. Next, we test whether there is a dif-
ference in scores depending on whether items that are tok-
enized into a single token are included in the score calcu-
lation. If they are included, the tokenization receives the
score associated with a morphologically aligned tokeniza-
tion. One argument for excluding these items is that these
cases do not give any indication of how morphologically
aligned a segmentation of a word is, given that there is a
segmentation. The alignment score can be inflated for lan-
guages where it is possible for the tokenizer to store many
whole words in its vocabulary. However, excluding these
cases might also essentially penalize a tokenizer for segment-
ing less. Fewer segmentations leads to better compression,
which is thought to be an ideal feature of a tokenizer, as
discussed above.

We find there is a significant difference based on the inclu-
sion of one-token items. Morphological alignment scores
are generally higher with the inclusion of one-token items,
which is what we predicted. We also find an interaction
between word frequency and the likelihood that a tokenizer
represents a word as a single token. This is a feature of most
tokenization algorithms. More frequent items are more
likely to be stored in the vocabulary, instead of having to
be composed of multiple tokens. In an item-wise test, there
is a negative correlation between word frequency and the
number of tokens a word is segmented into (Spearman’s p
=-0.108, p < 0.0001).

Table 1. Morphological alignment of pre-trained tokenizers.

Morph. Alignment

Tokenizer Recall Precision
BLOOM 0.33+0.00 0.11+0.00
Gemma3 035+0.00 0.12+0.00

Llama2 0.56 =0.00 0.13 +0.00
Llama3 0.45+0.00 0.12+0.00
XGLM 0.52+0.00 0.23 +0.00

Optimal Default Settings. We test whether there are dif-
ferences in morphological alignment scores as we vary fre-
quency scaling and the inclusion of one-token words. We fit
a linear mixed effects model with morphological alignment
precision as the dependent variable. Frequency scaling, one-
token words, and training split are each fixed effects. We
test for effects of each of these and their interactions. We
include the tokenizer as a random intercept. We report the
full statistical results in Appendix B.

There are significant differences across the different cate-
gories. We compare the relative ranks according to preci-
sion score for the different conditions for five pre-trained
tokenizers (Table 1). XGLM consistently has the highest
morphological alignment as measured by precision. The
other tokenizers’ rankings change depending on the differ-
ent conditions. Measured with recall, Llama2 has the best
recall. This is likely due to pervasive oversegmentations.
Because of the variable rankings across different metrics
and conditions, we determine the optimal default evalua-
tion settings not by maximizing alignments scores, but by
determining which is most predictive of language model
performance.

4. Correlation with Language Model
Performance

Following the analysis in Arnett & Bergen (2025), we take
reported model performance scores on a variety of down-
stream tasks in a range of languages. We test whether there
is a correlation between morphological alignment and down-
stream performance. This serves two purposes. First, we
can determine which settings are most predictive of model
performance. This could inform choice of settings. Second,
we replicate the analysis in Arnett & Bergen (2025), but
with the inclusion of many more languages and additional
models and tasks.

Method. We use reported model task performance results
from Arnett & Bergen (2025). This includes tasks such as
XCOPA (Ponti et al., 2020), XNLI (Conneau et al., 2018),
and SIB-200 (Adelani et al., 2024). Scores come from
Llama2 8B (Touvron et al., 2023), BLOOM (560M, 1.1B,
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Figure 3. Truex3 condition (check)

3B, 7.1B; Le Scao et al., 2023), and XGLM 7.5B (Lin et al.,
2021). We add MultiBLiMP (Jumelet et al., 2025), which
tests models’ subject-verb agreement performance. We use
the results for Llama3 (8B and 70B; Grattafiori et al., 2024)
and Gemma3 (4B, 12B, 27B; Team et al., 2025), as reported
in the MultiBLiMP paper. The inclusion of MultiBLiMP
means we have performance results for all languages in
our sample, since MultiBLiMP is also derived from UD.
Following the previous study, we use the estimated training
data proportions from Hayase et al. (2024), as the model
developers do not release that information about the pre-
training data.

We test the correlation using linear mixed effects models.
As it is known that model size, in parameters, and proportion
of the training data in each language impact performance
(Kaplan et al., 2020 and Bagheri Nezhad & Agrawal, 2024;
Li et al., 2024, respectively), we include these factors as
fixed effects. We included benchmark task as a random
intercept, as the tasks have different levels of difficulty. We
test whether morphological alignment explains additional
variance above and beyond these factors using an ANOVA.
We also use a simple linear regression to test how much
variance morphological alignment explains in the model
performance scores.

Results. We find that the fixed effects, number of param-
eters and proportion of training data in each languages,
explains significantly more variance than the intercept
(x%(2) = 25.67, p < 0.001). Morphological alignment,
as measured with recall, explains additional variance above
and beyond these factors (x2(1) = 391.42, p < 0.001);
however, precision does not (x?(1) = —6.99, p = 1).

Next, we report the amount of variance explained by mor-

phological alignment. We find that the full linear mixed
effects model only explains a small fraction of the vari-
ance (recall R? = 0.024, precision R? = 0.005). We also
plot the relationship between both metrics of morphological
alignment and model performance in Figure 3.

In addition to being a very small effect, the correlation be-
tween morphological alignment and model performance
is negative. This is consistent with the findings in Arnett
& Bergen (2025), and challenges claims that morpholog-
ically aligned tokenization can contribute to better model
performance.

Comparing across condition, we find that the condition
which frequency-scales scores and does not include one-
token words has slightly more explanatory power for model
performance, though we note this difference is numeric
and the amount of variance is still quite small. All of the
conditions still show small negative correlations with model
performance. Therefore, we consider this setting to be an
appropriate set of default scoring parameters. We report
correlations for each condition in Appendix C.

5. Discussion

Optimal Settings. We tested a variety of parameters in
our scoring function, and frequency scaling the scores and
leaving out one-token words leads to slightly better predic-
tion of model performance. This suggests that including
frequency information does improve predictive power of
our morphological alignment metrics. Our frequency met-
rics came only from the treebanks we used to create our
datasets, meaning for some languages the sample was very
small. Additionally, many treebanks are created with data
from one source, e.g. news articles. In the future, word
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frequency could be calculated using larger corpora from a
wider range of domains. Another possible change would
be to use lemma frequency instead of wordform frequency.
Particularly for agglutinative languages, e.g. Turkish, indi-
vidual wordforms tend to be lower frequency. Any given
verb, for example, can have thousands of different forms
(Hakkani-Tiir et al., 2002). Especially if we aim for our
morphological alignment metric to capture how often a tok-
enizer encodes a word with semantically meaningful tokens,
like stems, measuring frequency by the lemma may improve
predictive power of our morphological alignment score.

The Relevance of Morphological Alignment. Our results
show that our version of morphological alignment score
explains relatively little variance in model performance,
even after taking into account model size and training data
proportion. Given large amount of evidence in support of
and against the claim that morphological tokenization helps
model performance, these results should not be taken as
conclusive. But, maybe it suggests that the relationship
should be measured differently. Perhaps, taken in isolation,
morphological alignment is not sufficient to classify tok-
enization as optimal. This seems plausible, given that we
saw such a strong tradeoff between compression and mor-
phological alignment, when we use accuracy as a metric.
Combining morphological alignment with other intrinsic
tokenizer evaluation metrics, like compression or Rényi
efficiency, could potentially be more informative.

Future Work. While morphological alignment is not pre-
dictive of model performance as it is measured here, we
hope our datasets and evaluation metric can be used to bet-
ter understand multilingual tokenization. There are aspects
of our evaluation we do not discuss here. Our implementa-
tion offers the ability to retrieve morphological alignment
score broken down by POS, for instance. Our evaluation
framework is flexible to allow many fine-grained analyses,
which may be of interest to the wider research community.

6. Conclusion

In this paper, we develop and expanded and updated eval-
uation for tokenizer morphological alignment for over 70
languages. We test the impact of several design decisions
in the scoring function, and find that the way that align-
ment is calculated leads to different morphological align-
ment scores and relative rankings between tokenizers. We
also test whether morphological alignment is predictive of
model performance, which is predicted by previous work.
We find, however, that morphological alignment offers only
a small negative correlation. This is consistent with the
claim that morphologically aligned tokenization does not
positively impact model performance. We release our evalu-
ation framework and our datasets to support more work in

this area to better understand what features of tokenizers are
associated with better performance.

Limitations

While we significantly expand language coverage of this
type of tokenizer evaluation, our language sample is far
from comprehensive. Additionally, European languages are
over-represented in our sample. This is a result of systemic
over-representations in the field and in resources like Uni-
versal Dependencies. Other resources like UniMorph could
be used to improve language coverage, but UniMorph does
not provide sentential context, so additional work would be
needed to fully integrate UniMorph data into the framework
we developed. We hope that as language coverage continu-
ally expands and diversifies, it will be easier to represent a
more diverse sample of languages.

In this paper, we use only a small number of tasks to repre-
sent model performance. We used evaluations which were
available for a wide variety of languages, but such evalu-
ations are limited and generally do not represent most of
the languages in our sample. For example XCOPA (Ponti
et al., 2020) represents 11 languages and XNLI (Conneau
et al., 2018) represents 15 languages. Many of these are
high-resource European languages like English, Italian, Ger-
man, and French or widely spoken languages that have been
historically underrepresented in NLP like Swahili and Urdu.

Our focus is on large, autoregressive LMs, which allows for
cleaner comparisons but excludes encoder models or those
trained with masked language modeling. Our sample of
models was not very large, because many models do not pro-
vide critical information about their training data. BLOOM
and XGLM are the only models which report their training
data proportions. We were able to expand our sample of
models because of the work by Hayase et al. (2024) estimat-
ing training data proportions by language for closed-data
models. We also chose to exclude instruction-tuned mod-
els, because similarly information about fine-tuning data
proportions by language was not available. Furthermore,it
was not clear about how to calculate proportion of training
data, taking into account pre-training data proportions and
fine-tuning data proportions.

Impact Statement

Our work aims to understand tokenization quality, which
is an issue that disproportionately affects low-resource lan-
guages (Petrov et al., 2023; Ahia et al., 2023). We hope that
our work positively contributes towards understanding rele-
vant features of tokenization in a multilingual context and
helps improve equity in language technology performance
across languages.
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A. Language Sample

Table 2 reports the number of items for each language after filtering and the UD treebank used to create the datset for that
language.

Table 2. List of languages, UD sources, and number of items after filtering

Language ISO ISO Num. Items Data Source

639-3 15924
Afrikaans afr latn 1397 UD_Afrikaans-AfriBooms (Augustinus et al., 2016)
Albanian sqi latn 366 UD_Albanian-STAF  (Talamo, 2025; Kote et al., 2024)
Armenian hye armn 5441 UD_Armenian-ArmTDP (Yavrumyan & Anna, 2020)
Azerbaijani aze latn 220 UD_Azerbaijani-TueCL (Eslami & Cagr1 Coltekin, 2024)
Basque eus latn 12089 UD_Basque-BDT (Aranzabe et al., 2015)
Belarusian bel cyrl 9935 UD_Belarusian-HSE (Shishkina & Lyashevskaya, 2021)
Bhojpuri bho deva 177 UD_Bhojpuri-BHTB (Ojha & Zeman, 2020)
Breton bre latn 233 UD_Breton-KEB (Tyers & Ravishankar, 2018)
Bulgarian bul cyrl 5443 UD_Bulgarian-BTB (Simov et al., 2004)
Buriat bur cyrl 1983 UD_Buryat-BDT (Badmaeva & Tyers, 2017)
Catalan cat latn 1230 UD_Catalan-AnCora (Taulé et al., 2008)
Croatian hrv latn 7749 UD_Croatian-SET (Agi¢ & Ljubesic, 2015)
Czech ces latn 15059 UD_Czech-CAC (Hladka et al., 2008)
(Bejcek et al., 2022)
Danish dan latn 6680 UD_Danish-DDT (Johannsen et al., 2015)
Dutch nld latn 3606 UD_Dutch-Alpino (Van der Beek et al., 2002)
English eng latn 3688 UD_English-EWT (Silveira et al., 2014)
Erzya myv  cyrl 2309 UD_Erzya-JR (Rueter & Tyers, 2018)
Estonian est latn 19261 UD_Estonian-EDT (Muischnek et al., 2014)
Finnish fin latn 10172 UD_Finnish-TDT (Haverinen et al., 2014)
(Pyysalo et al., 2015)
French fra latn 6082 UD_French-GSD (Guillaume et al., 2019)
Galician glg latn 2879 UD_Galician-CTG (Guinovart, 2017)
Georgian kat geor 2535 UD_Georgian-GLC (Lobzhanidze, 2022)
German deu latn 31281 UD_German-HDT (Borges Volker et al., 2019)
Greek ell grek 691 UD_Greek-GDT (Prokopidis et al., 2005)
(Prokopidis & Papageorgiou, 2017)
Hebrew heb hebr 4641 UD_Hebrew-HTB (Tsarfaty, 2013)
(McDonald et al., 2013b)
Hindi hin deva 1301 UD_Hindi-HDTB (Palmer et al., 2009; Bhat et al., 2017)
Hungarian hun latn 6350 UD_Hungarian-Szeged (Vincze et al., 2010)
Icelandic isl latn 13155 UD_Icelandic-IcePaHC  (Arnardéttir et al., 2020; 2023)
Indonesian ind latn 2785 UD_Indonesian-GSD (Larasati et al., 2011)
(McDonald et al., 2013a)
Irish gle latn 2576 UD_Irish-IDT (Lynn, 2016)
Kazakh kaz cyrl 2442 UD_Kazakh-KTB (Tyers & Washington, 2015)
(Makazhanov et al., 2015)
Kirghiz kir cyrl 4221 UD_Kyrgyz-KTMU (fbrahim Benli, 2023)
Komi-Zyrian  kpv cyrl 1038 UD_Komi_Zyrian-Lattice (Partanen et al., 2018)
Korean kor hang 316 UD_Korean-Kaist (Chun et al., 2018)
Latvian lav latn 8332 UD_Latvian-LVTB (Pretkalnina et al., 2018)
Lithuanian Lit latn 667 UD_Lithuanian-ALKSNIS (Bielinskiené et al., 2016)
Macedonian  mkd cyrl 153 UD_Macedonian-MTB (Sazdov, 2012)
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https://github.com/UniversalDependencies/UD_Erzya-JR
https://github.com/UniversalDependencies/UD_Estonian-EDT
https://github.com/UniversalDependencies/UD_Finnish-TDT/tree/master
https://github.com/UniversalDependencies/UD_French-GSD
https://github.com/UniversalDependencies/UD_Galician-CTG
https://github.com/UniversalDependencies/UD_Georgian-GLC
https://github.com/UniversalDependencies/UD_German-HDT/tree/master
https://github.com/UniversalDependencies/UD_Greek-GDT/tree/master
https://github.com/UniversalDependencies/UD_Hebrew-HTB
https://github.com/UniversalDependencies/UD_Hindi-HDTB
https://github.com/UniversalDependencies/UD_Hungarian-Szeged
https://github.com/UniversalDependencies/UD_Icelandic-IcePaHC
https://github.com/UniversalDependencies/UD_Indonesian-GSD
https://github.com/UniversalDependencies/UD_Irish-IDT/tree/master
https://github.com/UniversalDependencies/UD_Kazakh-KTB
https://github.com/UniversalDependencies/UD_Kyrgyz-KTMU
https://github.com/UniversalDependencies/UD_Komi_Zyrian-Lattice
https://github.com/UniversalDependencies/UD_Korean-Kaist
https://github.com/UniversalDependencies/UD_Latvian-LVTB/tree/master
https://github.com/UniversalDependencies/UD_Lithuanian-ALKSNIS
https://github.com/UniversalDependencies/UD_Macedonian-MTB
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Table 2. List of languages, UD sources, and number of items after filtering (continued)

Language ISO ISO Num. Items Data Source
639-3 15924
Malayalam mal mlym 131 UD_Malayalam-UFAL (Sharma et al., 2021)
Manx glv latn 224 UD _Manx-Cadhan (Scannell, 2020)
Marathi mar deva 171 UD _Marathi-UFAL (Ravishankar, 2017)
Moksha mdf cyrl 615 UD_Moksha-JR (Rueter, 2018)
Northern Sami  sme latn 664 UD_North_Sami-Giella (Sheyanova & Tyers, 2017)
Norwegian nob latn 13017 UD _Norwegian-Bokmaal (Solberg et al., 2014)
Occitan oci latn 878 UD_Occitan-TTB (Miletic et al., 2020)
Pashto pus arab 155 UD_Pashto-Sikaram (Faryad & Zeman, 2024)
Persian fas arab 11859 UD_Persian-PerDT (Etezadi et al., 2022)
Polish pol latn 10886 UD_Polish-PDB (Wréblewska, 2018)
Portuguese por latn 4559 UD_Portuguese-CINTIL (Branco et al., 2022)
Romanian ron latn 10129 UD_Romanian-RRT (Irimia & Mititelu, 2015)
Russian rus cyrl 21569 UD_Russian-SynTagRus (Droganova et al., 2018)
Sanskrit san deva 16184 UD _Sanskrit-Vedic (Hellwig et al., 2020; 2023)
Scottish Gaelic gla latn 1004 UD_Scottish_Gaelic-ARCOSG (Batchelor, 2019)
Serbian srp latn 3874 UD_Serbian-SET (Samardzi¢ & Ljubesic, 2024)
Sindhi snd arab 3874 UD_Sindhi-Isra (Rahman et al., 2024)
Sinhala sin sinh 196 UD_Sinhala-STB (Liyanage et al., 2023)
Slovak slk latn 3590 UD_Slovak-SNK (Zeman, 2017)
Slovenian slv latn 11383 UD_Slovenian-SSJ (Dobrovoljc et al., 2017)
(Dobrovoljc & Ljubesic, 2022)
Spanish spa latn 6658 UD_Spanish-AnCora (Taulé et al., 2008)
Swedish swe latn 6223 UD_Swedish-LinES (Ahrenberg, 2007)
Tamil tam taml 1179 UD_Tamil-TTB (Ramasamy & Zabokrtsky, 2012)
Tatar tat cyrl 627 UD _Tatar-NMCTT (Taguchi, 2024)
Turkish tur latn 30076 UD _Turkish-Kenet (Kuzgun et al., 2021)
Uighur uig arab 3073 UD_Uyghur-UDT (Eli et al., 2024)
Ukrainian ukr cyrl 4182 UD_Ukrainian-IU (Kotsyba et al., 2024)
Upper Sorbian  hsb latn 867 UD_Upper_Sorbian-UFAL (Zeman & Nedoluzhko, 2024)
Urdu urd arab 981 UD_Urdu-UDTB (Bhat et al., 2017)
Uzbek uzb latn 1867 UD_Uzbek-UT (Akhundjanova & Talamo, 2025)
Veps vep latn 159 UD_Veps-VWT (Laan, 2024)
Welsh cym latn 757 UD_Welsh-CCG (Heinecke & Tyers, 2019)
Wolof wol latn 1355 UD_Wolof-WTB (Dione, 2024)
Yakut sah cyrl 250 UD_Yakut-YKTDT (Merzhevich & Gerardi, 2022)

B. Full Statistical Results

Tables 3 and 4 report the results of the linear mixed effects models described in Section 4.

Table 3. Precision

Variable Coef. Std. Err. zZ p-value
Intercept 0.169 0.030 5.541 0.000
Frequency Scaling 0.102 0.008 13.565  0.000
Single-Token -0.045 0.008 -5.929  0.000
Frequency Scaling x Single-Token -0.087 0.011 -8.073  0.000
Group Var 0.005 0.025
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Table 4. Recall

Variable Coef. Std. Err. zZ p-value
Intercept 0.476 0.042 11.336  0.000
Frequency Scaling 0.065 0.013 5.000 0.000
Single-Token -0.036 0.013 -2.787  0.005
Frequency Scaling x Single-Token -0.064 0.018 -3.459  0.001
Group Var 0.008 0.027

C. Correlation with Model Performance in All Conditions

Figures 4 and 5 show the correlation between task performance by condition. The True_True condition indicates that
scores were scaled by word frequency and single-token words were excluded. The True_False condition indicates that
scores were scaled by word frequency and single-token words were included. The False_True condition indicates that
scores were not scaled by word frequency and single-token words were excluded. The False_False condition indicates

that scores were not scaled by word frequency and single-token words were included.

Task Score

Task Score

Figure 4. Correlation between morphological alignment measured with precision and task score. Model task is indicated by color.
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Figure 5. Correlation between morphological alignment measured with recall and task score. Model task is indicated by color.
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