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ABSTRACT

Adversarial robustness continues to be a major challenge for deep learning. A core
issue is that robustness to one type of attack often fails to transfer to other attacks.
While prior work establishes a theoretical trade-off in robustness against different
Lp norms, we show that there is potential for improvement against many commonly
used attacks by adopting a domain generalisation approach. Concretely, we treat
each type of attack as a domain, and apply the Risk Extrapolation method (REx),
which promotes similar levels of robustness against all training attacks. Compared
to existing methods, we obtain similar or superior worst-case adversarial robustness
on attacks seen during training. Moreover, we achieve superior performance on
families or tunings of attacks only encountered at test time. On ensembles of
attacks, our approach improves the accuracy from 3.4% the best existing baseline
to 25.9% on MNIST, and from 16.9% to 23.5% on CIFAR10.

1 INTRODUCTION

Vulnerability to adversarial perturbations (Biggio et al., 2013; Szegedy et al., 2014; Goodfellow et al.,
2015) is a major concern for real-world applications of machine learning such as healthcare (Qayyum
et al., 2020) and autonomous driving (Deng et al., 2020). For example, Eykholt et al. (2018) show how
seemingly minor physical modifications to road signs may lead an autonomous car into misinterpreting
stop signs, while Li et al. (2020) achieve high success rates with over-the-air adversarial attacks on
speaker systems.

Much work has been done in defending against adversarial attacks (Goodfellow et al., 2015; Papernot
et al., 2016). However, new attacks commonly overcome existing defenses (Athalye et al., 2018).
A defense that has so far passed the test of time against individual attacks is adversarial training.
Goodfellow et al. (2015) originally proposed training on examples perturbed with the Fast Gradient
Sign Method (FGSM), which performs a step of sign gradient ascent on a sample x to increase
the chances of the model misclassifying it. Madry et al. (2018) further improve robustness by
training on Projected Gradient Descent (PGD) adversaries, which perform multiple updates of
(projected) gradient ascent to try to generate a maximally confusing perturbation within some Lp ball
of predetermined radius ϵ centred at the chosen data sample.

Unfortunately, adversarial training can fail to provide high robustness against several attacks, or
tunings of attacks, only encountered at test time. For instance, simply changing the norm constraining
the search for adversarial examples with PGD has been shown theoretically and empirically (Khoury
& Hadfield-Menell, 2018; Tramèr & Boneh, 2019; Maini et al., 2020) to induce significant trade-offs
in performance against PGD of different norms. This issue highlights the importance of having a
well-defined notion of “robustness”: while using the accuracy against individual attacks has often
been the proxy for robustness, a better notion of robustness, as argued by Athalye et al. (2018), is to
consider the accuracy against an ensemble of attacks within a threat model (i.e. a predefined set of
allowed attacks). Indeed, in the example of autonomous driving, an attacker will not be constrained
to a single attack on stop signs, and is free to attempt several attacks to find one that succeeds.

In order to be robust against multiple attacks, we draw inspiration from domain generalisation. In
domain generalisation, we seek to achieve consistent performance even in case of unknown distribu-
tional shifts in the inputs at test time. We interpret different attacks as distinct distributional shifts
in the data, and propose to leverage existing techniques from the out-of-distribution generalisation
literature.
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We choose variance REx (Krueger et al., 2021), which consists in using as a loss penalty the variance
on the different training domains of the empirical risk minimisation loss. We choose this method as it
is conceptually simple, its iterations are no more costly than existing multi-perturbation baselines’, it
does not constrain the architecture, and it can be used on models pretrained with existing defenses.
We consider robustness against an adversary having access to both the model and multiple attacks.

There are multiple challenges: first, Gulrajani & Lopez-Paz (2020) show that domain generalisation
methods, such as REx, often fail to improve over empirical risk minimisation in many settings.
Second, these methods are usually designed for stationary settings, whereas in adversarial machine
learning, the distribution of adversarial perturbations is non-stationary during training as the attacks
adapt to the changes in the model parameters. Finally, the multiperturbation defense proposed by
Maini et al. (2020) does not use multiple domains, which REx originally requires.

Therefore, we are interested in the two following research questions:

1. Can REx improve the robustness against multiple attacks seen during training?
2. Can REx improve the robustness against unseen attacks, that is, attacks seen only at test

time?

Our results show that the answer to both questions is yes on the ensembles of attacks used in this
work. We show that REx consistently yields benefits across variations in: datasets, architectures,
multi-perturbation defenses, hyperparameter tuning, attacks seen during training, and attack types or
tunings only encountered at test time.

2 RELATED WORK

2.1 ADVERSARIAL ATTACKS AND DEFENSES

Since the discovery of adversarial examples against neural networks (Szegedy et al., 2014), numerous
approaches for finding adversarial perturbations (i.e. adversarial attacks) have been proposed in the
literature (Goodfellow et al., 2015; Madry et al., 2018; Moosavi-Dezfooli et al., 2016; Carlini &
Wagner, 2017; Croce & Hein, 2020), with the common goal of finding perturbation vectors with
constrained magnitude that, when added to the network’s input, lead to (often highly-confident)
misclassification.

One of the earliest attacks, the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015),
computes a perturbation on an input x0 by performing a step of sign gradient ascent in the direction
that increases the loss L the most, given the model’s current parameters θ. This yields an adversarial
example x̃ that may be misclassified:

x̃ = x0 + α sgn(∇xL(θ, x
0, y)). (1)

This was later enhanced into the Projected Gradient Descent (PGD) attack (Kurakin et al., 2017;
Madry et al., 2018) by iterating multiple times this operation and adding projections to constrain it to
some neighbourhood of x0, usually a ball of radius ϵ centered at x0, noted Bϵ(x

0):

xt+1 = ΠBϵ(x0)

(
xt + α sgn(∇xL(θ, x

t, y))
)
. (2)

With the advent of diverse algorithms to defend classifiers against such attacks, approaches for
discovering adversarial examples have become increasingly more complex over the years. Notably, it
was discovered that a great number of adversarial defenses rely on gradient obfuscation (Athalye
et al., 2018), which consists in learning how to mask or distort the classifier’s gradients to prevent
attacks iterating over gradients from making progress. However, it was later discovered that such
approaches can be broken by other attacks (Athalye et al., 2018; Croce & Hein, 2020), some of which
simply circumvent these defenses by not relying on gradients (Brendel et al., 2019; Andriushchenko
et al., 2020).

A defense that was shown to be robust to such countermeasures is Adversarial Training (Madry
et al., 2018), which usually consists in training on PGD adversarial examples. Adversarial training
corresponds to solving a minimax optimisation problem where the inner loop executes an adversarial
attack algorithm, usually PGD, to find pertubations to the inputs that maximise the classification
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loss, while the outer loop tunes the network parameters to minimise the loss on the adversarial
examples. Despite the method’s simplicity, robust classifiers trained with adversarial training achieve
state-of-the-art levels of robustness against various newer attacks (Athalye et al., 2018; Croce & Hein,
2020). For this reason, adversarial training has become one of the most common methods for training
adversarially robust neural networks.

Figure 1: Validation accuracy of a model adversar-
ially trained on PGD L2-perturbed CIFAR10 with
a ResNet18, evaluated on PGD L2 and Carlini &
Wagner (CW) L2 attacks.

However, Khoury & Hadfield-Menell (2018)
and Tramèr & Boneh (2019) show how train-
ing on PGD with a search region constrained by
a p-norm may not yield robustness against PGD
attacks using other p-norms. One reason is that
different radii are typically chosen for different
norms, leading to the search spaces of PGD with
respect to different norms to potentially have
some mutually exclusive regions. Another rea-
son is that different attacks, such as PGD and the
Carlini and Wagner (Carlini & Wagner, 2017)
attacks, optimise different losses (note that this
is also true for PGD of different norms). As an
example, Fig. 1 illustrates how, when training
adversarially a model on PGD with respect to
the L2 norm, the accuracy against one attack
may improve while it may decrease against an-
other attack, even if the attacks use the same
p-norm.

Highlighting the need for methods specific to defending against multiple types of perturbations,
Tramèr & Boneh (2019) select a set of 3 attacks A = {P∞, P2, P1}, where Pp is PGD with a search
region constrained by the Lp norm. They attempt two strategies: the average (Avg) strategy consists
in training over all attacks in A for each input, and the max strategy, which trains on the attack with
the highest loss for each sample:

LAvg(θ,A) = E
1

|A|
∑
A∈A

ℓ(θ,A(x), y) (3)

Lmax(θ,A) = Emax
A∈A

ℓ(θ,A(x), y) (4)

Maini et al. (2020) propose a modification to the max method of Tramèr & Boneh (2019): instead of
having 3 different PGD adversaries that each iterate over a budget of iterations as in eq. 2, they design
an attack consisting in choosing the worst perturbation among L∞, L2 and L1 PGD every iteration
through the chosen number of iterations. This attack, Multi-Steepest Descent (MSD), differs from
the max approach of Tramèr & Boneh (2019) where each attack is individually iterated through the
budget of iterations first, and the one leading to the worst loss is chosen at the end. Note that this
implies that technically, unlike (Tramèr & Boneh, 2019)’s Avg approach, MSD1 only consists in
training on a single attack. Maini et al. (2020) show that, in their experimental setup, MSD yields
superior performance to both the Avg and max approaches of Tramèr & Boneh (2019).

Nevertheless, there is still a very large gap between the performance of such approaches against data
perturbed by ensembles of attacks, and the accuracy on the unperturbed data. In order to help address
this large gap, we will be exploiting a connection between our goal and that of domain generalisation.

2.2 ROBUSTNESS AS A DOMAIN GENERALISATION PROBLEM

Domain generalisation – Out-of-Distribution generalisation (OoD) is an approach to dealing with
(typically non-adversarial) distributional shifts. In the domain generalisation setting, the training
data is assumed to come from several different domains, each with a different data distribution. The
goal is to use the variability across training (or seen) domains to learn a model that can generalise to
unseen domains while performing well on the seen domains. In other words, the goal is for the model

1In the remainder of this paper, we will use MSD to refer to both the MSD attack, and training on MSD as a
defense.
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to have consistent performance by learning to be invariant under distributional shifts. Typically, we
also assume access to domain labels, i.e. we know which domain each data point belongs to. Many
methods for domain generalisation have been proposed – see (Wang et al., 2021) for a survey.

Our work views adversarial robustness as a domain generalisation problem. In our case, the domains
correspond to different adversarial attacks. Because different attacks use different methods of
searching for adversarial examples, and sometimes different search spaces, they may produce
different distributions of adversarial examples. It is natural to frame adversarial robustness as a
domain generalisation problem, because we seek a model that is robust to any method to generate
adversarially distributional shifts within a threat model, including novel attacks.

In spite of this intuition, it is not obvious that such methods would work in the case of adversarial
machine learning. First, recent work demonstrates that domain generalisation methods often fail to
improve on standard empirical risk minimisation (ERM), i.e. minimising loss on the combined
training domains without making use of domain labels (Gulrajani & Lopez-Paz, 2020). On the
other hand, success may depend on choosing a method appropriate for the type of shifts at play.
Second, a key difference with most work in domain generalisation, is that when adversarially training,
the training distribution shifts every epoch, as the attacks are computed from the continuously-
updated values of the weights. In contrast, in domain generalisation, the training domains are usually
fixed. Non-stationarity is known to cause generalisation failure in many areas of machine learning,
notably reinforcement learning (Igl et al., 2020), thereby potentially affecting the success of domain
generalisation methods in adversarial machine learning. Third, MSD does not generate multiple
domains, which domain generalisation approaches would typically require.

We note that interestingly, the Avg approach of Tramèr & Boneh (2019) can be interpreted as doing
domain generalisation with ERM over the 3 PGD adversaries as training domains. Similarly, the
max approach consists in applying the Robust Optimisation approach on the same set of domains.
Furthermore, Song et al. (2018) and Bashivan et al. (2021) propose to treat the clean and PGD-
perturbed data as training and testing domains from which some samples are accessible during
training, and adopt domain adaptation approaches. Therefore, it is difficult to predict in advance how
much a domain generalisation approach can successfully improve adversarial defenses.

In this work, we apply the method of variance-based risk extrapolation (REx) (Krueger et al.,
2021), which simply adds as a loss penalty the variance of the ERM loss on different domains. This
encourages worst-case robustness over more extreme versions of the shifts (in this case, shifts are
between different attacks) observed between the training domains. This can be motivated in the
setting of adversarial robustness by the observation that adversaries might shift their distribution
of attacks to better exploit vulnerabilities in a model. In that light, REx is particularly appropriate
given our objective of mitigating trade-offs in performance between different attacks to achieve
a more consistent degree of robustness. We note that our implementation of REx has the same
computational complexity per epoch as the MSD, Avg and max approaches, requiring the computation
of 3 adversarial perturbations per sample.

3 METHODOLOGY

Threat model – In this work, we consider white-box attacks, which are typically the strongest type
of attacks as they assume the attacker has access to the model and its parameters. Additionally, the
attacks considered in the evaluations are gradient-based, with the exception of AutoAttack, which is
composite and includes gradient-free perturbations (Croce & Hein, 2020). Because we assume that
the attacker has access to all of these attacks, we emphasise that, as argued by Athalye et al. (2018),
the robustness against the ensemble of the different attacks is a better metric for how the defenses
perform than the accuracy on each individual attack. Thus, using ℓ01 as the 0-1 loss, we evaluate the
performance on an ensemble of domains D as:

R = 1− Emax
D∈D

ℓ01(θ,D(x), y) (5)

REx – We propose to regularise the average loss over a set of training domains D by the variance of
the losses on the different domains:

LREx(θ,D) = LAvg(θ,D) + β Var
D∈D

E ℓ(θ,D(x), y) (6)
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where ℓ is the cross-entropy loss. We start penalising by the variance over the training domains once
the baseline’s accuracies on the seen domains stabilise or peak.

Datasets and architectures – We consider two datasets: MNIST (LeCun et al., 1998) and CI-
FAR10 (Krizhevsky et al., 2009). It is still an open problem to obtain high robustness against multiple
attacks on MNIST (Tramèr & Boneh, 2019; Maini et al., 2020), even at standard tunings of some
commonly used attacks. On MNIST, we use a 3-layer perceptron of size [512, 512, 10]. On CIFAR10,
we use the ResNet18 architecture (He et al., 2016). We choose two significantly different architectures
to illustrate that our approach may work agnostically to the choice of architecture. We use batch sizes
of 128 when training on both datasets.

Optimiser – We use Stochastic Gradient Descent (SGD) with a momentum of 0.9. In subsections 4.1
and 4.2 we do not perform hyperparameter optimisation to isolate the effect of REx from interactions
with hyperparameter tuning, which would differ for each individual defense. We use a fixed learning
rate of 0.01 and no weight decay. We fix the coefficient β in the REx loss. In subsection 4.4, we
perform hyperparameter optimisation. Based on (Rice et al., 2020) and (Pang et al., 2020), we use in
all cases a weight decay of 5 · 10−4 and a piecewise learning rate decay. For every defense, we search
for an optimal epoch to decay the learning rate, with a particular attention to MSD and MSD+REx
due to observing a high sensitivity to the choice of learning rate decay milestone. Note that in the
case of REx defenses, we always use checkpoints of corresponding baselines before the learning rate
is decayed, as we observed this to lead to better performance.

Domains – We consider several domains: unperturbed data, L1, L2 and L∞ PGD (denoted
P1, P2, P∞), L2 Carlini & Wagner (CW2) (Carlini & Wagner, 2017), L∞ DeepFool (DF∞) (Moosavi-
Dezfooli et al., 2016) and AutoAttack (Croce & Hein, 2020). We use the Advertorch implementation
of these attacks (Ding et al., 2019). For L∞ PGD, CW and DF, we use two sets of tunings, see
appendix A for details. The attacks with a • superscript indicate a harder tuning of these attacks that
no model was trained on. Those tunings are intentionally chosen to make the attacks stronger. The set
of domains unseen by all models is defined as {P •

∞, DF •
∞, CW •

2 ,AutoAttack∞}, with additionally
AutoAttack2 in subsection 4.4. The set of domains unseen by a specific model is the set of all
domains except those seen by the model during training, and therefore varies between baselines. We
perform 10 restarts for each attack per sample to reduce randomness in the evaluations (but not during
training).

Defenses – Aside from the adversarial training baselines on PGD of L1, L2 and L∞ norms, we
define 3 sets of seen domains: D = {∅, P∞, DF∞, CW2}, DPGDs = {∅, P1, P2, P∞} and DMSD =
{MSD} where ∅ represents the unperturbed data. We train two Avg baselines: one on D and one on
DPGDs. We train the MSD baseline on DMSD. We use REx on the Avg baselines on the corresponding
set of seen domains. However, when REx is used on the model trained with the MSD baseline, we
revert to using the set of seen domains DPGDs. While the MSD baseline does not exactly train over
P1, P2 and P∞ but rather a composition of these three attacks, we use these attacks when applying
REx to the MSD baseline as MSD would only generate one domain, which would not allow us to
compute a variance over domains. Note that we chose different sets of seen domains, and different
baselines (Avg and MSD), in order to show that REx yields benefits on several multi-perturbation
baselines, or within a same baseline with different choices of seen domains. We use cross-entropy
for all defenses.

All models are trained using a single Nvidia A100 for MNIST and 2 Nvidia A100s for CIFAR10.

4 RESULTS

In this section, we present our results without performing individual hyperparameter optimisation
in subsections 4.1 and 4.2, and after tuning the hyperparameters of each defense in subsection 4.4.
We find that REx consistently improves the baselines over ensembles of seen or unseen attacks.
REx tends to most often sacrifice a little performance on the best performing domains (usually, the
unperturbed data, P1 and P2) but improves the worst-case accuracy by a much larger amount. This
is the case even when using REx on MSD. In general, we find that REx is relatively robust to the
choice of β, albeit it can be used to tune relative performance between easier and harder domains (see
Appendix C). More implementation details and observations can generally be found in the appendix.
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4.1 MNIST

Table 1: Accuracy on MNIST for different domains. Highlighted cells indicate that the domain (row)
was used during training by the defense (column). Bold numbers indicate an improvement of at least
1% accuracy over the baseline used to pretrain REx. Ensembles omit P •

∞ due to it being overtuned.

Defenses
None Adversarial training Avg Avg+REx AvgPGDs Avg+RExPGDs MSD MSD+REx

No attack 98.1 98.5 98.3 84.4 99.0 90.0 98.8 87.3 88.4 90.2
P1 95.5 96.8 96.8 44.0 90.3 72.6 95.6 82.5 82.2 86.8
P2 1.8 17.7 63.5 10.0 53.6 44.0 68.3 72.8 61.1 71.8
P∞ 0.0 0.0 2.2 59.2 67.7 70.1 58.0 70.8 19.3 67.4
DF∞ 3.3 5.7 85.9 78.1 92.9 84.6 92.3 80.9 56.7 82.4
CW2 4.4 6.9 56.5 62.3 68.8 68.3 59.9 41.4 77.1 47.3
DF •

∞ 0.0 0.0 0.0 19.4 7.1 64.8 3.7 58.4 15.8 19.9
CW •

2 2.3 2.8 16.0 30.2 23.2 42.1 16.4 12.1 40.2 12.9
AutoAttack∞ 0.0 0.0 0.1 55.0 42.3 58.8 34.9 40.6 1.5 31.2
Ensemble (seen) - - - - 63.2 63.4 55.5 64.5 19.3 60.1
Ensemble (unseen
by all models)

0.0 0.0 0.0 9.3 3.4 34.6 1.2 8.1 0.6 3.9

Ensemble (unseen
by this model)

0.0 0.0 0.0 2.7 3.4 25.9 1.2 8.1 0.6 3.9

Ensemble (all) 0.0 0.0 0.0 2.7 3.4 25.9 1.2 8.1 0.6 3.9
P •
∞ 0.0 0.0 0.0 5.1 0.6 4.0 0.9 0.7 0.2 1.0

We report our results on MNIST in Table 1. REx significantly improves the robustness against
the ensembles of attacks, whether seen or unseen, and in particular on P∞ and AutoAttack. REx
also yields notable improvements against all ensembles, seen or unseen, when used on the Avg
baselines. Note however that as in domain generalisation, when used on all baselines except MSD,
REx sacrifices performance on the best performing seen domains in order to improve the performance
on the strongest attacks. We believe that this trade-off may be worth it for applications where
robustness is critical, as for example the 9% of clean accuracy lost by using REx on one Avg baseline
translates in an increase of robustness from 3.4% to 25.9% on the ensemble of all attacks excluding
the overtuned P •

∞ adversary.

Our test with tuning the P •
∞ adversary with ϵ = 0.4 instead of the common tuning of 0.3 on MNIST

suggests that REx does not rely on gradient masking(Athalye et al., 2018) compared to the baselines,
as the accuracy drops to near 0 values for all models, showing that attacks are successfully computed.
This is reinforced by the REx models’ AutoAttack performance. A second observation is that the
MSD baseline performs surprisingly poorly against AutoAttack and P∞. We note that experiments
with a learning rate schedule (not reported here) did not improve performance significantly, ruling out
the absence of schedule as a cause. While we use the original code of Maini et al. (2020), this might
be because we did not use the same architecture as them on MNIST. Moreover, Maini et al. (2020)
did not evaluate on AutoAttack as their work predates the publication of Croce & Hein (2020). In
any case, the MSD model is failing to learn how to be robust against P∞ and AutoAttack. This leads
to poor performance against all ensembles of attacks, whether seen or unseen, as those include either
P∞ or AutoAttack adversaries. Finally, a third observation is that P∞ training performs remarkably
well in this experiment on the ensemble of attacks, compared to the multiperturbation baselines.

Key observation 1 (no hyperparameter tuning): REx improve the performance of all
baselines on MNIST with a multilayer perceptron, from 3.4% with the best baseline to 25.9%
accuracy against an ensemble of attacks, by sacrificing a little robustness against the weakest
individual attacks.

4.2 CIFAR10

The results on CIFAR10 are summarised in Table 2. We still observe that REx is an improvement over
the ensemble of seen attacks compared to the baselines it was used on. As on MNIST, this happens
by improving the performance on the strongest of the seen attacks and sacrificing a little performance
on the top performing attack(s). Moreover, REx consistently yields a significant improvement in
robustness when evaluated against the ensemble of unseen attacks, too. The only individual domains
where REx never yields significant improvements are the clean (unperturbed) data, P1 and P2,

6



Under review as a conference paper at ICLR 2023

Table 2: Accuracy on CIFAR10 for different domains. Ensembles omit CW•
2 due to overtuning.

Defenses
None Adversarial training Avg Avg+REx AvgPGDs Avg+RExPGDs MSD MSD+REx

No attack 87.6 92.1 87.1 77.4 80.9 75.1 82.8 79.0 76.3 75.1
P1 80.3 87.6 85.0 75.7 78.7 72.0 80.4 77.0 74.4 72.7
P2 19.9 47.8 70.9 66.6 69.8 65.3 71.1 68.0 65.7 65.9
P∞ 0.0 0.0 9.7 39.5 34.4 44.2 32.3 41.2 37.9 41.9
DF∞ 4.1 19.2 60.2 64.6 64.9 62.2 66.8 64.5 62.7 63.6
CW2 0.0 0.0 1.3 11.2 9.8 21.6 8.7 16.5 10.7 17.5
P •
∞ 0.0 0.0 1.0 20.1 16.3 24.1 13.2 22.1 19.3 23.8

DF •
∞ 0.0 0.0 9.5 38.5 35.6 40.5 33.0 39.1 36.6 40.4

AutoAttack∞ 0.0 0.0 8.1 37.2 33.7 38.8 31.2 37.6 36.0 39.0
Ensemble (seen) - - - - 9.8 21.2 32.3 41.2 37.9 41.8
Ensemble (unseen
by all models)

0.0 0.0 1.0 20.1 16.3 24.0 13.2 22.0 19.3 23.6

Ensemble (unseen
by this model)

0.0 0.0 0.9 10.7 16.3 24.0 7.7 14.2 10.3 16.1

Ensemble (all) 0.0 0.0 0.9 10.7 9.4 17.9 7.7 14.2 10.3 16.1
CW •

2 0.0 0.0 0.1 1.1 1.6 2.6 1.1 2.7 1.0 2.7

whether they were seen during training or not. Given the relatively good performance of the baselines
and REx on those domains, this is in line with REx’s tendency to sacrifice a little of accuracy on the
best performing domains to improve significantly the performance on the worst performing domains.

While adversarial training on either P1 or P2 fails to yield robustness to unseen attacks, we observe
that these two defenses are the only ones for which the clean accuracy does not decrease significantly.
We note that unlike on MNIST, MSD is significantly more competitive with the other baselines, and
its performance is relatively similar to the one reported by Maini et al. (2020) (likely due to using the
same architecture on CIFAR10).

Interestingly, the model adversarially trained on P∞ performs better than the Avg, AvgPGDs and MSD
models on the set of attacks unseen by all models. Conversely, training on ensembles of attacks also
hurts performance on P∞, unless we apply REx. In other words, only REx is able to improve both
P∞ and worst-case performance over an ensemble of attacks.

Key observations 2 (no hyperparameter tuning):
• REx improve the performance of all baselines on CIFAR10 with a ResNet18, from

10.7% with the best baseline to 17.9% accuracy against an ensemble of attacks, by
sacrificing a little robustness against the weakest individual attacks.

• Multiperturbation defenses only achieve higher P∞ and worst-case performance
than P∞ adversarial training when using REx.

4.3 EARLY STOPPING AND REX

In Figure 2, we observe how regularising by the variance over the domains leads to better peak
performance when using REx, over different datasets, architectures, and baselines. Like the baselines,
REx requires early stopping. For all defenses, we use the validation set to choose when to early stop,
by selecting the epoch when the performance peaks on the ensemble of seen domains. As shown
on the MNIST curves, even though we stop training before REx reaches higher performance on
the seen attacks, we still get significant improvements on the individual unseen attacks and against
the ensembles, as reported in Table 1. See Appendix A for more details on how REx is used, and
Appendix B for more details on early stopping and more validation curves.

4.4 CIFAR10 WITH HYPERPARAMETER OPTIMISATION

Unlike in previous subsections, we use weight decay and attempt to find an optimal learning rate
schedule for each defense. The results are summarised in Table 3. Due to its worse performance
compared to the other baselines on CIFAR10 with a ResNet18 (which we confirm to be especially
true when tuning hyperparameters in preliminary experiments), we chose not to use the AvgPGDs
baseline here.
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(a) MNIST seen attacks (b) MNIST unseen attacks

(c) CIFAR10 seen attacks (d) CIFAR10 unseen attacks

Figure 2: Validation accuracy of Avg on MNIST (top) and MSD on CIFAR10 (bottom) with and
without REx (dashed line), against seen attacks (left) and unseen attacks (right). AA denotes
AutoAttack.

Table 3: Accuracy on CIFAR10, with hyperparameter tuning.
Ensembles omit CW•

2 due to overtuning.

Defenses
P∞ Avg Avg+REx MSD MSD+REx

No attack 80.8 80.0 76.8 78.6 77.4
P1 78.2 78.3 74.9 76.6 75.2
P2 70.0 67.9 68.7 69.8 68.7
P∞ 47.3 34.4 48.1 45.8 48.3
DF∞ 69.0 64.4 67.1 67.1 67.3
CW2 17.4 14.5 29.6 17.9 20.9
P •
∞ 28.9 16.9 28.2 27.4 30.7

DF •
∞ 46.3 35.2 45.3 44.9 46.2

AutoAttack∞ 44.8 33.5 43.1 42.8 44.8
AutoAttack2 57.7 59.2 58.4 61.1 56.6
Ensemble (seen) - 14.5 29.2 45.8 48.2
Ensemble (unseen
by all models)

28.9 16.9 27.9 27.4 30.3

Ensemble (unseen
by this model)

16.9 16.9 27.9 16.5 19.6

Ensemble (all) 16.9 14.2 23.5 16.5 19.6
CW •

2 2.5 4.8 5.3 1.9 3.7

The cumulative effect of weight de-
cay and learning rate schedules sig-
nificantly improves all defenses’ ro-
bustness, as shown by Rice et al.
(2020) and Pang et al. (2020). Once
again, we observe that REx improves
significantly the seen and unseen en-
semble accuracies over the baselines.
Moreover, with hyperparameter tun-
ing, REx appears to lose less perfor-
mance on the best performing do-
mains. This is particularly notable
in the case of P2 attacks, where for
example REx improves the P2 accu-
racy by +0.8% with hyperparame-
ter tuning, vs −4.5% without when
training on {P∞,DF∞,CW2}. As
before, we also note that P∞ adver-
sarial training performs better than
the baselines on the ensemble of at-
tacks used in this paper, even with the addition of AutoAttack2 to the ensembles containing unseen
attacks. Moreover, only REx is able to perform better than P∞ adversarial training on P∞ attacks.

As suspected, there are interaction effects between hyperparameter tuning and the performance of
REx relative to a baseline, in the case of MSD. Hyperparameter tuning of MSD+REx, in the sense
of choosing at which epoch to start using REx, and when to decay the learning rate, is sensitive.
This sensitivity, and the lower advantage of MSD+REx over MSD, is likely due to the fact that the

8
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MSD baseline does not train over multiple domains. REx was originally designed to be used with a
baseline performing ERM on multiple domains. Therefore, when REx is used on MSD, REx uses the
loss indicated in eq. 6. However, because the AvgPGDs baseline performs significantly worse than the
MSD baseline, especially with tuned hyperparameters, it is likely that the advantage in using REx is
impacted negatively by the suboptimality of the first (ERM) term in the REx loss. Nevertheless, the
variance penalty is beneficial enough to achieve higher robustness with MSD+REx than MSD.

Key observations 3 (with hyperparameter tuning):
• REx improve the performance of all baselines on CIFAR10 with a ResNet18, from

16.9% with the best baseline to 23.5% accuracy against an ensemble of attacks, by
sacrificing a little robustness against the weakest individual attacks.

• Multiperturbation defenses only achieve higher P∞ and worst-case performance
than P∞ adversarial training when they are used in conjunction with REx.

5 CONCLUSION

An attacker seeking to exploit a machine learning model is liable to use the most successful attack(s)
available to them. Thus, defenses against adversarial examples should ideally provide robustness
against any reasonable attack, including novel attacks. In particular, the worst-case robustness against
the set of available attacks is most reflective of the performance achieved against a dedicated and
sophisticated adversary.

We achieve state-of-the-art worst-case robustness by applying the domain generalisation technique of
V-REx (Krueger et al., 2021), which seeks to equalise performance across attacks used at training time.
Our approach is simple, practical, and effective. It produces consistent performance improvements
over baselines across different datasets, architectures, training attacks, test attack types and tunings.
One limitation, as often in adversarial machine learning, is that our results make no guarantees about
attacks that were not used in the evaluation. Another limitation lies in the slight loss of accuracy on
the unperturbed data, albeit we believe the improvements in adversarial robustness and promising
research directions are significant enough to be of interest to the community.

Indeed, our work shows the promise of domain generalisation approaches to adversarial robustness.
Future work could investigate other domain generalisation methods, such as Distributionally Robust
Optimisation (DRO) (Sagawa et al., 2019) or Invariant Risk Minimisation (IRM) (Arjovsky et al.,
2019), and evaluate the effectiveness of these approaches against black-box attackers without access
to gradient information.

Our results are particularly interesting in light of the failure of REx to improve performance over
well-tuned baselines on non-adversarial domain generalisation benchmarks (Gulrajani & Lopez-Paz,
2020).

9
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REPRODUCIBILITY STATEMENT

We provide the code used for the implementation of all methods and list the hyperparameters used for
the models and the attacks. We provide in the appendix details about early stopping epochs, learning
rate schedule milestones, etc. We fix and provide the seed in the code, except for adversarial attack
computations, where we leave a random seed. In all our experiments, during training, we observe
a variance in the order of ±1% in performance for any given defense. The REx implementation is
simple and, using the information provided in the main body and appendix, we expect it to be easy to
replicate our results. The only experiments that required extensive hyperparameter search were MSD
and REx+MSD with tuned hyperparameters. Indeed, as explained, even after finding the best possible
hyperparameters for the MSD baseline, it took several attempts to find a learning rate decay milestone
for REx+MSD after turning on REx, that provided significant improvements on more than just the
Carlini & Wagner attacks. While this is not necessarily surprising when discussing hyperparameter
search, we note that in every other experiment, the advantage in using REx did not require several
attempts (see Appendix B for a illustration of this). Our strategy for hyperparameter search to solve
this issue is explained in Appendix B.
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The code can be found at [redacted during review].

A MORE ON METHODOLOGY

A.1 ATTACK TUNINGS

Using Advertorch’s and Croce’s implementation of AutoAttack’s2 parameter names, we report the
attacks’ tuning here.

MNIST

1. P1: ϵ = 10, niter = 40, ϵiter = 0.5

2. P2: ϵ = 2, niter = 40, ϵiter = 0.1

3. P∞: ϵ = 0.3, niter = 40, ϵiter = 0.01

4. DF∞: ϵ = 0.11, niter = 30

5. CW2: max_iterations = 20, learning_rate = 0.1, binary_search_steps = 5

6. P •
∞: ϵ = 0.4, niter = 40, ϵiter = 0.033

7. DF•
∞: ϵ = 0.4, niter = 50

8. CW•
2: max_iterations = 30, learning_rate = 0.12, binary_search_steps = 7

9. AutoAttack∞: ϵ = 0.3, norm = “Linf”

The MSD attack uses the same tuning as the individual Pp attacks.

CIFAR10

1. P1: ϵ = 10, niter = 40, ϵiter =
2

255

2. P2: ϵ = 0.5, niter = 40, ϵiter =
2

255

3. P∞: ϵ = 8
255 , niter = 40, ϵiter =

2
255

4. DF∞: ϵ = 0.011, niter = 30

5. CW2: max_iterations = 20, learning_rate = 0.01, binary_search_steps = 5

6. P •
∞: ϵ = 12

255 , niter = 70, ϵiter =
2

255

7. DF•
∞: ϵ = 8

255 , niter = 50

8. CW•
2: max_iterations = 30, learning_rate = 0.012, binary_search_steps = 7

9. AutoAttack∞: ϵ = 8
255 , norm = “Linf”

MSD uses the same tuning as the individual Pp attacks.

CIFAR10 with hyperparameter optimisation
We use the same tuning as above for testing, with the addition of an AutoAttack2 adversary with
ϵ = 0.5 and norm =“L2”. However, for training, based on (Rice et al., 2020), we set

1. P1: ϵ = 10, niter = 10, ϵiter =
20
255

2. P2: ϵ = 0.5, niter = 10, ϵiter =
15
255

3. P∞: ϵ = 8
255 , niter = 10, ϵiter =

2
255

and do the same for MSD.

2https://github.com/fra31/auto-attack
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A.2 MORE ON HOW THE MODELS ARE TRAINED

Note that when activating REx, we always reset the optimiser to avoid using accumulated momentum
from the baseline. When tuning hyperparameters, we find that activating the REx penalty after
learning rate decays generally is a worse strategy than activating it before when the baseline’s
accuracy decreases after a decay.

A.2.1 NO HYPERPARAMETER OPTIMISATION

First, we pretrain the architecture on the clean dataset. Then, the baseline is trained on the appropriate
seen domains. On MNIST, convergence does not happen in many baselines’ case until thousands of
epochs. Therefore, we choose to stop training when progress on the seen domains slows, as in Fig. 2
where we stopped training for example at epoch 1125 for both the Avg and the Avg+REx models.
For CIFAR10, the accuracies peak in significantly less epochs, so we early stop when the Ensemble
(seen) accuracy on the seen domains peaks. Note that we do this manually by looking at the seen
domains’ validation curves (see Sec. B for more details on early stopping). REx is triggered on a
baseline before the baseline’s early stopping epoch, when progress on the seen domains slows.

An important precision about Fig. 2 is that unseen attack performance is only evaluated every 5
epochs, hence the jagged aspect of the curves. We do this because of the huge computational cost of
running all 9 attacks on each sample every epoch.

For a full description of early stopping and when we activated the REx penalty on baselines:

MNIST

• P1 model: early stopped at epoch 95
• P2 model: early stopped at epoch 75
• P∞ model: early stopped at epoch 1125
• Avg model: early stopped at epoch 1125
• Avg+REx model: REx penalty activated at epoch 726, early stopped at epoch 1125
• AvgPGDs model: early stopped at epoch 1105
• Avg+RExPGDs model: REx penalty activated at epoch 551, early stopped at epoch 1105
• MSD model: early stopped at epoch 655
• MSD+REx model: REx penalty activated at epoch 101, early stopped at epoch 655

CIFAR10

• P1 model: early stopped at epoch 69
• P2 model: early stopped at epoch 59
• P∞ model: early stopped at epoch 45
• Avg model: early stopped at epoch 50
• Avg+REx model: REx penalty activated at epoch 301, early stopped at epoch 330
• AvgPGDs model: early stopped at epoch 95
• Avg+RExPGDs model: REx penalty activated at epoch 301, early stopped at epoch 370
• MSD model: early stopped at epoch 40
• MSD+REx model: REx penalty activated at epoch 26, early stopped at epoch 70

A.3 WITH HYPERPARAMETER OPTIMISATION

The experiments are run with a ResNet18 architecture on CIFAR10. We follow the results of Rice
et al. (2020) and Pang et al. (2020), using a piecewise learning rate schedule decay and a weight
decay value of 5 · 10−4. In all cases we start with a learning rate of 0.1, decayed to 0.01 at the
corresponding milestone. In preliminary tuning experiments, we observe the AvgPGDs to perform
very poorly relative to other baselines, and chose to drop that baseline.
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• P∞ model: milestone at epoch 100, early stopped at epoch 103
• Avg model: milestone at epoch 100, early stopped at epoch 140
• Avg+REx model: REx penalty activated at epoch 50 (before lr decay), milestone at epoch

100, early stopped at epoch 110
• MSD model: milestone at epoch 50, early stopped at epoch 51
• MSD+REx model: REx penalty activated at epoch 50 (before lr decay), milestone at epoch

97, early stopped at epoch 99

We attempt several learning rate schedule milestones for both MSD and MSD+REx, which has
a higher impact than for other models. This process can be automated since the worst-case seen
accuracy always peaks within a few epochs of a milestone.

A.4 OTHER IMPLEMENTATION DETAILS

We use the implementation of https://github.com/kuangliu/pytorch-cifar/
blob/master/models/resnet.py for ResNet18.

REx’s β parameter is generally set to 10, except for MSD+REx on MNIST in subsection 4.1 where it
is set to 4. These numbers initially come from setting β to a value of the same order of magnitude as
LAvg

Var ’s value at the epoch REx is activated, in the early iterations of our experiments. This is done
to encourage the optimisation dynamics to neglect neither term of the REx loss. We found that
β = 10 worked generally well, even in many settings where empirically LAvg

Var ≃ 30. See Sec. C for a
discussion of how the choice of β affects performance.
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B WHEN TO EARLY STOP, AND HOW MILESTONES AFFECT PERFORMANCE

B.1 MSD MODEL

(a) P1 accuracy (b) P2 accuracy

(c) P∞ accuracy (d) AutoAttack∞ accuracy

(e) CW2 accuracy (f) Ensemble (seen) accuracy

(g) No attack (clean) accuracy (h) P •
∞ accuracy

Figure 3: Validation accuracy of MSD and MSD+REx on CIFAR10 on various attacks with different
milestones for the learning rate decay. Early stopping is performed for each model at the peak of the
ensemble (seen) accuracy. The MSD model with a milestone at epoch 50 and the MSD+REx model
with a milestone at epoch 97 are the final models retained in subsection 4.4.
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In this subsection, we illustrate two points using Fig. 3: how early stopping is performed on the MSD
and MSD+REx models, and how the choice of learning rate decay milestone affects performance.
Regarding the former, we early stop based on the peak of the validation Ensemble (seen) accuracy.
We motivated that worst-case performance is a more appropriate notion of robustness, and unseen
attacks should not be used to make model-selection decisions as they are used to simulate “future”,
novel attacks that were not known when designing the defenses. Concerning early stopping, we note
that the peak performance on Ensemble (seen) accuracy is reached:

• At epoch 101 for the MSD model with milestone at epoch 100
• At epoch 51 for the MSD model with milestone at epoch 50
• At epoch 105 for the MSD+REx model with milestone at epoch 100
• At epoch 99 for the MSD+REx model with milestone at epoch 97
• At epoch 54 or 56 for the MSD+REx model with milestone at epoch 50.

Regarding how milestone choice affects performance, this illustrates how we searched for hyperpa-
rameters. We attempt learning rate decays milestones at various epochs, which we then evaluate only
for a few epochs, as the performance decays fast anyway as predicted by Rice et al. (2020). The
curves in Fig. 3 represent the best learning rate scheduler milestones found for MSD and MSD+REx.
We retain the model with best validation Ensemble (seen) accuracy for our final results presented in
Sec. 4. As performance of the best checkpoints of MSD with milestones 50 and 100, and respectively
MSD+REx with milestones 97 and 100, are very close, in both cases we evaluated the final models
on the test set and kept the best in each case (MSD with milestone 50 and MSD+REx with milestone
97), observing only minor differences between each defense’s pair of choices.

B.2 AVG MODEL

As argued in our introduction, it is somewhat surprising that REx successfully improved MSD due to
MSD being a single-domain baseline. REx was originally designed to be used with baselines where
multiple domains appear in the loss, and in particular ERM over multiple domains. Fig. 4 illustrates
how REx clearly benefits the Avg baseline more, with very little tuning effort required to achieve
results above all baselines as reported in subsection 4.4.
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(a) P1 accuracy (b) P2 accuracy

(c) P∞ accuracy (d) AutoAttack∞ accuracy

(e) CW2 accuracy (f) Ensemble (seen) accuracy

(g) No attack (clean) accuracy (h) P •
∞ accuracy

Figure 4: Validation accuracy of Avg and Avg+REx on CIFAR10 on various attacks with learning
rate decay milestone at epoch 100. This illustrates how much easier it is to get improvements with
REx on baselines based on ERM over multiple domains.
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C EFFECT OF VARYING REX’S β COEFFICIENT

(a) P1 accuracy (b) P2 accuracy

(c) P∞ accuracy (d) AutoAttack∞ accuracy

(e) CW2 accuracy (f) Ensemble (seen) accuracy

(g) No attack (clean) accuracy (h) P •
∞ accuracy

Figure 5: Validation accuracy of MSD and MSD+REx on CIFAR10 on various attacks with different
values of β. Note that MSD has a learning rate decay at epoch 100, and MSD+REx at epoch 155.

19



Under review as a conference paper at ICLR 2023

In Fig. 5 we investigate the effect of varying β in REx+MSD. Note that the hyperparameters of both
MSD and MSD+REx are suboptimally tuned in this figure, which only aims to illustrate the effect of
varying β. To generate those figures, both baselines use weight decay, MSD’s learning rate milestone
is set at epoch 100. MSD+REx loads an MSD checkpoint at epoch 105 with a learning rate set to 0.1
which is decayed at epoch 155.

We observe that while there is some robustness to the choice of β for some domains, the difference is
especially large on CW2 and P •

∞, where a larger value benefits the model. β also has a fairly large
impact on the clean, P1 and P2 accuracies. This is explained by the fact that low values of β imply
that the variance term will have lower impact and the model will value high performing seen domains
(clean, P1, P2) more when updating weights than if larger values of β were used. In contrast, large
values of β emphasise the variance regularisation which benefits accuracy against stronger attacks
more.
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D MISCELLANEOUS RESULTS

• In preliminary experiments without hyperparameter tuning, REx did not benefit a model
trained solely on P∞.

• We attempted to just add the variance penalty term to the MSD baseline while still training
on the MSD attack. More explicitly, the ERM term consisted in the loss on the MSD attack,
and the variance term separately computed P1, P2, P∞ perturbations. This leads to iterations
that are twice as expensive, for no observed benefit. Therefore, we instead prefered to define
MSD+REx as performing REx+AvgPGDs on a model pretrained with MSD.

• On CIFAR10, training on {P∞, DF∞,CW2} is about 8 times more computationally expen-
sive than training on PGDs or MSD with 10 iterations per Pp attack (factoring in that in all
cases, we validate on all domains every 5 epochs). Since the former leads to a significant
advantage in robustness over the ensembles of attacks evaluated here, there is a strong
trade-off between computational cost and adversarial robustness when training on those
attacks.

In figures 6 and 7, we show the domains generated for the Avg and Avg+REx models from different
attacks, along with the unperturbed data. Above each image is the class predicted by the model, and
in parentheses the true class. The classes match the following numbers:

airplane : 0
automobile : 1
bird : 2
cat : 3
deer : 4
dog : 5
frog : 6
horse : 7
ship : 8
truck : 9

This highlights how in general, these adversarial examples are not difficult to classify for humans.
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(a) P1 adversarial examples

(b) P2 adversarial examples

(c) P∞ adversarial examples

(d) AutoAttack∞ adversarial examples

(e) CW2 adversarial examples

(f) CW•
2 examples

(g) No attack (clean) adversarial examples

(h) P •
∞ adversarial examples

Figure 6: Adversarial examples generated from the hyperparameter-optimised Avg model, for each
attack.
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(a) P1 adversarial examples

(b) P2 adversarial examples

(c) P∞ adversarial examples

(d) AutoAttack∞ adversarial examples

(e) CW2 adversarial examples

(f) CW•
2 adversarial examples

(g) No attack (clean) adversarial examples

(h) P •
∞ adversarial examples

Figure 7: Adversarial examples generated from the hyperparameter-optimised Avg+REx model, for
each attack.
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