
Quantized Representations Prevent Dimensional
Collapse in Self-predictive RL

Aidan Scannell
Aalto University

aidan.scannell@aalto.fi

Kalle Kujanpää
Aalto University

kalle.kujanpaa@aalto.fi

Yi Zhao
Aalto University

yi.zhao@aalto.fi

Mohammadreza Nakhaei
Aalto University

mohammadreza.nakhaei@aalto.fi

Arno Solin
Aalto University

arno.solin@aalto.fi

Joni Pajarinen
Aalto University

joni.pajarinen@aalto.fi

Abstract

Learning representations for reinforcement learning (RL) has shown much promise
for continuous control. We propose an efficient representation learning method
using only a self-supervised latent-state consistency loss. Our approach employs
an encoder and a dynamics model to map observations to latent states and pre-
dict future latent states, respectively. We achieve high performance and prevent
dimensional collapse by quantizing the latent representation such that the rank of
the representation is empirically preserved. Our method, named iQRL: implicitly
Quantized Reinforcement Learning, is straightforward, compatible with any model-
free RL algorithm, and demonstrates excellent performance by outperforming other
recently proposed representation learning methods in continuous control bench-
marks from DeepMind Control Suite.

1 Introduction

Reinforcement learning (RL, e.g., [2]) has shown much promise for solving complex continuous
control tasks. However, applying RL in real-world environments is challenging as it typically requires
millions of data points which can be unpractical—i.e. RL is sample inefficient. On the other hand,
representation learning has become a widely adopted solution for improving sample efficiency in
deep learning. The core idea is to learn features which capture the underlying structure and patterns
of the data. In the context of RL, such features can be learned independently from the downstream
task. Whilst representation learning has had successes in RL, these have mainly been restricted to
image-based observations (e.g., CURL [3], DrQ [4], DrQ-v2 [5], and TACO [6]).

The investigation of representation learning for state-based RL is much less common. This is likely
because learning a compact representation of an already compact state vector seems unnecessary.
However, recent work suggests that the difficulty of a task is due to the complexity of the underlying
transition dynamics, as opposed to the size of the observation space [7, 8]. As such, investigating
representation learning for state-based RL is a promising research direction.

Recently, TCRL [8] and SPR [9] have obtained state-of-the-art performance on continuous control
benchmarks by learning representations with self-supervised losses. Self-supervised learning (SSL)
approaches (which do not reconstruct observations) learn good features without labels by minimizing

See Scannell et al. [1] for a longer 9 page version of this paper.

Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024@ ICML).

zt ẑt+1 ẑt+2

Encoder EMA enc. EMA enc.

z̄t+1 z̄t+2at at+1

ot ot+1 ot+2

Dynamics Dynamics

FS
Q

Discrete
latent codes

Discrete
latent codes

Discrete
latent codes

ot ot+1

Encoder Encoder

zt zt+1at rt+1

Latent transition

Actor: π(zt)

Critic: Q(zt,at)

Any model-free RL algorithm

Figure 1: Overview IQRL is a stand-alone representation learning technique that is compatible
with any model-free RL algorithm (we use TD3 [16]). Importantly, IQRL quantizes the latent
representation with Finite Scalar Quantization (FSQ,), using only a self-supervised latent-state
consistency loss, i.e. no decoder (see Eq. (5)). Making the latent representation discrete with an
implicit codebook () contributes to the very high sample efficiency of IQRL and empirically
prevents dimensional collapse.
distances between two embedding vectors [10]. However, there is a trivial solution where the encoder
outputs a constant for all inputs, known as representation collapse [11].
Definition 1.1 (Complete representation collapse). Given an encoder eθ : O → Z which maps
observations o ∈ O to latent states z ∈ Z , the representation is said to be completely collapsed when
the latent representation is constant for all observations, i.e., eθ(o) = c,∀o ∈ O.

In the context of SSL, Jing et al. [11] investigated another type of representation collapse known as
dimensional collapse.
Definition 1.2 (Dimensional collapse). Let eθ : O → Z be an encoder which maps observa-
tions o ∈ O to latent states zt ∈ Z = Rd, of dimension d. Given a data set of N latent states
Dz = {z1, . . . , zN}, the representation is said to be dimensionally collapsed when the latent states
span a lower dimensional space than the original latent space Z , i.e. dim(Span(Dz)) < d.

Whilst complete representation collapse is a clear issue when learning representations for RL, it is not
immediately obvious if dimensional collapse is an issue because the goal of representation learning is
often considered to be learning a lower-dimensional representation. Our experiments show that whilst
dimensional collapse is not always an issue, in some more complex environments, it can prevent
agents from learning to solve a task (see Fig. 3). It is worth noting that previous approaches utilize
auxiliary loss terms to help prevent representation collapse, e.g., minimizing the reward prediction
error in the latent space [12, 8, 13–15].

In this paper, we propose a simple representation learning technique which learns a task-agnostic
representation using only a self-supervised loss. Importantly, our method empirically prevents
dimensional collapse as it preserves the rank of the representation. We accomplish this by quantizing
our latent representation with Finite Scalar Quantization [17], without using any reconstruction loss.
As a result, our latent space is bounded and associated with an implicit codebook, whose size we
can control. Our method can be combined with any model-free RL method (we use TD3, [16]). See
Fig. 1 for an overview of our representation learning method. Importantly, our method (i) alleviates
dimensional collapse, (ii) demonstrates excellent sample efficiency outperforming TCRL and TD7
on a wide range of different continuous control tasks, (iii) is simple to implement, and (iv) learns a
task-agnostic representation that could be helpful in downstream tasks.

2 Method

In this section, we detail our method, named implicitly Quantized Reinforcement Learning (IQRL).
IQRL is conceptually simple, it (i) learns a representation of the observation space and then, (ii) per-
forms model-free RL (e.g., TD3) on this representation. See Fig. 1 and Algorithm 1.

2

We consider Markov Decision Processes (MDPs, [18])M = (O,A,P,R, γ), with discount factor
γ ∈ [0, 1), where an agent receives an observation ot ∈ O at time step t, performs an action at ∈ A,
and then obtains the next observation ot+1 ∼ P(· | ot,at) and a reward rt = R(ot,at).
Method components IQRL has four main components which we wish to learn:

Encoder: zt = f(eθ(ot)) (1)
Dynamics: ẑt+1 = f(zt + dφ(zt,at)) (2)
Value: qt = qψ(zt,at) (3)
Policy: at ∼ πη(zt) (4)

The encoder eθ and latent-space dynamics model dφ are responsible for representation learning. f(·)
denotes our quantization scheme, which implicitly quantizes our latent representation (more details
to follow). The encoder f ◦ eθ(·) maps observations ot to latent states zt and is responsible for
learning a representation which can aid RL. The latent-space dynamics model dφ(·) predicts the next
latent states ẑt+1 given a latent state zt and an action at. Once we have the representation learned by
our encoder, we map all observations to the latent space and perform model-free RL in this latent
space. Throughout this paper, we use Twin Delayed Deep Deterministic Policy Gradient (TD3, [16])
as the base algorithm. It consists of two action-value functions {qψ1

, qψ2
}, known as critics, and a

deterministic actor πη. However, we follow Yarats et al. [5], Zhao et al. [8] and augment the loss
with n-step returns. The only difference to TD3 is that we map observations ot through the encoder
zt = f(eθ(ot)) and learn the actor/critic in the quantized latent space.

Representation learning Our representation learning uses the latent-state consistency loss,

Lrep(θ, φ; τ) =

H−1∑
h=0

γhrep

(
f(ẑt+h + dφ(ẑt+h,at+h))

‖f(ẑt+h + dφ(ẑt+h,at+h))‖2

)> (
f(eθ̄(ot+h+1))

‖f(eθ̄(ot+h+1))‖2

)
, (5)

which minimizes the cosine similarity between the next state predicted by the dynamics model ẑt+1 =
f(ẑt+ dφ(ẑt,at)) and the next state predicted by the momentum encoder z̄t+1 = f(eθ̄(ot+1)). The
latent states are obtained with multi-step predictions in the latent space ẑt+1 = f(ẑt + dφ(ẑt,at)).
The initial mapping to the latent space ẑ0 = f(eθ(o0)) uses the online encoder which is being
trained jointly with the dynamics model dφ(ẑt,at). The target eθ̄(ot+1) is calculated with the
momentum encoder which uses an exponential moving average (EMA) of the encoder’s weights
θ̄ ← (1− τ)θ̄ + τθ. The target network update rate is denoted τ . Note that we do not use reward or
value prediction for learning our representation and as a result, our representation is task-agnostic.

Quantization Motivated by preventing dimensional collapse we quantize our latent space following
the approach from Finite Scalar Quantization (FSQ, [17]). Their important observation is that
carefully bounding each dimension gives rise to an implicit codebook C of a chosen size |C|. Having
requested a d-dimensional latent space, IQRL configures the encoder to output c channels per
dimension such that the representation from the encoder x = eθ(o) ∈ Rd×c and the dynamics model
x̂ = z + dφ(z,a) ∈ Rd×c are in Rd×c. To quantize x (and x̂) into a finite set of codewords, we first
apply a bounding function f(·) and then we round to integers. Let us consider a single dimension
j of the encoder’s output v = [x]j,: ∈ Rc which consists of c-channels, and demonstrate how it is
quantized. We follow FSQ and choose f(·) such that each entry in ṽ = round(f(v)) takes one of
Li unique values, f : v → bLi/2ctanh(v), where Li is a hyperparameter for channel i, specified
as FSQ levels L = {L1, . . . , Lc}. This gives an entry in our codebook ṽ ∈ C, where the implied
codebook is given by the product of these per-channel codebook sets. The vectors in C can be
enumerated giving a bijection from any ṽ to an integer in {1, 2, . . . , Lc}. As an example, in some
of our experiments, we used d = 512 latent dimensions each with c = 2 channels consisting of 8
levels, i.e. we used FSQ levels L = {L1 = 8, L2 = 8}. This corresponds to a codebook of size
|C| =

∏c
i=1 Li = 8× 8 = 64 = 26 for each dimension.

Note that this quantization requires a round operation. As such, to propagate gradients through the
round operation we use straight-through gradient estimation (STE). This is easily accomplished in
deep learning libraries using stop gradient sg as round_ste(x) : x→ x+ sg(round(x)− x). FSQ
has the following hyperparameters: we must specify the number of channels c and the number of
levels per channel L = {L1, . . . , Lc}. Table 1 shows the recommended number of channels and
number of levels per channel to obtain codebooks of different sizes [17]. In practice, we found
codebooks of size |C| = 26 sufficient for all environments in the DeepMind Control suite. However,
for more complex environments we hypothesize that larger codebooks will be required.

3

0 250 500 750 1000
0

50

100
E

pi
so

de
R

et
ur

n

DMControl (20 tasks)

0 250 500 750 1000
0

200

400

Acrobot Swingup

0 1000 2000 3000
0

200

400

600

Dog Run

0 1000 2000 3000
0

250

500

750

Dog Walk

0 1000 2000 3000
Environment Steps (1e3)

0

200

400

E
pi

so
de

R
et

ur
n

Humanoid Run

0 1000 2000 3000
Environment Steps (1e3)

0

250

500

750

Humanoid Walk

0 250 500 750 1000
Environment Steps (1e3)

0

500

1000
Quadruped Walk

0 250 500 750 1000
Environment Steps (1e3)

0

250

500

750

Walker Run

TCRL TD3 TD7 TACO iQRL (ours)

Figure 2: DeepMind Control Suite results. IQRL (red) is significantly more sample efficient than
other model-free baselines TCRL (green), TD7 (purple), TACO (blue) and TD3 (orange). IQRL
performs particularly well in the high-dimensional locomotion tasks and outperforms TCRL, which
is the most similar baseline. Results are for 20 DMC tasks with UTD=1. We plot the mean (solid
line) and the 95% confidence intervals (shaded) across 5 random seeds, where each seed averages
over 10 evaluation episodes. See Fig. 4 for results in other DMC tasks.

3 Experiments

We evaluate IQRL in a variety of tasks from the DeepMind Control (DMC) Suite [19]. We compare
to TD3 [16], and the representation learning-based RL methods TCRL [8], TD7 [7], and TACO [6].

IQRL is simple, fast, and performant In Fig. 2, we evaluate sample efficiency by plotting the
average performance of the algorithms across 20 DMC tasks as a function of environment steps. On
average, IQRL outperforms the baselines and shows significant advantages in many environments.
Furthermore, TD3 is noncompetitive with IQRL, highlighting the importance of representation
learning in state-based RL. For complete results on all 20 tasks, see Fig. 4.

IQRL does not suffer from rank collapse We examine the behaviour of adding quantization
to our MLP encoder during training. Following Ni et al. [20], we estimate the rank of the linear
operator associated with the MLP encoder by calculating the matrix rank1 of the latent states for
a batch of inputs. We ensure full rank at the start of training by orthogonally initializing the MLP
encoders. Fig. 3 shows the orthogonality-preserving effect of our quantization scheme as the matrix
rank stays close to the maximum. Without quantization, a dimensional collapse occurs, which can
have significant harmful effects as the representational power of the latent state diminishes [11]. In
three of the four environments, removing quantization has a deteriorating impact on sample efficiency,
and in Dog Run, the algorithm completely fails to solve the task without quantization.

For more details about the baselines, the DMC tasks, and further experiments, see Appendices C, D
and E, respectively.

4 Conclusion

We have presented IQRL, a technique for learning representations using only a self-supervised tempo-
ral consistency loss, which demonstrates strong performance in continuous control tasks, including the
complex DMC Humanoid and Dog tasks. Our quantization of the latent space empirically preserves
the representation’s matrix rank, indicating that it alleviates dimensional collapse. Our experiments
further demonstrate that IQRL is extremely sample efficient whilst being fast to train, which we
believe is a strong selling point. Importantly, our method is (i) straightforward, (ii) compatible with
any model-free RL algorithm, and (iii) learns a task-agnostic representation.

1Rank of an m×n matrix A is the dimension of the image of the mapping g : Rn → Rm, with g(x) = Ax

4

References
[1] Aidan Scannell, Kalle Kujanpää, Yi Zhao, Mohammadreza Nakhaei, Arno Solin, and Joni Pajarinen.

iQRL - Implicitly Quantized Representations for Sample-efficient Reinforcement Learning. arXiv preprint
arXiv:2406.02696, 2024.

[2] R.S. Sutton and A.G. Barto. Reinforcement Learning, Second Edition: An Introduction. Adaptive
Computation and Machine Learning Series. MIT Press, 2018.

[3] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive Unsupervised Representations
for Reinforcement Learning. In Proceedings of the 37th International Conference on Machine Learning,
pages 5639–5650. PMLR, November 2020.

[4] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image Augmentation Is All You Need: Regularizing Deep
Reinforcement Learning from Pixels. In International Conference on Learning Representations, October
2020.

[5] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering Visual Continuous Con-
trol: Improved Data-Augmented Reinforcement Learning. In International Conference on Learning
Representations, October 2021.

[6] Ruijie Zheng, Xiyao Wang, Yanchao Sun, Shuang Ma, Jieyu Zhao, Huazhe Xu, Hal Daumé III, and Furong
Huang. TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning. In
Advances in Neural Information Processing Systems, volume 36, pages 48203–48225, December 2023.

[7] Scott Fujimoto, Wei-Di Chang, Edward Smith, Shixiang (Shane) Gu, Doina Precup, and David Meger.
For SALE: State-Action Representation Learning for Deep Reinforcement Learning. Advances in Neural
Information Processing Systems, 36:61573–61624, December 2023.

[8] Yi Zhao, Wenshuai Zhao, Rinu Boney, Juho Kannala, and Joni Pajarinen. Simplified Temporal Consistency
Reinforcement Learning. In Proceedings of the 40th International Conference on Machine Learning, pages
42227–42246. PMLR, July 2023.

[9] Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron Courville, and Philip Bachman.
Data-Efficient Reinforcement Learning with Self-Predictive Representations. In International Conference
on Learning Representations, October 2020.

[10] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon Hjelm.
Unsupervised State Representation Learning in Atari. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

[11] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding Dimensional Collapse in
Contrastive Self-supervised Learning. In International Conference on Learning Representations, October
2021.

[12] Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
Invariant Representations for Reinforcement Learning without Reconstruction. In International Conference
on Learning Representations, October 2020.

[13] Nicklas A. Hansen, Hao Su, and Xiaolong Wang. Temporal Difference Learning for Model Predictive
Control. In Proceedings of the 39th International Conference on Machine Learning, pages 8387–8406.
PMLR, June 2022.

[14] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. DeepMDP:
Learning Continuous Latent Space Models for Representation Learning. In Proceedings of the 36th
International Conference on Machine Learning, pages 2170–2179. PMLR, May 2019.

[15] Sahand Rezaei-Shoshtari, Rosie Zhao, Prakash Panangaden, David Meger, and Doina Precup. Continuous
MDP Homomorphisms and Homomorphic Policy Gradient. In Advances in Neural Information Processing
Systems, volume 35, pages 20189–20204, December 2022.

[16] Scott Fujimoto, Herke Hoof, and David Meger. Addressing Function Approximation Error in Actor-Critic
Methods. In Proceedings of the 35th International Conference on Machine Learning, pages 1587–1596.
PMLR, July 2018.

[17] Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite Scalar Quantization:
VQ-VAE Made Simple, September 2023.

5

[18] Richard Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, 6(5):679–684,
1957.

[19] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

[20] Tianwei Ni, Benjamin Eysenbach, Erfan SeyedSalehi, Michel Ma, Clement Gehring, Aditya Mahajan, and
Pierre-Luc Bacon. Bridging State and History Representations: Understanding Self-Predictive RL. In The
Twelfth International Conference on Learning Representations, October 2023.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs],
January 2017. Comment: Published as a conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

[23] Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, Robust World Models for Continuous
Control. In The Twelfth International Conference on Learning Representations, October 2023.

[24] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016.

[25] Zixin Wen and Yuanzhi Li. The Mechanism of Prediction Head in Non-contrastive Self-supervised
Learning. Advances in Neural Information Processing Systems, 35:24794–24809, December 2022.

6

Appendices

A Further Method Details

In this section, we provide further details of our method.

FSQ levels Table 1 shows how to select the FSQ levels L hyperparameter in order to approximate
codebooks of different sizes.

Table 1: FSQ levels L to approximate different codebook sizes |C|

TARGET SIZE |C| 24 26 28 29 210

PROPOSED L {5, 3} {8, 8} {8, 6, 5} {8, 8, 8} {8, 5, 5, 5}

Model-free reinforcement learning We learn the policy (actor) and action-value function (critic)
using TD3 [16]. However, we follow Yarats et al. [5], Zhao et al. [8] and augment the loss with
n-step returns. The only difference to TD3 is that instead of using the original observations ot, we
map them through the online encoder zt = f(eθ(ot)) and learn the actor/critic in the quantized latent
space zt. The critic is then updated by minimizing the following objective:

Lq(ψ; τ) = Eτ∼D

[∑2
k=1(qψk

(f(eθ(ot)),at)− y)2
]
, ∀k ∈ 1, 2 (6)

y =

N−1∑
n=0

rt+n + γn min
k∈{1,2}

qψ̄k
(eθ(ot+n+1),at+n+1), with at+n = πη̄(zt+n) + εt+n

where we use policy smoothing by adding clipped Gaussian noise εt+n ∼ clip
(
N (0, σ2),−c, c

)
to

the action at+n = πη̄(zt+n) + εt+n. Note that we use the online encoder to get the latent states in
both the prediction and the target. We then use the target action-value functions qψ̄ and the target
policy πη̄ to calculate the TD target. Following TD3, we learn the actor’s parameters by minimizing

Lπ(η; τ) = −Eot∼D

[
min

k∈{1,2}
qψk

(f(eθ(ot))︸ ︷︷ ︸
zt

, πη(f(eθ(ot))))

]
. (7)

That is, we maximize the Q-value using the clipped double Q-learning trick to combat overestimation
in Q-learning. Note that we do not use the momentum encoder in the actor/critic objectives. In our
experiments, using the momentum encoder resulted in worse performance. Whilst our method shares
similarities with TCRL [8], it is important to note that our transition model does not predict the
reward. Instead, IQRL leverages quantization to help alleviate dimensional collapse, and, as a result,
learns a task-agnostic representation.

Algorithm 1 IQRL

Input: Encoder eθ, dynamics dφ, critics {qψ1 , qψ2}, policy πη, learning rate α, target network
update rate τ
for i to Nepisodes do
D ← D ∪ {ot,at,ot+1, rt+1}Tt=0 . Collect data in environment
for i = 1 to T do
[θ, φ]← [θ, φ] + α∇ (Lrep(θ, φ;D)) . Update representation, Eq. (5)
ψ ← ψ + α∇ (Lq(ψ;D)) . Update critic, Eq. (6)
if i % 2 == 0 then
η ← η + α∇ (Lπ(η;D)) . Update actor less frequently than critic, Eq. (7)

end if
[θ̄, ψ̄, η̄]← (1− τ)[θ̄, ψ̄, η̄] + τ [θ, ψ, η] . Update target networks

end for
end for

7

B Implementation Details

Architecture We implemented IQRL with PyTorch [21] and used the AdamW optimizer [22] for
training the models. All components (encoder, dynamics, actor and critic) are implemented as MLPs.
Following Hansen et al. [23] we let all intermediate layers be linear layers followed by LayerNorm
[24]. Using LayerNorm is what led to our base TD3 implementation performing so well. We use
Mish activation functions throughout. Below we summarize the IQRL architecture for our base
model.

iQRL(
(fsq): FSQ(

(project_in): Identity ()
(project_out): Identity ()

)
(encoder): ModuleDict (

(state): Sequential (
(0): NormedLinear (in_features =O, out_features =256 , act=Mish)
(1): Linear (in_features =256 , out_features =512)

)
)
(encoder_tar): ModuleDict (

(state): Sequential (
(0): NormedLinear (in_features =O, out_features =256 , act=Mish)
(1): Linear (in_features =256 , out_features =512)

)
)
(dynamics): Sequential (

(0): NormedLinear (in_features =512+A, out_features =512 , act=Mish)
(1): NormedLinear (in_features =512 , out_features =512 , act=Mish)
(2): Linear (in_features =512 , out_features =512)

)
(pi): Actor(

(_pi): Sequential (
(0): NormedLinear (in_features =512 , out_features =512 , act=Mish)
(1): NormedLinear (in_features =512 , out_features =512 , act=Mish)
(2): Linear (in_features =512 , out_features =A)

)
)
(pi_tar): Actor(

(_pi): Sequential (
(0): NormedLinear (in_features =512 , out_features =512 , act=Mish)
(1): NormedLinear (in_features =512 , out_features =512 , act=Mish)
(2): Linear (in_features =512 , out_features =A)

)
)
(critic): Critic (

(_q1): Sequential (
(0): NormedLinear (in_features =512+A, out_features =512 , act=Mish)
(1): NormedLinear (in_features =512 , out_features =512 , act=Mish)
(2): Linear (in_features =512 , out_features =1)

)
(_q2): Sequential (

(0): NormedLinear (in_features =512+A, out_features =512 , act=Mish)
(1): NormedLinear (in_features =512 , out_features =512 , act=Mish)
(2): Linear (in_features =512 , out_features =1)

)
)
(critic_tar): Critic (

(_q1): Sequential (
(0): NormedLinear (in_features =512+A, out_features =512 , act=Mish)
(1): NormedLinear (in_features =512 , out_features =512 , act=Mish)
(2): Linear (in_features =512 , out_features =1, bias=True)

)
(_q2): Sequential (

8

(0): NormedLinear (in_features =512+A, out_features =512 , act=Mish)
(1): NormedLinear (in_features =512 , out_features =512 , act=Mish)
(2): Linear (in_features =512 , out_features =1)

)
)

)

where O is the dimensionality of the observation space and A is the dimensionality of the action
spaces.

Hyperparameters Table 2 lists all of the hyperparameters for training IQRL which were used for
the main experiments and the ablations.

Table 2: IQRL hyperparameters. We kept most hyperparameters fixed across all tasks.

HYPERPARAMETER VALUE DESCRIPTION

TRAINING
ACTION REPEAT 2
MAX EPISODE LENGTH 500 ACTION REPEAT MAKES THIS 1000
EVAL. EVERY EPISODES 10
NUM. EVAL EPISODES 10
RANDOM EPISODES 10 NUM. RANDOM EPISODES AT START
TD3
ACTOR UPDATE FREQ. 2 UPDATE ACTOR LESS THAN CRITIC
BATCH SIZE 256
BUFFER SIZE 106

DISCOUNT FACTOR γ 0.99
EXPLORATION NOISE Linear(1.0, 0.1, 50) (EASY)

Linear(1.0, 0.1, 150) (MEDIUM)
Linear(1.0, 0.1, 500) (HARD)

LEARNING RATE 3× 10−4

MLP DIMS [512, 512] FOR ACTOR/CRITIC/DYNAMICS
MOMENTUM COEF. (τ) 0.005
NOISE CLIP 0.3
N-STEP TD 1 OR 3
POLICY NOISE 0.2
UPDATE-TO-DATA (UTD) RATIO 1
ENCODER
DISCOUNT FACTOR γREP 0.9
ENCODER LEARNING RATE 10−4

ENCODER MLP DIMS [256]
ENCODER MOMENTUM COEF. (τ) 0.005
FSQ LEVELS [8, 8]
HORIZON (H) 5 FOR REPRESENTATION LEARNING
LATENT DIMENSION (d) 512

1024 (HUMANOID/DOG)

Statistical significance We used five seeds for the main figures, at least three seeds for all ablations,
and plotted the 95 % confidence intervals as the shaded area, which corresponds to approximately
two standard errors of the mean.

Hardware We used Nvidia A100s and AMD Instinct MI250X GPUs to run our experiments. All
our experiments have been run on a single GPU with a single-digit number of CPU workers.

Open-source code For full details of the implementation, model architectures, and training, please
check the code, which is available in the submitted supplementary material and will be made public
upon acceptance to guarantee seamless reproducibility.

–appendices continue on next page–

9

C Baselines

In this section, we provide further details of the baselines we compare against. In particular, we
provide details of how we modified the original codebases and tuned the hyperparameters in an effort
to offer a fair comparison.

• Temporal Consistency Reinforcement Learning (TCRL, [8]) is a reinforcement learning
algorithm consisting of four components, an encoder and transition, policy and value func-
tions, similarly to IQRL. TCRL uses a temporal consistency loss similar to model-based
reinforcement learning to learn a representation used for model-free policy and value func-
tion training. The most crucial difference between TCRL and IQRL is that we replace the
reward prediction head in the transition function with the FSQ-based normalization scheme.
We used the official TCRL implementation on GitHub to run the TCRL experiments in our
paper. For the DeepMind Control Suite (DMC) tasks, we used the tuned hyperparameters
from the original paper. We used the official PyTorch implementation2.

• Temporal Action-driven Contrastive Learning (TACO, [6]) is a temporal contrastive
learning framework that learns a latent representation of states and actions with a contrastive
loss that optimizes the mutual information between the representations of current states
and the following action sequences, and those of the corresponding future states. TACO
was primarily designed for vision-based tasks, whereas our benchmarks are state-based.
We adapted TACO to the state-based setting by increasing the learning rate and update-to-
data ratios to match those of IQRL. We also replaced their CNN-based encoder with the
MLP-based encoder of IQRL. Then, we performed a grid search over feature dimensions of
50 and 128, hidden dimensions of 256, 512, and 1024, and frame stacking and no frame
stacking. We found the combination of a feature dimension of 50 and a hidden dimension of
1024 without frame stacking to perform the best.

• Twin Delayed DDPG (TD3, [16]) is a model-free RL algorithm for continuous control,
extending deep deterministic policy gradient (DDPG) to deal with value overestimation
bias. Compared to DDPG, this algorithm uses two critics and takes the minimum over
the two for training, adds clipped noise to the actions selected for bootstrapping (policy
smoothing), and updates the actor less frequently compared to the critics. IQRL is based on
TD3 and we simply replace the observations with their corresponding latent representation
by mapping them through our encoder. This baseline uses our TD3 implementation which
obtains very strong results. Comparing to this baseline allows us to investigate the impact of
representation learning on sample-efficiency.

• TD7 [7] is a model-free reinforcement learning algorithm for continuous control that builds
on TD3. TD7 builds on a representation learning method, state-action learned embeddings
(SALE). The embeddings are learned using a temporal consistency term in the latent
state. Other improvements that TD7 has over TD3 are prioritized experience replay and
checkpointing. TD7 was initially evaluated on MuJoCo. To adapt it for DeepMind Control
Suite, we added action repeats, essential for good performance on DMC. Then, we compared
the original hyperparameters of TD7 to those of IQRL and found IQRL to perform the
best, so we used those for the final evaluation. In particular, the exploration noise decay
of IQRL was crucial for high performance in the DMC environments, and without it, TD7
struggled. Note that both TD7 and IQRL use TD3 as the underlying algorithm, allowing us
to reliably compare the impact of SALE and our FSQ-based representations. We used the
official PyTorch implementation of TD73.

–appendices continue on next page–

2https://github.com/zhaoyi11/tcrl
3https://github.com/sfujim/TD7

10

https://github.com/zhaoyi11/tcrl
https://github.com/sfujim/TD7

D Tasks

We evaluate our method in 20 tasks from the DeepMind Control suite [19]. Table 3 provides details
of the environments we used, including the dimensionality of the observation and action spaces.

Table 3: DMControl. We consider a total of 20 continuous control tasks from the DeepMind Control
suite.

TASK OBSERVATION DIM ACTION DIM SPARSE?

ACROBOT SWINGUP 6 1 N
CHEETAH RUN 17 6 N
CUP CATCH 8 2 Y
DOG RUN 223 38 N
DOG TROT 223 38 N
DOG STAND 223 38 N
DOG WALK 223 38 N
FISH SWIM 24 5 N
HOPPER HOP 15 4 N
HOPPER STAND 15 4 N
HUMANOID RUN 67 24 N
HUMANOID STAND 67 24 N
HUMANOID WALK 67 24 N
QUADRUPED RUN 78 12 N
QUADRUPED WALK 78 12 N
REACHER EASY 6 2 Y
REACHER HARD 6 2 Y
WALKER RUN 24 6 N
WALKER STAND 24 6 N
WALKER WALK 24 6 N

–appendices continue on next page–

11

0 1000 2000
0

200

400

600
E

pi
so

de
R

et
ur

n

Dog Run

0 1000 2000
0

500

Humanoid Walk

0 500 1000
0

500

1000
Quadruped Run

0 500 1000
0

500

1000
Reacher Hard

0 1000 2000
Environment Steps (1e3)

100

150

200

250

M
at

ri
x

R
an

k
ra

n
k(

z)

0 1000 2000
Environment Steps (1e3)

100

150

200

250

0 500 1000
Environment Steps (1e3)

100

150

200

250

0 500 1000
Environment Steps (1e3)

100

200

iQRL iQRL w/o FSQ

Figure 3: Ablation of quantization. We show how our quantization scheme prevents dimensional
collapse. In all tasks, our FSQ scheme prevents dimensional collapse (red) as the rank of the
representation remains high. In contrast, when our quantization is not used (blue) the representation
undergoes dimensional collapse, indicated by the rank reducing. In the Dog Run task, this results in
the agent not learning to solve the task.

E Experiments

In this section, we provide further insights from our experiments.

High-dimensional control Many DMC tasks are high-dimensional, for instance, the observation
space of the Dog tasks is O ∈ R223 and the action space is A ∈ R38. Figs. 2 and 4 show that IQRL
excels in the high dimensional Dog and Humanoid environments when compared to the baselines.
We hypothesize that our discretized representations are particularly beneficial for simplifying learning
transition dynamics in high-dimensional spaces, making IQRL highly sample efficient.

Further DMC Results Fig. 4 compares IQRL to the baselines in the 20 DMC tasks. IQRL’s
representation learning significantly improves sample efficiency when compared to TD3. Note that
IQRL uses the same TD3 implementation with the same hyperparameters, so the only difference
is our representation learning. IQRL also outperforms TCRL in terms of sample efficiency, even
without the reward prediction head. Our experiments indicate that this improvement is due to our
quantization and the inclusion of LayerNorm in our encoder. We compare IQRL to TACO (which
uses a contrastive loss) and observe that IQRL outperforms TACO in most environments. TACO
seems to particularly struggle in the Dog tasks. Finally, IQRL outperforms TD7, a state-of-the-art
representation learning method for state-based RL.

–appendices continue on next page–

12

0 500 1000
0

200

400

E
pi

so
de

R
et

ur
n

Acrobot Swingup

0 500 1000
0

500

Cheetah Run

0 200 400
0

500

1000
Cup Catch

0 1000 2000 3000
0

250

500

Dog Run

0 1000 2000 3000
0

500

1000

E
pi

so
de

R
et

ur
n

Dog Stand

0 1000 2000 3000
0

500

Dog Trot

0 1000 2000 3000
0

500

Dog Walk

0 500 1000
0

500

Fish Swim

0 500 1000
0

200

400

E
pi

so
de

R
et

ur
n

Hopper Hop

0 500 1000
0

500

1000
Hopper Stand

0 1000 2000 3000
0

200

400

Humanoid Run

0 1000 2000 3000
0

500

1000
Humanoid Stand

0 1000 2000 3000
0

500

E
pi

so
de

R
et

ur
n

Humanoid Walk

0 500 1000
0

500

1000
Quadruped Run

0 500 1000
0

500

1000
Quadruped Walk

0 500 1000
0

500

1000
Reacher Easy

0 500 1000
Environment Steps (1e3)

0

500

1000

E
pi

so
de

R
et

ur
n

Reacher Hard

0 500 1000
Environment Steps (1e3)

0

500

Walker Run

0 200 400
Environment Steps (1e3)

0

500

1000
Walker Stand

0 200 400
Environment Steps (1e3)

0

500

1000
Walker Walk

TCRL TD7 TD3 TACO iQRL (ours)

Figure 4: DeepMind Control results. IQRL performs well across a variety of DMC tasks. We plot
the mean (solid line) and the 95% confidence intervals (shaded) across 5 random seeds, where each
seed averages over 10 evaluation episodes.

–appendices continue on next page–

13

0 1000 2000 3000
0

200

400

600

E
pi

so
de

R
et

ur
n

Dog Run

0 1000 2000 3000
0

500

Dog Trot

0 1000 2000 3000
0

200

400

Humanoid Run

0 1000 2000 3000
0

500

Humanoid Walk

0 1000 2000 3000

40

60

80

100

A
ct

iv
e

P
er

ce
nt

of
C

od
eb

oo
k

(%
)

0 1000 2000 3000

40

60

80

100

0 1000 2000 3000

40

60

80

100

0 1000 2000 3000

40

60

80

100

0 1000 2000 3000
Environment Steps (1e3)

240

250

M
at

ri
x

R
an

k

0 1000 2000 3000
Environment Steps (1e3)

240

250

0 1000 2000 3000
Environment Steps (1e3)

250

255

0 1000 2000 3000
Environment Steps (1e3)

250

255

L = [8, 8, 6, 5] L = [8, 5, 5, 5] L = [8, 8, 8] L = [8, 6, 5] L = [8, 8]

Figure 5: Codebook size ablation. We compare how the codebook size affects the performance
of IQRL (top), the percentage of the codebook that is active during training (middle), and how
the different codebook sizes affect the encoder’s ability to preserve the rank of the representation
(bottom). In general, smaller codebooks become fully active faster than larger codebooks, and the
rank of the representation is maintained for all codebook sizes. We plot the mean and the 95%
confidence intervals (shaded) across 3 random seeds for all environments.

Codebook size |C| We evaluate how the size of the codebook |C| influences training. We indirectly
configure different codebook sizes via the FSQ levels L = {L1, . . . , Lc} hyperparameter. This is
because the codebook size is given by |C| =

∏c
i=1 Li. The top row of Fig. 5 compares the training

curves for different codebook sizes. The algorithm’s performance is not particularly sensitive to the
codebook size. A codebook that is too large can result in slower learning. The best codebook size
varies between environments. The most difficult environment, Humanoid Run, benefits from the
largest codebook.

Given that a codebook has a particular size, we can gain insights into how quickly IQRL’s encoder
starts to activate all of the codebook. The connection between the codebook size and the activeness
of the codebook is intuitive: the middle row of Fig. 5 shows that the smaller the codebook, the larger
the active proportion.

In the bottom row of Fig. 5, we evaluate how different codebook sizes affect the encoder’s ability to
preserve the rank of the representation. We see that the rank of the representation is maintained no
matter the codebook size.

–appendices continue on next page–

14

0 2000
0

200

400

600

E
pi

so
de

R
et

ur
n

Dog Run

0 2000
0

250

500

750

Humanoid Walk

0 500 1000
0

250

500

750

1000
Quadruped Run

0 500 1000
0

250

500

750

1000
Reacher Hard

0 2000
Environment Steps (1e3)

60

70

80

90

100

A
ct

iv
e

P
er

ce
nt

of
C

od
eb

oo
k

(%
)

0 2000
Environment Steps (1e3)

70

80

90

100

0 500 1000
Environment Steps (1e3)

70

80

90

100

0 500 1000
Environment Steps (1e3)

60

80

100

128 256 512 1024

Figure 6: Latent dimension d ablation. We compare how the latent dimension d affects the
performance of IQRL (top) and the percentage of the codebook that is active during training (bottom).
In general, our algorithm is robust to the latent dimension of the representation, although in more
difficult environments, such as Humanoid Walk, a d too small can harm the agent’s performance.

Latent dimension d Next, we investigate how the latent dimension d affects the behavior and
performance of IQRL in four different environments. The latent dimension d corresponds to the
dimension of the representation corresponding to each FSQ level before and after quantization is
applied. In the top row of Fig. 6, we see that the performance of our algorithm is robust to the latent
dimension d, although a latent dimension too small can result in inferior performance, especially in
the more difficult environments. The bottom row of Fig. 6 demonstrates that IQRL learns to use the
complete codebook irrespective of the latent dimension. However, a larger d can also correspond to
the codebook becoming fully active slightly slower.

–appendices continue on next page–

15

0 1000 2000
0

200

400

600

E
pi

so
de

R
et

ur
n

Dog Run

0 1000 2000
0

500

Humanoid Walk

0 500 1000
0

500

1000
Quadruped Run

0 500 1000
0

500

1000
Reacher Hard

0 1000 2000
Environment Steps (1e3)

40

60

80

100

%
of

F
ul

l
R

an
k

0 1000 2000
Environment Steps (1e3)

40

60

80

100

0 500 1000
Environment Steps (1e3)

40

60

80

100

0 500 1000
Environment Steps (1e3)

50

100

iQRL iQRL w/o FSQ iQRL w/o FSQ w/ rew

Figure 7: Adding a reward head is not enough to prevent loss of rank. We show how removing
quantization leads to dimensional collapse measured in terms of the rank of the representation and
how adding a reward prediction head to IQRL without quantization is insufficient to counteract this
and maintain full rank.

0 500 1000
Environment Steps (1e3)

0

200

400

E
pi

so
de

R
et

ur
n

Acrobot Swingup

0 1000 2000
Environment Steps (1e3)

0

200

400

600

Dog Run

0 1000 2000
Environment Steps (1e3)

0

500

Humanoid Walk

0 500 1000
Environment Steps (1e3)

0

500

1000
Quadruped Run

iQRL

iQRL w/ stop grad

0 500 1000
Environment Steps (1e3)

0

500

1000
Reacher Hard

Figure 8: Replacing EMA encoder with stop gradient. We show that removing IQRL’s EMA
encoder and replacing it with only stop gradient hurts performance in DMC tasks. This is particularly
apparent in the Acrobot Swingup task.

Reward head for representation learning In Fig. 7, we show how incorporating a reward prediction
objective into IQRL is insufficient for maintaining the rank of the representation when our FSQ-based
quantization scheme is not applied. There is a clear loss of rank in all four environments without the
quantization; that is, the agent suffers from dimensional collapse. This results in performance inferior
to IQRL in two environments, Dog Run and Reacher Hard.

Stop gradient [20] proved that using stop gradients should suffice for preventing representation
collapse. However, their experiments suggested that using an EMA encoder improves performance
over simply using stop gradients. In Fig. 8, we show how replacing IQRL’s EMA encoder with a
stop gradient operation decreases performance. Further, using stop gradient in the Acrobot Swingup
tasks results in the agent struggling to solve the task.

–appendices continue on next page–

16

0 500 1000
Environment Steps (1e3)

0

200

400

E
pi

so
de

R
et

ur
n

Acrobot Swingup

0 1000 2000
Environment Steps (1e3)

0

200

400

600

Dog Run

0 1000 2000
Environment Steps (1e3)

0

500

Humanoid Walk

0 500 1000
Environment Steps (1e3)

0

500

1000
Quadruped Run

0 500 1000
Environment Steps (1e3)

0

500

1000
Reacher Hard

iQRL

iQRL w/ proj

Figure 9: Adding a projection head decreases sample efficiency. We show that adding a projection
head to IQRL, similar to what is done in SPR [9], decreases IQRL’s sample efficiency. We plot the
mean and the 95% confidence intervals (shaded) across 3 random seeds for all environments.

Projection head Wen and Li [25] and Schwarzer et al. [9] investigated the role of a learnable
projection head in non-contrastive self-supervised learning and found that it helps RL algorithms
learn more diversified and therefore, superior representations. Whilst IQRL shares similarities with
SPR [9], in particular, a temporal consistency loss using cosine similarity, it differs in that it does
not use a learnable projection head and quantizes the representation instead. In Fig. 9, we show
the impact of adding a projection head to IQRL. It shows that the projection head decreases the
sample efficiency of IQRL. Whilst projection heads are effective for learning representations from
images, our results suggest that they have a significant negative impact on sample efficiency when
learning representations of state-based observations, reaffirming that state-based RL has a different
set of challenges to image-based RL and techniques designed to combat dimensional collapse are not
always transferable between the settings.

17

	Introduction
	Method
	Experiments
	Conclusion
	References
	Further Method Details
	Implementation Details
	Baselines
	Tasks
	Experiments

