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Figure 1: Our proposed MultiModal Memory integrates Gaussian splatting with foundation models
to efficiently store multimodal memory in a Gaussian structure. The feature maps rendered by our
approach exhibit high fidelity, preserving the strong expressive capabilities of the foundation models.

ABSTRACT

We present 3D Spatial MultiModal Memory (M3), a multimodal memory system
designed to retain information about medium-sized static scenes through video
sources for visual perception. By integrating 3D Gaussian Splatting techniques
with foundation models, M3 builds a multimodal memory capable of rendering
feature representations across granularities, encompassing a wide range of knowl-
edge. In our exploration, we identify two key challenges in previous works on
feature splatting: (1) computational constraints in storing high-dimensional fea-
tures for each Gaussian primitive, and (2) misalignment or information loss be-
tween distilled features and foundation model features. To address these chal-
lenges, we propose M3 with key components of principal scene components and
Gaussian memory attention, enabling efficient training and inference. To validate
M3, we conduct comprehensive quantitative evaluations of feature similarity and
downstream tasks, as well as qualitative visualizations to highlight the pixel trace
of Gaussian memory attention. Our approach encompasses a diverse range of
foundation models, including vision-language models (VLMs), perception mod-
els, and large multimodal and language models (LMMs/LLMs). Furthermore,
to demonstrate real-world applicability, we deploy M3’s feature field in indoor
scenes on a quadruped robot. Notably, we claim that M3 is the first work to ad-
dress the core compression challenges in 3D feature distillation.

1 INTRODUCTION

Human perception encompasses the world across spatial dimensions. When encountering static
elements in the visual environment, individuals tend to organize and store knowledge progressively,
starting from a coarse overview and refining it into finer details. For instance, we can recall our
daily surroundings with varying levels of detail, ranging from a high-level layout to specific part-
level features. However, for larger-scale environments, our understanding tends to remain more
coarse and generalized. Previous works, such as NeRF [23] and 3DGS [16], have demonstrated the
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ability to store scene-level information at the pixel level for intermediate-scale scenes. However,
these models lack the capability to retain the semantic understanding of the scene like humans.

In this study, we aim to develop a spatial memory system for static scenes, capable of processing
static scene video clips spanning spatial horizons. The primary objective is to store all human-
processable information in a format that is precise, efficient, and amenable to future interactive
queries. Our approach leverages 3D Gaussian splatting techniques and incorporates features ex-
tracted from foundation models to construct scenes imbued with semantic knowledge. The selection
of Gaussian splatting as our structural format was motivated by two key considerations: First, the
need to address video redundancy through efficient compression, and second, the requirement for
multi-granular information representation. Gaussian splatting inherently provides a framework for
representing the smallest units of information as Gaussian primitives as well as naturally eliminating
the spatial redundancy, aligning well with the motivations.

Previous feature splatting works such as F-3DGS [51] and F-Splat [26] directly distill 2D feature
maps obtained from foundation models into 3D Gaussians via differentiable rendering. We observe
two key issues: First, due to the computational limitations, the feature vector dimensions in Gaussian
primitives are significantly reduced compared to the original 2D feature maps (typically 16-64 versus
1024), potentially causing an information bottleneck. Second, while the original feature maps may
not be inherently 3D-consistent, enforcing 3D consistency in the Gaussians can cause misalignment
between the original and distilled features. Consequently, the distilled feature may not accurately
capture the knowledge embedded in the foundation model.

To address these issues, we present MultiModal Memory (M3), a better integration of Gaussian
splatting and multimodal foundation models that efficiently store expressive multimodal memory
in a Gaussian structure, facilitating spatial queries. Specifically, we propose to store the original
high-dimensional 2D feature maps in a memory bank called principal scene components and use the
low-dimensional principal queries from 3D Gaussians as indices. Instead of directly distilling the
2D features into 3D embeddings, we apply Gaussian memory attention between the principal scene
components and principal queries to render the foundation model embeddings in a 3D scene.

In this way, we combine the best of both foundation models and Gaussian splatting: preserving
the high expressive ability of the original foundation model feature maps while maintaining a 3D-
consistent, low-dimensional Gaussian structure of the scene. Furthermore, we also design a heuristic
algorithm to minimize redundancy in the memory bank by reducing the raw features from the video
stream. These reduced features are referred to as Principal Scene Components. Example feature
maps rendered by M3 are visualized in Fig. 1.

To evaluate M3, we employ a diverse set of foundation models, including vision-language models,
LMM/LLMs, and perception models. We adopt both low-level metrics (e.g. PSNR) to assess the
model’s feature memorization capability and high-level metrics (e.g. mIoU, IR, TR) to assess its per-
formance on downstream perception tasks. Extensive experiments demonstrate that M3 outperforms
previous works in both memorization and downstream tasks while maintaining low computational
costs. Lastly, we deploy M3 on a quadruped robot platform for grasping, showcasing its potential
for real-world generalization from single-scene, multi-scene, and long-horizon tasks.

2 RELATED WORK

Foundation Models. The field of multimodal learning has seen remarkable progress, leading to
the development of diverse foundation models. In the vision-language domain, models such as
CLIP [28], Florence [40; 45], and the recent SigLIP [47] employ ViT-style [5] transformer architec-
tures to align visual and linguistic representations. For vision-specific tasks, SAM [17; 29] excels
in part-level clustering, while DINO [4; 24] advances self-supervised representation learning. In
document understanding, LayoutLM [42; 41; 11] combines OCR and text classification for compre-
hensive document analysis. The language domain has seen significant advancements in reasoning
capabilities, exemplified by the LLaMA [36; 37; 6] and Mistral [14; 15] series. While these works
have pushed language reasoning to new heights, recent studies like [31; 35; 7] explore mixture-of-
experts approaches to enhance visual representation learning in foundation models. These devel-
opments, along with advanced models such as ChatGPT [1] and Claude [2], form the backbone of
modern Multimodal Large Language Models (MLLMs), paving the way for more sophisticated AI
systems.
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Figure 2: A scene (V) is composed of both structure (S) and knowledge (I). To model these, we
leverage multiple foundation models to extract multi-granularity scene knowledge, and employ 3D
Gaussian splatting to represent the spatial structure. By combining these techniques, we construct
a spatial multimodal memory (M3), which enables downstream applications such as retrieval, cap-
tioning and grounding.

3D Gaussians and Feature Field. NeRF [23] revolutionized 3D scene representation, but its im-
plicit nature caused slow rendering and training. 3D Gaussian Splatting [16] (3DGS) emerged
as a faster, more explicit alternative, enabling rapid training and real-time rendering. Since then,
3DGS has been enhanced: H3DGS [44] improved large-scale rendering, Mip-Splatting tackled
anti-aliasing for high detail, and WildGaussians [19] addressed occlusion and appearance changes.
Grendel-GS [50] enabled multi-GPU training for efficiency with larger datasets. Researchers began
incorporating 3D feature fields into neural rendering pipelines, moving from NeRF-based models
like F3RM [32] to 3DGS-based ones. Feature 3DGS [51] added feature representations to 3DGS,
leading to advancements like Feature Splatting [26; 13] for language-driven scene synthesis and
LEGaussians [33] for open-vocabulary scene understanding. LiveScene [27] introduced interactive
radiance fields, while recent work [46] focuses on improving 2D features with 3D-aware fine-tuning
for better 2D-3D integration.

Scene Graph and Video Memory. Long-horizon scene understanding encompasses both spatial
and temporal dimensions. For spatial modeling, scene graphs have been prominent: ConceptFu-
sion [12] introduced open-set multimodal 3D mapping, ConceptGraphs [8] extended this to open-
vocabulary 3D scene graphs, and Hierarchical Open-Vocabulary 3D Scene Graphs [39] applied these
concepts to language-grounded navigation. Beyond Bare Queries [21] and Open Scene Graphs [22]
further demonstrated their utility in object retrieval and navigation. However, these approaches of-
ten rely on heuristic edge/node construction and lack direct LMM integration via embeddings. For
temporal aspects, previous works have focused on using memory bank embeddings to store infor-
mation across frames. For instance, MA-LMM [9], MovieChat [34], and Hierarchical Memory
[38] introduced various memory augmentation techniques for video understanding. Flash-VStream
[48] and Streaming Long Video Understanding [25] concentrated on real-time processing of long
video streams. While these temporal methods integrate better with LMMs, they face challenges
such as image over-compression (representing an entire frame with a single embedding), frame re-
dundancy (adjacent frames containing overlapping spatial information), and lack of explicit spatial
information. Our 3D Gaussian approach bridges this gap, combining spatial precision with temporal
flexibility and LMM compatibility.

3 METHOD

3.1 3D-SPATIAL MULTIMODAL MEMORY (M3) PIPELINE.

A real-world visual perception scene (V) consists of both structure (S) and knowledge (I). The
structure of Visual Granularity (VG) can range from the fine details such as leaf shapes, to large-
scale elements, such as city layouts. Concurrently, the Knowledge Space (KS) spans scales from
specific information, such as leaf species (e.g. a red maple leaf) to a comprehensive interpretation
(e.g. The space needle in Seattle...) of a view (V∗). Gaussian splatting serves as a framework for
constructing scene structure with finest granularity, represented as gaussian primitives, while foun-
dation models provide vast world knowledge spanning various scales for scene knowledge. The
organic integration of Gaussian splatting and Foundation Models infuses scene structure with multi-
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Figure 3: Given a video sequence, we utilize foundation models (F) to extract raw features (R).
These features are reduced using Algorithm 1, producing principal scene components (PSC), which
are stored in a memory bank. We introduce optimizable attribute queries (q) to Gaussian primitives,
and apply a Gaussian Memory Attention (Agm) mechanism to produce the final rendered features
(R̂), which can be linked back to various heads of the foundation models.

granularity knowledge, enabling the construction of a full-stack Multimodal Memory of the scene
with precise spatial information. To maintain efficiency while preserving the global representation
of foundation model features, we compress the extracted features from foundation models into prin-
cipal scene components (PSC) for each scene and learn to probe the scene via Gaussian Splatting
parameters, denoted as principle query (Qp). Ultimately, leveraging the rendering capabilities of
Gaussian Splatting, we can dynamically populate the GS structure with multi-granularity informa-
tion spanning the entire view of the scene. Our pipeline is illustrated in Fig. 2.

3.2 M3 PRELIMINARIES.

Visual Granularity (VG). Visual granularity (VG) typically represents the clustering pixel scope of
an image, a concept introduced in Semantic-SAM [20]. Given a view V∗ ∈ Rh×w,3 (h,w denote
the pixel dimensions) in the scene V, it is composed of multi-granularity segments ranging from
individual pixels to the full view (as illustrated in the left part of Fig. 2), represented by V∗ =
{V 1
∗ , V

2
∗ , ..., V

m
∗ }, where V i

∗ ∈ Rp,3 is the ith granularity of the view V∗, p is the number of pixels,
and m denotes the total number of granularities. This multi-granularity approach is introduced
because humans naturally possess multi-granularity recognition of the world for various utilities.

Knowledge Space (KS). Different foundation models (F) focus on various aspects of knowledge.
For instance, CLIP [28] and SigLIP [47] concentrate on image-level perception, while Semantic-
SAM [20] emphasizes part-level visual grouping. In contrast, LLaMA3/v [6] incorporates both local
and global attention mechanisms. The features generated by these models occupy different knowl-
edge spaces F(V∗) ∈ {KS1,KS2, ...,KSc} where c is the total number of knowledge spaces here,
emphasizing diverse aspects such as visual alignment (KS1), semantics (KS2), reasoning (KS3),
and etc.

Principle Scene Components (PSC) and Principle Query (Qp). We extract foundation model
features for each view, denoted as F∗(V) = {E∗1,E∗2, ...E∗n} for each foundation model (F∗) and
scene (V), where n is the number of views. These foundation model features are represented as
E∗i ∈ R[h×w,d], where h,w denote the feature pixel dimensions. However, different views often
contain redundant and similar features. We define the key features that construct the scene as Prin-
ciple Scene Components (PSC), drawing inspiration from the terminology of Principal Component
Analysis. The attribute within Gaussian representation responsible for indexing PSC is denoted as
Principle Query (Qp), which is learnable parameters in each Gaussian primitive.

3.3 SPATIAL MULTIMODAL MEMORY

Build Scene Structure via 3D Gaussians. We formally define the input of M3 as a video sequence
with frames, where each frame corresponds to a view V∗. 3D Gaussian splatting [16] is employed
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Algorithm 1 Raw Feature (R) Similarity Reduction Algorithm
Input :R ∈ R[n×h×w,d] (Raw Features), θ ∈ (0, 1] (threshold), c ∈ N (chunk size)
Output:PSC ⊆ R (Principle Scene Components)

1 SimilarityReduction(R, θ, c) n← |R| # Number of raw features

2 R̂← { ei
∥ei∥2

: ei ∈ R} # Normalize raw features

3 I ← ∅ # Set of filtered indices
4 U ← {0}n # Usage mask, initially all false
5 for k ← 0 to ⌊nc ⌋ − 1:
6 Ck ← {êi : i ∈ [kc, (k + 1)c) ∩ N} # Current chunk

7 Sk ← Ck · R̂⊤ # Similarity matrix for chunk
8 for j ← 0 to |Ck| − 1:
9 if Ukc+j = 0:

10 J ← {i : Sk,j,i ≥ θ} # Similar indices
11 if ∀i ∈ J : Ui = 0:
12 I ← I ∪ {kc + j} # Select Principle Components
13 ∀i ∈ J : Ui ← 1

14 PSC← {ei : i ∈ I} returnPSC

to fit the scene, with each view rendered by the Gaussian rasterizer. For each Gaussian primitive,
the optimizable attributes include the centroid (x ∈ R3), rotation quaternion (r ∈ R4) storing the
rotation and scaling matrix, opacity value (α ∈ R3), and spherical harmonics (sh ∈ R3). To model
the Principle Scene Components (PSC), we introduce an additional optimizable attribute: principle
queries (q ∈ Rl) with flexible dimensionality to accommodate various foundation models. Each
foundation model utilizes s degrees from the Qp ∈ Rl. These degrees are rendered alongside Gaus-
sian parameters to produce view-based principle queries QV∗

p with shape [H,W, l]. Following [51],
the colors and principle queries are rendered as:

C =
∑
i∈N

ciαiTi, Qp =
∑
i∈N

qiαiTi, where Ti =

i−1∏
j=1

(1− αj) (1)

Here, N represents the set of sorted Gaussians overlapping with the given pixel, and Ti denotes the
transmittance, defined as the product of opacity values of previous Gaussians overlapping the same
pixel.

Figure 4: The UMAP visu-
alization of model embed-
ding manifolds reveals dis-
tinct shapes, reflecting dif-
ferent focus.

Extract Multi-Granularity Scene Knowledge. Upon preparing the
attributes in the Gaussian primitives, we extract multi-granularity
scene knowledge via foundation models. Different foundation models
focus on different aspects of knowledge projection and granularity, as
illustrated in Fig. 4. In this paper, we employ a set of foundation mod-
els F = {CLIP,SigLIP,DINOv2,LLaMA3,LLaMAv,SEEM},
where LLaMAv is the vision-instruct version of LLaMA3. For each
view, we extract foundation model embeddings, formally expressed
as F(V∗) = E ∈ R[h×w,d].

We implement specific algorithms for projecting LLaMA3 language
embeddings and SEEM [52] visual prompts into pixel-level features.
For LLaMA3, we first use SoM [43] and Semantic-SAM to extract
language descriptions for each region. The language prompt of each
region is represented as T ∈ R[l1,d], where l1 is the number of regions
extracted by Semantic-SAM. For SEEM, we utilize visual prompts
corresponding to each region, with visual prompts for each image
represented as O ∈ R[l2,d], where l2 is the number of regions seg-
mented by SEEM. We then splat the features to the pixel level, duplicating the prompts within each
mask region, resulting in T and O being indexed to the dimension of R[h×w,d].

After feature extraction, we obtain raw features (R ∈ R[n,h×w,d]) for the full Scene with n views
within each foundation model. These raw features span various granularities and knowledge spaces,
providing a comprehensive multimodal (vision and language) understanding of the scene. In cor-
relation to 3D Gaussian Splatting, the smallest granularity component is at the pixel level, with the
most low-level knowledge projection being the RGB color value.
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Figure 5: Illustration of patch-level visual embedding extraction their applications.

Compress Scene Knowledge to Memory. While the scene knowledge is extracted from foundation
models F into raw feature space R ∈ R[n,h×w,d], the dimensionality is too high for storage and
rendering in each scene. Previous works such as F-3DGS [51] and F-Splat [26] address this issue
through feature distillation. However, we observe two major problems with feature distillation: (a)
The distilled feature experiences information loss compared to the original feature due to feature
compression (usually 16 to 64 dims sampling linear projection to the original dimension d that is
usually 1000 dims or more). (b) The upsampled feature may have misalignments with the original
knowledge space of the foundation model, making it difficult to be decoded by the original F. To
resolve these issues, we first flatten the raw features (R) into R[n×h×w,d], and then perform simi-
larity reduction on the first dimension using Algorithm 1. The reduced raw feature represents the
principal scene component (PSC), also named as memory bank, serving as the essential represen-
tation of the scene. The memory bank or PSC has dimensionality R[t,d], where t depends on the
similarity threshold we set. The reduction is effective due to the presence of many duplicated fea-
tures in neighboring spatial pixels within a view, or duplicated regions across views. We visualize
the memory bank building process in Fig.3 a.

Gaussian Memory Attention. Given view-based principle queries QV∗
p ∈ R[H,W,n] that is raster-

ized by gaussian primitives, and principle scene components PSC ∈ R[l,d], we perform Gaussian
Memory Attention (Agm) to obtain the rendered feature in alignment with foundation models. With
learnable random initialized memory projection Wm ∈ R[n,d], we formally define the Gaussian
Memory Attention as follows:

R̂ = Agm(QV∗
p ) = Softmax(QV∗

p ×Wm ×PSCT )×PSC. (2)

This Gaussian memory attention links the Qp with PSC and projects it into the corresponding
foundation model knowledge space. The attention process is depicted in Fig. 3 b.

Scene Rendering and Deployment. Given the rendered features R̂ for each foundation model
aligning with the corresponding foundation model space, we can link back to the powerful functions
of foundation models. We expect that for models like CLIP, SigLIP, SEEM, the rendered
feature can be directly used for vision language-based tasks such as retrieval and grounding. For
generative-based models like LLaMA3, LLaMAv, we anticipate that the feature can be directly
used in captioning or simple visual question answering tasks. Formally, we express this as X =

Fdec(R̂).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To support extensive quantitative and qualitative evaluation, we perform experiments
using several existing scene datasets [3; 18; 10] and collected a custom robot dataset (M3-Robot)
using a quadruped robot and a drone. Specifically, we use Garden (an outdoor scene) from Mip-
NeRF360 [3], Train from the Tank & Temples dataset [18], and PlayRoom as well as DrJohnson
from the Deepblending dataset [10]. For the M3-Robot dataset, we collect images using two mobile
robots. The Table-Top sequence is collected from a RealSense 405D camera mounted on the end
effector of a Unitree Z1 robot arm on a Unitree B1 quadruped robot, where a human operator tele-
operates the robot with a remote to obtain centripetal views of tabletop objects. Images in the Geisel
sequence are collected by a tele-operated DJI Mini4-Pro drone. The collected images are processed
by COLMAP [30] to obtain camera parameters and initialization.

Memory across multiple Foundation Models. The multi-modal memory mechanism allows M3
to retain knowledge from many models, which differs from existing distillation-based methods that
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# Param DINOv2 CLIP SigLIP SEEM LLaMA3 LLaMAvDataset Method Cosine↓ L2↓ Cosine↓ L2↓ Cosine↓ L2↓ Cosine↓ L2↓ Cosine↓ L2↓ Cosine↓ L2↓
Train F-Splat [26] 61M 0.6833 1.9835 0.5998 0.4779 0.6346 0.7851 0.4269 11.72 0.5300 0.2900 0.7026 56.23

F-3DGS [51] 61M 0.3790 1.0108 0.3330 0.1540 0.3692 0.3328 0.1063 0.1034 0.4993 0.0150 0.6288 46.48
M3 35M 0.5321 1.681 0.3140 0.2800 0.2811 0.5096 0.1389 0.2251 0.4401 0.0253 0.7069 53.43

Garden F-Splat [26] 61M 0.7328 1.9567 0.7005 1.3570 0.7247 0.8698 0.4224 9.4675 0.4944 0.3314 0.7443 60.83
F-3DGS [51] 61M 0.2295 0.6033 0.2105 0.0945 0.2697 0.2585 0.1071 0.1424 0.4139 0.0141 0.4913 43.08
M3 35M 0.5701 1.7279 0.3168 0.2876 0.2927 0.0004 0.1839 0.3469 0.3387 0.0217 0.7235 58.04

Drjohnson F-Splat [26] 61M 0.8107 2.0333 0.6689 0.7877 0.6826 0.7744 0.4650 10.411 0.3757 0.0145 0.8184 54.82
F-3DGS [51] 61M 0.4190 1.1279 0.3344 0.1537 0.3846 0.3552 0.1693 0.2169 0.3853 0.0150 0.6669 47.35
M3 35M 0.5878 1.7553 0.3435 0.2924 0.2975 0.5366 0.2456 0.4179 0.3175 0.0226 0.7224 52.68

Playroom F-Splat [26] 61M 0.7956 1.9640 0.6458 0.7808 0.6839 0.7678 0.4745 10.873 0.3915 0.0136 0.8185 59.42
F-3DGS [51] 61M 0.4867 1.2193 0.3813 0.1726 0.4571 0.4094 0.1714 0.2103 0.3987 0.0139 0.6922 52.50
M3 35M 0.6074 1.7545 0.3260 0.2987 0.2951 0.5623 0.2560 0.4584 0.3555 0.0241 0.7288 57.38

Table 1: Feature Distance in comparison with distillation methods that use similar or higher budgets
across datasets and foundation models.

CLIP SigLIPDataset Method #Param mIoU cIoU AP50 AP60 I2T@1 I2T@5 I2T10 T2I@1 T2I@5 T2I10
Train Ground Truth - 25.3 26.3 14.7 3.3 81.5 97.3 100.0 71.0 89.4 92.1

F-3DGS [51] 61M 24.2 24.3 16.3 7.1 2.6 13.2 28.9 0.0 2.6 18.4
M3 35M 25.4 26.5 19.6 12.5 55.2 84.2 92.1 52.6 84.2 92.1

Playroom Ground Truth - 25.6 24.2 9.6 3.0 96.5 100.0 100.0 62.0 96.5 100.0
F-3DGS [51] 61M 23.8 21.4 11.9 3.0 79.3 96.6 96.6 31.0 79.3 89.7
M3 35M 23.1 23.1 11.9 5.9 72.4 96.6 100.0 41.3 65.5 68.9

Geisel Ground Truth - 19.5 21.4 5.3 0.0 100.0 100.0 100.0 60.0 85.7 91.4
F-3DGS [51] 61M 19.0 20.4 14.1 1.2 45.7 94.3 100.0 0.0 20.0 34.3
M3 35M 21.8 23.5 16.5 11.8 100.0 100.0 100.0 71.4 85.7 94.2

Table 2: Feature/RGB metrics for all foundation models and scene.

only distill a few (2-3) models. Specifically, as provided in Sec. 3.3, we employ 6 foundation
models to resemble human memory of different aspects. Each model has different granularity and
focus of different semantics: image-level vision-language understanding via CLIP [28] as well as
SigLIP [47]; pixel-level semantic understanding via SEEM [52]; self-supervised structural feature
via DINOv2 [24]; and LLaMA3.1/3.2v [6] for multi-modal understanding and reasoning.

In Fig. 5, we provide a comprehensive illustration of how we extract features from foundation mod-
els. The extracted features are marked in orange in alignment with language representations option-
ally or continued to be the input of the language Encoder.

Loss Computation. For each input image, we extract patch-level embeddings from the aforemen-
tioned models. Previous methods [26; 51] compute the patch-wise distance loss on the rendered
features, this not only has a high volume of GPU memory consumption that hinders parallel training
for all the foundation models but also creates artifacts when downsampling the feature. In compen-
sate, we use point-based loss, where we sample 2000 points ranging from both predict and ground
truth features for distance loss computation. This largely reduces the computation overhead for
training, as shown in Table. 1.

Low-level Evaluation Metrics. To systematically evaluate multi-modal memory, we use evaluation
metrics ranging from low/pixel-level to high-level downstream tasks. In particular, the low-level
evaluation metrics evaluate pixel-level image quality. For rendered image quality on evaluation
views (views not provided in training), we use common metrics (PSNR, SSIM, and LPIPS [49]) as
Kerbl et al. [16]. For feature quality, we report cosine and L2 distance.

High-level Evaluation Metrics. High-level evaluation metrics, different from low-level ones, focus
on evaluating downstream tasks of features. For discriminative models [28; 47; 52], we will report
commonly used metrics such as mIoU (mean Intersection over Union), cIoU (complete Intersection
over Union), and AP (Average Precision). For retrieval, we will use IR@1 (Information Retrieval at
rank 1) and TR@1 (Text Retrieval at rank 1).

4.2 QUANTITATIVE RESULTS

Baseline Implementation For quantitative experiments, we compare M3 with two recent
distillation-based feature GS methods [26; 51]. For fair comparisons, we train all the methods in
approximately 30,000 iterations (29,993 iterations for M3 due to last-batch data loader roundoffs).
The reference training features are identical for different methods. For distillation-based methods,
we follow F-Splat [26] to render a latent feature and then decode the latent features to the embedding
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RGB Time CLIP SigLIP DINOv2 SEEM LLaMA3 LLaMAvDataset Method PSNR↑ min. Cosine↓ L2↓ Cosine↓ L2↓ Cosine↓ L2↓ Cosine↓ L2↓ Cosine↓ L2↓ Cosine↓ L2↓
Tabletop +CLIP 21.91 ∼6 0.3100 0.2956 - - - - - - - - - -

+SigLIP 21.84 ∼10 0.3100 0.2956 0.3122 0.0005 - - - - - - -
+DINOv2 21.79 ∼15 0.3101 0.2956 0.3123 0.0005 0.5161 1.6057 - - - - - -
+SEEM 21.93 ∼20 0.3101 0.2956 0.3123 0.0005 0.5156 1.6048 0.0472 0.1013 - - - -
+LLaMA3 21.97 ∼30 0.3101 0.2956 0.3122 0.0005 0.5160 1.6056 0.0472 0.1012 0.3628 0.0246 - -
+LLaMAv (All) 21.96 ∼45 0.3100 0.2956 0.3122 0.0005 0.5157 1.6049 0.0472 0.1013 0.3628 0.0246 0.7262 59.92

Table 3: Ablation on the number of foundation models in M3.

Degree # Params Iteration CLIP SigLIP DINOv2 SEEM LLaMA3
Cosine↓ L2↓ mIoU AP50 Cosine↓ L2↓ mIoU AP50 Cosine↓ L2↓ Cosine↓ L2↓ Cosine↓ L2↓

8x6=48 14.8M 30k 0.3256 0.2880 25.4 19.6 0.2913 0.5239 19.4 2.1 0.5755 1.7664 0.1672 0.2749 0.4504 0.0264
7k 0.3290 0.2900 25.3 14.6 0.2938 0.5277 21.8 4.8 0.5845 1.7835 0.2058 0.3463 0.4517 0.0265

16x6=96 21.5M 30k 0.3140 0.2800 25.7 19.0 0.2866 0.5172 24.3 10.3 0.5535 1.7239 0.1388 0.2247 0.4480 0.0261
7k 0.3206 0.2842 25.3 20.6 0.2903 0.5227 23.2 8.1 0.5677 1.7513 0.1828 0.3056 0.4504 0.0263

32x6=192 34.8M 30k 0.3043 0.2735 26.7 22.8 0.2814 0.5094 25.7 11.9 0.5318 1.6807 0.0972 0.1553 0.4401 0.0253
7k 0.3132 0.2792 26.2 21.1 0.2866 0.5172 25.5 11.4 0.5515 1.7198 0.1269 0.2139 0.4436 0.0256

64x6=384 61.4M 30k 0.2917 0.2650 28.4 23.9 0.2721 0.4957 28.5 13.5 0.5099 1.6358 0.0855 0.1321 0.4278 0.0241
7k 0.3049 0.2734 28.1 23.9 0.2802 0.5079 27.8 13.5 0.5350 1.6870 0.1012 0.1676 0.4348 0.0248

Table 4: Ablation on the dimensions and distillation for each foundation model.

space of reference features with a multi-head MLP. For all methods, the optimization of both latent
features/memory and decoders is trained from scratch for each scene.

Low-Level Results. We report the main quantitative results in Tab. 1, where the average training
time and the auxiliary low-level metrics are reported. Our method, M3, outperforms F-Splat while
reducing significantly compute than F-3DGS. SEEM and LLaMA3 features extraction failed on F-
Splat, which we assume was mainly due to the ground truth feature extraction procedure, where
duplication was performed to each segmentation to get pixel-level features.

Downstream Results. The downstream evaluation results of grounding and retrieval are shown
in Table. 2. The ground truth grounding dataset of Train, Playroom, and Geisel is generated by
SoM [] with semantic-SAM for mask labels and GPT4-o [] to generate the caption. Example data
are shown in the Appendix. We evaluate all the images in the validation sets of the three datasets.
The grounding results clearly show that M3 is better than F-3DGS with half of the parameters,
the gap is non-trivial especially when looking at the AP50/AP60 columns. In addition to grounding
results, we also evaluate M3 on image text retrieval, similar to grounding we use GPT4-o to generate
ground truth data for three datasets. The example data are also shown in the appendix. Compared
to grounding performance, M3 performs much better than F-3DGS on retrieval results. For image
text retrieval, the positive example is the evaluation image, and the negative pairs are generated by
COCO datasets. We believe the large gap in the retrieval results is taken from Gaussian memory
attention, where the rendered features are aligned with the original foundation model much better.
When we find the correct embeddings in the dataset, this benefit gets enlarged.

Ablation Results. Table. 3 shows the ablation of the number of foundation models involved in M3.
We gradually added foundation models from simpler single-modal models to more advanced multi-
modal models. While maintaining a very efficient training time, our method has independent results
from different foundation models. Our implementation is based on Grendel-GS, where the training
procedure is efficiently paralleled. In Table. 4, we ablate the computation budget on training M3 in
the balance of memory footprint, training iterations, and performance. The table clearly shows that
increasing the number degree will generally improve the performance on all metrics. While having
16 degrees for each foundation model is enough to obtain a reasonable performance. That is what
the number is reported in the paper. In addition, increasing training iteration will generally increase
the performance, while 1/4 of the training budget (7k) would usually get a reasonable performance.

4.3 QUALITATIVE RESULTS.

M3 consistently demonstrates superior performance across diverse datasets as shown in Fig. 6, by
effectively preserving fine-grained details and ensuring smooth, coherent feature representations.
The method excels at retaining intricate details such as the textures of chairs and the fine features of
books, highlighting its ability to capture micro-level information. This clear layering contributes to
rich semantic understanding within the scenes.

Furthermore, M3 handles overlapping objects exceptionally well, as evident in the Playroom dataset,
where complex arrangements are rendered with accurate structural information. The outputs from
various foundation models are consistently high-quality, each retaining spatial structures and se-
mantic information at different granularities. This demonstrates M3’s capability to capture both
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Figure 6: Qualitative results across datasets using M3. The figure showcases the consistent perfor-
mance of the M3 across various datasets (Garden, Playroom, Drjohnson, Table-top).

low-level spatial details and high-level semantic concepts, making it highly effective for tasks that
require comprehensive scene understanding.

4.4 DEMONSTRATION RESULTS.

We also deployed M3 on a quadruped robot platform to demonstrate the potential real world appli-
cations of our model. In this experiment, we first tele-operate the robot to scan the table by taking
a centripetal video with onboard camera. After memorizing the scene with M3, the robot is able
to locate and grasp any object with text query on decoded CLIP feature. With known robot pose
through LiDAR, we are able to render any camera pose c0Tct with:

c0Tct = c0Te0 × e0Tb0 × b0Tl0 × l0Tw × wTlt × ltTbt × btTet × etTct = l0Tw × wTlt , (3)

where c, e, b, l and w refer to camera, end effector, arm base, lidar, and world re-
spectively. Note that to align with COLMAP coordinates, the camera pose needs modifying with
COLMAP0Tc0 × c0Tct .

We tested with the query “yellow bath duck” on the decoded CLIP feature, and as shown in Fig. 7,
the rubber duck is highlighted in red. The robot can then locate the 3D position of the targeted object
with depth information from its depth camera and perform a grasping task.

Figure 7: Real robot deployment.
Conclusion. This paper introduces M3, a novel approach combining foundation models with Gaus-
sian Splatting to create a spatial multimodal memory resembling human memory. M3 demonstrates
superior downstream task accuracy with reduced training costs and shows practical utility when
deployed on a real robot. One interesting future direction is to design a reasoning module that is
capable of directly operating on the optimized memory bank, which we leave to future study.
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