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ABSTRACT

This paper introduces a scalar numerical differentiator, represented as a system of
nonlinear differential equations of any high order. We derive the explicit solution
for this system and demonstrate that, with a suitable choice of differentiator order,
the error converges to zero for polynomial signals with additive white noise. In
more general signal cases, the error remains bounded, provided that the highest
estimated derivative is also bounded. A notable advantage of this numerical dif-
ferentiation method is that it does not require knowledge of the Lipschitz constant
value and does not require tuning parameters based on the specific characteris-
tics of the signal being differentiated. We propose a discretization method for the
equations that implements a cumulative smoothing algorithm for time series. This
algorithm operates online, without the need for data accumulation, and it solves
both interpolation and extrapolation problems without fitting any coefficients to
the data.

1 INTRODUCTION

Numerical differentiation is a common challenge in digital signal processing and automatic control
system design. The difficulty of this task increases with the order of the derivative being estimated,
and even more so when the signal contains noise. Existing methods typically require prior knowl-
edge of the signal and noise characteristics, such as the Lipschitz constant (bound value of the
highest estimated derivative) and noise variance. Differentiator parameters are then tuned based on
this information for specific signals or signal classes. Most numerical differentiators are designed
for known orders, such as first or second derivatives, and are implemented as recurrence algorithm
and formulas. A comprehensive review of such methods can be found in the literature Mojallizadeh
et al. (2021).

The online estimation of all derivatives up to an arbitrarily chosen high order can be achieved using
both the super-twisting method (Subsection 2.3 in Mojallizadeh et al. (2021)) and the high-gain
method (Subsection 2.9 in Mojallizadeh et al. (2021)). However, the optimal coefficients for these
approaches have been determined only for derivatives of bounded order (see Table 2 in Mojal-
lizadeh et al. (2021)). These methods have been established in the literature for quite some time,
and subsequent research in online high-order numerical differentiation has focused on optimal tun-
ing and discretization strategies, as well as on refining the convergence region and enhancing stabil-
ity. Moreover, it should be noted that, for signals corrupted by noise, all known methods yield an
asymptotically non-zero differentiation error, which is at most bounded by a constant that depends
on the noise level.

The goal of this paper is to develop a numerical differentiation method that eliminates the need for
tuning. The proposed method is capable of computing all derivatives up to the highest bounded
derivative, even for noisy signals. The differentiation results are then applied to automatically per-
form polynomial regression on the differentiable signal.
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2 FORMULATION OF RESULTS

We define the following notation: t ∈ R>0 is the independent variable (for signals, this is usually
time), f(t) ∈ R is the signal that is differentiable at least n times, z0(t) ∈ R is the estimate of
the signal, zm(t) ∈ R is the estimate of the m-th derivative of the signal with respect to t. Given
n = 1, 2, 3, . . ., and m = 1, 2, . . . , n, the High-Order Universal Numerical Differentiator (HOUND)
is represented by the following system of continuous differential equations:

z
(1)
m−1(t) = zm(t)− (n+m− 1)!

m!(n−m)!

n

tm
(
z0(t)− f(t)

)
, (1)

Here, (n − 1) represents the order of the differentiator (n = 1 estimates the signal itself, n = 2
estimates its first derivative, and so on), with zn(t) ≡ 0. Throughout the paper, y(d)(t) denotes the
d-th derivative of y with respect to t. Specifically, z(1)m−1(t) represents the first derivative estimate of
the (m− 1)-th derivative of the signal.

In essence, the differentiator in Equation (1) is a nonlinear version of the Luenberger observer
(which is essentially the same as a high-gain observer from Vasiljevic & Khalil (2008)) applied to a
chain of integrators. The key difference is that the ”constant” preceding the observation error is not
tuned but predefined, and it decreases inversely with a m-th power of t.

For n = 1, 2, 3, the differentiator from Equation (1) is of the form (we omit the explicit dependence
on t for brevity):

z
(1)
0 = −1

t
(z0 − f) if n = 1,{

z
(1)
0 = − 4

t (z0 − f) + z1

z
(1)
1 = − 6

t2 (z0 − f)
if n = 2,


z
(1)
0 = − 9

t (z0 − f) + z1

z
(1)
1 = − 36

t2 (z0 − f) + z2

z
(1)
2 = − 60

t3 (z0 − f)

if n = 3.

In the Appendix A, we provide the derivation of the solution to the system (1):

zm−1(t) = f (m−1)(t) +

n∑
d=1

am,d,n

td+m−1

(
cd +

(−1)d

bd,n

∫ t

t0

τd+n−1f (n)(τ) dτ
)
, (2)

where am,d,n and bd,n are non-zero integer constants, determined by the respective indices and the
order of the differentiator.

The Appendix A also demonstrates that if the highest estimated derivative of a signal is bounded by
the Lipschitz constant L (i.e., |f (n−1)(t)| ≤ L), then estimation errors are bounded by the following

expression: |zm−1(t)− f (m−1)(t)| ≤ 2L+
∑n

d=1
am,d,n

td+m−1

(
|cd|+ td+n−1

0 2L
bd,n

)
which tends to 2L.

Here are examples of Equation (2) for n = 1, 2, 3:

z0(t) = f(t) +
1

t
(c1 −

∫ t

t0

τf (1)(τ) dτ) if n = 1,

{
z0(t) = f(t) + 1

t (c1 −
∫ t

t0
τ2f (2)(τ) dτ) + 1

t2 (c2 +
∫ t

t0
τ3f (2)(τ) dτ)

z1(t) = f (1)(t) + 3
t2 (c1 −

∫ t

t0
τ2f (2)(τ) dτ) + 2

t3 (c2 +
∫ t

t0
τ3f (2)(τ) dτ)

if n = 2,


z0(t) = f(t) + 1

t (c1 −
1
2

∫ t

t0
τ3f (3)(τ) dτ) + 1

t2 (c2 +
∫ t

t0
τ4f (3)(τ) dτ) + 1

t3 (c3 −
1
2

∫ t

t0
τ5f (3)(τ) dτ)

z1(t) = f (1)(t) + 8
t2 (c1 −

1
2

∫ t

t0
τ3f (3)(τ) dτ) + 7

t3 (c2 +
∫ t

t0
τ4f (3)(τ) dτ) + 6

t4 (c3 −
1
2

∫ t

t0
τ5f (3)(τ) dτ)

z2(t) = f (2)(t) + 20
t3 (c1 −

1
2

∫ t

t0
τ3f (3)(τ) dτ) + 15

t4 (c2 +
∫ t

t0
τ4f (3)(τ) dτ) + 12

t5 (c3 −
1
2

∫ t

t0
τ5f (3)(τ) dτ)

if n = 3

.
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For an unnoised polynomial signal of order (n − 1), expressed as f(t) =
∑n−1

j=0 Kjt
j (where Kj

are unknown real constants), as t increases, the estimates of the signal’s derivatives converge to
their true values. Specifically, the signal estimate converges to the signal itself. This means that
lim
t→∞

zm−1(t) = f (m−1)(t). This occurs because the higher derivatives of the polynomial signal,

starting from the n-th order, are zero: f (n)(t) = 0. The signal’s derivatives can be computed using
the formula f (m−1)(t) =

∑n−1
j=m−1

j!
(j−m+1)!Kjt

j−m+1. By applying the Taylor formula, we can
estimate the unknown constants at each time step:

Kj =
f (j)(0)

j!
≈ 1

j!

n−1∑
i=j

(−t)i−j

(i− j)!
zi(t), (3)

which play the role of parameters of the polynomial regression in supervised machine learning.

For an unnoised polynomial signal of order n, expressed as f(t) =
∑n

j=0 Kjt
j , where Kn is a non-

zero constant, the estimates of the signal and its derivatives do not converge to the true values as t
increases. Specifically, the estimate zm−1(t) grows as O(tn−m+1), because the highest derivative of
the signal is a non-zero constant f (n)(t) = n!Kn. Therefore, it is essential to choose a differentiator
order that is at least as high as the order of the polynomial signal.

If the order of the differentiator exceeds the order of the polynomial signal, the estimates of the
higher derivatives of the signal will approach zero as t increases. For instance, if a signal of order
N is given by f(t) =

∑N
j=0 Kjt

j , where N < n − 1, then for j > N , lim
t→∞

zj(t) = 0 because

f (j)(t) = 0. As a result, the estimates of the unknown constants Kj =
f(j)(0)

j! at j > N also tend to
zero. From a machine learning perspective, this behavior resembles automatic regularization.

For a harmonic signal, which is a linear combination of harmonics with constant amplitudes, fre-
quencies, and phases, it can be shown that as t increases, the estimates of both the signal and its
derivatives tend to zero ( lim

t→∞
zm−1(t) = 0). Consequently, when a signal composed of both poly-

nomial and harmonic components is input into the differentiator, the estimates of the harmonic
components will vanish over time. After enough periods have passed, only the estimates of the
polynomial signal and its derivatives will remain.

For a signal corrupted by additive white Gaussian noise, expressed as f(t) = f0(t) + η0(t), where
the noise η0(t) follows a normal distribution N(0, σ2

0) with zero mean and bounded variance, the
differentiator can be described by a system of stochastic differential equations. These equations hold
under the same conditions for n = 1, 2, 3, . . . and m = 1, 2, . . . , n, with zn(t) ≡ 0:

dzm−1(t) = zm(t)dt− (n+m− 1)!

m!(n−m)!

n

tm

((
z0(t)− f0(t)

)
dt− σ0dW0(t)

)
, (4)

where W0(t) ∼ N(0, t) is a Wiener process. The mean of the solution to system (4) matches the
solution (2) of system (1) for the unnoised signal f0(t). It can be shown that the variance of the
estimate

V ar
(
zm−1(t)

)
= Km−1

σ2
0

t2m−1
, (5)

decreases as t increases. This means that the noise η0 is effectively filtered out, allowing the extrac-
tion of the unnoised signal f0 and its derivatives. Here, Km−1 are constants.

Additionally, if signal’s derivatives are corrupted by additive white Gaussian noise, then the variance
V ar

(
zm−1(t)

)
grows as O(t2d−2m−1σ2

d−1). As t increases, the variance becomes unbounded for
all derivative estimates except the highest order d = n, due to the accumulation of noise through the
integration of Wiener processes.

The differentiator (Equation (1)) approximates the signal and its derivatives, both in interpolation
and extrapolation, using the Taylor series expansion:

f̂ (m−1)(τ) =

n−1∑
k=m−1

zk(t)

(k −m+ 1)!
(τ − t)k−m+1, (6)

where τ ∈ R represents the model independent variable (typically model time for signals).
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If the estimates zm−1(t) = f (m−1)(t) for the signal and its derivatives are accurate, and the time
step ∆t = t − tprev is small, then zm−1(t) ≈

∑n−1
k=m−1

zk(tprev)
(k−m+1)! (t − tprev)

k−m+1 according to
Taylor formula. This allows us to discretize the equations (1), following the approaches of Brown
R.G. (1963) and Holt C.C. (2004):zm−1[t] =

(∑n−1
k=m−1

zk[t−∆t]
(k−m+1)!∆tk−m+1

)
+∆t (n+m−1)!

m!(n−m)!
n
tm ε[t]

ε[t] =
(
f [t]−

∑n−1
k=0

zk[t−∆t]
k! ∆tk

) . (7)

For instance, when ∆t = 1 and n = 1 the system becomes:{
z0[t] = z0[t− 1] + 1

t ε[t]

ε[t] = f [t]− z0[t− 1]
,

When ∆t = 1 and n = 2 the system becomes:
z0[t] = z0[t− 1] + z1[t− 1] + 4

t ε[t]

z1[t] = z1[t− 1] + 6
t2 ε[t]

ε[t] = f [t]− (z0[t− 1] + z1[t− 1])

.

Let us rewrite these equations in the classical form:

z0[t] =
1

t
f [t] + (1− 1

t
)z0[t− 1] if n = 1, (8){

z0[t] =
4
t f [t] + (1− 4

t )(z0[t− 1] + z1[t− 1])

z1[t] =
3
2t (z0[t]− z0[t− 1]) + (1− 3

2t )z1[t− 1]
if n = 2. (9)

Equation (8) is equivalent to Brown’s method, where the smoothing factor 1
t changes based on the

number of calculation steps t = 1, 2, 3, . . . . This approach is often referred to as cumulative aver-
aging. Similarly, the equations in (9) correspond to Holt’s method ( Hyndman & Athanasopoulos
(2021)), where α = 4

t and β∗ = 3
2t decrease in proportion to the calculation steps. This is analogous

to double exponential smoothing, so we can refer to the recurrent equation (9) as double cumulative
smoothing. Recurrent equation (7) can be referred to as high-order cumulative smoothing algo-
rithm. In this context, smoothing refers to approximating the data with a polynomial of a specified
order of smoothness, while filtering out additive white Gaussian noise. Cumulativity implies that
the approximation begins at the initial value t0 and expands to the current value t using a window
that covers the entire data set with equal weights.

Pseudocode for high-order cumulative smoothing (7) is given in Algorithm 1. The time complexity
of the online algorithm is constant O(1) for each f [t]. So the computational complexity of the
offline algorithm is linear relative to the size of the collected data set. It’s reasonable to assume
the following initial conditions: z0[t0] = f [t0] and zm[t0] = 0 if prior estimates of the signal’s
derivatives are unavailable. A key feature of the algorithm which sets it apart from traditional time
series smoothing methods, is its ability to handle calculations at irregular (unevenly) time steps
∆t[t]. This allows for computations to occur only when new signal samples are received, provided
they differ in value from the previous ones. Pseudocode for polynomial approximation (6) is given
in Algorithm 2.

From a machine learning perspective, Equation (1) can be seen as a one-dimensional gradient
flow or gradient descent (for n = 1) with a dynamic, adaptive learning rate γ(t) = (n+m−1)!

m!(n−m)!
n
tm .

The mean squared error (MSE) loss function F (z) = 1
2

(
z0(t) − f(t)

)2
has a derivative (gradient)

dF (z)
dz = z0(t)− f(t). Therefore, Algorithm (7) operates as a parameter-free, one-dimensional op-

timization algorithm that minimizes error with sublinear, or more specifically, logarithmic, conver-
gence. This is because, under the condition of a bounded highest estimated derivative, the estimation
error z0(t)−f(t) according to (2) decreases inversely proportional to the calculation step (t−1). For
n > 1 other error terms decrease according to negative powers of t (i.e. t−d, where d = 1, . . . , n).
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Algorithm 1 High-Order Cumulative Smoothing
1: Input: Scalar data sequence f [t] for t = t0+∆t, t0+2∆t, t0+3∆t, . . ., scalar variables zm−1

for m = 1, 2, . . . , n with initial values z0[t0] = f [t0] and zm[t0] = 0 where t0 > 0
2: Output: Updated variables values zm−1[t] containing estimates of the signal and its derivatives
3: t← t0
4: for i = 1, 2, 3, . . . do
5: t← t+∆t
6: ε[t]← f [t]−

∑n−1
k=0

zk[t−∆t]
k! ∆tk

7: for m = 1, 2, . . . , n do
8: zm−1[t]←

(∑n−1
k=m−1

zk[t−∆t]
(k−m+1)!∆tk−m+1

)
+∆t (n+m−1)!

m!(n−m)!
n
tm ε[t]

9: end for
10: end for

Algorithm 2 Polynomial Approximation
1: Input: Updated scalar variables values zm−1[t] at the t for m = 1, 2, . . . , n from Algorithm 1
2: Output: Polynomial approximated values f̂ (m−1)[τ ] of the signal and its derivatives at the τ ,

coefficients Km−1 values of the approximating polynomial f̂ [τ ] =
∑n

m=1 Km−1τ
m−1

3: for m = 1, 2, . . . , n do
4: f̂ (m−1)[τ ] :=

∑n−1
k=m−1

zk[t]
(k−m+1)! (τ − t)k−m+1

5: Km−1 := 1
(m−1)!

∑n−1
i=m−1

zi[t]
(i−m+1)! (−t)

i−m+1

6: end for

3 DEMONSTRATION OF RESULTS

Figure 1: The differentiable signal f(t) and its interpolation f̂(t)

To demonstrate the differentiator’s performance, consider a noisy polynomial signal of order 4:
f(t) = f0(t) + η0(t) = (5− 0.004t+0.0003t2 − 0.00002t3 +0.000001t4) +N(0, 0.72), over the
range t = 0 to 20000. For this signal, the corresponding differentiator with n = 5 and the recurrence
Algorithm (7) for cumulative smoothing is expressed as:

z0[t] =
25∆t

t ε[t] + z0[t−∆t] + z1[t−∆t]∆t+ z2[t−∆t]∆t2

2 + z3[t−∆t]∆t3

6 + z4[t−∆t]∆t4

24

z1[t] =
300∆t

t2 ε[t] + z1[t−∆t] + z2[t−∆t]∆t+ z3[t−∆t]∆t2

2 + z4[t−∆t]∆t3

6

z2[t] =
2100∆t

t3 ε[t] + z2[t−∆t] + z3[t−∆t]∆t+ z4[t−∆t]∆t2

2

z3[t] =
8400∆t

t4 ε[t] + z3[t−∆t] + z4[t−∆t]∆t

z4[t] =
15120∆t

t5 ε[t] + z4[t−∆t]

ε[t] = f [t] −
(
z0[t−∆t] + z1[t−∆t]∆t+ z2[t−∆t]∆t2

2 + z3[t−∆t]∆t3

6 + z4[t−∆t]∆t4

24

)
.
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Figure 2: The differentiable signal f(t) and its interpolation f̂(t), extrapolation of the signal f0(t)
and its estimates f̂0(t) beyond the beginning of the range

Figure 3: The differentiable signal f(t) and its interpolation f̂(t), extrapolation of the signal f0(t)
and its estimates f̂0(t) beyond the end of the range

By choosing ∆t = 1, the algorithm simplifies to the following form:

z0[t] =
25
t ε[t] + z0[t− 1] + z1[t− 1] + z2[t−1]

2 + z3[t−1]
6 + z4[t−1]

24

z1[t] =
300
t2 ε[t] + z1[t− 1] + z2[t− 1] + z3[t−1]

2 + z4[t−1]
6

z2[t] =
2100
t3 ε[t] + z2[t− 1] + z3[t− 1] + z4[t−1]

2

z3[t] =
8400
t4 ε[t] + z3[t− 1] + z4[t− 1]

z4[t] =
15120
t5 ε[t] + z4[t− 1]

ε[t] = f [t]−
(
z0[t− 1] + z1[t− 1] + z2[t−1]

2 + z3[t−1]
6 + z4[t−1]

24

)
,

where z0[0] = f [0], z1[0] = 0, z2[0] = 0, z3[0] = 0, z4[0] = 0 and t = 1, 2, 3, . . . , 20000.

For comparison, we present a analogous high-gain differentiation algorithm, also for ∆t = 1:

x0[t] =
5
51 ε[t] + x0[t− 1] + x1[t− 1] + x2[t−1]

2 + x3[t−1]
6 + x4[t−1]

24

x1[t] =
10.03
52 ε[t] + x1[t− 1] + x2[t− 1] + x3[t−1]

2 + x4[t−1]
6

x2[t] =
9.30
53 ε[t] + x2[t− 1] + x3[t− 1] + x4[t−1]

2

x3[t] =
4.57
54 ε[t] + x3[t− 1] + x4[t− 1]

x4[t] =
1.1
55 ε[t] + x4[t− 1]

ε[t] = f [t]−
(
x0[t− 1] + x1[t− 1] + x2[t−1]

2 + x3[t−1]
6 + x4[t−1]

24

)
,
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Figure 4: Errors of estimation of the signal and its derivatives in logarithmic scale (absolute values)

under those initial conditions x0[0] = f [0], x1[0] = 0, x2[0] = 0, x3[0] = 0, x4[0] = 0.

For comparative analysis, we also present the super-twisting differentiation algorithm, also with a
sampling interval ∆t = 1. Since its optimal tuning requires knowledge of the Lipschitz constant,
and for the signal under consideration f

(5)
0 (t) ≡ 0, we employ a differentiator of one order lower.
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Figure 5: Errors of estimation of signal and its derivatives in logarithmic scale (absolute values),
initial range

Figure 6: Estimation errors of the signal and its derivatives, initial range

Figure 7: Convergence of ”learned parameters” of regression to the coefficients of the polynomial
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Accordingly, we set L = | f
(4)
0 (t)
1.1 | = |

4!K4

1.1 | = 24 0.000001
1.1 and define y4[t] ≡ 4!K4 = 0.000024 with

the coefficients taken from Table 2 in Mojallizadeh et al. (2021):

y0[t] = 3L
1
4 |ε[t]|

3
4 sign(ε[t]) + y0[t− 1] + y1[t− 1] + y2[t−1]

2 + y3[t−1]
6

y1[t] = 4.16L
2
4 |ε[t]|

2
4 sign(ε[t]) + y1[t− 1] + y2[t− 1] + y3[t−1]

2

y2[t] = 3.06L
3
4 |ε[t]|

1
4 sign(ε[t]) + y2[t− 1] + y3[t− 1]

y3[t] = 1.1L
4
4 |ε[t]|

0
4 sign(ε[t]) + y3[t− 1]

ε[t] = f [t]−
(
y0[t− 1] + y1[t− 1] + y2[t−1]

2 + y3[t−1]
6

)
,

under similar initial conditions y0[0] = f [0], y1[0] = 0, y2[0] = 0, y3[0] = 0.

After completing the calculations at t = 20000, the results for HOUND differentiator are
z0[20000] = 159840119925.682, z1[20000] = 31976011.9968, z2[20000] = 4797.601,
z3[20000] = 0.47988, z4[20000] = 0.000024. For high-gain differentiator the results are
x0[20000] = 159840119925.244, x1[20000] = 31976011.9772, x2[20000] = 4797.597,
x3[20000] = 0.47983, x4[20000] = 0.000045. For super-twisting method the results are
y0[20000] = 159840119922.316, y1[20000] = 31976011.5038, y2[20000] = 4797.565,
y3[20000] = 0.47856, y4[20000] ≡ 0.000024.

We substitute these values into the approximation formula (Equation (6)) and vary τ in the range
from -100 to 20100. The interval from 0 to 20000 corresponds to interpolation (Figure (1)), while
the ranges from −100 to 0 (Figure (2)) and from 20000 to 20100 (Figure (3)) show extrapolation.

During the calculations, we compute the errors in the estimates of the signal and its derivatives as
follows: e0[t] = z0[t]− f0[t], e1[t] = z1[t]− f

(1)
0 [t], e2[t] = z2[t]− f

(2)
0 [t], e3[t] = z3[t]− f

(3)
0 [t],

e4[t] = z4[t]−f (4)
0 [t] (instead of z for high-gain we substitute x, and for super-twisting we substitute

y). Figure (4) shows the decrease in the absolute values of these errors as t increases, while Figure
(5) displays the transient phase. Figure (6) illustrates the signed error values over time.

Substituting the calculation results into formula (3) allows us to estimate the constants that define
the polynomial expression of the unnoised signal f0(t). The estimated values are: K̂0 = 8.25,
K̂1 = −0.005977, K̂2 = 0.0003, K̂3 = −0.00002, K̂4 = 0.000001. Figure (7) shows the
process of convergence to these true values. For both the high-gain differentiator and super-twisting
differentiator, the estimates of the polynomial approximation coefficients fail to converge to constant
values.

The results demonstrate strong interpolation accuracy across the entire range of data processed by the
HOUND differentiator, highlighting the effectiveness of cumulative smoothing. Additionally, the
accuracy of the approximation does not degrade near the boundaries of the t-range, enabling reliable
extrapolation. For the high-gain differentiator and super-twisting differentiator, the interpolation
accuracy deteriorates rapidly in the initial segment of data range. Consequently extrapolation is
feasible only in one direction, namely beyond the end of the range (i.e. into the future for time-
dependent function).

The presented cumulative smoothing algorithm also performs well in estimating the polynomial
signal and its derivatives. Interestingly, the higher the order of the derivative, the more accurate the
estimates become, as the error decreases more rapidly for higher-order derivatives. Additionally, the
algorithm effectively filters out additive white Gaussian noise, leading to accurate estimates of the
polynomial representation of the unnoised signal. For the other two algorithms, the error remains
low but does not decrease throughout the computations, persisting at an almost constant level that
precludes the possibility of performing a polynomial approximation. Beyond a certain iteration,
the error produced by the proposed algorithm (HOUND) becomes lower than that of the compared
algorithms (the high-gain differentiator and the super-twisting differentiator), which are only able to
filter noise to a limited extent.

For the HOUND differentiator the estimation process for both the signal and its derivatives includes
a distinctly nonlinear phase, characterized by a sharp rise in values, followed by an equally rapid
decrease. This results in the estimates stabilizing near their true values and the errors approaching
zero. During this transient phase, the sign of the errors changes with each step of the calculation.
Once the transient phase concludes, the errors begin to reduce smoothly, with a sublinear rate of
convergence.

9
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Another demostration cases are given in the Appendices B and C. The software code to reproduce
the demos is available via the repository https://github.com/katrichek/HOUND/

4 CONCLUSION

The universal numerical differentiator introduced here efficiently estimates the derivatives of a func-
tion (or signal, when the function is time-dependent), even in the presence of additive noise. It
performs polynomial approximations of a selected order. The proposed cumulative smoothing al-
gorithm operates in a recurrent form, allowing for real-time data processing. This method requires
no trainable parameters and involves only one hyperparameter: the integer order of the differentia-
tor. Overestimating this order doesn’t negatively affect performance, aside from increasing com-
putational load. The method doesn’t require knowledge of the Lipschitz constant for the highest
estimated derivative, and it offers theoretical guarantees of convergence (in the continuous case) if
boundedness is ensured.

Future research on this algorithm could explore several key areas. First, it would be beneficial to
compare different discretization methods for continuous system of nonlinear differential equations
(Equation (1)). Second, proving the stability of the discrete form of the universal numerical dif-
ferentiator (Equation (7)) and eliminating the transient phase would be valuable. The impact of
noise variance in the signal and the irregularity of time steps and initial conditions on the accuracy
and speed of differentiation also merits investigation. Other areas of interest include mitigating the
effects of noise in the derivatives of the signal, addressing the accumulation of computational errors
(particularly when dealing with large numbers or factorial operations), and exploring parallelization
of the differentiation process for large datasets, possibly through matrix transformations to enable
hardware-accelerated calculations. Finally, developing cumulative smoothing techniques for multi-
variate high-dimensional data and signals with periodic components, is another promising direction.
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A APPENDIX

Let us now solve the system of differential equations (Equation (1)). First, we express the estimation
errors for the signal and its derivatives as:

em−1(t) = zm−1(t)− f (m−1)(t). (10)

Substituting into system (1), the equations take the form:

e
(1)
m−1(t) = em(t)− (n+m− 1)!

m!(n−m)!

n

tm
e0(t). (11)

For n = 1, 2, 3, here are examples of system (11) (omitting the explicit dependence on t):

e
(1)
0 = −1

t
e0 − f (1) if n = 1,{

e
(1)
0 = − 4

t e0 + e1

e
(1)
1 = − 6

t2 e0 − f (2)
if n = 2,

e
(1)
0 = − 9

t e0 + e1

e
(1)
1 = − 36

t2 e0 + e2

e
(1)
2 = − 60

t3 e0 − f (3)

if n = 3.

To solve each equation in system (11), we differentiate them d times, where d = n − m. Using
Leibniz’s rule for differentiating a product, we have:( 1

tm
e0(t)

)(d)

=

d∑
k=0

(
d

k

)( 1

tm

)(d−k)

e
(k)
0 (t) =

d∑
k=0

(
d

k

)
(−1)d−k (m+ d− k − 1)!

(m− 1)!

1

tm+d−k
e
(k)
0 (t).

After differentiating, the system (11) becomes:

e
(n−m+1)
m−1 (t) = e(n−m)

m (t)− (n+m− 1)!n

m!(n−m)!

n−m∑
k=0

(−1)n−m−k

(
n−m

k

)
(n− 1− k)!

(m− 1)!

1

tn−k
e
(k)
0 (t).

Let us write this expression as:

e
(n−m+1)
m−1 (t) = e(n−m)

m (t) +Xn,m,

where e(n)0 (t) = Xn,1+e
(n−1)
1 (t), e(n−1)

1 (t) = Xn,2+e
(n−2)
2 (t), . . . , e(2)n−2(t) = Xn,n−1+e

(1)
n−1(t),

e
(1)
n−1(t) = Xn,n + en(t). After performing the stroboscopic summation, we obtain e

(n)
0 (t) =

en(t) +
∑n

m=1 Xn,m.

This simplifies to:

e
(n)
0 (t) = en(t)−

n∑
m=1

(n+m− 1)!n

m!(n−m)!

n−m∑
k=0

(−1)n−m−k (n−m)!

k!(n−m− k)!

(n− 1− k)!

(m− 1)!

1

tn−k
e
(k)
0 (t).

Next, we group the summands by the order of the derivative:

e
(n)
0 (t) = en(t)−

n−1∑
d=0

1

tn−d
e
(d)
0 (t)

n−d∑
m=1

(−1)n−m−d (n+m− 1)!n

m!(n−m)!

(n−m)!

d!(n−m− d)!

(n− 1− d)!

(m− 1)!
.

We sum m from 0, keeping in mind that 1
(−1)! = 0. This gives:

e
(n)
0 (t) = en(t)−

n−1∑
d=0

n!

d!

1

tn−d
e
(d)
0 (t)

n−d∑
m=0

(−1)n−m−d

(
n+m− 1

m

)(
n− 1− d

n−m− d

)
.

11
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Using the identity
(
n+m−1

m

)
= (−1)m

(−n
m

)
, Vandermonde’s identity

∑n−d
m=0

(−n
m

)(
n−1−d
n−d−m

)
=(−1−d

n−d

)
n− d, and identities

(−1−d
n−d

)
= (−1)n−d

(
n

n−d

)
,
(

n
n−d

)
=

(
n
d

)
taken from Graham et al.

(1994), the sum simplifies to:

e
(n)
0 (t) = en(t)−

n−1∑
d=0

n!

d!

(
n

d

)
1

tn−d
e
(d)
0 (t).

Multiplying the equation by tn and using the fact that en(t) = −f (n)(t), according to (10) (since,
zn(t) ≡ 0), we get:

n∑
d=0

n!

d!

(
n

d

)
tde

(d)
0 (t) = −tnf (n)(t). (12)

This is an Euler differential equation with the characteristic polynomial:

n∑
d=0

n!

d!

(
n

d

) d−1∏
k=0

(λ− k) = 0. (13)

Here are examples of Equation (12) for n = 1, 2, 3 (we omit the explicit dependence on t for
brevity):

te
(1)
0 + e0 = −tf (1)(t) if n = 1,

t2e
(2)
0 + 4te

(1)
0 + 2e0 = −t2f (2)(t) if n = 2,

t3e
(3)
0 + 9t2e

(2)
0 + 18te

(1)
0 + 6e0 = −t3f (3)(t) if n = 3.

The corresponding characteristic polynomials (13) are as follows:

λ+ 1 = 0 if n = 1,

λ(λ− 1) + 4λ+ 2 = λ2 + 3λ+ 2 = (λ+ 1)(λ+ 2) = 0 if n = 2,

λ(λ−1)(λ−2)+9λ(λ−1)+18λ+6 = λ3+6λ2+11λ+6 = (λ+1)(λ+2)(λ+3) = 0 if n = 3.

Let us express equation (13) using the Stirling numbers of the first kind (signed)
∏d−1

k=0(λ − k) =∑d
k=0 s(d, k)λ

k:
n∑

d=0

n!

d!

(
n

d

) d∑
k=0

s(d, k)λk = 0.

We now group the summands by powers of λ and extend the summation limits from 0 to n, since
s(d, k) = 0 for k > d:

n∑
k=0

λk
n∑

d=0

n!

d!

(
n

d

)
s(d, k) = 0.

According to identity 21 of Boyadzhiev (2021) and the relationship between the Stirling numbers
of the first kind with and without sign, the inner sum can be simplified as:

n∑
d=0

n!

d!

(
n

d

)
s(d, k) = (−1)n−ks(n+ 1, k + 1) =

[
n+ 1

k + 1

]
.

Then the characteristic polynomial (13):
n∑

k=0

[
n+ 1

k + 1

]
λk = 0

is written as follows:
n∏

k=1

(λ+ k) = 0. (14)

12
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Then the general solution of the equation (12) according to 5.1.2.39 from Polyanin & Zaitsev
(2003):

e0(t) =

n∑
d=1

Cd

td
. (15)

Substituting (15) into the system (11), it can be shown that its general solution has the form:

em−1(t) =

n∑
d=1

am,d,n

td+m−1
Cd, (16)

where the coefficients am,d,n > 0 are calculated via the recurrence relation:

am+1,d,n = −(d+m− 1)am,d,n +
(n+m− 1)!n

m!(n−m)!
, (17)

where a1,d,n = 1 for m = 1, and ak,d,n = 0 when k > n.

To obtain the particular solution, we vary Cd(t).

Substituting the general solution (11) and its derivative into the system (16):

e
(1)
m−1(t) =

n∑
d=1

am,d,n

(C
(1)
d (t)

td+m−1
− (d+m− 1)

Cd(t)

td+m

)
,

it can be shown that the summands with Cd(t) vanish, and we are left with a system of equations:

n∑
d=1

am,d,n
C

(1)
d (t)

td+m−1
=

{
0,m < n

−f (n)(t),m = n
.

Multiplying it by tn+m−1, we obtain:
n∑

d=1

am,d,nt
n−dC

(1)
d (t) =

{
0,m < n

−t2n−1f (n)(t),m = n
,

which can be written in matrix form:

An×nDn×nCn×1 = En×1, (18)

where the matrix Am,d consists of elements am,d,n, the matrix Dd,d contains only the main diagonal
with expressions tn−d (the other elements are zero), vector Cd consists of elements C

(1)
d (t), and

vector E is zero except for the last element En = −t2n−1f (n)(t). In detailed form, the system (18)
looks like this:

a1,1,n a1,2,n · · · a1,n−1,n a1,n,n
a2,1,2 a2,2,n · · · a2,n−1,n a2,n,n

...
...

. . .
...

...
an−1,1,n an−1,2,n · · · an−1,n−1,n an−1,n,n

an,1,n an,2,n · · · an,n−1,n an,n,n



tn−1 0 · · · 0 0
0 tn−2 · · · 0 0
...

...
. . .

...
...

0 0 · · · t 0
0 0 · · · 0 1



C

(1)
1 (t)

C
(1)
2 (t)
· · ·

C
(1)
n−1(t)

C
(1)
n (t)

 =


0
0
· · ·
0

−t2n−1f (n)(t)

 .

Let us give examples of (18) for n = 1, 2, 3 (we omit for brevity the explicit statement of the
dependence on t):

[1] [1]
[
C

(1)
1

]
=

[
−tf (1)

]
if n = 1,[

1 1
3 2

] [
t 0
0 1

][
C

(1)
1

C
(1)
2

]
=

[
0

−t3f (2)

]
if n = 2,

[
1 1 1
8 7 6
20 15 12

]t2 0 0
0 t 0
0 0 1


C

(1)
1

C
(1)
2

C
(1)
3

 =

 0
0

−t5f (3)

 if n = 3.
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It can be shown that the determinant of the product of matrices An×nDn×n is expressed through
the superfactorial:

|AD| = (−1)⌊n
2 ⌋t

n(n−1)
2

n−1∏
k=0

k!,

hence the system of equations (18) is nonsingular. It can be shown that its solution has the form:

C
(1)
d (t) =

(−1)d

bd,n
td+n−1f (n)(t), (19)

where the coefficients bd,n > 0 are calculated by the formula:
bd,n = (n− d)!(d− 1)!, (20)

then by integrating (19) and by substituting into (16), we obtain the particular solution of the system
(11):

em−1(t) =

n∑
d=1

am,d,n

td+m−1

(
cd +

(−1)d

bd,n

∫ t

t0

τd+n−1f (n)(τ) dτ
)
. (21)

By expanding the errors em−1(t) in terms of the difference between the estimated derivatives and
the actual derivatives of the signal (10), we derive the final expression in Equation (2).

Let’s now apply integration by parts to the integral in Equation (21):∫ t

t0

τd+n−1f (n)(τ) dτ = τd+n−1f (n−1)(τ)
∣∣∣t
t0
−

∫ t

t0

(τd+n−1)(1)f (n−1)(τ) dτ =

td+n−1f (n−1)(t)− td+n−1
0 f (n−1)(t0)− (d+ n− 1)

∫ t

t0

τd+n−2f (n−1)(τ) dτ.

Next, we substitute the variable u = τd+n−1 in the remaining integral:

(d+ n− 1)

∫ t

t0

τd+n−2f (n−1)(τ) dτ =

∫ td+n−1

td+n−1
0

f (n−1)
(
u

1
d+n−1

)
du.

If the following condition holds:
|f (n−1)(x)| ≤ L, (22)

where L is a non-negative Lipschitz constant, then integral is bounded by:∣∣∣ ∫ td+n−1

td+n−1
0

f (n−1)
(
u

1
d+n−1

)
du

∣∣∣ ≤ td+n−1L+ td+n−1
0 L.

Therefore, the integral in Equation (21) is bounded by:∣∣∣ ∫ t

t0

τd+n−1f (n)(τ) dτ
∣∣∣ ≤ td+n−12L+ td+n−1

0 2L.

Consequently, the estimation error (21) is bounded by:

|em−1(t)| ≤ tn−m2L
∣∣∣ n∑
d=1

(−1)d

bd,n
am,d,n

∣∣∣+ n∑
d=1

am,d,n

td+m−1

(
|cd|+

td+n−1
0 2L

bd,n

)
.

It can be shown that the first sum in the previous expression equals zero for all m except when
m = n:

n∑
d=1

(−1)d

bd,n
am,d,n =

{
0 if m < n

−1 if m = n
.

Thus, the error in estimating the signal and its derivatives (21) is bounded by:

|em−1(t)| ≤ 2L+

n∑
d=1

am,d,n

td+m−1

(
|cd|+

td+n−1
0 2L

bd,n

)
, (23)

which tends to the constant 2L, as t increases.

The correctness of the formulas (17) and (20), which calculate the constants am,d,n, bd,n and all
nd the subsequent conclusions for any values of n, requires further formal proof. However, in this
paper, we have verified the accuracy of all the given formulas across a wide range of values for n.
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B HARMONIC CASE

Figure 8: The harmonic signal f(t) and its interpolation and extrapolation

Figure 9: Errors of estimation of the signal and its derivatives in logarithmic scale (absolute values)

Consider a harmonic signal with high-frequency disturbance f(t) = f0(t) + η0(t) = cos(t) +
(sin(10000t) + N(0, 1))/2, in the range t = from 0 to 5. We apply differentiators with n = 5
and ∆t = 0.0001. For the high-gain differentiator and super-twisting differentiator, we choose the
Lipschitz constant L = 1. The results are shown in Figures (8) and (9).
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C NONSMOOTH CASE

Figure 10: The nonsmooth signal f(t) and its interpolation and extrapolation

Consider a nonsmooth signal f(t) = abs(t − 1000) in the range t = from 0 to 2000. We apply
HOUND differentiator with n from 1 to 6, and ∆t = 1. The results are shown at Figure (10).
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