

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EXPLICIT AND EFFECTIVELY SYMMETRIC SCHEMES FOR NEURAL SDES

Anonymous authors

Paper under double-blind review

## ABSTRACT

Backpropagation through (neural) SDE solvers is traditionally approached in two ways: discretise-then-optimise, which offers accurate gradients but incurs prohibitive memory costs due to storing the full computational graph (even when mitigated by checkpointing); and optimise-then-discretise, which achieves constant memory cost by solving an auxiliary backward SDE, but suffers from slower evaluation and gradient approximation errors. Algebraically reversible solvers promise both memory efficiency and gradient accuracy, yet existing methods such as the Reversible Heun scheme are often unstable under complex models and large step sizes. We address these limitations by introducing a novel class of stable, near-reversible Runge–Kutta schemes for neural SDEs. These *Explicit and Effectively Symmetric (EES)* schemes retain the benefits of reversible solvers while overcoming their instability, enabling memory-efficient training without severe restrictions on step size or model complexity. Through numerical experiments, we demonstrate the superior stability and reliability of our schemes, establishing them as a practical foundation for scalable and accurate training of neural SDEs.

## 1 INTRODUCTION

Neural stochastic differential equations (SDEs) have recently emerged as a flexible tool for modelling stochastic dynamics, with training typically cast as a distribution-matching problem between generated and observed trajectories. Several approaches have been proposed in the literature, differing mainly in the choice of discriminating divergence. SDE-GANs (Kidger et al., 2021a) use the 1-Wasserstein distance, while Latent SDEs (Li et al., 2020) optimize with respect to the KL divergence via variational inference, and can be viewed as variational autoencoders. Another alternative proposed by Issa et al. (2023) trains neural SDEs non-adversarially using maximum mean discrepancies (MMD) with *signature kernels* (Király & Oberhauser, 2019; Salvi et al., 2021a; Lemercier et al., 2024), a recently introduced family of kernels on path space which received significant attention due to their efficiency in handling path-dependent problems (Salvi et al., 2021b; Lemercier et al., 2021; Pannier & Salvi, 2024; Muça Cirone & Salvi, 2025b).

While effective, the stochastic calculus underpinning SDEs can be technically cumbersome, especially when developing higher order solvers, deriving and analysing backpropagation algorithms, or extending to rougher noises than Brownian motion. A natural way to bypass these limitations is to view SDEs through the lens of *rough paths*. Rough path theory (Lyons, 1998; Gubinelli, 2004; 2010) provides a deterministic calculus on path space that extends classical Itô integration beyond semimartingales, enabling one to treat SDEs as a special case of *rough differential equations (RDEs)*

$$dy(t) = f_0(t, y_t) dt + f(t, y_t) d\mathbf{X}(t), \quad y_{t_0} = y_0 \in \mathbb{R}^m, \quad (1)$$

where  $\mathbf{X}$  is a *rough path* above a driving signal  $X = (X^1, \dots, X^d) : [0, T] \rightarrow \mathbb{R}^d$ ,  $f = (f_1, \dots, f_d)$  and  $f_i : \mathbb{R}^m \rightarrow \mathbb{R}^m$  are vector fields for  $i = 0, \dots, d$  which determine the system dynamics. In fact, there is a large class of stochastic processes which can be “naturally lifted” to rough paths, including Gaussian processes such as fractional Brownian motion with Hurst parameter  $H > 1/4$  and Volterra processes (Friz & Victoir, 2010). Viewing SDEs through the lens of RDEs provides a significant conceptual simplification. In the RDE framework, the driving signal  $\mathbf{X}$  is treated as a rough path, which abstracts away the stochastic integral and allows one to work with deterministic calculus on path space. Rough path theory has become a powerful mathematical framework for analyzing modern machine learning models. It has provided the foundation for proving theoretical properties of neural

054 differential equations (Morrill et al., 2021; Arribas et al., 2020; Cirone et al., 2023; Holberg & Salvi, 055 2024), sequence-to-sequence architectures (Kidger et al., 2019), and more recently for deep selective 056 state-space models (SSMs) (Muça Cirone et al., 2024; Muça Cirone & Salvi, 2025a; Walker et al., 057 2025) and score-based diffusion models (Barancikova et al., 2024). for a survey of recent applications 058 of rough path theory to machine learning, we refer the reader to (Fermanian et al., 2023).

059 From an algorithmic perspective, the RDE formulation also plays a central role in training neural 060 SDEs (NSDEs), where one must perform backpropagation through an SDE solver. For example, 061 the derivation of the *adjoint method*—a key tool for backpropagation through differential equation 062 solvers—becomes far more transparent when formulated in terms of RDEs, avoiding much of the 063 technical machinery required in the stochastic setting; see for instance (Cass & Salvi, 2024). More 064 generally, the RDE viewpoint unifies backpropagation across ODEs, SDEs, and controlled differential 065 equations (CDEs) (Kidger et al., 2020), offering a clean pathwise calculus that is both mathematically 066 rigorous and practically aligned with autodiff frameworks. Several strategies have been proposed. 067 A first approach, known as *discretise-then-optimise*, directly backpropagates through the solver’s 068 internal operations. This yields accurate gradients and is computationally efficient, but requires storing 069 all intermediate states, making it memory-intensive. A second approach, *optimise-then-discretise*, 070 instead derives a backwards-in-time adjoint equation and solves it numerically using another call to 071 the solver. This eliminates the need to store intermediate quantities, resulting in constant memory 072 cost with respect to solver depth. However, it typically produces less accurate gradients and is slower 073 due to the need to recompute forward trajectories during the backward pass.

074 A third option leverages *algebraically reversible solvers*, which enable the exact reconstruction of 075 the solution trajectory of a differential equation from its terminal point, allowing for accurate and 076 memory-efficient backpropagation. In the setting of an autonomous ODE

$$077 \quad dy_t = f(y_t)dt, \quad (2)$$

078 a one step method  $y_{n+1} = y_n + \Phi_h(y_n)$  is said to be *reversible* or *symmetric* if a step of the 079 method starting from  $y_1$  with a negative step size exactly recovers the initial condition  $y_0$ , that is, 080  $\Phi_{-h} = \Phi_h^{-1}$ . Whilst reversible schemes offer an efficient approach to backpropagation through 081 differential equations, such schemes are difficult to construct. It is well known that Runge–Kutta 082 schemes are reversible only if they are implicit, making them unsuitable for applications to Neural 083 ODEs. More generally, symmetric parasitism-free general linear methods cannot be explicit (Butcher 084 et al., 2016). To overcome this problem, existing reversible methods proposed in literature, such as 085 the asynchronous leapfrog integrator (ALF) (Zhuang et al., 2021) and the Reversible Heun method 086 (Kidger et al., 2021b), track auxiliary states as part of the integration. Whilst this technique allows 087 for explicit reversible schemes, it comes at the price of low stability. Both ALF and Reversible Heun 088 are well-known to be unstable, and fail when integrating complex equations. For example, Zhang & 089 Chen (2021) find that Reversible Heun is too unstable for their applications, stating:

090 *"Regardless the accuracy and memory advantages of Reversible Heun claimed by 091 torchsde, we found this integration approach is less stable compared with simple 092 Euler integration without adjoint and results in numerical issues occasionally. We 093 empirically found that methods without adjoint are more stable and lower loss 094 compared with adjoint ones, even in low dimensional data" (Zhang & Chen, 2021)*

096 A potential solution to the difficulties of reversible solvers comes with the class of *Explicit and 097 Effectively Symmetric (EES)* Runge–Kutta schemes introduced in Shmelev et al. (2025). Instead of 098 considering exactly reversible schemes, the authors propose schemes which are almost reversible, up 099 to an acceptable tolerance level. Such schemes offer stable, explicit integration methods which are 100 virtually indistinguishable from truly symmetric schemes in practice. The authors demonstrate the 101 efficacy of EES schemes on classical ODEs, and show that EES schemes are capable of producing 102 similar results to classical schemes such as RK3 and RK4. In Shmelev et al. (2025), the formulation 103 of EES schemes is limited to ODEs, without an explicit generalisation to the case of SDEs or RDEs.

104 Derivative-free *Runge–Kutta (RK) methods* for RDEs were introduced by Redmann & Riedel (2022). 105 Similarly to classical RK schemes for ODEs, the study of these methods is conducted through the 106 formalism of B-series (Hairer et al., 2006; McLachlan et al., 2015; Butcher, 2021). A B-series is 107 an infinite series representation of a method, indexed by (labelled) non-planar rooted trees. A brief 108 overview of B-series is given in Appendix A. A natural consequence of this analysis is that a general

108 Runge–Kutta method for RDEs is given in terms of tree-iterated integrals of the underlying driving  
 109 process. In practice, these tree-iterated integrals cannot be simulated directly as their distributions are  
 110 often intractable. Following (Deya et al., 2012), Redmann & Riedel (2022) replaced these tree-iterated  
 111 integrals with products of increments of the driving path. This substitution simplifies the derivation of  
 112 Runge–Kutta coefficients and makes it feasible to establish order conditions up to any desired order.

113 In this paper, we present a formulation of EES Runge–Kutta schemes for RDEs, and demonstrate  
 114 their efficacy as integrators for Neural SDEs. The paper is structured as follows. Section 2 gives  
 115 an overview of existing reversible methods for neural differential equations. Section 3 recounts the  
 116 framework of Runge–Kutta methods for RDEs introduced in Redmann & Riedel (2020). Section  
 117 3 begins by introducing EES schemes for ODEs. Using the framework of Redmann & Riedel  
 118 (2020), we extend EES schemes to the case of RDEs, and derive results regarding their orders of  
 119 convergence. Through *mean-square stability* analysis, we show that EES schemes possess a similar  
 120 stability domain to classical RK3 and RK4 schemes when applied to SDEs, and are significantly more  
 121 stable than existing reversible schemes designed for Neural SDEs. We end Section 3 by outlining a  
 122 backpropagation algorithm for explicit RDE Runge–Kutta solvers such as EES schemes. In Section 4  
 123 we demonstrate the efficacy of EES schemes as integrators for Neural SDEs with two experiments  
 124 concerned with the learning of extreme stochastic dynamics where existing reversible solvers fail due  
 125 to instability, and show that EES successfully overcomes this issue. Section 5 closes this work with a  
 126 summary of the results, limitations and potential avenues for future work.

## 2 EXISTING REVERSIBLE SDE SOLVERS

130 The major drawback of classical reversible schemes is their low efficiency. It is well known that  
 131 Runge–Kutta schemes are reversible only if they are implicit. More generally, symmetric parasitism-  
 132 free general linear methods cannot be explicit (Butcher et al., 2016). A limited number of efficient  
 133 reversible solvers have been proposed in the literature. The asynchronous leapfrog integrator (ALF)  
 134 (Zhuang et al., 2021) for Neural ODEs overcomes the barrier of implicit schemes by tracking an  
 135 additional state  $v$  as part of the integration. Applied to the ODE equation 2, the update rule of the  
 136 ALF scheme can be written as

$$137 \quad y_{n+2} = y_n + hf\left(t_n + \frac{h}{2}, y_n + \frac{h}{2}v_n\right), \\ 138 \\ 139 \quad v_{n+2} = 2f\left(t_n + \frac{h}{2}, y_n + \frac{h}{2}v_n\right) - v_n.$$

141 A similar approach is taken for SDEs of the form

$$143 \quad dy_t = g(t, y_t)dt + f(t, y_t)dW_t \quad (3)$$

144 by the Reversible Heun method (Kidger et al., 2021b), where the integration step reads

$$146 \quad y_{n+1} = y_n + \frac{1}{2}(g(t_n, v_n) + g(t_{n+1}, v_{n+1}))\Delta t + \frac{1}{2}(f(t_n, v_n) + f(t_{n+1}, v_{n+1}))\Delta W_n, \\ 147 \\ 148 \quad v_{n+1} = 2y_n - v_n + g(t_n, v_n)\Delta t + f(t_n, v_n)\Delta W_n.$$

149 The Reversible Heun method is efficient, requiring only one evaluation of the drift  $g$  and the diffusion  
 150  $f$  per step. However, the method is inherently unstable.

152 *Theorem 2.1.* (Kidger et al., 2021b, Theorem D.19) Suppose that the Reversible Heun method is used  
 153 to obtain a solution  $\{y_n, v_n\}_{n \geq 0}$  to the linear test ODE  $dy = \lambda y dt$ , where  $\lambda \in \mathbb{C}$  and  $y_0 \neq 0$ . Then  
 154  $\{y_n, v_n\}_{n \geq 0}$  is bounded if and only if  $\lambda h \in [-i, i]$ .

155 As remarked in Kidger et al. (2021b), this domain is also the absolute stability region for the  
 156 reversible asynchronous leapfrog integrator (Zhuang et al., 2021). This instability has proven to be a  
 157 significant bottleneck in certain practical applications. In McCallum & Foster (2024), a method was  
 158 proposed for transforming any ODE integration method  $y_{n+1} = y_n + \Psi_h(t, y_n)$  into one which is  
 159 reversible, by taking the update

$$160 \quad y_{n+1} = \lambda y_n + (1 - \lambda)v_n + \Psi_h(t, v_n), \\ 161 \quad v_{n+1} = v_n - \Psi_{-h}(t_{n+1}, y_{n+1}),$$

162 for a given coupling parameter  $\lambda \in (0, 1]$ . The method offers a way of constructing reversible schemes  
 163 with larger stability domains than those of the ALF and Reversible Heun integrators (McCallum  
 164 & Foster, 2024, Theorem 2.3). However, the resulting stability domain of the transformed method  
 165 is typically much smaller than that of the underlying method  $\Psi$ , and depends additionally on the  
 166 coupling parameter  $\lambda$ .

### 168 3 EXPLICIT AND EFFECTIVELY SYMMETRIC (EES) SCHEMES FOR RDES 169

170 We will adopt the general framework of RDEs for our analysis of reversible SDE solvers, following  
 171 the work of Redmann & Riedel (2020). As discussed in the introduction, a generalised Runge–Kutta  
 172 scheme for RDEs can be formulated in terms of tree-iterated integrals of the underlying driving  
 173 rough path. For a brief introduction to these generalised methods, we refer the reader to Appendix B.  
 174 Computation of such tree-iterated integrals is usually not tractable in practice, and so we adopt the  
 175 simplified scheme given instead in terms of products of increments of the driving rough path.

#### 177 3.1 SIMPLIFIED RUNGE–KUTTA METHODS FOR RDES 178

179 Throughout, we will consider rough differential equations (RDEs) of the form

$$180 \quad dy_t = f(y_t)d\mathbf{X}_t, \quad (4)$$

182 where  $\mathbf{X}$  is an  $\alpha$ -Hölder branched rough path for some  $\alpha \in (0, 1]$  and  $f$  is sufficiently smooth and  
 183 bounded with bounded derivatives. For an introduction to branched rough paths, we refer the reader  
 184 to Appendix A.3. Following Redmann & Riedel (2022), we assume that there exist smooth paths  
 185  $\{X^h\}_{h>0}$  whose natural lifts to branched rough paths  $\{\mathbf{X}^h\}_{h>0}$  converge (almost surely) to  $\mathbf{X}$  under  
 186 the metric for  $\alpha$ -Hölder rough paths  $\varrho_\alpha$  (see Appendix A.3) as  $h \rightarrow 0$ . That is,  $\mathbf{X}$  is a geometric rough  
 187 path. Assume that this Wong–Zakai-type approximation converges at a rate  $r_0 > 0$  with respect to the  
 188 inhomogeneous rough path metric for geometric rough paths  $\varrho_\alpha^g$ , such that  $\varrho_\alpha^g(\mathbf{X}^h, \mathbf{X}) = \mathcal{O}(h^{r_0})$ .  
 189 For examples of such convergence rates for Gaussian processes, see Friz & Riedel (2014). Let  $y^h$   
 190 denote the solution associated with the driver  $\mathbf{X}^h$ ,

$$191 \quad dy_t^h = f(y_t^h)d\mathbf{X}_t^h. \quad (5)$$

192 A simplified Runge–Kutta scheme for  $y^h$  is defined by

$$194 \quad y_{n+1}^h = y_n^h + \sum_{m=1}^d \sum_{i=1}^s b_i f_m(k_i) X_{t_n, t_{n+1}}^{(m)}, \quad (6)$$

$$195 \quad k_i = y_n^h + \sum_{m=1}^d \sum_{j=1}^s a_{ij} f_m(k_j) X_{t_n, t_{n+1}}^{(m)},$$

200 where  $X_{t_n, t_{n+1}}$  denotes the increment of  $X^h$  over  $[t_n, t_{n+1}]$ . For simplicity, we will assume equidistant  
 201 grid points  $t_{n+1} - t_n = h$  for all  $n \geq 0$ . The convergence rates derived in Redmann & Riedel  
 202 (2020) for schemes of the form in equation 6 are given in Appendix B.1.

203 **Notation 3.1.** To avoid confusion, we will generally use  $\Phi$  to refer to a classical ODE Runge–Kutta  
 204 method, and  $\Upsilon$  to refer to an RDE method of the form given in equation 6. Given an ODE Runge–  
 205 Kutta scheme  $\Phi$ , we will write  $\mathcal{R}(\Phi)$  to denote the RDE scheme of the form in equation 6 with the  
 206 same coefficients  $\{a_{ij}\}_{1 \leq i, j \leq s}$  and  $\{b_i\}_{1 \leq i \leq s}$  as the ODE scheme.

#### 208 3.2 EES SCHEMES FOR ODES 209

210 EES schemes (Shmelev et al., 2025) are a class of Runge–Kutta methods which offer an efficient  
 211 approach to reversible integration without compromising on stability. Given positive integers  $m \geq n$ ,  
 212 an explicit Runge–Kutta scheme  $\Phi_h$  is said to be an EES( $n, m$ ) scheme if  $\Phi_h$  is of order  $n$  and  
 213 applying the scheme  $\Phi_{-h} \circ \Phi_h$  to an ODE recovers the initial condition up to order  $m$ . When  $m$  is  
 214 large, such schemes offer near-reversible behaviour, which is often sufficient for practical applications.  
 215 Butcher tableaux for 3-stage EES(2, 5) and 4-stage EES(2, 7) schemes are derived in Shmelev  
 et al. (2025). In Shmelev et al. (2025), the authors focus mostly on EES(2, 7) schemes, as these

significantly outperform EES(2, 5) schemes as integrators for ODEs. For our applications to Neural SDEs, we will instead restrict ourselves to EES(2, 5), as we do not expect the extra accuracy of EES(2, 7) justifies the extra stage required in this case. Proposition 3.1 gives the general form of the Butcher tableau of a scheme belonging to EES(2, 5) in terms of a parameter  $x$ , which we will denote by EES(2, 5;  $x$ ).

*Proposition 3.1* ((Shmelev et al., 2025, Proposition 8.4)). 3-stage Runge–Kutta schemes belonging to EES(2, 5) have a Butcher tableau of the form:

$$\begin{array}{c|ccc}
 & 0 & & \\
 \hline
 & \frac{1+2x}{4(1-x)} & \frac{1+2x}{4(1-x)} & \\
 & \frac{3}{4(1-x)} & \frac{(4x-1)^2}{4(x-1)(1-4x^2)} & \frac{1-x}{(1-4x^2)} \\
 \hline
 & x & \frac{1}{2} & \frac{1}{2}-x
 \end{array} \tag{7}$$

for some  $x \in \mathbb{R}$ ,  $x \neq 1, \pm \frac{1}{2}$ .

Recall from Theorem 2.1 that the stability domain of Reversible Heun is the interval  $[-i, i]$ , which is also the stability domain of the ALF integrator. The stability region for EES(2, 5) schemes is significantly larger and is comparable to classical methods such as Kutta’s RK4, as shown in Figure 1. Theorem 3.1 gives the exact form of this region for EES(2, 5;  $x$ ).

*Theorem 3.1.* Suppose that, for some  $x \neq 1, \pm \frac{1}{2}$ , EES(2, 5;  $x$ ) is used to obtain a solution  $\{y_n\}_{n \geq 0}$  to the linear test equation  $dy = \lambda y dt$ , where  $\lambda \in \mathbb{C}$  and  $y_0 \neq 0$ . Then  $y_n \rightarrow 0$  as  $n \rightarrow \infty$  if and only if

$$\left| 1 + \rho + \frac{1}{2}\rho^2 + \frac{1}{8}\rho^3 \right| < 1,$$

where  $\rho = \lambda h$ .

The result follows from the fact that Runge–Kutta methods applied to linear test equations admit a linear update rule,  $y_{n+1} = R(\rho)y_n$ , where  $R(\rho)$  is the stability function associated with the scheme. As such, the proof of Theorem 3.1 is simply a direct computation of the stability function  $R(\rho) = 1 + \rho + \frac{1}{2}\rho^2 + \frac{1}{8}\rho^3$  for EES(2, 5;  $x$ ), which we omit here. We note that the stability region of EES(2, 5;  $x$ ) is completely independent of the choice of the parameter  $x$ . Motivated by the discussion in Shmelev et al. (2025, Section 8.1), we choose to fix the parameter  $x = 1/10$  and refer to EES(2, 5; 1/10) as the EES(2, 5) scheme from now on.

### 3.3 EES SCHEMES FOR RDEs

We aim to define an analogue of EES schemes for RDEs and give convergence rates for the local and global errors of these schemes. To reason about the reversibility of schemes, it will be convenient to adopt the following notation.

**Notation 3.2.** Let  $\{y_n^h\}_{i=0, \dots, N}$  denote the solution of a Runge–Kutta scheme  $y_{n+1}^h = y_n^h + \Upsilon(y_n^h, X_{t_n, t_{n+1}})$  of the form given in equation 6 applied to equation 5. Let  $\tilde{\Upsilon}$  denote the reverse-time scheme,  $\tilde{\Upsilon}(\cdot, X_{t_n, t_{n+1}}) := \Upsilon(\cdot, -X_{t_n, t_{n+1}})$ , and let  $\tilde{y}_n^h$  denote the result of an  $n$ -fold application of  $\tilde{\Upsilon}$  to  $y_n^h$ , such that  $\{\tilde{y}_n^h\}_{i=0, \dots, N}$  is a sequence of approximations to the initial condition  $y_0$ .

We may now define a class of EES schemes for RDEs, which we will denote by  $\text{EES}_{\mathcal{R}}$ . In a similar fashion to Shmelev et al. (2025), we will define the schemes in terms of both the local error of the solution and the local error of the recovered initial condition when the scheme is run in reverse.



Figure 1: Stability domain for EES(2, 5; 1/10) compared to Kutta’s RK3 and RK4.

270 **Definition 3.1.** When applied to equation 5, a Runge–Kutta scheme  $y_{n+1}^h = y_n^h + \Upsilon(y_n^h, \mathbf{X}_{t_n, t_{n+1}})$   
 271 of the form equation 6 is said to belong to  $\text{EES}_{\mathcal{R}}(n, m)$  for  $m \geq n$  if  
 272

$$273 \quad y^h(t_1) - y_1^h = \mathcal{O}(h^{(n+1)\alpha}), \quad y_0 - \tilde{y}_1^h = \mathcal{O}(h^{(m+1)\alpha}).$$

275 As a consequence of Redmann & Riedel (2020, Theorem 3.3),  $\text{EES}_{\mathcal{R}}$  schemes can be constructed  
 276 directly from EES schemes by using the same coefficients. A global error rate for the schemes  
 277 is given below as a corollary of (Redmann & Riedel, 2020, Theorem 4.2), noting that the error in  
 278 the recovery of  $y_0$  from  $\tilde{y}_n^h$  is independent of the chosen Wong–Zakai approximation, and as such  
 279 independent of  $r_0$ . Numerical experiments verifying the global rates on a test RDE driven by a  
 280 fractional Brownian motion are presented in Appendix C.

281 **Theorem 3.2.** Let  $\Phi \in \text{EES}(n, m)$  for some  $m \geq n$ . Then  $\mathcal{R}(\Phi) \in \text{EES}_{\mathcal{R}}(n, m)$ .

284 *Proof.* Since  $\Phi$  is of order  $n$ , it follows from (Redmann & Riedel, 2020, Theorem 3.3) that  $\mathcal{R}(\Phi)$   
 285 has a local error of order  $(n+1)\alpha$ . Consider the scheme  $\mathcal{R}(\tilde{\Phi}) \circ \mathcal{R}(\Phi) = \mathcal{R}(\tilde{\Phi} \circ \Phi)$ . By definition  
 286 of  $\Phi$ , the scheme  $\tilde{\Phi} \circ \Phi$  admits a B-series expansion  $y_0 + \mathcal{O}(h^{m+1})$  (Shmelev et al., 2025). It  
 287 follows from Redmann & Riedel (2020) that the corresponding B-series expansion for  $\mathcal{R}(\tilde{\Phi} \circ \Phi)$  is  
 288  $y_0 + \mathcal{O}(h^{(m+1)\alpha})$ .  $\square$

291 **Theorem 3.3.** Let  $\Upsilon \in \text{EES}_{\mathcal{R}}(n, m)$  for some  $m \geq n$ . Then

$$293 \quad \max_{i=0, \dots, N} |y(t_i) - y_i| = \mathcal{O}(h^{\eta_1}), \quad \max_{i=0, \dots, N} |y_0 - \tilde{y}_i| = \mathcal{O}(h^{\eta_2}),$$

295 where  $\eta = \min\{r_0, (n+1)\alpha - 1\}$  and  $\eta_2 = (m+1)\alpha - 1$ .

298 *Proof.* Since  $\Phi$  is of order  $n$ , it follows from (Redmann & Riedel, 2020, Theorem 4.2) that  $\mathcal{R}(\Phi)$  has  
 299 a global error of order  $\eta_1 = \min\{r_0, (n+1)\alpha - 1\}$ . The global rate for the recovery of the initial  
 300 condition  $y_0$  from  $\tilde{y}_i$  follows immediately from Redmann & Riedel (2020, Proposition 4.1).  $\square$

### 302 3.4 STABILITY OF EES SCHEMES FOR SDES

304 As discussed in the introduction and subsequently in Section 3, EES schemes offer a stable alternative  
 305 to reversible integration. Whilst the stability of EES in the case of ODEs has been studied in Shmelev  
 306 et al. (2025) and Section 3, we are interested in the stability of  $\text{EES}_{\mathcal{R}}$  when applied to stochastic  
 307 drivers for our applications to Neural SDEs. To evaluate the stability in the context of SDEs,  
 308 we consider the *mean-square stability*, which has been widely used for the analysis of stochastic  
 309 integration methods in the literature (Higham, 2000; Drummond & Mortimer, 1991; Hernandez &  
 310 Spigler, 1993; Komori & Mitsui, 1995; Komori et al., 1994; Petersen, 1998; Saito & Mitsui, 1993;  
 311 1996; Schurz, 1996). Given the test equations

$$312 \quad dy_t = \lambda y_t dt + \mu y_t dW_t, \quad (8)$$

314 where  $\lambda, \mu \in \mathbb{C}$  and  $y_0 \neq 0$  almost surely, a solution  $\{y_n\}_{n \geq 0}$  derived from a numerical integrator is  
 315 said to be *mean-square stable* if  $\lim_{n \rightarrow \infty} \mathbb{E}(|y_n|^2) = 0$ . It follows in a similar fashion to Theorem  
 316 3.1 that  $\text{EES}(2, 5; x)$  applied to 8 is mean-square stable if and only if

$$317 \quad \mathbb{E} \left[ \left| 1 + \rho + \frac{1}{2}\rho^2 + \frac{1}{8}\rho^3 \right|^2 \right] < 1,$$

321 where  $\rho = \lambda dt + \mu dW_t \sim N(\lambda dt, \mu^2 dt)$ . Figure 2 shows 4 cross-sections of the stability domain.  
 322 For comparison, we take the RDE analogues of RK3 and RK4 of the form in equation 6,  $\mathcal{R}(\text{RK3})$  and  
 323  $\mathcal{R}(\text{RK4})$ . Along most cross-sections,  $\text{EES}_{\mathcal{R}}(2, 5)$  achieves a similar or greater stability to  $\mathcal{R}(\text{RK3})$   
 and  $\mathcal{R}(\text{RK4})$ .

Figure 2: Cross sections of the mean-square stability domains of  $\text{EES}_{\mathcal{R}}(2, 5)$ ,  $\mathcal{R}(\text{RK}3)$  and  $\mathcal{R}(\text{RK}4)$ .

### 3.5 BACKPROPAGATION THROUGH EXPLICIT RUNGE–KUTTA METHODS

The algorithm for backpropagation through an explicit Runge–Kutta scheme  $\Upsilon$  of the form in equation 6 is given in Algorithm 1. We assume the solver is applied to a (neural) RDE of the form

$$dy_t^h = f(y_t^h; \theta) d\mathbf{X}_t^h, \quad (9)$$

where  $\theta$  are learnable parameters requiring backpropagation, trained with respect to a loss  $L(\{y_n^h\}_{n=0}^N)$ . As with all reversible schemes, a reverse step  $\tilde{\Upsilon}$  is used to recover  $y_n$  from  $y_{n+1}$ , followed by a backpropagation through the internal operations of the solver  $\Upsilon$ . The latter step is achieved by defining  $z_i = f(k_i; \theta)$  and computing the derivatives  $\partial L / \partial z_i$  and  $\partial L / \partial k_i$  in reverse through the stages  $i = s, s-1, \dots, 1$ . At each stage, a backpropagation algorithm is called to backpropagate the derivative  $\partial L / \partial z_i$  through  $f$ , resulting in the derivative  $\partial L / \partial k_i$  and a local derivative with respect to  $\theta$ ,  $d_\theta$ .

---

**Algorithm 1** Backpropagation through Explicit Runge–Kutta Schemes

---

**Input:**  $y_{n+1}, \partial_{y_{n+1}} L$   
**Input:** Running derivative with respect to  $\theta$ ,  $\partial_\theta L$   
**Input:** Explicit RK method  $\Upsilon$  of the form in equation 6 with coefficients  $\{a_{ij}\}_{1 \leq i, j \leq s}$  and  $\{b_i\}_{1 \leq i \leq s}$ .

```

355    $y_n = \tilde{\Upsilon}(y_{n+1}, d\mathbf{X})$ 
356   for  $i = s, \dots, 1$  do
357      $\partial_{z_i} L = b_i d\mathbf{X} \cdot \partial_{y_{n+1}} L + \sum_{j=i+1}^s a_{ji} d\mathbf{X} \cdot \partial_{k_j} L$ 
358      $d_\theta, \partial_{k_i} L = \text{backprop}_f(\partial_{z_i} L)$ 
359      $\partial_\theta L += d_\theta$ 
360   end for
361    $\partial_{y_n} L = \partial_{y_{n+1}} L + \sum_{i=1}^s \partial_{k_i} L$ 
362   return  $y_n, \partial_{y_n} L, \partial_\theta L$ 

```

---

## 4 EXPERIMENTS

We evaluate the performance of  $\text{EES}_{\mathcal{R}}(2, 5)$  on examples of Neural SDEs with challenging dynamics. We note that there are limited solvers which can be used as baselines in our experiments, with Reversible Heun being the only widely adopted explicit reversible SDE solver at the time of writing. In order to expand our baselines, we take the approach of McCallum-Foster for constructing reversible ODE solvers and apply it to the RDE versions of the Euler and Explicit Midpoint schemes, defined by the form in equation 6. Algorithm 1 can then be used in conjunction with the backpropagation algorithm found in McCallum & Foster (2024) to backpropagate efficiently through the resulting schemes.

We present the results of training Neural SDEs on OU and GBM dynamics. In both cases, we pick the step sizes of the solvers to fix the total number of function evaluations of the drift and diffusion, leading to comparable runtimes for all of the solvers.

378

## 4.1 HIGH VOLATILITY ORNSTEIN–UHLENBECK PROCESS

379

380 Consider learning the Ornstein–Uhlenbeck (OU) dynamics

381

382
$$dy_t = \nu(\mu - y_t)dt + \sigma dW_t, \quad y_0 \in \mathbb{R},$$

383

384 under a high-volatility regime  $\sigma \gg 0$ . Specifically, we take  $\nu = 0.2, \mu = 0.1$  and  $\sigma = 2$ . Motivated by Oh et al. (2024), we take a Neural Langevin SDE (LSDE) defined by

385

386
$$dz_t = g(z_t; \theta_g)dt + f(t; \theta_f) \circ dW_t, \quad z_0 = h(\mathbf{x}, \theta_h) \in \mathbb{R}^{d_z},$$

387

388 where  $h$  is a learnable affine function of the input data  
389  $\mathbf{x} = \{x_n\}_{n \geq 0}, x_n \in \mathbb{R}^2$ , sampled from the true OU  
390 dynamics, and  $g, f$  are neural networks parametrised by  
391  $\theta_g, \theta_f$  respectively. We choose the dimension of the latent  
392 representation  $d_z = 32$ , and parametrise  $f, g$  as 2-layer  
393 neural networks of width 32 with LipSwish activations.  
394 The SDEs are integrated over  $t \in [0, 10]$  and the LSDE  
395 is trained for 250 epochs using the Adam optimiser with  
396 a fixed learning rate of  $10^{-3}$ . At each epoch, 50,000  
397 realisations of the trained dynamics are sampled and the  
398 MSE loss is computed against the true OU dynamics.

399

400 Figure 3 shows the training loss using Reversible Heun,  
401 McCallum-Foster (MCF) methods and EES $_{\mathcal{R}}(2, 5)$ , with  
402 the step size chosen such that the number of evaluations  
403 of  $f, g$  is fixed between solvers. Such a choice results in  
404 comparable runtimes for all of the solvers, allowing for a fair comparison. Table 1 gives the number  
405 of evaluations of  $f, g$  per step of the solvers, the chosen step size,  
406 the terminal MSE and the total runtime of each solver. From Figure 3, we see that for the initial  $\sim 50$  epochs, the methods perform  
407 similarly. After this, EES $_{\mathcal{R}}(2, 5)$  significantly outperforms the other methods, suggesting the model  
408 has begun to learn high-volatility dynamics which cause instability in the Reversible Heun and  
409 McCallum-Foster methods.

410

| Method                     | #Eval. / Step | Step Size | Terminal MSE | Runtime (s) |
|----------------------------|---------------|-----------|--------------|-------------|
| Reversible Heun            | 1             | 1/12      | 1.0190       | 368.2       |
| MCF Euler                  | 2             | 1/6       | 1.3048       | 307.5       |
| MCF Midpoint               | 4             | 1/3       | 1.1651       | 279.5       |
| EES $_{\mathcal{R}}(2, 5)$ | 3             | 1/4       | 0.0582       | 261.3       |

411

412 Table 1: Metrics for OU dynamics. The step size is chosen such that the total number of evaluations of  $f, g$  per  
413 integration is fixed.

414

## 4.2 HIGH-DIMENSIONAL GBM WITH STIFF DRIFT

415

416 Consider learning the dynamics of a high-dimensional geometric Brownian motion (GBM)

417

418
$$dy_t = Ay_t dt + \sigma y_t dW_t, \quad y_0 \in \mathbb{R}^d,$$

419

420 where  $A \in \mathbb{R}^{d \times d}$  and  $\sigma \in \mathbb{R}$ . We introduce a stiff drift component by choosing  $A = QDQ^T$ , where  
421  $D = \text{diag}(\lambda_0, \lambda_1, \dots, \lambda_{d-1})$ ,  $\lambda_i = -20(1 + \frac{i}{d})$ , and  $Q$  is a randomly generated orthogonal matrix,  
422 and take  $d = 25$  and  $\sigma = 0.1$ . We choose to learn the dynamics using a Neural SDE of the form

423

424
$$dz_t = g(z_t; \theta_g)dt + f(z_t; \theta_f) \circ dW_t, \quad z_0 = h(\mathbf{x}, \theta_h) \in \mathbb{R}^{d_z},$$

425

426 where  $f, g$  are neural networks with the same architecture as Section 4.1. We integrate the SDEs over  
427  $t \in [0, 1]$  for 1,000 epochs, sampling 10,000 realisations of the dynamics at every epoch. The Adam  
428 optimiser is used with a fixed learning rate of  $2 \times 10^{-1}$ .

429

430 As in the previous example, Figure 4 and Table 2 show the results of training using various reversible  
431 methods, with the step size chosen such that the number of evaluations of  $f, g$  is fixed. We see that the432 Figure 3: Training MSE for OU dynamics  
433 with a fixed number of evaluations of  $f, g$ .

432 instability caused by the stiff drift results in diverging MSE for all solvers except  $\text{EES}_{\mathcal{R}}(2, 5)$ , which  
 433 manages to retain moderate stability for the entire 1,000 epochs of training. Figure 5 shows the MSE  
 434 of the gradient of the loss during training, where the true gradient is computed by autodifferentiation  
 435 through a discretise-then-optimise solution, using the same solver and step size. Despite its near-  
 436 reversibility,  $\text{EES}_{\mathcal{R}}(2, 5)$  achieves a lower gradient MSE compared to other solvers. This effect is  
 437 likely the result of the superior stability of  $\text{EES}_{\mathcal{R}}(2, 5)$ , in combination with the linear nature of the  
 438 target SDE.



451 Figure 4: Training MSE for GBM dynamics  
 452 with a fixed number of evaluations of  $f, g$ .

451 Figure 5: Gradient MSE for GBM dynamics  
 452 with a fixed number of evaluations of  $f, g$ .

| Method                           | #Eval. / Step | Step Size | Terminal MSE | Runtime (s) |
|----------------------------------|---------------|-----------|--------------|-------------|
| Reversible Heun                  | 1             | 1/60      | -            | 1283.6      |
| MCF Euler                        | 2             | 1/30      | -            | 1119.9      |
| MCF Midpoint                     | 4             | 1/15      | -            | 1270.1      |
| $\text{EES}_{\mathcal{R}}(2, 5)$ | 3             | 1/20      | 1.1803E-4    | 1050.0      |

460 Table 2: Metrics for stiff GBM dynamics. The step size is chosen such that the total number of evaluations of  
 461  $f, g$  per integration is fixed.

## 465 5 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

466 In this paper, we have introduced the use of Explicit and Effectively Symmetric (EES) schemes as  
 467 stable integrators for Neural SDEs, and more generally, RDEs. Using the framework of Redmann  
 468 & Riedel (2020), we have adapted existing EES schemes introduced by Shmelev et al. (2025) for  
 469 ODEs to the more general setting of RDEs. Through *mean-square stability* analysis, we have shown  
 470 that EES schemes possess similar stability domains to classical RK3 and RK4 schemes when applied  
 471 to SDEs. We discussed an efficient algorithm for backpropagation through explicit Runge–Kutta  
 472 schemes for RDEs, and presented two experiments involving the training of Neural ODEs on extreme  
 473 SDE dynamics. In both experiments, our  $\text{EES}_{\mathcal{R}}(2, 5)$  scheme demonstrated superior stability to the  
 474 Reversible Heun scheme, resulting in faster training and a lower terminal loss.

475 EES schemes provide a stable alternative to existing methods such as Reversible Heun, resulting in  
 476 fast and accurate training when applied to complex dynamics. However, when stability is not an issue,  
 477 Reversible Heun offers faster integration by requiring only one evaluation of the drift and diffusion  
 478 per step, as opposed to 3 evaluations required by  $\text{EES}_{\mathcal{R}}$ . Addressing this limitation, either through  
 479 algorithmic changes or the derivation of new EES-type schemes which employ auxiliary variables, is  
 480 left for future work.

481 There are several potential extensions to this paper which are left for future research. Applications of  
 482 EES schemes to more complicated models, including but not limited to Neural Jump SDEs (Jia &  
 483 Benson, 2019; Herrera et al., 2020), Neural CDEs (Kidger et al., 2020) and Neural RDEs (Morrill  
 484 et al., 2021), may be of interest. An extension of EES schemes to include partitioned or adaptive  
 485 step-size schemes would prove valuable for the training of stiff neural differential equations.

486 REFERENCES  
487

488 Imanol Perez Arribas, Cristopher Salvi, and Lukasz Szpruch. Sig-sdes model for quantitative finance.  
489 In *ACM International Conference on AI in Finance*, 2020.

490 Barbora Barancikova, Zhuoyue Huang, and Cristopher Salvi. Sigdiffusions: Score-based diffusion  
491 models for time series via log-signature embeddings. In *The Thirteenth International Conference*  
492 on *Learning Representations*, 2024.

493 Kevin Burrage and Pamela M Burrage. Order conditions of stochastic runge–kutta methods by  
494 b-series. *SIAM Journal on Numerical Analysis*, 38(5):1626–1646, 2000.

495 Kevin Burrage and Pamela Marion Burrage. High strong order explicit runge-kutta methods for  
496 stochastic ordinary differential equations. *Applied Numerical Mathematics*, 22(1-3):81–101, 1996.

497 Kevin Burrage and PM Burrage. General order conditions for stochastic runge-kutta methods for  
498 both commuting and non-commuting stochastic ordinary differential equation systems. *Applied*  
499 *Numerical Mathematics*, 28(2-4):161–177, 1998.

500 JC Butcher, AT Hill, and TJT Norton. Symmetric general linear methods. *BIT Numerical Mathematics*,  
501 56:1189–1212, 2016.

502 John C Butcher. *B-series: algebraic analysis of numerical methods*, volume 55. Springer, 2021.

503 John C Butcher, Taketomo Mitsui, Yuto Miyatake, and Shun Sato. On the B-series composition  
504 theorem. *arXiv preprint arXiv:2409.08533*, 2024.

505 John Charles Butcher. *Numerical methods for ordinary differential equations*. John Wiley & Sons,  
506 2016.

507 Thomas Cass and Cristopher Salvi. Lecture Notes on Rough Paths and Applications to Machine  
508 Learning, 2024.

509 Nicola Muca Cirone, Maud Lemercier, and Cristopher Salvi. Neural signature kernels as infinite-  
510 width-depth-limits of controlled resnets. In *International Conference on Machine Learning*, pp.  
511 25358–25425. PMLR, 2023.

512 Alain Connes and Dirk Kreimer. Hopf algebras, renormalization and noncommutative geometry. In  
513 *Quantum field theory: perspective and prospective*, pp. 59–109. Springer, 1999.

514 Aurélien Deya, Andreas Neuenkirch, and Samy Tindel. A milstein-type scheme without lévy  
515 area terms for sdes driven by fractional brownian motion. In *Annales de l'IHP Probabilités et*  
516 *statistiques*, volume 48, pp. 518–550, 2012.

517 PD Drummond and IK Mortimer. Computer simulations of multiplicative stochastic differential  
518 equations. *Journal of computational physics*, 93(1):144–170, 1991.

519 Adeline Fermanian, Terry Lyons, James Morrill, and Cristopher Salvi. New directions in the  
520 applications of rough path theory. *IEEE BITS the Information Theory Magazine*, 3(2):41–53, 2023.

521 Peter Friz and Sebastian Riedel. Convergence rates for the full gaussian rough paths. In *Annales de*  
522 *l'IHP Probabilités et statistiques*, volume 50, pp. 154–194, 2014.

523 Peter K Friz and Nicolas B Victoir. *Multidimensional stochastic processes as rough paths: theory*  
524 *and applications*, volume 120. Cambridge University Press, 2010.

525 Massimiliano Gubinelli. Controlling rough paths. *Journal of Functional Analysis*, 216(1):86–140,  
526 2004.

527 Massimiliano Gubinelli. Ramification of rough paths. *Journal of Differential Equations*, 248(4):  
528 693–721, 2010.

529 E. Hairer and G. Wanner. On the Butcher group and general multi-value methods. *Computing (Arch.*  
530 *Elektron. Rechnen)*, 13(1):1–15, 1974. ISSN 0010-485X,1436-5057. doi: 10.1007/bf02268387.  
531 URL <https://doi.org/10.1007/bf02268387>.

540 Ernst Hairer, Marlis Hochbruck, Arieh Iserles, and Christian Lubich. Geometric numerical integration.  
 541 *Oberwolfach Reports*, 3(1):805–882, 2006.  
 542

543 Martin Hairer and David Kelly. Geometric versus non-geometric rough paths. In *Annales de l'IHP Probabilités et statistiques*, volume 51, pp. 207–251, 2015.  
 544

545 Diego Bricio Hernandez and Renato Spigler. Convergence and stability of implicit runge-kutta  
 546 methods for systems with multiplicative noise. *BIT Numerical Mathematics*, 33(4):654–669, 1993.  
 547

548 Calypso Herrera, Florian Krach, and Josef Teichmann. Neural jump ordinary differential equations:  
 549 Consistent continuous-time prediction and filtering. *arXiv preprint arXiv:2006.04727*, 2020.  
 550

551 Desmond J Higham. Mean-square and asymptotic stability of the stochastic theta method. *SIAM  
 journal on numerical analysis*, 38(3):753–769, 2000.  
 552

553 Michael E. Hoffman. Combinatorics of rooted trees and Hopf algebras. *Trans. Amer. Math. Soc.*, 355  
 554 (9):3795–3811, 2003. ISSN 0002-9947,1088-6850.  
 555

556 Christian Holberg and Christopher Salvi. Exact gradients for stochastic spiking neural networks driven  
 557 by rough signals. *Advances in Neural Information Processing Systems*, 37:31907–31939, 2024.  
 558

559 Zacharia Issa, Blanka Horvath, Maud Lemercier, and Christopher Salvi. Non-adversarial training of  
 560 neural sdes with signature kernel scores. *Advances in Neural Information Processing Systems*, 36:  
 11102–11126, 2023.  
 561

562 Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. *Advances in Neural  
 Information Processing Systems*, 32, 2019.  
 563

564 Patrick Kidger, Patric Bonnier, Imanol Perez Arribas, Christopher Salvi, and Terry Lyons. Deep  
 565 signature transforms. *Advances in neural information processing systems*, 32, 2019.  
 566

567 Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations  
 568 for irregular time series. *Advances in neural information processing systems*, 33:6696–6707, 2020.  
 569

570 Patrick Kidger, James Foster, Xuechen Li, and Terry J Lyons. Neural sdes as infinite-dimensional  
 571 gans. In *International conference on machine learning*, pp. 5453–5463. PMLR, 2021a.  
 572

573 Patrick Kidger, James Foster, Xuechen Chen Li, and Terry Lyons. Efficient and accurate gradients  
 574 for neural sdes. *Advances in Neural Information Processing Systems*, 34:18747–18761, 2021b.  
 575

576 Franz J Király and Harald Oberhauser. Kernels for sequentially ordered data. *Journal of Machine  
 Learning Research*, 20(31):1–45, 2019.  
 577

578 Y Komori, Y Saito, and T Mitsui. Some issues in discrete approximate solution for stochastic  
 579 differential equations. *Computers & Mathematics with Applications*, 28(10-12):269–278, 1994.  
 580

581 Yoshio Komori and Taketomo Mitsui. Stable row-type weak scheme for stochastic differential  
 582 equations. *Monte Carlo Methods and Applications*, 1:279–300, 01 1995.  
 583

584 Maud Lemercier, Christopher Salvi, Theodoros Damoulas, Edwin Bonilla, and Terry Lyons. Distri-  
 585 bution regression for sequential data. In *International Conference on Artificial Intelligence and  
 586 Statistics*, pp. 3754–3762. PMLR, 2021.  
 587

588 Maud Lemercier, Terry Lyons, and Christopher Salvi. Log-pde methods for rough signature kernels.  
 589 *arXiv preprint arXiv:2404.02926*, 2024.  
 590

591 Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David K Duvenaud. Scalable gradients  
 592 and variational inference for stochastic differential equations. In *Symposium on Advances in  
 593 Approximate Bayesian Inference*, pp. 1–28. PMLR, 2020.  
 594

595 Terry J Lyons. Differential equations driven by rough signals. *Revista Matemática Iberoamericana*,  
 596 14(2):215–310, 1998.  
 597

598 Dominique Manchon. Hopf algebras, from basics to applications to renormalization. *arXiv preprint  
 599 math/0408405*, 2004.  
 600

594 Sam McCallum and James Foster. Efficient, accurate and stable gradients for neural odes. *arXiv*  
 595 *preprint arXiv:2410.11648*, 2024.

596

597 Robert I McLachlan, Klas Modin, Hans Munthe-Kaas, and Olivier Verdier. Butcher series: a story of  
 598 rooted trees and numerical methods for evolution equations. *arXiv preprint arXiv:1512.00906*,  
 599 2015.

600 James Morrill, Christopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations  
 601 for long time series. In *International Conference on Machine Learning*, pp. 7829–7838. PMLR,  
 602 2021.

603

604 Nicola Muça Cirone and Christopher Salvi. Parallelflow: Parallelizing linear transformers via flow  
 605 discretization, 2025a.

606 Nicola Muça Cirone and Christopher Salvi. Rough kernel hedging, 2025b.

607

608 Nicola Muça Cirone, Antonio Orvieto, Benjamin Walker, Christopher Salvi, and Terry Lyons. Theoretical  
 609 foundations of deep selective state-space models, 2024.

610

611 YongKyung Oh, Dong-Young Lim, and Sungil Kim. Stable neural stochastic differential equations in  
 612 analyzing irregular time series data. *arXiv preprint arXiv:2402.14989*, 2024.

613 Alexandre Pannier and Christopher Salvi. A path-dependent pde solver based on signature kernels,  
 614 2024.

615

616 WP Petersen. A general implicit splitting for stabilizing numerical simulations of  $\text{it}^{\circ}$  stochastic  
 617 differential equations. *SIAM journal on numerical analysis*, 35(4):1439–1451, 1998.

618

619 Martin Redmann and Sebastian Riedel. Runge-kutta methods for rough differential equations. *arXiv*  
 620 *preprint arXiv:2003.12626*, 2020.

621

622 Martin Redmann and Sebastian Riedel. Runge-kutta methods for rough differential equations. *Journal*  
 623 *of Stochastic Analysis*, 3(4):6, 2022.

624

625 Yoshihiro Saito and Taketomo Mitsui. T-stability of numerical scheme for stochastic differential  
 626 equations. In *Contributions in numerical mathematics*, pp. 333–344. World Scientific, 1993.

627

628 Yoshihiro Saito and Taketomo Mitsui. Stability analysis of numerical schemes for stochastic differen-  
 629 tial equations. *SIAM Journal on Numerical Analysis*, 33(6):2254–2267, 1996.

630

631 Christopher Salvi, Thomas Cass, James Foster, Terry Lyons, and Weixin Yang. The signature kernel  
 632 is the solution of a goursat pde. *SIAM Journal on Mathematics of Data Science*, 3(3):873–899,  
 633 2021a.

634

635 Christopher Salvi, Maud Lemercier, Chong Liu, Blanka Horvath, Theodoros Damoulas, and Terry  
 636 Lyons. Higher order kernel mean embeddings to capture filtrations of stochastic processes.  
 637 *Advances in Neural Information Processing Systems*, 34:16635–16647, 2021b.

638

639 Henri Schurz. Asymptotical mean square stability of an equilibrium point of some linear numerical  
 640 solutions with multiplicative noise. *Stochastic Analysis and Applications*, 14(3):313–353, 1996.

641

642 Daniil Shmelev, Kurusch Ebrahimi-Fard, Nikolas Tapia, and Christopher Salvi. Explicit and effectively  
 643 symmetric runge-kutta methods. *arXiv preprint arXiv:2507.21006*, 2025.

644

645 Benjamin Walker, Lingyi Yang, Nicola Muça Cirone, Christopher Salvi, and Terry Lyons. Struc-  
 646 tured linear cdes: Maximally expressive and parallel-in-time sequence models. *arXiv preprint*  
 647 *arXiv:2505.17761*, 2025.

648

649 Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for sampling.  
 650 *arXiv preprint arXiv:2111.15141*, 2021.

651

652 Juntang Zhuang, Nicha C Dvornek, Sekhar Tatikonda, and James S Duncan. Mali: A memory  
 653 efficient and reverse accurate integrator for neural odes. *arXiv preprint arXiv:2102.04668*, 2021.

648 A ROOTED TREES AND B-SERIES  
649650 A.1 THE CONNES-KREIMER HOPF ALGEBRA  
651

652 We give a brief account of non-planar (labelled) rooted trees and the Connes-Kreimer Hopf algebra.  
653 We refer the reader to Hoffman (2003) for a comprehensive presentation. A non-planar labelled  
654 rooted tree is defined as a graph  $\tau = (V, E, r)$  with vertex set  $V$ , edge set  $E$  and a root vertex  $r \in V$ ,  
655 together with a set of vertex decorations drawn from  $\{1, \dots, d\}$ . We denote the empty tree by  $\emptyset$ .  
656 Given trees  $\tau_1, \dots, \tau_m$ , we write  $[\tau_1, \dots, \tau_m]_a$  to denote the tree formed by connecting the root  
657 vertices of  $\tau_1, \dots, \tau_m$  to a new root, which receives the label  $a \in \{1, \dots, d\}$ . Non-planarity means  
658 that the order of the trees in  $[\tau_1, \dots, \tau_m]_a$  is irrelevant. Repeated trees will be denoted using power  
659 notation, for instance

$$660 [\tau_1, \tau_1, \tau_2, \tau_3, \tau_3, \tau_3]_a = [\tau_1^2, \tau_2, \tau_3^3]_a.$$

661 We write  $|\tau|$  to denote the number of vertices in a tree. Additionally, we define the following  
662 combinatorial quantities, defined on unlabelled trees:  
663

$$664 \emptyset! = 1, \quad \bullet! = 1, \quad [\tau_1, \dots, \tau_m]! = |[\tau_1, \dots, \tau_m]| \prod_{i=1}^m \tau_i!,$$

$$665 \sigma(\emptyset) = 1, \quad \sigma(\bullet) = 1, \quad \sigma([\tau_1^{k_1}, \dots, \tau_m^{k_m}]) = \prod_{i=1}^m k_i! \sigma(\tau_i)^{k_i},$$

$$666 \beta(\emptyset) = 1, \quad \beta(\bullet) = 1, \quad \beta([\tau_1^{k_1}, \dots, \tau_m^{k_m}]) = \binom{[\tau_1^{k_1}, \dots, \tau_m^{k_m}]}{|\tau_1|, \dots, |\tau_m|} \prod_{i=1}^m \frac{1}{k_i!} \beta(\tau_i)^{k_i}.$$

673 We will refer to the commutative juxtaposition of trees as a forest. We write  $\mathcal{T}$  to denote the set  
674 of all non-planar labelled rooted trees, and  $\mathcal{T}_N \subset \mathcal{T}$  to denote the trees  $\tau$  with  $|\tau| \leq N$ . The free  
675 commutative  $\mathbb{R}$ -algebra generated by  $\mathcal{T}$  will be denoted  $\mathcal{H}$ . The Connes-Kreimer (Connes & Kreimer,  
676 1999) Hopf algebra on  $\mathcal{H}$  is defined as follows. Multiplication  $\mu : \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}$  is defined as the  
677 commutative juxtaposition of two forests, extended linearly to  $\mathcal{H}$ . The multiplicative unit is defined  
678 to be the empty forest  $\emptyset$ . The counit map  $\varepsilon : \mathcal{H} \rightarrow \mathbb{R}$  is defined by  $\varepsilon(\emptyset) = 1$  and  $\varepsilon(\tau) = 0$  for all  
679 non-empty trees  $\tau \in \mathcal{H}$ . The coproduct map is defined recursively by

$$680 \Delta(\emptyset) = \emptyset \otimes \emptyset,$$

$$681 \Delta[\tau_1, \dots, \tau_m]_a = [\tau_1, \dots, \tau_m]_a \otimes \emptyset + (\text{id} \otimes B_+^a)(\Delta\tau_1 \cdots \Delta\tau_m),$$

683 where  $B_+^a(\tau_1 \cdots \tau_m) := [\tau_1 \cdots \tau_m]_a$  for a forest  $\tau_1 \cdots \tau_m$ . The definition is extended to a linear  
684 multiplicative map on  $\mathcal{H}$ . We will occasionally use Sweedler's notation

$$685 \Delta\tau = \sum_{(\tau)} \tau^{(1)} \otimes \tau^{(2)}$$

688 for the coproduct. We omit the definition of the antipode  $S$  here, and instead refer the reader to  
689 (Manchon, 2004; Hoffman, 2003). We denote the dual of the Connes-Kreimer Hopf algebra by  $\mathcal{H}^*$ .  
690 For  $\varphi_1, \varphi_2 \in \mathcal{H}^*$ , the convolution product is defined by

$$691 \varphi_1 * \varphi_2 = \mu_{\mathbb{R}} \circ (\varphi_1 \otimes \varphi_2) \circ \Delta,$$

693 with  $\mu_{\mathbb{R}} : \mathbb{R} \otimes \mathbb{R} \rightarrow \mathbb{R}$  denoting multiplication in  $\mathbb{R}$ .  
694

695 A.2 B-SERIES EXPANSIONS OF ODES  
696

697 For any tree  $\tau \in \mathcal{T}$ , the so-called elementary differential  $F(\tau)(y)$  (Butcher, 2016) is defined  
698 recursively by  
699

$$700 F(\emptyset)(y) = y, \quad F(\bullet_i)(y) = f_i(y),$$

$$701 F([\tau_1, \tau_2, \dots, \tau_m]_i)(y) = f_i^{(m)}(y)(F(\tau_1)(y), F(\tau_2)(y), \dots, F(\tau_m)(y)).$$

Given a map  $\varphi : \mathcal{T} \rightarrow \mathbb{R}$ , the associated B-series is defined

$$B_h(\varphi, y_0) := \sum_{\tau \in \mathcal{T}} \frac{h^{|\tau|}}{\sigma(\tau)} \varphi(\tau) F(\tau)(y_0).$$

A key property of B-series is their closure under composition. One can show that for two B-series Hairer & Wanner (1974); Butcher et al. (2024),

$$B_h(\varphi_2, B_h(\varphi_1, y_0)) = B_h(\varphi_1 * \varphi_2, y_0),$$

where  $\varphi_1 * \varphi_2$  is the convolution product defined above. It can be shown that the exact solution to the ODE in equation 2 admits a B-series representation  $y(h) = B_h(e, y_0)$ , where  $e(\tau) = 1/\tau!$ . Similarly, the solution given by a Runge–Kutta scheme with coefficients  $\{a_{ij}\}_{1 \leq i,j \leq s}$ ,  $\{b_i\}_{1 \leq i \leq s}$  admits the B-series representation  $B_h(\varphi, y_0)$ , where (Butcher, 2016, Lemma 312B)

$$\varphi(\tau) := \sum_{i_1, \dots, i_n} b_{i_1} \prod_{(k, \ell) \in E} a_{i_k, i_\ell}$$

for a tree  $\tau = (V, E, r)$  with  $|\tau| = n$ .

We refer the reader to (Hairer et al., 2006; McLachlan et al., 2015; Butcher, 2021) for a detailed account of B-series and the Butcher group.

### A.3 BRANCHED ROUGH PATHS

Let  $\mathcal{H}$  be the Connes-Kreimer Hopf algebra of non-planar labelled rooted trees defined above.

**Definition A.1.** Let  $\alpha \in (0, 1]$ . An  $\alpha$ -Hölder branched rough path is a map  $\mathbf{X} : [0, T]^2 \rightarrow \mathcal{H}^*$  such that

1. for all  $s, t \in [0, T]$  and  $\tau_1, \tau_2 \in \mathcal{H}$ ,

$$\langle \mathbf{X}_{s,t}, \tau_1 \rangle \langle \mathbf{X}_{s,t}, \tau_2 \rangle = \langle \mathbf{X}_{s,t}, \tau_1 \tau_2 \rangle,$$

2. for all  $\tau \in \mathcal{H}$ ,

$$\langle \mathbf{X}_{s,t}, \tau \rangle = \sum_{(\tau)} \langle \mathbf{X}_{s,u}, \tau^{(1)} \rangle \langle \mathbf{X}_{u,t}, \tau^{(2)} \rangle,$$

where  $\Delta\tau = \sum_{(\tau)} \tau^{(1)} \otimes \tau^{(2)}$ .

3. for all  $\tau \in \mathcal{H}$ ,

$$\sup_{s \neq t} \frac{|\langle \mathbf{X}_{s,t}, \tau \rangle|}{|t-s|^{\alpha|\tau|}} < \infty.$$

*Remark.* As remarked in (Hairer & Kelly, 2015; Gubinelli, 2010), the components  $\langle \mathbf{X}_{s,t}, \tau \rangle$  with  $|\tau| > N$  are determined by those with  $|\tau| \leq N$ , where  $N$  is the largest integer such that  $N\alpha \leq 1$ .

The space of  $\alpha$ -Hölder branched rough paths is a complete metric space under the metric

$$\varrho_\alpha(\mathbf{X}, \mathbf{Y}) := \sum_{\tau \in \mathcal{T}_N} \sup_{s \neq t} \frac{|\langle \mathbf{X}_{s,t} - \mathbf{Y}_{s,t}, \tau \rangle|}{|t-s|^{\alpha|\tau|}},$$

where  $N = \lfloor 1/\alpha \rfloor$ .

### A.4 B-SERIES EXPANSIONS OF RDEs

We recount the results of (Redmann & Riedel, 2020) regarding series expansions of the solutions to RDEs of the form equation 4. Recall the definition of the elementary differential  $F(\tau)(y)$  from Appendix A.2.

*Theorem A.1* ((Redmann & Riedel, 2020, Theorem 2.10)). Let  $\mathbf{X}$  be an  $\alpha$ -branched rough path and  $h > 0$ . Then equation 4 admits the series expansion

$$y(t_0 + h) = y_0 + \sum_{\tau \in \mathcal{T}_p} \frac{1}{\sigma(\tau)} F(\tau)(y_0) \langle \mathbf{X}_{t_0, t_0+h}, \tau \rangle + \mathcal{O}(h^{(p+1)\alpha})$$

for all  $p \geq \lfloor 1/\alpha \rfloor$ .

## 756 B GENERAL RUNGE-KUTTA METHODS FOR RDEs 757

758 Following Burrage & Burrage (1996; 1998; 2000); Redmann & Riedel (2020), consider the class of  
759 general Runge-Kutta methods defined by

$$760 \quad \begin{aligned} 761 \quad y_{n+1} &= y_n + \sum_{m=1}^d \sum_{i=1}^s z_i^{(m)} f_m(k_i), \\ 762 \quad k_i &= y_n + \sum_{m=1}^d \sum_{j=1}^s Z_{ij}^{(m)} f_m(k_j), \end{aligned} \quad (10)$$

$$763 \quad 764 \quad 765$$

766 where  $Z^{(1)}, \dots, Z^{(d)} \in \mathbb{R}^{s \times s}$  and  $z^{(1)}, \dots, z^{(d)} \in \mathbb{R}^s$ . We briefly recount the local and global error  
767 rates for such schemes, as formulated in Redmann & Riedel (2020). The results are based on the  
768 adaptation of B-series to RDEs presented above.

769 **Definition B.1.** Given  $h > 0$ , define the maps  $a, \varphi$  recursively over non-planar labelled rooted  
770 trees  $\tau$  by setting  $\varphi(\emptyset)(h) := (1, \dots, 1)^T \in \mathbb{R}^s$ , where  $\emptyset$  denotes the empty tree, and for a tree  
771  $\tau = [\tau_1 \dots \tau_n]_i$  formed by joining  $\tau_1, \dots, \tau_n$  by a new root labelled  $i$ ,

$$772 \quad \begin{aligned} 773 \quad \varphi(\tau)(h) &:= \prod_{j=1}^n (Z^{(i)} \varphi(\tau_j)(h)), \\ 774 \quad a(\tau)(h) &:= \left\langle z^{(i)}, \prod_{j=1}^n \varphi(\tau_j)(h) \right\rangle. \end{aligned}$$

$$775 \quad 776 \quad 777 \quad 778$$

779 *Theorem B.1* (Redmann & Riedel, 2020)). The general Runge-Kutta method given by equation 10  
780 has a local error of order  $(p+1)\alpha$  if and only if

$$781 \quad \langle \mathbf{X}_{t_0, t_0+h}, \tau \rangle = a(\tau)(h)$$

782 for all non-planar labelled rooted trees  $\tau$  with  $p$  or fewer nodes, i.e.  $|\tau| \leq p$ .

783 *Proposition B.1* ((Redmann & Riedel, 2020, Proposition 4.1)). Let  $y(t, y_0)$  denote the solution to  
784 equation 4 at time  $t$  starting at  $y_0$ . Suppose the Runge-Kutta method equation 10 has a local error of  
785 order  $(p+1)\alpha$ , and there exists a constant  $C_1 > 0$  such that

$$786 \quad |y(h, y_0) - y(h, \tilde{y}_0)| \leq C_1 |y_0 - \tilde{y}_0|,$$

787 for  $h$  sufficiently small. Then there exists  $C > 0$  such that

$$788 \quad \max_{n=0, \dots, N} |y(t_n) - y_n| \leq C h^{(p+1)\alpha-1}.$$

$$789 \quad 790$$

### 791 B.1 CONVERGENCE OF SIMPLIFIED RUNGE-KUTTA METHODS 792

793 *Theorem B.2* ((Redmann & Riedel, 2020, Theorem 3.3)). Let  $\Phi$  be an ODE Runge-Kutta scheme.  
794 The Runge-Kutta method  $\mathcal{R}(\Phi)$  approximating  $y^h$  has a local error of order  $(p+1)\alpha$ , i.e.

$$795 \quad y^h(t_0 + h) - y_1^h = \mathcal{O}(h^{(p+1)\alpha}),$$

796 if and only if the ODE Runge-Kutta method  $\Phi$  is of order  $p$ .

797 *Theorem B.3* ((Redmann & Riedel, 2020, Theorem 4.2)). Let  $\Phi$  be an ODE Runge-Kutta method  
798 of order  $p$ . Suppose that  $f$  is  $\text{Lip}_b^\gamma$  for some  $\gamma > 1/\alpha$ . Then  $\mathcal{R}(\Phi)$  has a global error rate of  
799  $\eta = \min\{r_0, (p+1)\alpha - 1\}$ , where  $r_0$  is the convergence rate of the Wong-Zakai approximation.  
800 That is,

$$801 \quad \max_{n=0, \dots, N} |y(t_n) - y_n^h| = \mathcal{O}(h^\eta).$$

$$802 \quad 803$$

## 804 C CONVERGENCE OF EES<sub>R</sub> SCHEMES 805

806 We verify the global error rates given in Theorem 3.3 experimentally by reproducing the example  
807 given in (Redmann & Riedel, 2020; Deya et al., 2012) for EES<sub>R</sub>(2, 5; 1/10) and EES<sub>R</sub>(2, 5; (5 -  
808 3 $\sqrt{2}$ )/14). We take the RDE

$$809 \quad dy_t = \cos(y_t) d\mathbf{X}_t^{(1)} + \sin(y_t) d\mathbf{X}_t^{(2)}, \quad y_0 = 1$$

for  $t \in [0, 1]$ , where  $\mathbf{X}$  is the geometric lift pf a 2-dimensional fractional Brownian motion (fBm) with hurst index  $H$ . We compute the average of the maximal discretization error over  $M = 10$  realisations of the RDE,

$$\mathcal{E}(h) := \frac{1}{M} \sum_{i=1}^M \max_{n=0, \dots, N} |y_i(t_n) - y_{i,n}|,$$

where  $y_i(t)$  denotes the solution to the  $i^{th}$  realisation of the RDE and  $y_{i,n}$  denotes the discretisation of the  $i^{th}$  solution using an  $\text{EES}_{\mathcal{R}}$  scheme. Additionally, we evaluate the average error when recovering the initial condition,

$$\tilde{\mathcal{E}}(h) := \frac{1}{M} \sum_{i=1}^M |y_0 - \tilde{y}_{i,n}|.$$

From (Friz & Riedel, 2014), the rate  $r_0$  can be chosen arbitrarily close to  $2H - 1/2$  for a fractional Brownian motion with Hurst parameter  $H$ . It follows that we expect  $\eta_1 = 2H - 1/2$  in Theorem 3.3 for both  $\text{EES}(2, 5)$  and  $\text{EES}(2, 7)$ , and  $\eta_2 = 6H - 1$  for  $\text{EES}(2, 5)$  and  $\eta_2 = 8H - 1$  for  $\text{EES}(2, 7)$ . These rates are shown in Figures 6, 7 and 8 for  $H = 0.4, 0.5$  and  $0.6$  respectively.



Figure 6: Convergence rates for  $H = 0.4$

Figure 7: Convergence rates for  $H = 0.5$ Figure 8: Convergence rates for  $H = 0.6$