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ABSTRACT

Backpropagation through (neural) SDE solvers is traditionally approached in two
ways: discretise-then-optimise, which offers accurate gradients but incurs pro-
hibitive memory costs due to storing the full computational graph (even when
mitigated by checkpointing); and optimise-then-discretise, which achieves constant
memory cost by solving an auxiliary backward SDE, but suffers from slower evalu-
ation and gradient approximation errors. Algebraically reversible solvers promise
both memory efficiency and gradient accuracy, yet existing methods such as the Re-
versible Heun scheme are often unstable under complex models and large step sizes.
We address these limitations by introducing a novel class of stable, near-reversible
Runge–Kutta schemes for neural SDEs. These Explicit and Effectively Symmetric
(EES) schemes retain the benefits of reversible solvers while overcoming their
instability, enabling memory-efficient training without severe restrictions on step
size or model complexity. Through numerical experiments, we demonstrate the
superior stability and reliability of our schemes, establishing them as a practical
foundation for scalable and accurate training of neural SDEs.

1 INTRODUCTION

Neural stochastic differential equations (SDEs) have recently emerged as a flexible tool for modelling
stochastic dynamics, with training typically cast as a distribution-matching problem between gen-
erated and observed trajectories. Several approaches have been proposed in the literature, differing
mainly in the choice of discriminating divergence. SDE-GANs (Kidger et al., 2021a) use the 1-
Wasserstein distance, while Latent SDEs (Li et al., 2020) optimize with respect to the KL divergence
via variational inference, and can be viewed as variational autoencoders. Another alternative proposed
by Issa et al. (2023) trains neural SDEs non-adversarially using maximum mean discrepancies (MMD)
with signature kernels (Király & Oberhauser, 2019; Salvi et al., 2021a; Lemercier et al., 2024), a
recently introduced family of kernels on path space which received significant attention due to their
efficiency in handling path-dependent problems (Salvi et al., 2021b; Lemercier et al., 2021; Pannier
& Salvi, 2024; Muça Cirone & Salvi, 2025b).

While effective, the stochastic calculus underpinning SDEs can be technically cumbersome, espe-
cially when developing higher order solvers, deriving and analysing backpropagation algorithms,
or extending to rougher noises than Brownian motion. A natural way to bypass these limitations is
to view SDEs through the lens of rough paths. Rough path theory (Lyons, 1998; Gubinelli, 2004;
2010) provides a deterministic calculus on path space that extends classical Itô integration beyond
semimartingales, enabling one to treat SDEs as a special case of rough differential equations (RDEs)

dy(t) = f0(t, yt) dt + f(t, yt) dX(t), yt0 = y0 ∈ Rm, (1)

where X is a rough path above a driving signal X = (X1, ..., Xd) : [0, T ] → Rd, f = (f1, ..., fd)
and fi : Rm → Rm are vector fields for i = 0, ..., d which determine the system dynamics. In fact,
there is a large class of stochastic processes which can be “naturally lifted” to rough paths, including
Gaussian processes such as fractional Brownian motion with Hurst parameter H > 1/4 and Volterra
processes (Friz & Victoir, 2010). Viewing SDEs through the lens of RDEs provides a significant
conceptual simplification. In the RDE framework, the driving signal X is treated as a rough path,
which abstracts away the stochastic integral and allows one to work with deterministic calculus on
path space. Rough path theory has become a powerful mathematical framework for analyzing modern
machine learning models. It has provided the foundation for proving theoretical properties of neural
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differential equations (Morrill et al., 2021; Arribas et al., 2020; Cirone et al., 2023; Holberg & Salvi,
2024), sequence-to-sequence architectures (Kidger et al., 2019), and more recently for deep selective
state-space models (SSMs) (Muça Cirone et al., 2024; Muça Cirone & Salvi, 2025a; Walker et al.,
2025) and score-based diffusion models (Barancikova et al., 2024). for a survey of recent applications
of rough path theory to machine learning, we refer the reader to (Fermanian et al., 2023).

From an algorithmic perspective, the RDE formulation also plays a central role in training neural
SDEs (NSDEs), where one must perform backpropagation through an SDE solver. For example,
the derivation of the adjoint method—a key tool for backpropagation through differential equation
solvers—becomes far more transparent when formulated in terms of RDEs, avoiding much of the
technical machinery required in the stochastic setting; see for instance (Cass & Salvi, 2024). More
generally, the RDE viewpoint unifies backpropagation across ODEs, SDEs, and controlled differential
equations (CDEs) (Kidger et al., 2020), offering a clean pathwise calculus that is both mathematically
rigorous and practically aligned with autodiff frameworks. Several strategies have been proposed.
A first approach, known as discretise-then-optimise, directly backpropagates through the solver’s
internal operations. This yields accurate gradients and is computationally efficient, but requires storing
all intermediate states, making it memory-intensive. A second approach, optimise-then-discretise,
instead derives a backwards-in-time adjoint equation and solves it numerically using another call to
the solver. This eliminates the need to store intermediate quantities, resulting in constant memory
cost with respect to solver depth. However, it typically produces less accurate gradients and is slower
due to the need to recompute forward trajectories during the backward pass.

A third option leverages algebraically reversible solvers, which enable the exact reconstruction of
the solution trajectory of a differential equation from its terminal point, allowing for accurate and
memory-efficient backpropagation. In the setting of an autonomous ODE

dyt = f(yt)dt, (2)

a one step method yn+1 = yn + Φh(yn) is said to be reversible or symmetric if a step of the
method starting from y1 with a negative step size exactly recovers the initial condition y0, that is,
Φ−h = Φ−1

h . Whilst reversible schemes offer an efficient approach to backpropagation through
differential equations, such schemes are difficult to construct. It is well known that Runge–Kutta
schemes are reversible only if they are implicit, making them unsuitable for applications to Neural
ODEs. More generally, symmetric parasitism-free general linear methods cannot be explicit (Butcher
et al., 2016). To overcome this problem, existing reversible methods proposed in literature, such as
the asynchronous leapfrog integrator (ALF) (Zhuang et al., 2021) and the Reversible Heun method
(Kidger et al., 2021b), track auxiliary states as part of the integration. Whilst this technique allows
for explicit reversible schemes, it comes at the price of low stability. Both ALF and Reversible Heun
are well-known to be unstable, and fail when integrating complex equations. For example, Zhang &
Chen (2021) find that Reversible Heun is too unstable for their applications, stating:

"Regardless the accuracy and memory advantages of Reversible Heun claimed by
torchsde, we found this integration approach is less stable compared with simple
Euler integration without adjoint and results in numerical issues occasionally. We
empirically found that methods without adjoint are more stable and lower loss
compared with adjoint ones, even in low dimensional data" (Zhang & Chen, 2021)

A potential solution to the difficulties of reversible solvers comes with the class of Explicit and
Effectively Symmetric (EES) Runge–Kutta schemes introduced in Shmelev et al. (2025). Instead of
considering exactly reversible schemes, the authors propose schemes which are almost reversible, up
to an acceptable tolerance level. Such schemes offer stable, explicit integration methods which are
virtually indistinguishable from truly symmetric schemes in practice. The authors demonstrate the
efficacy of EES schemes on classical ODEs, and show that EES schemes are capable of producing
similar results to classical schemes such as RK3 and RK4. In Shmelev et al. (2025), the formulation
of EES schemes is limited to ODEs, without an explicit generalisation to the case of SDEs or RDEs.

Derivative-free Runge–Kutta (RK) methods for RDEs were introduced by Redmann & Riedel (2022).
Similarly to classical RK schemes for ODEs, the study of these methods is conducted through the
formalism of B-series (Hairer et al., 2006; McLachlan et al., 2015; Butcher, 2021). A B-series is
an infinite series representation of a method, indexed by (labelled) non-planar rooted trees. A brief
overview of B-series is given in Appendix A. A natural consequence of this analysis is that a general
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Runge–Kutta method for RDEs is given in terms of tree-iterated integrals of the underlying driving
process. In practice, these tree-iterated integrals cannot be simulated directly as their distributions are
often intractable. Following (Deya et al., 2012), Redmann & Riedel (2022) replaced these tree-iterated
integrals with products of increments of the driving path. This substitution simplifies the derivation of
Runge–Kutta coefficients and makes it feasible to establish order conditions up to any desired order.

In this paper, we present a formulation of EES Runge–Kutta schemes for RDEs, and demonstrate
their efficacy as integrators for Neural SDEs. The paper is structured as follows. Section 2 gives
an overview of existing reversible methods for neural differential equations. Section 3 recounts the
framework of Runge–Kutta methods for RDEs introduced in Redmann & Riedel (2020). Section
3 begins by introducing EES schemes for ODEs. Using the framework of Redmann & Riedel
(2020), we extend EES schemes to the case of RDEs, and derive results regarding their orders of
convergence. Through mean-square stability analysis, we show that EES schemes possess a similar
stability domain to classical RK3 and RK4 schemes when applied to SDEs, and are significantly more
stable than existing reversible schemes designed for Neural SDEs. We end Section 3 by outlining a
backpropagation algorithm for explicit RDE Runge–Kutta solvers such as EES schemes. In Section 4
we demonstrate the efficacy of EES schemes as integrators for Neural SDEs with two experiments
concerned with the learning of extreme stochastic dynamics where existing reversible solvers fail due
to instability, and show that EES successfully overcomes this issue. Section 5 closes this work with a
summary of the results, limitations and potential avenues for future work.

2 EXISTING REVERSIBLE SDE SOLVERS

The major drawback of classical reversible schemes is their low efficiency. It is well known that
Runge–Kutta schemes are reversible only if they are implicit. More generally, symmetric parasitism-
free general linear methods cannot be explicit (Butcher et al., 2016). A limited number of efficient
reversible solvers have been proposed in the literature. The asynchronous leapfrog integrator (ALF)
(Zhuang et al., 2021) for Neural ODEs overcomes the barrier of implicit schemes by tracking an
additional state v as part of the integration. Applied to the ODE equation 2, the update rule of the
ALF scheme can be written as

yn+2 = yn + hf

(
tn +

h

2
, yn +

h

2
vn

)
,

vn+2 = 2f

(
tn +

h

2
, yn +

h

2
vn

)
− vn.

A similar approach is taken for SDEs of the form

dyt = g(t, yt)dt+ f(t, yt)dWt (3)

by the Reversible Heun method (Kidger et al., 2021b), where the integration step reads

yn+1 = yn +
1

2
(g(tn, vn) + g(tn+1, vn+1))∆t+

1

2
(f(tn, vn) + f(tn+1, vn+1))∆Wn,

vn+1 = 2yn − vn + g(tn, vn)∆t+ f(tn, vn)∆Wn.

The Reversible Heun method is efficient, requiring only one evaluation of the drift g and the diffusion
f per step. However, the method is inherently unstable.
Theorem 2.1. (Kidger et al., 2021b, Theorem D.19) Suppose that the Reversible Heun method is used
to obtain a solution {yn, vn}n≥0 to the linear test ODE dy = λy dt, where λ ∈ C and y0 ̸= 0. Then
{yn, vn}n≥0 is bounded if and only if λh ∈ [−i, i].

As remarked in Kidger et al. (2021b), this domain is also the absolute stability region for the
reversible asynchronous leapfrog integrator (Zhuang et al., 2021). This instability has proven to be a
significant bottleneck in certain practical applications. In McCallum & Foster (2024), a method was
proposed for transforming any ODE integration method yn+1 = yn +Ψh(t, yn) into one which is
reversible, by taking the update

yn+1 = λyn + (1− λ)vn +Ψh(t, vn),

vn+1 = vn −Ψ−h(tn+1, yn+1),

3
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for a given coupling parameter λ ∈ (0, 1]. The method offers a way of constructing reversible schemes
with larger stability domains than those of the ALF and Reversible Heun integrators (McCallum
& Foster, 2024, Theorem 2.3). However, the resulting stability domain of the transformed method
is typically much smaller than that of the underlying method Ψ, and depends additionally on the
coupling parameter λ.

3 EXPLICIT AND EFFECTIVELY SYMMETRIC (EES) SCHEMES FOR RDES

We will adopt the general framework of RDEs for our analysis of reversible SDE solvers, following
the work of Redmann & Riedel (2020). As discussed in the introduction, a generalised Runge–Kutta
scheme for RDEs can be formulated in terms of tree-iterated integrals of the underlying driving
rough path. For a brief introduction to these generalised methods, we refer the reader to Appendix B.
Computation of such tree-iterated integrals is usually not tractable in practice, and so we adopt the
simplified scheme given instead in terms of products of increments of the driving rough path.

3.1 SIMPLIFIED RUNGE–KUTTA METHODS FOR RDES

Throughout, we will consider rough differential equations (RDEs) of the form

dyt = f(yt)dXt, (4)

where X is an α-Hölder branched rough path for some α ∈ (0, 1] and f is sufficiently smooth and
bounded with bounded derivatives. For an introduction to branched rough paths, we refer the reader
to Appendix A.3. Following Redmann & Riedel (2022), we assume that there exist smooth paths
{Xh}h>0 whose natural lifts to branched rough paths {Xh}h>0 converge (almost surely) to X under
the metric for α-Hölder rough paths ϱα (see Appendix A.3) as h → 0. That is, X is a geometric rough
path. Assume that this Wong-Zakai-type approximation converges at a rate r0 > 0 with respect to the
inhomogemeous rough path metric for geometric rough paths ϱgα, such that ϱgα(X

h,X) = O(hr0).
For examples of such convergence rates for Gaussian processes, see Friz & Riedel (2014). Let yh
denote the solution associated with the driver Xh,

dyht = f(yht )dX
h
t . (5)

A simplified Runge-Kutta scheme for yh is defined by

yhn+1 = yhn +

d∑
m=1

s∑
i=1

bifm(ki)X
(m)
tn,tn+1

, (6)

ki = yhn +
d∑

m=1

s∑
j=1

aijfm(kj)X
(m)
tn,tn+1

,

where Xtn,tn+1
denotes the increment of Xh over [tn, tn+1]. For simplicity, we will assume equidis-

tant grid points tn+1 − tn = h for all n ≥ 0. The convergence rates derived in Redmann & Riedel
(2020) for schemes of the form in equation 6 are given in Appendix B.1.
Notation 3.1. To avoid confusion, we will generally use Φ to refer to a classical ODE Runge–Kutta
method, and Υ to refer to an RDE method of the form given in equation 6. Given an ODE Runge-
Kutta scheme Φ, we will write R(Φ) to denote the RDE scheme of the form in equation 6 with the
same coefficients {aij}1≤i,j≤s and {bi}1≤i≤s as the ODE scheme.

3.2 EES SCHEMES FOR ODES

EES schemes (Shmelev et al., 2025) are a class of Runge–Kutta methods which offer an efficient
approach to reversible integration without compromising on stability. Given positive integers m ≥ n,
an explicit Runge–Kutta scheme Φh is said to be an EES(n,m) scheme if Φh is of order n and
applying the scheme Φ−h ◦ Φh to an ODE recovers the initial condition up to order m. When m is
large, such schemes offer near-reversible behaviour, which is often sufficient for practical applications.
Butcher tableaux for 3-stage EES(2, 5) and 4-stage EES(2, 7) schemes are derived in Shmelev
et al. (2025). In Shmelev et al. (2025), the authors focus mostly on EES(2, 7) schemes, as these
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significantly outperform EES(2, 5) schemes as integrators for ODEs. For our applications to Neural
SDEs, we will instead restrict ourselves to EES(2, 5), as we do not expect the extra accuracy of
EES(2, 7) justifies the extra stage required in this case. Proposition 3.1 gives the general form of the
Butcher tableau of a scheme belonging to EES(2, 5) in terms of a parameter x, which we will denote
by EES(2, 5;x).
Proposition 3.1 ((Shmelev et al., 2025, Proposition 8.4)). 3-stage Runge–Kutta schemes belonging
to EES(2, 5) have a Butcher tableau of the form:

0

1 + 2x

4(1− x)

1 + 2x

4(1− x)

3

4(1− x)

(4x− 1)2

4(x− 1)(1− 4x2)

1− x

(1− 4x2)

x
1

2

1

2
− x

(7)

for some x ∈ R, x ̸= 1,± 1
2 .

−4 −2 0 2
Re(z)

−3

−2

−1

0

1

2

3

Im
(z

)

Stability Regions 
RK3
RK4
EES(2,5)

Figure 1: Stability domain for
EES(2, 5; 1/10) compared to
Kutta’s RK3 and RK4.

The stability region for EES(2, 5) schemes is significantly
larger than those of the ALF and Reversible Heun integrators,
and is comparable to classical methods such as Kutta’s RK4,
as shown in Figure 1. Theorem 3.1 gives the exact form of this
region for EES(2, 5;x).
Theorem 3.1. Suppose that, for some x ̸= 1,± 1

2 , EES(2, 5;x)
is used to obtain a solution {yn}n≥0 to the linear test equation
dy = λy dt, where λ ∈ C and y0 ̸= 0. Then yn → 0 as
n → ∞ if and only if∣∣∣∣1 + ρ+

1

2
ρ2 +

1

8
ρ3
∣∣∣∣ < 1,

where ρ = λh.

The result follows from the fact that Runge–Kutta methods
applied to linear test equations admit a linear update rule,
yn+1 = R(ρ)yn, where R(ρ) is the stability function as-
sociated with the scheme. As such, the proof of Theorem
3.1 is simply a direct computation of the stability function
R(ρ) = 1 + ρ + 1

2ρ
2 + 1

8ρ
3 for EES(2, 5;x), which we omit here. We note that the stability

region of EES(2, 5;x) is completely independent of the choice of the parameter x. Motivated by the
discussion in Shmelev et al. (2025, Section 8.1), we choose to fix the parameter x = 1/10 and refer
to EES(2, 5; 1/10) as the EES(2, 5) scheme from now on.

3.3 EES SCHEMES FOR RDES

We aim to define an analogue of EES schemes for RDEs and give convergence rates for the local and
global errors of these schemes. To reason about the reversibility of schemes, it will be convenient to
adopt the following notation.
Notation 3.2. Let {yhn}i=0,...,N denote the solution of a Runge–Kutta scheme yhn+1 = yhn +

Υ(yhn, Xtn,tn+1
) of the form given in equation 6 applied to equation 5. Let Υ⃖ denote the reverse-time

scheme, Υ⃖(·, Xtn,tn+1
) := Υ(·,−Xtn,tn+1

), and let y⃖hn denote the result of an n-fold application of
Υ⃖ to yhn, such that {y⃖hn}i=0,...,N is a sequence of approximations to the initial condition y0.

We may now define a class of EES schemes for RDEs, which we will denote by EESR. In a similar
fashion to Shmelev et al. (2025), we will define the schemes in terms of both the local error of the
solution and the local error of the recovered initial condition when the scheme is run in reverse.

5
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Definition 3.1. When applied to equation 5, a Runge–Kutta scheme yhn+1 = yhn +Υ(yhn,Xtn,tn+1
)

of the form equation 6 is said to belong to EESR(n,m) for m ≥ n if

yh(t1)− yh1 = O(h(n+1)α), y0 − y⃖h1 = O(h(m+1)α).

As a consequence of Redmann & Riedel (2020, Theorem 3.3), EESR schemes can be constructed
directly from EES schemes by using the same coefficients. A global error rate for the schemes
is given below as a corollary of (Redmann & Riedel, 2020, Theorem 4.2), noting that the error in
the recovery of y0 from y⃖hn is independent of the chosen Wong-Zakai approximation, and as such
independent of r0. Numerical experiments verifying the global rates on a test RDE driven by a
fractional Brownian motion are presented in Appendix C.

Theorem 3.2. Let Φ ∈ EES(n,m) for some m ≥ n. Then R(Φ) ∈ EESR(n,m).

Proof. Since Φ is of order n, it follows from (Redmann & Riedel, 2020, Theorem 3.3) that R(Φ)

has a local error of order (n+ 1)α. Consider the scheme R(Φ⃖) ◦ R(Φ) = R(Φ⃖ ◦ Φ). By definition
of Φ, the scheme Φ⃖ ◦ Φ admits a B-series expansion y0 + O(hm+1) (Shmelev et al., 2025). It
follows from Redmann & Riedel (2020) that the corresponding B-series expansion for R(Φ⃖ ◦ Φ) is
y0 +O(h(m+1)α).

Theorem 3.3. Let Υ ∈ EESR(n,m) for some m ≥ n. Then

max
i=0,...,N

|y(ti)− yi| = O(hη1), max
i=0,...,N

|y0 − y⃖i| = O(hη2),

where η = min{r0, (n+ 1)α− 1} and η2 = (m+ 1)α− 1.

Proof. Since Φ is of order n, it follows from (Redmann & Riedel, 2020, Theorem 4.2) that R(Φ) has
a global error of order η1 = min{r0, (n+ 1)α− 1}. The global rate for the recovery of the initial
condition y0 from y⃖i follows immediately from Redmann & Riedel (2020, Proposition 4.1).

3.4 STABILITY OF EES SCHEMES FOR SDES

As discussed in the introduction and subsequently in Section 3, EES schemes offer a stable alternative
to reversible integration. Whilst the stability of EES in the case of ODEs has been studied in Shmelev
et al. (2025) and Section 3, we are interested in the stability of EESR when applied to stochastic
drivers for our applications to Neural SDEs. To evaluate the stability in the context of SDEs,
we consider the mean-square stability, which has been widely used for the analysis of stochastic
integration methods in the literature (Higham, 2000; Drummond & Mortimer, 1991; Hernandez &
Spigler, 1993; Komori & Mitsui, 1995; Komori et al., 1994; Petersen, 1998; Saito & Mitsui, 1993;
1996; Schurz, 1996). Given the test equations

dyt = λytdt+ µytdWt, (8)

where λ, µ ∈ C and y0 ̸= 0 almost surely, a solution {yn}n≥0 derived from a numerical integrator is
said to be mean-square stable if limn→∞ E(|yn|2) = 0. It follows in a similar fashion to Theorem
3.1 that EES(2, 5;x) applied to 8 is mean-square stable if and only if

E

[∣∣∣∣1 + ρ+
1

2
ρ2 +

1

8
ρ3
∣∣∣∣2
]
< 1,

where ρ = λdt+ µdWt ∼ N(λdt, µ2dt). Figure 2 shows 4 cross-sections of the stability domain.
For comparison, we take the RDE analogues of RK3 and RK4 of the form in equation 6, R(RK3) and
R(RK4). Along most cross-sections, EESR(2, 5) achieves a similar or greater stability to R(RK3)
and R(RK4).
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Figure 2: Cross sections of the mean-square stability domains of EESR(2, 5), R(RK3) and R(RK4).

3.5 BACKPROPAGATION THROUGH EXPLICIT RUNGE–KUTTA METHODS

The algorithm for backpropagation through an explicit Runge–Kutta scheme Υ of the form in
equation 6 is given in Algorithm 1. We assume the solver is applied to a (neural) RDE of the form

dyht = f(yht ; θ)dX
h
t , (9)

where θ are learnable parameters requiring backpropagation, trained with respect to a loss
L({yhn}Nn=0). As with all reversible schemes, a reverse step Υ⃖ is used to recover yn from yn+1,
followed by a backpropagation through the internal operations of the solver Υ. The latter step is
achieved by defining zi = f(ki; θ) and computing the derivatives ∂L/∂zi and ∂L/∂ki in reverse
through the stages i = s, s− 1, . . . , 1. At each stage, a backpropagation algorithm is called to back-
propagate the derivative ∂L/∂zi through f , resulting in the derivative ∂L/∂ki and a local derivative
with respect to θ, dθ.

Algorithm 1 Backpropagation through Explicit Runge–Kutta Schemes
Input: yn+1, ∂yn+1L
Input: Running derivative with respect to θ, ∂θL
Input: Explicit RK method Υ of the form in equation 6 with coefficients {aij}1≤i,j≤s and {bi}1≤i≤s.

yn = Υ⃖(yn+1, dX)
for i = s, . . . 1 do

∂ziL = bidX · ∂yn+1
L+

∑s
j=i+1 ajidX · ∂kj

L

dθ, ∂ki
L = backpropf (∂ziL)

∂θL += dθ
end for
∂yn

L = ∂yn+1
L+

∑s
i=1 ∂ki

L
return yn, ∂yn

L, ∂θL

4 EXPERIMENTS

We evaluate the performance of EESR(2, 5) against the Reversible Heun method on two examples
of Neural SDEs with challenging dynamics. In both cases, we encounter stability issues with the
Reversible Heun method which EESR(2, 5) manages to overcome, resulting in faster training and a
lower terminal loss.

4.1 HIGH VOLATILITY ORNSTEIN–UHLENBECK PROCESS

Consider learning the 2-dimensional Ornstein–Uhlenbeck (OU) dynamics
dyt = ν(µ− yt)dt+ σdWt

under a high-volatility regime σ ≫ 0. Motivated by Oh et al. (2024), we take a Neural Langevin
SDE (LSDE) defined by

dzt = g(zt; θg)dt+ f(t; θf ) ◦ dWt, z0 = h(x, θh) ∈ Rdz ,

7
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0 50 100 150 200 250
Epoch

100

101

M
SE

EES(2,5)
Reversible Heun

Figure 3: Training MSE for OU
dynamics with ν = 0.2, µ = 0.1
and σ = 2.

where h is a learnable affine function of the input data x =
{xn}n≥0, xn ∈ R2, sampled from the true OU dynamics, and
g, f are neural networks parametrised by θg, θf respectively.
We choose the dimension of the latent representation dz =
32, and parametrise f, g as 2-layer neural networks of width
32 with LipSwish activations. The SDEs are integrated over
t ∈ [0, 10] with a step size of 0.1, and the LSDE is trained for
250 epochs using the Adam optimiser with a fixed learning
rate of 10−3. At each epoch, 50,000 realisations of the trained
dynamics are sampled and the MSE loss is computed against
the true OU dynamics. Figure 3 shows the training loss of
the model when Reversible Heun and EESR(2, 5) are used as
the solver. For the initial ∼ 60 epochs, the methods perform
identically. After this, EESR(2, 5) significantly outperforms
Reversible Heun, suggesting the model has begun to learn
high-volatility dynamics which cause instability in the Reversible Heun method. Whilst EESR(2, 5)
is generally slower than Reversible Heun per iteration of the solver, its superior stability allow it to
achieve a lower MSE in far fewer epochs, resulting in faster training overall.

4.2 CALIBRATION OF A GEOMETRIC BROWNIAN MOTION TO OPTION PRICES

Consider learning the dynamics of a 1-dimensional geometric Brownian motion (GBM)

dSt = rStdt+ σStdWt.

To simulate a simplified problem of calibration to the risk-neutral dynamics of an asset, suppose that
for some fixed unknown parameters r and σ, we are given a set of undiscounted call prices

C(K, t) = E[(St −K)+]

for K ∈ K, t ∈ T , and wish to learn the underlying dynamics using a Neural SDE

0 50 100 150 200 250
Epoch

2 × 103

3 × 103

4 × 103

6 × 103

M
SE

EES(2,5)
Reversible Heun

Figure 4: Training loss for GBM
with r = 0.5 and σ = 1.5.

dSθ
t = g(t, Sθ

t ; θg)dt+ f(t, Sθ
t ; θf ) ◦ dWt,

where g, f are neural networks parametrised by θg, θf respec-
tively. For simplicity, we use Stratonovich integration and rely
on the Neural SDE to learn the required Itô correction term.
As in the previous example, we increase the difficulty of the
integration by considering extreme dynamics with parameters
r = 0.5 and σ = 1.5. We choose to parametrise f, g as 3-
layer neural networks of width 8 with LipSwish activations.
The SDEs are integrated over t ∈ [0, 25] with a step size of
0.25, and the Neural SDE is trained for 250 epochs using the
Adam optimiser with an exponentially decaying learning rate
initialised at 10−2 and decayed at a rate of 0.99. At each
epoch, N = 250, 000 realisations of the trained dynamics are
sampled and used to compute the (discounted) MSE loss of the call prices,

L :=
1

|K| · |T |
∑

k,t∈K×T

e−2rt(C(K, t)− Ĉ(K, t))2

Ĉ(K, t) =
1

N

N∑
i=1

(Sθ
i,t −K)+

where Sθ
i,t is the value of the ith sample at time t and we set K = {k ∈ N : 90 ≤ k ≤ 110} and

T = {2.5, 5, 7.5, . . . , 25}. Figure 4 shows the training loss of the model when Reversible Heun and
EESR(2, 5) are used as the solver. As with the previous experiment, the methods perform similarly at
the start of the training before they encounter extreme dynamics. After this, EESR(2, 5) outperforms
the Reversible Heun method.
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5 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this paper, we have introduced the use of Explicit and Effectively Symmetric (EES) schemes as
stable integrators for Neural SDEs, and more generally, RDEs. Using the framework of Redmann
& Riedel (2020), we have adapted existing EES schemes introduced by Shmelev et al. (2025) for
ODEs to the more general setting of RDEs. Through mean-square stability analysis, we have shown
that EES schemes possess similar stability domains to classical RK3 and RK4 schemes when applied
to SDEs. We discussed an efficient algorithm for backpropagation through explicit Runge–Kutta
schemes for RDEs, and presented two experiments involving the training of Neural ODEs on extreme
SDE dynamics. In both experiments, our EESR(2, 5) scheme demonstrated superior stability to the
Reversible Heun scheme, resulting in faster training and a lower terminal loss.

EES schemes provide a stable alternative to existing methods such as Reversible Heun, resulting in
fast and accurate training when applied to complex dynamics. However, when stability is not an issue,
Reversible Heun offers faster integration by requiring only one evaluation of the drift and diffusion
per step, as opposed to 3 evaluations required by EESR. Addressing this limitation, either through
algorithmic changes or the derivation of new EES-type schemes which employ auxiliary variables, is
left for future work.

There are several potential extensions to this paper which are left for future research. Applications of
EES schemes to more complicated models, including but not limited to Neural Jump SDEs (Jia &
Benson, 2019; Herrera et al., 2020), Neural CDEs (Kidger et al., 2020) and Neural RDEs (Morrill
et al., 2021), may be of interest. An extension of EES schemes to include partitioned or adaptive
step-size schemes would prove valuable for the training of stiff neural differential equations.
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A ROOTED TREES AND B-SERIES

A.1 THE CONNES-KREIMER HOPF ALGEBRA

We give a brief account of non-planar (labelled) rooted trees and the Connes-Kreimer Hopf algebra.
We refer the reader to Hoffman (2003) for a comprehensive presentation. A non-planar labelled
rooted tree is defined as a graph τ = (V,E, r) with vertex set V , edge set E and a root vertex r ∈ V ,
together with a set of vertex decorations drawn from {1, . . . , d}. We denote the empty tree by ∅.
Given trees τ1, . . . , τm, we write [τ1, . . . , τm]a to denote the tree formed by connecting the root
vertices of τ1, . . . , τm to a new root, which receives the label a ∈ {1, . . . , d}. Non-planarity means
that the order of the trees in [τ1, . . . , τm]a is irrelevant. Repeated trees will be denoted using power
notation, for instance

[τ1, τ1, τ2, τ3, τ3, τ3]a = [τ21 , τ2, τ
3
3 ]a.

We write |τ | to denote the number of vertices in a tree. Additionally, we define the following
combinatorial quantities, defined on unlabelled trees:

∅! = 1, •! = 1, [τ1, . . . , τm]! = |[τ1, . . . , τm]|
m∏
i=1

τi!,

σ(∅) = 1, σ(•) = 1, σ([τk1
1 , . . . , τkm

m ]) =

m∏
i=1

ki!σ(τi)
ki ,

β(∅) = 1, β(•) = 1, β([τk1
1 , . . . , τkm

m ]) =

(
[τk1

1 , . . . , τkm
m ]

|τ1|, . . . , |τm|

) m∏
i=1

1

ki!
β(τi)

ki .

We will refer to the commutative juxtaposition of trees as a forest. We write T to denote the set
of all non-planar labelled rooted trees, and TN ⊂ T to denote the trees τ with |τ | ≤ N . The free
commutative R-algebra generated by T will be denoted H. The Connes-Kreimer (Connes & Kreimer,
1999) Hopf algebra on H is defined as follows. Multiplication µ : H ⊗H → H is defined as the
commutative juxtaposition of two forests, extended linearly to H. The multiplicative unit is defined
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to be the empty forest ∅. The counit map ε : H → R is defined by ε(∅) = 1 and ε(τ) = 0 for all
non-empty trees τ ∈ H. The coproduct map is defined recursively by

∆(∅) = ∅ ⊗ ∅,
∆[τ1, . . . , τm]a = [τ1, . . . , τm]a ⊗ ∅+ (id⊗Ba

+)(∆τ1 · · ·∆τm),

where Ba
+(τ1 · · · τm) := [τ1 · · · τm]a for a forest τ1 · · · τm. The definition is extended to a linear

multiplicative map on H. We will occasionally use Sweedler’s notation

∆τ =
∑
(τ)

τ (1) ⊗ τ (2)

for the coproduct. We omit the definition of the antipode S here, and instead refer the reader to
(Manchon, 2004; Hoffman, 2003). We denote the dual of the Connes-Kreimer Hopf algebra by H∗.
For φ1, φ2 ∈ H∗, the convolution product is defined by

φ1 ∗ φ2 = µR ◦ (φ1 ⊗ φ2) ◦∆,

with µR : R⊗ R → R denoting multiplication in R.

A.2 B-SERIES EXPANSIONS OF ODES

For any tree τ ∈ T , the so-called elementary differential F (τ)(y) (Butcher, 2016) is defined
recursively by

F (∅)(y) = y, F (•i)(y) = fi(y),

F ([τ1, τ2, . . . , τm]i)(y) = f
(m)
i (y)(F (τ1)(y), F (τ2)(y), . . . , F (τm)(y)).

Given a map φ : T → R, the associated B-series is defined

Bh(φ, y0) :=
∑
τ∈T

h|τ |

σ(τ)
φ(τ)F (τ)(y0).

A key property of B-series is their closure under composition. One can show that for two B-series
Hairer & Wanner (1974); Butcher et al. (2024),

Bh(φ2, Bh(φ1, y0)) = Bh(φ1 ∗ φ2, y0),

where φ1 ∗φ2 is the convolution product defined above. It can be shown that the exact solution to the
ODE in equation 2 admits a B-series representation y(h) = Bh(e, y0), where e(τ) = 1/τ !. Similarly,
the solution given by a Runge–Kutta scheme with coefficients {aij}1≤i,j≤s, {bi}1≤i≤s admits the
B-series representation Bh(φ, y0), where (Butcher, 2016, Lemma 312B)

φ(τ) :=
∑

i1,...,in

bi1
∏

(k,ℓ)∈E

aik,iℓ

for a tree τ = (V,E, r) with |τ | = n.

We refer the reader to (Hairer et al., 2006; McLachlan et al., 2015; Butcher, 2021) for a detailed
account of B-series and the Butcher group.

A.3 BRANCHED ROUGH PATHS

Let H be the Connes-Kreimer Hopf algebra of non-planar labelled rooted trees defined above.

Definition A.1. Let α ∈ (0, 1]. An α-Hölder branched rough path is a map X : [0, T ]2 → H∗ such
that

1. for all s, t ∈ [0, T ] and τ1, τ2 ∈ H,

⟨Xs,t, τ1⟩⟨Xs,t, τ2⟩ = ⟨Xs,t, τ1τ2⟩,
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2. for all τ ∈ H,
⟨Xs,t, τ⟩ =

∑
(τ)

⟨Xs,u, τ
(1)⟩⟨Xu,t, τ

(2)⟩,

where ∆τ =
∑

(τ) τ
(1) ⊗ τ (2).

3. for all τ ∈ H,

sup
s̸=t

|⟨Xs,t, τ⟩|
|t− s|α|τ |

< ∞.

Remark. As remarked in (Hairer & Kelly, 2015; Gubinelli, 2010), the components ⟨Xs,t, τ⟩ with
|τ | > N are determined by those with |τ | ≤ N , where N is the largest integer such that Nα ≤ 1.

The space of α-Hölder branched rough paths is a complete metric space under the metric

ϱα(X,Y) :=
∑
τ∈TN

sup
s̸=t

|⟨Xs,t −Ys,t, τ⟩|
|t− s|α|τ |

,

where N = ⌊1/α⌋.

A.4 B-SERIES EXPANSIONS OF RDES

We recount the results of (Redmann & Riedel, 2020) regarding series expansions of the solutions
to RDEs of the form equation 4. Recall the definition of the elementary differential F (τ)(y) from
Appendix A.2.
Theorem A.1 ((Redmann & Riedel, 2020, Theorem 2.10)). Let X be an α-branched rough path and
h > 0. Then equation 4 admits the series expansion

y(t0 + h) = y0 +
∑
τ∈Tp

1

σ(τ)
F (τ)(y0) ⟨Xt0,t0+h, τ⟩+O(h(p+1)α)

for all p ≥ ⌊1/α⌋.

B GENERAL RUNGE–KUTTA METHODS FOR RDES

Following Burrage & Burrage (1996; 1998; 2000); Redmann & Riedel (2020), consider the class of
general Runge-Kutta methods defined by

yn+1 = yn +

d∑
m=1

s∑
i=1

z
(m)
i fm(ki), (10)

ki = yn +

d∑
m=1

s∑
j=1

Z
(m)
ij fm(kj),

where Z(1), . . . , Z(d) ∈ Rs×s and z(1), . . . , z(d) ∈ Rs. We briefly recount the local and global error
rates for such schemes, as formulated in Redmann & Riedel (2020). The results are based on the
adaptation of B-series to RDEs presented above.

Definition B.1. Given h > 0, define the maps a, φ recursively over non-planar labelled rooted
trees τ by setting φ(∅)(h) := (1, . . . , 1)T ∈ Rs, where ∅ denotes the empty tree, and for a tree
τ = [τ1 · · · τn]i formed by joining τ1, . . . , τn by a new root labelled i,

φ(τ)(h) :=

n∏
j=1

(Z(i)φ(τj)(h)),

a(τ)(h) :=

〈
z(i),

n∏
j=1

φ(τj)(h)

〉
.
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Theorem B.1 ( (Redmann & Riedel, 2020)). The general Runge-Kutta method given by equation 10
has a local error of order (p+ 1)α if and only if

⟨Xt0,t0+h, τ⟩ = a(τ)(h)

for all non-planar labelled rooted trees τ with p or fewer nodes, i.e. |τ | ≤ p.
Proposition B.1 ((Redmann & Riedel, 2020, Proposition 4.1)). Let y(t, y0) denote the solution to
equation 4 at time t starting at y0. Suppose the Runge–Kutta method equation 10 has a local error of
order (p+ 1)α, and there exists a constant C1 > 0 such that

|y(h, y0)− y(h, ỹ0)| ≤ C1|y0 − ỹ0|,

for h sufficiently small. Then there exists C > 0 such that

max
n=0,...,N

|y(tn)− yn| ≤ Ch(p+1)α−1.

B.1 CONVERGENCE OF SIMPLIFIED RUNGE–KUTTA METHODS

Theorem B.2 ((Redmann & Riedel, 2020, Theorem 3.3)). Let Φ be an ODE Runge–Kutta scheme.
The Runge-Kutta method R(Φ) approximating yh has a local error of order (p+ 1)α, i.e.

yh(t0 + h)− yh1 = O(h(p+1)α),

if and only if the ODE Runge–Kutta method Φ is of order p.
Theorem B.3 ((Redmann & Riedel, 2020, Theorem 4.2)). Let Φ be an ODE Runge–Kutta method
of order p. Suppose that f is Lipγb for some γ > 1/α. Then R(Φ) has a global error rate of
η = min{r0, (p + 1)α − 1}, where r0 is the convergence rate of the Wong-Zakai approximation.
That is,

max
n=0,...N

|y(tn)− yhn| = O(hη).

C CONVERGENCE OF EESR SCHEMES

We verify the global error rates given in Theorem 3.3 experimentally by reproducing the example
given in (Redmann & Riedel, 2020; Deya et al., 2012) for EESR(2, 5; 1/10) and EESR(2, 5; (5−
3
√
2)/14). We take the RDE

dyt = cos(yt)dX
(1)
t + sin(yt)dX

(2)
t , y0 = 1

for t ∈ [0, 1], where X is the geometric lift pf a 2-dimensional fractional Brownian motion (fBm)
with hurst index H . We compute the average of the maximal discretization error over M = 10
realisations of the RDE,

E(h) := 1

M

M∑
i=1

max
n=0,...,N

|yi(tn)− yi,n|,

where yi(t) denotes the solution to the ith realisation of the RDE and yi,n denotes the discretisation of
the ith solution using an EESR scheme. Additionally, we evaluate the average error when recovering
the initial condition,

E⃖(h) := 1

M

M∑
i=1

|y0 − y⃖i,n|.

From (Friz & Riedel, 2014), the rate r0 can be chosen arbitrarily close to 2H − 1/2 for a fractional
Brownian motion with Hurst parameter H . It follows that we expect η1 = 2H − 1/2 in Theorem 3.3
for both EES(2, 5) and EES(2, 7), and η2 = 6H − 1 for EES(2, 5) and η2 = 8H − 1 for EES(2, 7).
These rates are shown in Figures 5, 6 and 7 for H = 0.4, 0.5 and 0.6 respectively.
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Figure 5: Convergence rates for H = 0.4
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Figure 6: Convergence rates for H = 0.5
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Figure 7: Convergence rates for H = 0.6
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