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Abstract

Recent studies have demonstrated that modern facial recognition systems, which are based
on deep neural networks, are vulnerable to adversarial attacks, including the use of acces-
sories, makeup patterns, or precision lighting. However, developing attacks that are both
robust (resilient to changes in viewing angles and environmental conditions) and stealthy
(do not attract suspicion by, for example, incorporating obvious facial features) remains a
significant challenge. In this context, we introduce a novel diffusion-based method (DAFR)
capable of generating robust and stealthy face masks for dodging recognition systems (where
the system fails to identify the attacker). Specifically our approach is capable of producing
high-fidelity printable textures using the guidance of textual prompts to determine the style.
This method can also be adapted for impersonation purposes, where the system misidentifies
the attacker as a specific other individual. Finally, we address a gap in the existing literature
by presenting a comprehensive benchmark (FAAB) for evaluating adversarial accessories in
three dimensions, assessing their robustness and stealthiness.

1 Introduction

Facial recognition systems have increasing prominence, with applications in a range of environments. Im-
portantly, these systems aim to accurately classify an individual when presented with an image of them,
hence, adversarial attacks against such systems are important to identify and explore. Deep learning facial
recognition systems, the state of the art technique for biometric identification (Vakhshiteh et al., 2021),
have a history of said attacks, causing the systems to behave in an unintended manner when presented with
images that have been carefully modified by attacks.

Previous studies on the matter have used a plethora of both attack surfaces and techniques to misdirect
these systems into misclassifying individuals. Some explore attacks by digitally perturbing images of faces
(Lin et al., 2023), whilst others use makeup (Yin et al., 2021; Sun et al., 2024) or accessories (Sharif et al.,
2019; Komkov & Petiushko, 2021; Zolfi et al., 2022; Gong et al., 2024; Pautov et al., 2019; Xiao et al., 2021).
Traditionally, gradient descent based approaches have been employed to generate accessories, to much success
(Zolfi et al., 2022); however, whilst these achieve robustness to changes in viewing angles and environmental
conditions, they lack in stealthiness – the need for the attacks to be undetectable by human observers.

Many developments have been made to this regard in order to balance the adversarial strength of an attack
with the style and realism of the perturbations. Various loss functions have been explored such as total
variation loss (Mahendran & Vedaldi, 2015) which makes the perturbations smoother, making an attack
more stable, realistic and robust to interpolation techniques (Komkov & Petiushko, 2021; Zolfi et al., 2022).
Other work has used style extractors, L1 losses with a reference style, to make a style adapt to an attack
in order to encourage the generation of a stealthy accessory that would not raise suspicion in the real world
(Gong et al., 2024). A common struggle with these approaches is generating perturbations that look stealthy
consistently, especially against larger facial recognition models such as those based on ResNet (He et al.,
2016). When attacks are not attempting to maximize stealthiness, the final perturbations often contain
facial features and noise-like perturbations. On the other hand, when attacks prioritize stealthiness, their
efficacy is significantly reduced.

Recent literature for general adversarial attacks have propagated towards the use of generative models to
support the generation of realistic adversarial examples and perturbations. These methods use a pretrained
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model to produce or manipulate an adversarial sample towards a given style. Song et al. (2018) used
generative adversarial networks (GANs) to generate significantly more realistic examples than were possible
with perturbation based methods. Alternatively, diffusion models have too been shown to support generation
of adversarial samples (Xue et al., 2023; Chen et al., 2023; Dai et al., 2024) and have several desirable
properties for this task, such as greater interpretability, controllability and visual fidelity in the produced
samples (Dai et al., 2024).

Figure 1: Adversarial DAFR masks against Mobile-
FaceNet for “David Beckham”, “George Clooney”
“Angelina Jolie” from the PubFig dataset (Kumar
et al., 2009).

Diffusion models have been used to generate adver-
sarial makeup (Sun et al., 2024), but to the best
of our knowledge, there has been no work on their
use in the creation of adversarial accessories. Since
the COVID-19 pandemic, the use of face masks by
the general public has increased and makes them a
prime adversarial accessory surface as they cover a
substantial area of the face (Zolfi et al., 2022; Gong
et al., 2024).

By using adversarial guidance (Dai et al., 2024) dur-
ing the generative process and text prompts to con-
trol the style, adversarial optimization and style generation can happen simultaneously, allowing the adver-
sarial perturbations to become part of the style content and leading to truly stealthy and robust adversarial
face masks. To this end, we propose the resulting diffusion-based face mask attack that we call Diffusion
Attack against Facial Recognition (DAFR) that is able to achieve state of the art stealthiness in a white-box
threat model, where the attacker has access to the victim model’s weights. In addition to a new novel attack,
we propose a benchmark to tackle the current inconsistent experimental frameworks and results within the
field, largely caused by varying threat models and attack objectives. This system, titled the Face Accessory
Attack Benchmark (FAAB), has been designed with flexibility at its core, allowing it to be adapted to a
wide range of attack objectives, so that more consistent evaluation and comparison of attack methods can
be performed, focusing on robustness to different conditions, stealthiness and adversarial strength.

In summary, our main contributions are:

• A novel diffusion-based stealthy adversarial face mask generation method, titled DAFR, which uses
adversarial guidance to produce adversarial textures that retain the content of the reference images
and that can be styled using text prompts. The resulting generated face masks are stealthy, robust to
environmental changes, and comparable to previous work.

• A robust benchmarking framework, called FAAB, that includes a set of standardized tests and procedures
to evaluate the performance of accessories. The framework supports frequently used statistics like cosine
distances, success rates, and a new metric that we discuss later that is based on CMMD, in order to
evaluate the stealthiness of generated textures quantitatively. In addition, the modular design of the
benchmark allows each component to be easily interchanged in order to suit each attack’s objective.

2 DAFR: Diffusion Attack against Facial Recognition

Facial Recognition: Modern facial recognition networks are often Siamese networks (Bromley et al.,
1993) that are designed to work with a large number of classes and with potentially unseen identities during
testing (Wen et al., 2016). These models can be split into two components: the backbone and head. The
backbone takes in an image and outputs the embedding of that image in the learnt feature space, which
can then be fed into a head for final classification. The embedding spaces are trained to be discriminative
and to be effective for multiple different heads for different recognition problems. Recent adversarial work
focuses on attacking the backbone directly rather than the head (Vakhshiteh et al., 2021; Zolfi et al., 2022;
Gong et al., 2024) and we follow suit. A further discussion of facial recognition systems can be found in
appendix B.
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Figure 2: A diagram of the framework of DAFR. Note that the rendering of the accessory may look different
based on the adversarial attack and the rendering shown here is from a differentiable rendering pipeline we
developed, but is not used in the evaluation in this work.

DAFR: The objective of DAFR is to produce textures for face masks that are not only adversarial, but
stealthy as well. To do this, the reverse diffusion process of a diffusion model can be manipulated such that
the final output, ma, looks like the output if the reverse process was not manipulated (i.e, is stealthy) and is
adversarial. For a texture to be adversarial, it must have a low cosine similarity with the anchor embedding,
ea, of the attacker and preferably be under a recognition threshold such that the network would not recognize
the masked image as the attacker, this is called dodging. If the similarity is maximized with the anchor of a
specific other identity, then it is called impersonation. We focus on dodging, but our attack can be adapted
for impersonation too.

It is well documented that adversarial patches (and thus adversarial accessories too) must consider different
real world transformations during generation so that the resulting accessories would exhibit robustness to
these transformations when they do occur (Athalye et al., 2018). To achieve this, we generate our face
masks using a set of images of the attacker, H, and optimize over these. Moreover, since face masks are 3D
objects, to generate physically realizable 3D masks, the generated textures must be rendered onto the face
during generation so the generation conditions match the real world which can be done using the rendering
function, R.

One way to control the generation of a diffusion model is classifier guidance where the scores (the gradient of
the log of a function) of a classifier are used during generation to perform conditional generation (Dhariwal &
Nichol, 2021). AdvDiff is a recent diffusion-based adversarial attack that uses adversarial guidance (Dai et al.,
2024), based on classifier guidance, to control the generation of a class conditional latent diffusion model
(LDM, Rombach et al. (2022)) to generate unrestricted adversarial examples for ImageNet (Deng et al.,
2009). We fuse together adversarial guidance and 3D rendering to allow for a more advanced procedure to
generate samples that can act as textures for stealthy adversarial masks, as demonstrated in algorithm 1.
Since we use LDM’s, adversarial guidance is applied to latents, not on the pixel level. f is defined in
equation (1).

One of the first challenges faced when designing DAFR was adding the flexibility in style desired for a stealthy
mask. For this, we chose to use text-to-image models, rather than class conditional models, to condition
the generation of samples such that the style is dictated by a text prompt. Classifier free sampling (Ho &
Salimans, 2022) is the dominant method for conditioning generation and can be used in conjunction with
the guidance, allowing for the generation to achieve both goals.

Additionally, a 3D differentiable rendering pipeline is used so that the texture could not only be rendered
onto a 3D face mask, but also have gradients from the target network backpropagate through it. Zolfi et al.
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Algorithm 1: Diffusion Attack on Facial Recognition (DAFR)
Input: set of attacker pictures (H), text prompt (c), dodging sign (d), anchor embedding (ea),

adversarial limit (l), iterations of the adversarial loop (k), adversarial guidance weight (s),
facial recognition backbone (E), generation timesteps (T )

xT ∼ N (0, I)
for t from T to 1 do

Sample xt−1 using classifier free sampling, using xt and c
if t/T ≤ l then

for i from 1 to k do
hn = Next image in H
// d should be -1 if dodging and +1 if impersonating
xt−1 = xt−1 + ds · f(t/T ) · ∇xt−1 cos(E(R(xt−1, hn)), ea)

return x0

(2022) developed such a pipeline as long as the texture could be fit into a 2D UV mask, shown in figure 3,
which we use in this work. We find that optimal performance occurs when the texture is resized to fit most
of the content within the UV mask, allowing the perturbation to manifest across a large area of the latent
sample.

Figure 3: The left image is a generated texture, the
middle is the UV mask and the right is a processed
mask texture. We refer to the leftmost image as the
texture image and a cropped version of the rightmost
image (figure 5) as the masked texture image.

Generating images that follow text prompts that
are also adversarial to facial recognition networks
is more abstract (and thus more challenging) than
generating samples that use class conditionals of the
target network to make it look like another one of
the classes – this is without considering the chal-
lenges relating to the generated image being a tex-
ture applied to a variety of different images, rather
than being the final example itself with no concerns
for any other image. By optimizing for multiple dis-
tinct images, the aim is so that when the texture is
applied to a mask on an unknown image, the mask
will be robust to environmental conditions and remain adversarial. Optimizing over a single image is signif-
icantly easier, but will generate a texture that is not robust to different environmental changes.

This led to the introduction of multiple mechanisms to control the adversarial elements of generation which
emphasize different aspects of texture generation:

1. We introduce an inner loop which increases the number of step of adversarial guidance done per
time step (controlled by k in algorithm 1). Having a sufficient number of adversarial steps is important
due to the importance of optimizing the texture to work over different images.

2. We introduce a hyperparameter to control how early in the reverse process we begin adversarial
guidance (controlled by l in algorithm 1) which allows for more adversarial steps. However, generating
too early in the time schedule can have a detrimental effect on generating the style content so this becomes
a tradeoff between style and adversarial strength.

3. DDIM sampling (Song et al., 2021) is used which allows for a variable number of sampling steps in
the time schedule (controlled by T in algorithm 1). More steps could spread the generation over multiple
steps allowing for the adversarial perturbation to slowly coalesce into the style content.

4. The step size of each adversarial step (controlled by s in algorithm 1) can be changed to influence
generation.
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Du et al. (2023) demonstrated that the early stages of the diffusion schedule generate coarse structures
that have a significant impact on the rest of the generation. Carelessly adding perturbations in the earlier
stages of generation can negate the generation of the style while adding in the later stages can result in
the perturbation clashing with the style and creating visible perturbations. The above mechanisms most
be controlled carefully while trying to achieve both adversarial strength, robustness to real world conditions
and stealth. Table 3 and figure 5 demonstrates that changes in the hyperparameters of DAFR can have a
significant visual impact on the final texture and that this can manifest differently across different victim
models or styles (further shown in appendix D).

We find that a constant step size throughout the entire generation leads to adverse perturbations in the
later steps of generation, where the adversarial perturbations significantly override the generated content.
We introduce a scaling function in equation (1) to slowly decrease the step size based on the proportion of
the time schedule left.

f(y) = e3(y−0.6)−3 min(0,y−0.5), y ∈ [0, 1] (1)

Several rounds of tinkering with this equation were required, as initially we used the variance of the noise at
each diffusion step, but found that using equation (1) was more effective, potentially due to the adversarial
updates in the later time steps not being scaled to be minuscule.

When DAFR is fully deployed, the final result is shown in figure 1. Compared to previous work (Zolfi et al.,
2022; Gong et al., 2024), our masks are significantly stealthier and present new capabilities for these attacks,
with respect to the style of generated accessories.

3 Results

Baselines: To evaluate our accessories, we compare them to recent adversarial face mask attacks. Ad-
versarial Mask (Zolfi et al., 2022), shortened to AdvMask for brevity, generates face masks for dodging by
using a 3D differentiable pipeline and optimizing the mask to be adversarial while maintaining a low TV
loss. SASMask (Gong et al., 2024) generates face masks for impersonation so that given content is included
(e.g., flowers); however, uses a style transfer network to change the style to be optimal (e.g., by changing the
colour). AdvMask does not attempt to be faithful to a style so we do not report our stealthiness measure
for those masks, while SASMask does so we do for them. We also test a white non-adversarial face mask to
act as a non-adversarial baseline for comparison.

Datasets: We use two different datasets: PubFig (Kumar et al., 2009), which includes faces of a variety of
celebrities, and is where the identities for the dodging benchmark come from, and VGGFACE2-HQ (Chen
et al., 2024), which contains GAN upscaled images of the VGGFACE2 dataset (Cao et al., 2018). We
randomly choose 100 identities from VGGFACE2-HQ to form part of the finetuned classes and another 900
to be used as part of the threshold selection process.

Target Networks: Vakhshiteh et al. (2021) highlight the lack of diversity in the network types studied;
therefore, we test on four different network types using different threat models:

1. Pretrained Large Recognition Models (R100): Large pretrained recognition models are often used
in previous work (Zolfi et al., 2022) and are publicly available for anyone to use. We test on the pretrained
ArcFace ResNet-1001 directly, that is, before the finetuning in the FT100 setup. The pretraining was
performed on the MS1MV3 dataset (Deng et al., 2019b).

2. Finetuned Networks (FT100): There exists large pretrained backbones that are used for recognition,
however, without a head, these networks cannot be used for classification. If a small business wanted to
train a recognition network for their employees, then they could do further training on the backbone as
well as introducing and training a head. We take a pretrained backbone1 used in previous work (Zolfi
et al., 2022), and perform further training on the 100 identities from VGGFACE2-HQ. This included

1MS1MV3 ResNet-100, available from https://github.com/deepinsight/insightface/blob/master/recognition/
arcface_torch/README.md
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adding an ArcFace head (Deng et al., 2019a) and training using the Adam optimizer (Kingma & Ba, 2015)
for 100 epochs, while ensuring to use occlusion as an augmentation method during training to improve
performance on masked individuals. The final accuracy on 4,500 test images was 97.15%. Previous work
has also targeted finetuned networks (Gong et al., 2024) and by having both finetuned and pretrained
networks this highlights the potential effect of finetuning these networks on these attacks.

3. Facial Representation Encoder (FaRL): We test on the image encoder from FaRL (Zheng et al.,
2022), a vision transformer (Dosovitskiy et al., 2021) backbone for face analysis tasks, including recogni-
tion. We specifically chose the epoch 16 pretrained backbone, as used by Zheng et al. (2022).

4. Mobile devices (MFN): Mobile devices are common, however, running large networks on them is
impossible due to hardware constraints. MobileFaceNet (Chen et al., 2018) is an architecture specifically
designed for face recognition and verification on mobile and embedded devices; we test a pretrained
MobileFaceNet using weights provided by Sun et al. (2024).

Generating stealthy adversarial accessories is a serious threat to the integrity of these models, however the
difficulty of this task varies dramatically even in a white box setting (as shown in table 3). By testing a
variety of different threat models and types of models, we assess the feasibility and threat these diffusion
based stealthy attacks pose to these different systems. Future work should also evaluate their work against
diverse range of systems as we find that the behavior of these attacks can vary significantly as shown in
figure 5.

Table 1: Cosine Similarity thresholds and TPRs of the different
networks when achieving a FAR of 0.01, the rate of inter-class pairs
which are misclassified as intra-pairs. TPR is the proportion of
intra-class pairs that are correctly classified as being the same per-
son.

Class
count

Masked Unmasked
Network Threshold TPR Threshold TPR

FT100 100 0.5300 0.7835 0.0817 0.9802
1000 0.8355 0.1799 0.8394 0.2248

R100 100 0.2687 0.8643 0.1788 0.9320
1000 0.2370 0.8736 0.1757 0.9317

FaRL 100 0.7684 0.2457 0.6670 0.4959
1000 0.7657 0.2202 0.6568 0.4711

MFN 100 0.6156 0.3376 0.2912 0.8114
1000 0.6622 0.2169 0.2845 0.8212

Threshold Selection: Previous
work has used a mixture of reporting
cosine similarities and using success
thresholds (Zolfi et al., 2022; Gong
et al., 2024; Komkov & Petiushko,
2021). We decide to report both
and calculate thresholds using unseen
images (i.e., not used elsewhere in
the work) from the identities chosen
from VGGFACE2-HQ. Previous work
(Zolfi et al., 2022; Yin et al., 2021)
chooses a threshold that obtains a
false acceptance rate (FAR) of 0.01 on
masked images from 1000 identities.
Similarly, we use the mean threshold
that achieves a FAR of 0.01 over 10
fold cross validation on masked images (with the mask being uniformly chosen between a white, black
or blue mask and placed on the face). We calculate separate thresholds for the 100 and 1000 classes
chosen from VGGFACE2-HQ. We use the masked thresholds in table 1 throughtout this work, however, for
completeness we show the thresholds if unmasked images were used in table 1 as well. Further discussion of
the target network’s performance is given in appendix A.

Benchmark Setup: In the following tests we use our benchmark, FAAB (refer to section 4), to test
the dodging capabilities of the different mask generation methods on 30 randomly selected identities from
PubFig. Each mask is generated using 25 images of the identity and then tested on 10 other images of that
same person. The results are aggregated over all 300 tests and reported. The cosine scores are given in the
format: mean ± standard deviation. Success rate is given by a threshold that is defined as the proportion
of tested masked images of the attacker that the embedding of the masked image had a cosine similarity less
than the threshold. Each architecture has two thresholds, “SR 100” and “SR 1000” for the 100 and 1000
class thresholds respectively from table 1.

CMMD is performed on the generated texture to measure the stealthiness of an accessory quantitatively
(see section 5), but because different attacks use this texture differently in their rendering, we also report
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CMMD on the final UV 2D mask. Note we use the scaled version of CMMD, with the scale parameters the
same as those provided by the authors (Jayasumana et al., 2024).

Figure 4: Stealthy masks attempt
to be faithful to a reference im-
age. The left image is the reference
for purple shapes and the right for
blue flowers.

It is important to note that to generate the recognition embedding an-
chors, we use masked pictures of faces following the procedure of Zolfi
et al. (2022) which we now explain. For each identity, 10 unseen images
were used for identities from PubFig and 45 images from VGGFACE2-
HQ. The mask applied is uniformly chosen from a random noise, white,
or black mask. The final anchor embedding is the mean embedding of
all the masked images of that identity. Using masked images rather than
unmasked images prevents the accessory itself from having a significant
impact.

We focus on two different styles for SASMask and DAFR which are
advantageous for adversarial masks as an attacker could choose to use
any style they want in the real world. The chosen prompts were based
on purple shapes2 and blue flowers3. As SASMask uses images as a content reference, the image produced
by the diffusion model using the text prompt is used. Figure 4 shows the reference images. Appendix D
contains a more complete study of the effect of different styles and text prompts on these attacks.

Table 2: Names and hyperparame-
ter values of different hyperparame-
ter sets for each attack, with DAFR
using notation from algorithm 1.

TV Weight
AdvMask-a 0.05
AdvMask-b 0.35

Adv. Weight
SASMask-a 25
SASMask-b 50
SASMask-c 600
SASMask-d 950
SASMask-e 2000

l s k

DAFR-a 0.8 7 5
DAFR-b 0.8 7 10
DAFR-c 0.8 10 12
DAFR-d 0.8 2 1

Implementation Details: MTCNN (Zhang et al., 2016) is used
for face alignment with R100, FT100, and FaRL, with FFHQ (Kar-
ras et al., 2019) face alignment used for MFN. The differentiable 3D
mask rendering pipeline from (Zolfi et al., 2022) is used for placing the
masks on faces. The hyperparameters of stealthy mask attacks vary
the tradeoff between adversarial strength and stealthiness, therefore we
test several sets of hyperparameters which balance this tradeoff. We
note that for each DAFR attack, we use 200 DDIM sampling steps.
We use Stable Diffusion’s v2-1 (Rombach et al., 2022) Text to Image
LDM4 as the diffusion model in DAFR.

We present the results of these attacks with different sets of hyper-
parameters (as defined in table 2) which allows the main results to
act simultaneously as an ablation study. Different hyperparameters
present a tradeoff between stealthiness and adversarial strength, with
different networks requiring a different hyperparameters to produce
effective adversarial attacks. AdvMask only has one hyperparameter
which is the weight for the TV loss, for which we test two different
values. For SASMask, we keep the style hyperparameters consistent
across all sets but change the adversarial weight to be the respective
number. The style weights then are λ1 = 1000, λc = 0.01, λtv = 100, λs = 10000 using the notation from the
original work (Gong et al., 2024). Note that while the original paper does not have an adversarial weight,
the official implementation as of writing has always had one.

Results: The results in table 3 show that DAFR is consistently outperforming previous work in stealthiness,
reflected by having a lower M-CMMD than previous stealthy mask attacks, which can be visually confirmed
in figure 5. In the majority of cases, especially for FT100 in table 3 and MobileFaceNet in table 3, DAFR has
managed to accomplish the dual goal of creating adversarial masks that are effective and stealthy. This is due
to the adversarial generation process being able to find adversarial textures that do not deviate substantially
from the original generation. We believe this is significant progress as no other work to date has managed
to preserve the style and content of a given reference image for adversarial accessories as effectively as ours.

2Prompt: “abstract light purple and pink computer pattern with colorful circles, rectangles, triangles and semi circles like
it was made in the 1990s”

3Prompt: “blue flower pattern”
4Weights for the LDM can be found here.
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Figure 5: Some of the face mask textures generated as part of the benchmarks within this section for dodging
“Beyonce Knowles” in PubFig (Kumar et al., 2009). Underneath each mask is a description of what network it was
generated for and the attack used. The top row are all masks generated using the AdvMask attack. For the other
rows, the left hand side are generated using the purple shapes style, while the right-hand side are generated using
the blue flower style.

This can be seen further in the appendix D where the style generation capabilities are tested further by
using wider range of text prompts.

Across all the networks in table 3, we also demonstrate that DAFR can be easily adapted by changing the
hyperparameters to balance the tradeoff between stealth and adversarial strength which is reflected in the
success rates (SR 100 and SR 1000) and M-CMMD. This flexibility is further reflected in the textures shown
in figure 5 where there are significant visual differences between DAFR sets of hyperparameters for the same
network and style. Having this flexibility provides practical value, as stealth may be of critical importance
in some scenarios.

When attacks do not consider stealthiness (such as AdvMask in table 3), then the adversarial strength of the
masks is strong, but still not 100% against some of the networks like FT100 and R100. This demonstrates
the challenging threat model of adversarial accessories, where critical facial features for recognition can not
be manipulated, therefore on unseen images it is difficult to cover every possible transformation. Figure 5
presents some of the masks generated by AdvMask which do not achieve a perfect success rate despite
focusing on such. One could try to reduce the number of images of the attacker used during generation so
that the optimization problem is easier, however this would adversely affect the robustness of these masks
to different angles and real world conditions leading to worse real world performance.

Recent work has focused on the architecture of R100 or similar (Zolfi et al., 2022; Gong et al., 2024; Pautov
et al., 2019; Komkov & Petiushko, 2021), yet when the same architecture is used but with different weights
(such as FT100), the perturbations produced can be drastically different. This is seen in all three attacks
tested, suggesting it is not unique to one attack. The masks generated against FaRL also vary dramatically
following this trend (see figure 5). One reason this may happen is due to the shape of the gradient output
looking like faces, leading to faces being formed in the adversarial generation process with the different
attacks handling these faces differently.
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The finetuned FT100 was able to achieve the highest TPR on the 100 class problem while achieiving a
FAR of 0.01 on unmasked images, refer to table 1. Despite this, FT100 is vulnerable to DAFR’s capability
to produce very stealthy masks while not sacrificing much adversarial strength compared to AdvMask, as
table 3 shows. This should inform real world decisions to avoid reckless use of such technology as it can
appear superficially to have an outstanding performance while being incredibly vulnerable to adversaries.

Moreover, FT100 has been trained for a specific 100 class recognition problem rather than the thousands of
identities trained for in MS1MV3 (Deng et al., 2019b) leading to a potentially weaker separable embedding
space which is not discriminative. Similar face patterns can be seen in other work (Komkov & Petiushko,
2021; Pautov et al., 2019; Zolfi et al., 2022) using the large models from the ICCV 2019 challenge (Deng
et al., 2019b). These large models are difficult to fool with stealthy adversarial patches as patches are either
adversarial or stealthy with little room in-between. Additionally, there is significant variance between targets
(as shown in the standard deviations in table 3) which complicates the problem. Future work should aim to
make adversarial masks for these large models while maintaining the visual performance seen on FT100.

4 FAAB: Face Accessory Attack Benchmark

For an adversarial accessory to be considered robust, it is necessary that it is effective in various environmental
conditions including lighting, backgrounds and angles. This is not just an important factor during generation,
but also when evaluating an accessory’s performance. As the results in section 3 demonstrate, the balance
between adversarial strength and stealth has a significant impact on the attack success and so it is crucial
to evaluate these factors in order to fairly compare approaches.

To date, there is no standardized framework for testing adversarial face accessories (Vakhshiteh et al., 2021),
in part due to the varying threat models and attack objectives for work in the field. Whilst benchmark-
ing frameworks exist for neighboring fields, such as GREAT score (Li et al., 2023) for evaluating general
adversarial perturbations using generative models, within the realm of adversarial accessories there are in-
consistent experimental frameworks that create hard to compare results. Therefore, we propose a highly
adaptable benchmarking framework, titled the Face Accessory Attack Benchmark (FAAB), that is capable
of consistent and systematic comparison of different attack methods.

To achieve this feat, FAAB uses a systematic procedure for evaluating accessories, with interchangeable
components, detailed below:

• Generation: an accessory must be generated by the attack being tested for a given individual. It is
important at this stage that images used to generate the accessory are not those that will be later used
to evaluate, as a strong adversarial accessory should be effective in unseen conditions.

• Testing: once the accessory has been generated, the testing phase begins. This consists of loading in
dataset images, placing the accessory on the images and computing the output of the recognition system.
We calculate statistics based on adversarial strength and the accessory itself, which can be interchanged
based on the test. FAAB also keeps track of the performance across different images, such as recording
the angle of the face in the images.

• Benchmarking: to get a holistic view of the performance of an attack method, we repeat the above
steps over multiple individuals. To further expand analysis, FAAB supports benchmark variations which
can modify how images are augmented such as modifying the brightness of the image. FAAB groups
together results based on the properties recorded throughout, such as viewing the performance when
the face was at a specific angle. How statistics are grouped is customizable and can help discover links
between various properties that have been accumulated in the benchmark.

As alluded to above, it is necessary to quantize how stealthy an accessory is as it is infeasible to construct
a manner of evaluating stealthiness through the means of a user survey in such a way as to not introduce
bias to one attack and to be fair, especially when the definition of stealthiness itself is often subjective. In
section 5 we outline why we believe that CMMD is an effective measure of stealthiness and the resulting
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Figure 6: Masked face images of “Charilize Theron” and “Jennifier Aniston” using DAFR-3a in the bench-
mark in table 3 on FT100. The variety of poses and backgrounds ensures that during generation and
evaluation, masks must be robust to real world transforms.

values are discussed in section 3. Further principles to evaluating style that could be applied to other work
are provided in appendix C.

To demonstrate the robustness of the attacks explored in this paper we analyze the impact of face pose
(appendix E), varying brightness (appendix F) and when the mask is applied to images with different
lighting on the adversarial mask (appendix G) which is enabled using the FAAB benchmark. Overall, our
findings indicate that all the attacks exhibit a level of robustness under varying conditions, suggesting their
potential effectiveness in real world scenarios.

5 Related Works

Here we discuss the closest previous works; we comparatively review further literature across several areas
in appendix B.

Patch-based Adversarial Attacks on Facial Recognition: Adversarial accessories are small wearables
that contain patterns that when placed within an image cause malicious behavior. Previous adversarial
accessories have varied significantly in the generation process and in the type of accessory, including glasses
(Sharif et al., 2019), hats (Komkov & Petiushko, 2021), face patches (Pautov et al., 2019), eye patches (Xiao
et al., 2021) and face masks (Zolfi et al., 2022; Gong et al., 2024). As mentioned in section 1, face masks
have seen an increase in usage within the general public and are a prime adversarial accessory as they cover
a substantial area of the face (Zolfi et al., 2022; Gong et al., 2024), hence they are our chosen accessory type.

Most adversarial accessory attacks primarily focus on the accessory being adversarial (Sharif et al., 2019;
Pautov et al., 2019; Komkov & Petiushko, 2021) or focus on emphasizing additional properties such as
transferability (Xiao et al., 2021; Zolfi et al., 2022; Yang et al., 2023; Gong et al., 2024). However, the
generated accessories from these works do not look like “normal” attire and would arouse suspicion if worn
in the real world – we would consider these to not be stealthy. Gong et al. (2024) attempts to explicitly
generate stealthy face masks using adaptive styles and style losses, but these cause the texture to depart
from a reference image significantly. We focus primarily on stealthiness and argue that for a mask to be
stealthy, it must look similar to a reference image. To the best of our knowledge, we are the first work to
utilize diffusion models to generate adversarial accessories.

Quantitative Measures of Style: Within adversarial attacks on facial recognition, some style measures
that have been used before in makeup attacks (Sun et al., 2024) include SSIM (Wang et al., 2004), PSNR and
FID (Heusel et al., 2017). Gong et al. (2024) used SSIM in a setup specific to their face mask which is hard
to transfer to other attacks. Creating metrics to evaluate the quality of generated images is a problem faced
by generative models and stealthy adversarial accessories that generate textures can be seen as generators
that have a baseline style (a “real” set) which can generate multiple adversarial textures (a “generated”

10
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set). CLIP Maximum Mean Discrepancy (CMMD) (Jayasumana et al., 2024) is a recent metric proposed to
measure the quality of generated images by finding the maximum mean discrepancy (MMD) (Gretton et al.,
2006; 2012) between CLIP (Radford et al., 2021) embeddings of a real and generated set of images. An
unbiased estimator of MMD on two sets of CLIP embeddings, X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn},
and kernel k (for which we use a RBF kernel) can be given by the equation below. For the results in this
paper, we scaled the output of CMMD for display purposes, using the same values as in the original paper
(Jayasumana et al., 2024).

dist2
MMD(X, Y ) = 1

m(m − 1)

m∑
i=1

m∑
j ̸=i

k(xi, xj) + 1
n(n − 1)

n∑
i=1

n∑
j ̸=i

k(yi, yj) − 2
mn

m∑
i=1

n∑
j=1

k(xi, yj)

By using CLIP embeddings, CMMD is able to provide a more holistic evaluation of style and previous
work has shown CMMD to outperform FID and other common metrics when compared to human raters
(Jayasumana et al., 2024) which resonates back to the user surveys in previous accessory work (Sharif et al.,
2019). We believe these user surveys for image generation can be further extrapolated to the generation of
textures for accessories, thus meaning that CMMD is a good measure of the stealthiness of textures, although
future work could confirm this by running human surveys like previous work. Future work should also use
CMMD as a metric to evaluate the quality (thus stealthiness) of their generated textures and so having an
evaluation that is similar to how image generators are evaluated. More details about how we use CMMD
are found in section 4.

6 Conclusion

We propose a novel diffusion-based attack, DAFR, for adversarial mask generation that generates masks that
are both adversarial and stealthy. We demonstrate the effectiveness of the attack on a range of architectures
and threat models, and highlight the challenges in attacking these models. Moreover, we propose a robust
standardized benchmarking framework, FAAB, for evaluating the strength and stealthiness of these attacks
such that comparisons between future work can be quicker, robust, and fair. This further invites future work
to use this framework to create strong and stealthy adversarial accessories.

Limitations: We have tested different attacks on a variety of networks and have found that the behavior
of the attacks can vary significantly between networks. This unfortunately means that DAFR can struggle
to produce stealthy adversarial masks on the strongest networks. Additionally, DAFR uses adversarial
guidance (Dai et al., 2024) and is sensitive to the hyperparameters highlighted in table 2. Small changes can
lead to significant variation in the output and their values must be adjusted for different target networks.
This requires manual testing to balance the stealthiness of the generated mask and its stealthiness.

Future Work: DAFR is substantially better at generating stealthy masks compared to previous work,
however there are five main areas for future work to improve upon. (1) generating stealthy masks on
stronger networks is difficult and future work could expand the number of networks these masks are stealthy
for. (2) we did not extensively investigate physically realizing the masks within this work and future work
could explore whether these masks apply in the real world. (3) we propose using new metrics to evaluate
stealthiness in the generated textures which previous work has found to align with human perception, future
work should run surveys to confirm that these metrics align with human perception when applied to textures
on accessories. (4) as our work focused on maximizing the stealthiness of the adversarial textures, future
work could look at the transferability of these stealthy attacks in a black box setting (5) all adversarial face
mask attacks are inherently vulnerable to removal by generative based defenses. Given the weights of a face
mask removal network, future work could generate masks that are adversarial to the recognition network
and the removal network to mitigate this weakness.
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Attack Style Cosine Sim. (↓) SR 100 (↑) SR 1000 (↑) T-CMMD (↓) M-CMMD (↓)
Non Adv. White 0.6746 ± 0.2314 0.2767 0.7133 / /

AdvMask-a Random 0.0380 ± 0.2628 0.9500 0.9800 / /
AdvMask-b −0.0128 ± 0.1860 0.9867 1.0000 / /
SASMask-d

Purple
Shapes

0.3810 ± 0.3296 0.6200 0.9233 3.1881 1.7600
SASMask-e 0.4541 ± 0.3261 0.5100 0.8800 3.1208 2.0857

DAFR-a 0.2211 ± 0.2314 0.8900 0.9867 1.3295 0.8471
DAFR-b 0 .2166 ± 0 .2365 0.8700 0.9733 1.6960 1.1771
DAFR-c 0.1816 ± 0.2133 0.9167 0.9833 2.3490 1.5018

SASMask-d

Blue
Flowers

0.4186 ± 0.3731 0.5533 0.8167 3.8306 3.5290
SASMask-e 0.3660 ± 0.3370 0.6600 0.8900 4.0924 2.9544

DAFR-a 0.2306 ± 0.2297 0.8867 0.9767 2.4527 1.0090
DAFR-b 0 .2189 ± 0 .2171 0.9033 0.9900 2.8263 1.1199
DAFR-c 0.1764 ± 0.2232 0.9200 0.9767 3.6985 1.6210
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Attack Style Cosine Sim. (↓) SR 100 (↑) SR 1000 (↑) T-CMMD (↓) M-CMMD (↓)
Non Adv. White 0.7303 ± 0.0837 0.1000 0.2100 / /

AdvMask-a Random 0.3028 ± 0.0871 1.0000 1.0000 / /
AdvMask-b 0.3496 ± 0.0922 1.0000 1.0000 / /
SASMask-a Purple

Shapes

0.3868 ± 0.1804 0.8633 0.9133 2.3938 1.8368
SASMask-b 0.1019 ± 0.1115 1.0000 1.0000 3.2128 2.2126

DAFR-d 0 .2874 ± 0 .1282 0.9967 1.0000 1.2792 0.8416
SASMask-a Blue

Flowers
0 .2549 ± 0 .0885 1.0000 1.0000 3.9781 3.0724

SASMask-b 0.1471 ± 0.0956 1.0000 1.0000 4.1066 2.9479
DAFR-d 0.4788 ± 0.0854 0.9533 0.9967 0.9009 0.1040
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Attack Style Cosine Sim. (↓) SR 100 (↑) SR 1000 (↑) T-CMMD (↓) M-CMMD (↓)
Non Adv. White 0.6217 ± 0.1921 0.0733 0.0733 / /

AdvMask-a Random 0.0317 ± 0.1350 0.9500 0.9367 / /
AdvMask-b 0.0328 ± 0.1287 0.9567 0.9400 / /
SASMask-c

Purple
Shapes

0.1064 ± 0.1279 0.9100 0.8467 3.0740 2.5177
SASMask-d 0 .1091 ± 0 .1381 0.8833 0.8200 3.3451 2.5361
SASMask-e 0.1171 ± 0.1574 0.8533 0.8066 3.4989 2.9703

DAFR-a 0.2546 ± 0.1410 0.5267 0.4267 1.5728 1.2138
DAFR-b 0.1909 ± 0.1396 0.6900 0.6233 2.2289 1.7903
DAFR-c 0.1787 ± 0.1436 0.7467 0.6433 3.0438 2.4713

SASMask-c

Blue
Flowers

0.1077 ± 0.1401 0.8667 0.8300 4.1449 4.5054
SASMask-d 0 .0926 ± 0 .1418 0.9100 0.8667 4.4332 4.7600
SASMask-e 0.0803 ± 0.1298 0.9233 0.8933 4.5162 3.4040

DAFR-a 0.2678 ± 0.1450 0.4967 0.4233 2.9012 1.2724
DAFR-b 0.2020 ± 0.1407 0.6733 0.5867 3.9275 1.7545
DAFR-c 0.1769 ± 0.1448 0.7267 0.6567 4.9682 2.4842

Fa
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Attack Style Cosine Sim. (↓) SR 100 (↑) SR 1000 (↑) T-CMMD (↓) M-CMMD (↓)
Non Adv. White 0.8078 ± 0.0584 0.2067 0.1800 / /

AdvMask-a Random 0.3777 ± 0.0984 1.0000 1.0000 / /
AdvMask-b 0.4013 ± 0.1043 1.0000 1.0000 / /
SASMask-d

Purple
Shapes

0.4213 ± 0.0997 1.0000 1.0000 2.7931 2.6759
SASMask-e 0 .4322 ± 0 .1206 1.0000 1.0000 2.7984 2.5965

DAFR-a 0.7482 ± 0.0522 0.6367 0.6200 1.5283 0.8031
DAFR-b 0.7333 ± 0.0532 0.7433 0.7167 1.2023 0.9583
DAFR-c 0.7150 ± 0.0561 0.8333 0.8233 1.4417 0.8877

SASMask-d

Blue
Flowers

0.3787 ± 0.0960 1.0000 1.0000 4.9293 3.4139
SASMask-e 0 .3881 ± 0 .0954 1.0000 1.0000 4.9995 4.8929

DAFR-a 0.7671 ± 0.0503 0.4500 0.4300 1.7892 0.5895
DAFR-b 0.7565 ± 0.0512 0.5433 0.5133 2.4341 1.0099
DAFR-c 0.7258 ± 0.0544 0.8033 0.7900 3.0446 1.1998

Table 3: Results of the four dodging benchmarks of the different networks tested, as outlined in section 3. The first
set of columns indicate the attack and its style, the second set of columns indicate the attack statistics aggregated
over the 300 test images in each benchmark when the targeted attacker wears the mask, and the final set of columns
are accessory statistics aggregated over the 30 generated textures.
Arrows next to each column indicate the desired direction of each metric, for example ↓ would indicate lower values
are desirable. Cosine similarity is in the format of Mean ± Std-Deviation over the test images. SR 100 and SR 1000
are the success rate of the dodging masks over the test set using the thresholds in table 1. T-CMMD and M-CMMD
are defined as the CMMD (refer to section 5) over the texture images and mask texture images (see figure 3 for the
difference). Different attacks convert their texture onto the mask differently therefore M-CMMD is a fairer evaluation.
For each column within attacks using the same style, a marker has been used to indicate rank: 1st, 2nd and 3rd.
DAFR outperforms SASMask for every network in terms of stealth (shown in the CMMD columns), while either
outperforming SASMask adversarially or by sacrificing minimal adversarial strength.
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A Further Details on Result Setup

Table 1 demonstrates the performance of the different target networks. Pretrained backbones have been
trained to have a highly discriminative embedding space across a wide range of datasets, rather than a
separable one across one dataset. This leads them to perform incredibly well on unseen faces and to have
the highest TPR in table 1. FT100 was trained for the 100 class scenario and therefore performs well, but
then struggles on 1000 classes. This threat model has not been explicitly explored before (with previous
work performing further training on their models (Gong et al., 2024)) and highlights vulnerabilities to these
models if deployed recklessly. FaRL is a general purpose face encoding and so has not been explicitly trained
for recognition, explaining the lower TPR. On the other hand, MFN has been trained for recognition but
we expect its smaller size may limit its performance. Despite this, MFN performs the best out of all the
networks tested at not being fooled by the non-adversarial mask when using the 100 class threshold and
second best when using the 1000 class threshold, demonstrating that it is still an effective network, shown
in table 3.

B Extended Related Works

Facial Recognition: Facial recognition systems have evolved significantly over the last couple of decades,
with the state of the art approaches using deep learning models that are able to achieve high accuracy in
both large and small class sizes. Traditionally, for a small number of classes in a closed-set environment (that
is the test set consists only of identities from within the training set), softmax-based approaches that are
used in general object recognition can be effective. However, softmax losses encourage the learned features
to be separable, but not necessarily discriminative (Wen et al., 2016), leading to worse performance when
there are lots of classes of data or in an open-set environment, where the test set includes identities not in
the training set (Liu et al., 2017).

Focus has moved to using Siamese networks (Bromley et al., 1993) where the backbone learns a discriminative,
rather than separable, embedding space through different losses such as center loss (Wen et al., 2016) or
triplet loss (Schroff et al., 2015). More recent work has focused on maximizing the angular margins of learnt
class centers in a learnt embedding space, such that embeddings from a given class’ center point are in a
similar direction and that embeddings not from that center’s class, point in a different direction (Liu et al.,
2017). Several works have aimed for intra-class compactness and inter-class discrepancy with the aim of
learning a discriminative embedding space (Liu et al., 2017; Wang et al., 2018; Deng et al., 2019a).

Adversarial Examples using Generative Models: Traditionally, adversarial examples were generated
using gradient based methods such that the perturbation has a small matrix norm; one example is using
projected gradient descent (PGD) (Madry et al., 2018). However, Song et al. (2018) used generative models
(specifically generative adversarial networks) to construct unrestricted adversarial examples that exhibit
greater realism. This has progressed so that recently there have been several works proposing diffusion model
based adversarial attacks using different techniques (Xue et al., 2023; Chen et al., 2023; Dai et al., 2024).
Using diffusion models for this task has several benefits, most notably, greater controllability and visual
fidelity of generated samples (Dai et al., 2024), areas in which previous adversarial accessories struggled.
Our attack, therefore, leverages these properties through the use of a textually controlled diffusion model.
Nevertheless, finding imperceptible potent adversarial examples for accessories is difficult, however recently
(Li et al., 2024) has proposed an alternative non parametric approach to adversarial example generation
which could be a promising direction for future accessories to explore.

Patch-based Adversarial Attacks and Defenses: Adversarial patches (Brown et al., 2017) are small
patterns that when placed within an input image, cause unintentional behavior in a network. To improve the
robustness of these patches to real world conditions, past work has shown that it is necessary to incorporate
real world transformations into the generation process (Athalye et al., 2018). In the context of adversarial
accessories, this translates to generating on different images of a person, for example at different poses, such
that different transformations are considered during accessory generation.

18



Under review as submission to TMLR

From the perspective of defending adversarial attacks, recent defenses have utilized diffusion models (Nie
et al., 2022) for purification of adversarial examples, removing the perturbation while maintaining the original
content. For adversarial patches, these techniques have been found to be inadequate, therefore, specific
adversarial patch defenses have been developed (Kang et al., 2023). These defenses use diffusion models to
locate the patch and then replace it using inpainting, which could be used to replace a face mask with an
estimated face. Another defense would be to remove face masks from images using generative models trained
to do so (Kumar et al., 2023). All current adversarial face masks are vulnerable to these last two defenses
and so creating robustness to these defenses is not within the scope of our work and could be the goal of
future work.

Other Attacks on Facial Recognition: There have also been other attacks on these systems such as
adversarial makeup (Yin et al., 2021) which has been used so that the attack can access a wider area of the
face rather than just a local patch. Recent work has used diffusion models to enhance this approach further
(Sun et al., 2024) creating highly realistic makeup to fool these models. These attacks have a significantly
larger area of the face to attack and may be difficult to physically realize compared to face masks.

Another channel of attack is using visible light (Shen et al., 2019; Nguyen et al., 2020; Li et al., 2020) where
perturbations are projected onto the face. These attacks offer a different representation to their perturbations
which presents unique challenges which could also be explored with diffusion models in a similar fashion to
our work.

Backdoor attacks on face recognition have also been developed, where the system behaves as expected on
clean input but then has been modified to behave erroneously on malicious input. These attacks can be split
into three components: the attack channel (the attacker’s knowledge and access to the victim model), the
injection method (how the manipulation can occur) and the trigger method (what triggers the corruption)
(Roux et al., 2024). One such example work has directly manipulated weights such that only certain identities
are misclassified, but the rest are unaffected (Zehavi & Shamir, 2023).

Another type of attack are those that poison the training set of a victim model such that when the attacker
wears a physical accessory, the model erroneously classifies them (Chen et al., 2017).

These methods have a different threat model to our work, but are a different avenue of work that could be
expanded using diffusion models.

C Evaluating Styles

Previous Style Metrics: As previously discussed, most adversarial accessory work has not focused on
stealth and so there is a limited range of quantitative measures for stealthiness. Previous work has used TV
loss to ensure accessories are color smooth, making them easier to physically realize and less noise like, but
often stealthiness is not explicitly measured after generation (Zolfi et al., 2022; Komkov & Petiushko, 2021;
Pautov et al., 2019).

Stealthiness is a subjective measure so an ideal method would be to collect user surveys, as has been done
before (Sharif et al., 2019) where participants were asked to identity whether given images of glasses were
“real” or generated. While this does gather valuable user opinion, these surveys are time consuming to
run, potentially hard to reproduce when ran on a small scale and may not accurately measure stealthiness
(as the concept is abstract to the general public). Some measures that have been used before in makeup
attacks (Sun et al., 2024) are SSIM (Wang et al., 2004), PSNR and FID (Heusel et al., 2017). In recent
stealthy mask work, Gong et al. (2024) measure the SSIM of masked faces with the mask texture being the
original pattern in the style of their adversarial pattern and then comparing these images to masked faces
with the adversarial pattern. Whilst these measures are able to yield valuable statistics about a generated
accessory, we believe these do not capture the true essence of stealthiness – a better metric would be one
which determines the quality of generated images. This can be achieved by treating the adversarial attack
as an image generator and using similar metrics to measure its performance such as CMMD.

Proper Use of CMMD: When choosing images for CMMD evaluation for general accessory evaluation
in future work, we recommend trying to evaluate on as close of a representation as the texture in the final
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Attack Style SR 100 (↑) SR 1000 (↑) Mask CMMD (↓)
SASMask-b Blue Dog 1.0 1.0 5.2105

DAFR-d 1.0 1.0 2.0459
SASMask-b Panda Emoji 1.0 1.0 3.0371

DAFR-d 1.0 1.0 0.8545
SASMask-b Black Sandwich 1.0 1.0 4.9492

DAFR-d 1.0 1.0 2.7075
SASMask-b Owl 1.0 1.0 5.5044

DAFR-d 1.0 1.0 1.2581
SASMask-b Giraffe 1.0 1.0 1.8137

DAFR-d 1.0 1.0 0.7100
SASMask-b Bricks 1.0 1.0 3.5112

DAFR-d 1.0 1.0 1.3195
SASMask-b Overall 1.0 1.0 4.1125

DAFR-d 0.9930 0.9970 1.5663

Table 4: Some of the results from the style attack test on MobileFaceNet, for 6 out of the 20 styles chosen
from filtered DrawBench. These tests use the same metrics as table 3, so a larger success rate (SR 100 and
SR 1000) is desirable.

accessory while avoiding any faces being in the images (such as the images in figure 5). Furthermore, the
reference set for the style should be one image representing the style the textures in the generated set are
attempting to create. The generated set should contain multiple textures from different attacks (i.e different
attackers/targets) of the same style.

D Testing Different Styles and Text Prompts

Section 3 focused on two styles that were chosen due to being effective for the adversarial mask generation.
However, to demonstrate the effectiveness of the stealth based approaches on a wide range of styles we test
both DAFR and SASMask on 20 randomly chosen text prompts from a filtered set of DrawBench prompts
(Saharia et al., 2022). Stealthy approaches may try to “hide” their perturbations in the content making
more abstract content better as the content can vary significantly while still being faithful. Prompts from
DrawBench are more concrete and contain a wide range of content, and test whether these attacks can still
be stealthy even when not given an advantageous style. The same dodging benchmark was used as has been
used in section 3, but 5 identities were chosen out of the previous 30 with the same number of images used
for generation and testing as used previously.

Table 4 shows the results of our test on MobileFaceNet. Both attacks are successfully able to fool the network
consistently, however DAFR generates stealthier masks as demonstrated by CMMD and by the visual results
shown in figure 7. DAFR can achieve adversarial strength by manipulating the content of the textures in a
manner faithful to the style, such as changing the hat, eyes and mouth of the panda in figure 7.

We conduct the same study as performed on MobileFaceNet, but using FT100 and R100. The attacks were
less successful against these networks (refer to table 3) so these tests demonstrate the attacks ability to
remain stealthy in a more difficult scenario.

Table 5 and figure 8 display selected results and textures from the style test on FT100 and R100. Firstly,
DAFR outperformed SASMask on these obscure styles both stylewise and adversarially on FT100, while
performing slightly worse adversarially on R100. Both attacks have significantly higher mask CMMD values
compared to the tests with an advantageous style in previous sections. While an attacker can always choose
to use an advantageous style, future work should focus on making an attack that can work on a wider range
of styles.
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Figure 7: Textures from masks trying to dodge from the “Kiera Knightley” identity from the style test.
The top row is reference images, the next row is generated by SASMask-b and the final row is generated by
DAFR-d.

E Testing Different Face Poses

An advantage of using FAAB is that a deeper understanding of the different properties of an accessory is
evaluated such as its robustness to different face poses, with figure 6 demonstrating the variety of poses. We
now analyze the effectiveness of the different face mask attacks when they are used at different angles. To
measure the pose of each face, the yaw, pitch and roll are calculated, allowing the images to be classified
into two categories: straight on and angled. Straight on images represented around 67% of the images while
angled represented 31% of the images with the remaining 2% representing images with an extreme yaw and
patch.

1. Straight on images have the magnitudes of yaw and pitch less than 15 degrees.

2. Angled images have either their yaw or pitch with a magnitude greater than 15 degrees while still both
having a magnitude less than 45 degrees.

Table 6 shows the efficacy of the different masks when tested on different angles. It is important to notice
that all the non adversarial masks become more effective when the attacker is at an angle compared to being
straight on. However, when it comes to DAFR face masks, the performance tends to increase as well (such
as on R100 and FaRL), which may occur due to the benefit of less of the face being in the image. When
masks have a high efficacy such as DAFR in FT100 and AdvMask and SASMask in R100, the negative effect
of having less of the adversarial texture in the image may outweigh the effect of having less of the face in
the image. This suggests that DAFR has similar robustness to other masks generated using multiple images
during generation while maintaining more stealthiness.

F Testing Different Brightness

To test the robustness of the generated textures to different brightness conditions to test whether the acces-
sory works in both dimly lit or brightly illuminated rooms. After a mask is applied to a given test image,
the image is converted to the HSV color space where the value channel is randomly adjusted while ensuring
that the pixel values remain within a valid range. This has the effect of randomly changing the brightness
of the images as demonstrated in figure 9.
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Attack Arch. Style Cosine (↓) M-CMMD (↓)
SASMask-d R100 Blue

Dog
0.1206 5.4339

DAFR-b 0.1718 2.4962
SASMask-d R100 Panda

Emoji
0.1036 5.0528

DAFR-b 0.2090 3.7732
SASMask-d R100 Black

Sandwich
0.0666 4.9142

DAFR-b 0.1766 2.9478
SASMask-d R100 Owl 0.1092 7.1989

DAFR-b 0.1769 5.4135
SASMask-d R100 Giraffe 0.0967 3.5704

DAFR-b 0.2049 1.5187
SASMask-d R100 Bricks 0.0960 4.5317

DAFR-b 0.1636 2.5308
SASMask-d R100 Overall 0.1238 4.9267

DAFR-b 0.1742 2.8558
SASMask-d FT100 Blue

Dog
0.2052 6.0991

DAFR-b 0.1367 3.2306
SASMask-d FT100 Panda

Emoji
0.1497 5.3878

DAFR-b 0.2076 4.4728
SASMask-d FT100 Black

Sandwich
0.4963 5.2030

DAFR-b 0.1633 2.5514
SASMask-d FT100 Owl 0.3402 6.0632

DAFR-b 0.3065 3.5993
SASMask-d FT100 Giraffe 0.3718 4.3375

DAFR-b 0.2734 2.0177
SASMask-d FT100 Bricks 0.2779 3.9697

DAFR-b 0.1917 2.7599
SASMask-d FT100 Overall 0.3497 4.8297

DAFR-b 0.1718 2.6770

Table 5: Results from the style attack test using 6 out of the 20 styles chosen from filtered DrawBench.
Cosine is the mean cosine, while M-CMMD is the masked texture CMMD from table 3.

Table 7 shows the results of some of the benchmarks used previously when tested with random brightness.
Modifying brightness of the images can have a significant impact on the efficacy of these accessories, with
this impact either potentially being positive or negative. In general, the attacks demonstrate similar levels of
performance before and after the brightness changes suggesting these attacks all have robustness to different
brightness conditions. For these masks to be robust to physical conditions they must be robust in a variety
of different brightness conditions therefore it is encouraging that all the attacks demonstrate this robustness.

G Testing Different Lighting

One of the properties of the accessories we wanted to test is their robustness to different lighting conditions.
Previous work (Sharif et al., 2019) has manipulate the luminance of the tested images to test their accessories
for this robustness. We use manipulate the textures of the accessories to have a similar luminance to the
test image, therefore testing these masks in a more realistic setting where their luminance matches the rest
of the image, often making these masks darker and less radiant as shown in figure 10.

Table 8 shows the results of some of the benchmarks used previously when tested with adjusted lighting.
Modifying the textures to have a more realistic luminance can have a significant negative impact on the
efficacy of these accessories. DAFR generates adversarial textures to be stealthy however this may generate
intricate patterns that are less robust to physical conditions not necessarily present during generation. This
is important for physically realizing these masks thus testing in such a way is vital to ensure that results
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Figure 8: Textures from masks trying to dodge from the “Kiera Knightley” identity from the style test.
The content of the rows from top to bottom are reference images, SASMask-d R100, SASMask-d FT100,
DAFR-b R100, DAFR-b FT100

generalize from the digital to the physical domain. Future work in stealthy adversarial accessory generation
should try to generate masks that are more robust to physical conditions while being stealthy.

H Statement of Broader Impact

Deep learning based facial recognition and verification systems are becoming more prominent around the
world. On one hand, DAFR highlights new security risks to existing face recognition and verification systems
by creating masks that are indistinguishable from more colorful masks people wear; which could undermine
their efficacy and the trust put in them. However, by demonstrating these capabilities, future defenses and
adversarial training schemes will have to consider these types of accessories thus allowing future work to
defend against DAFR or a more advanced version of it. On the other hand, these powerful systems can be
misused by different institutions and the existence of these accessories demonstrate that these systems are
not flawless and can be manipulated in certain circumstances.

I Reproducibility Statement

All the work for this project was performed on a single NVIDIA A5000 GPU. Depending on the attack type
and hyperparameters, each benchmark could take between 40 minutes to 7 hours to generate all 30 different
adversarial textures used for results in section 3. To evaluate the different metrics evaluated within these
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Straight On Angled
Architecture Attack SR 100 (↑) SR 1000 (↑) SR 100 (↑) SR 1000 (↑)

FT100

Non Adv 0.2650 0.6800 0.2979 0.7660
AdvMask-b 1.0000 1.0000 0.9787 1.0000
SASMask-d 0.5600 0.8100 0.5426 0.8191

DAFR-b 0.9250 0.9900 0.8830 0.9894

R100

Non Adv 0.0450 0.0450 0.0745 0.0745
AdvMask-b 0.9750 0.9650 0.9149 0.8830
SASMask-d 0.9300 0.8800 0.8617 0.8298

DAFR-b 0.6550 0.5800 0.6915 0.5745

FaRL

Non Adv 0.1850 0.1550 0.2021 0.1808
AdvMask-b 1.0000 1.0000 1.0000 1.0000
SASMask-d 1.0000 1.0000 1.0000 1.0000

DAFR-b 0.5100 0.4800 0.5851 0.5532

MFN

Non Adv 0.0725 0.1399 0.1275 0.3137
AdvMask-b 1.0000 1.0000 1.0000 1.0000
SASMask-b 1.0000 1.0000 1.0000 1.0000

DAFR-d 0.9378 0.9948 0.9804 1.0000

Table 6: Results of the attacks at different angles. When the attack has a style, we show the blue flower
pattern style. These results come from benchmarks from the earlier sections or identical reran benchmarks.

Brightness Variance No Adjustments
Architecture Attack SR 100 (↑) SR 1000 (↑) SR 100 (↑) SR 1000 (↑)

FT100

Non Adv 0.2433 0.6900 0.2767 0.7133
AdvMask-b 0.9900 1.0000 0.9867 1.0000
SASMask-d 0.5267 0.8100 0.5533 0.8167

DAFR-b 0.9200 0.9867 0.9033 0.9900

MFN

Non Adv 0.0967 0.1767 0.1000 0.2100
AdvMask-b 1.0000 1.0000 1.0000 1.0000
SASMask-b 1.0000 1.0000 1.0000 1.0000

DAFR-d 0.9500 0.9867 0.9533 0.9967

R100

Non Adv 0.0767 0.0733 0.0733 0.0733
AdvMask-b 0.9800 0.9467 0.9567 0.9400
SASMask-d 0.9167 0.8767 0.9100 0.8667

DAFR-b 0.7333 0.6367 0.6733 0.5867

FaRL

Non Adv 0.1967 0.1833 0.2067 0.1800
AdvMask-b 1.0000 1.0000 1.0000 1.0000
SASMask-d 1.0000 1.0000 1.0000 1.0000

DAFR-b 0.5367 0.5200 0.5433 0.5133

Table 7: Results of the attacks when the brightness of the image is randomly adjusted. When the attack
has a style, we show the blue flower pattern style. The “No Adjustment” results come from the benchmarks
from earlier sections.

benchmarks on the GPU would require around 30 minutes. The main body contains 50 benchmarks which
would take roughly 286 hours on a single GPU, with the appendix benchmarks taking a further 100 hours.
The supplementary material contains all the code to run the work, including Python code for all the attacks,
benchmark and other utilities (such as threshold selection etc.). Instructions have been provided to help run
the code.
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Match Lighting No Adjustments
Architecture Attack SR 100 (↑) SR 1000 (↑) SR 100 (↑) SR 1000 (↑)

FT100

Non Adv 0.3200 0.7267 0.2767 0.7133
AdvMask-b 0.9133 0.9867 0.9867 1.0000
SASMask-d 0.5500 0.8133 0.5533 0.8167

DAFR-b 0.7333 0.9367 0.9033 0.9900

MFN

Non Adv 0.0967 0.1567 0.1000 0.2100
AdvMask-b 0.9333 0.9767 1.0000 1.0000
SASMask-b 0.9967 0.9967 1.0000 1.0000

DAFR-d 0.8200 0.9467 0.9533 0.9967

R100

Non Adv 0.0733 0.0733 0.0733 0.0733
AdvMask-b 0.8733 0.8233 0.9567 0.9400
SASMask-d 0.8467 0.7600 0.9100 0.8667

DAFR-b 0.5033 0.4033 0.6733 0.5867

FaRL

Non Adv 0.2400 0.2333 0.2067 0.1800
AdvMask-b 1.0000 0.9967 1.0000 1.0000
SASMask-d 1.0000 1.0000 1.0000 1.0000

DAFR-b 0.4600 0.4433 0.5433 0.5133

Table 8: Results of the attacks when the lighting on the mask is adjusted to match the lighting of the rest
of the image. When the attack has a style, we show the blue flower pattern style. The “No Adjustment”
results come from the benchmarks from earlier sections.

Figure 9: The top row are images of “Drew Barrymore” from the PubFig dataset with a face mask digitally
augmented on. The bottom row are the same images but after the brightness of the image has been randomly
altered.

Figure 10: The top row are images of “Drew Barrymore” from the PubFig dataset with a face mask digitally
augmented on. The bottom row are the same images but after the lighting of the face mask has been matched
with the rest of the image.
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