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Abstract

Domain adaptation of neural networks com-001
monly relies on three training phases: pretrain-002
ing, selected data training and then fine tun-003
ing. Data selection improves target domain004
generalization by training further on pretrain-005
ing data identified by relying on a small sam-006
ple of target domain data. This work exam-007
ines the benefit of data selection for language008
modeling and machine translation. Our experi-009
ments assess the complementarity of selection010
with fine tuning and result in practical recom-011
mendations: (i) selected data must be similar012
to the fine-tuning domain but not so much as to013
erode the complementary effect of fine-tuning;014
(ii) there is a trade-off between selecting lit-015
tle data for fast but limited progress or much016
data for slow but long lasting progress; (iii)017
data selection can be applied early during pre-018
training, with performance gains comparable019
to long pretraining session; (iv) data selection020
from domain classifiers is often more effec-021
tive than the popular contrastive data selection022
method.023

1 Introduction024

Machine learning models, and neural networks in025

particular, benefit from large training sets. How-026

ever, for many application domains, the amount of027

training data representative of the inference con-028

ditions is limited. It is therefore common to train029

a model over a large amount of generic, out-of-030

domain data while relying on a small amount of tar-031

get domain data to adapt such a model. In the recent032

years, a large body of work has focused on lever-033

aging large amount of web data to train neural net-034

works for language modeling (Peters et al., 2018;035

Devlin et al., 2019) or translation systems (Bañón036

et al., 2020; Koehn et al., 2020). Such systems are037

then adapted to the target distribution, typically via038

fine tuning (Liu et al., 2019; Raffel et al., 2020).039

This work studies data selection, an intermediate040

training phase that visits a subset of the out-of-041

domain data that is deemed closer to the target 042

domain. 043

Previous work has proposed conducting a data 044

selection step after pretraining (van der Wees et al., 045

2017a; Wang et al., 2018; Gururangan et al., 2020; 046

Aharoni and Goldberg, 2020), either as a final train- 047

ing stage or before regular fine tuning. Data se- 048

lection is meant to identify a subset of the out-of- 049

domain pretraining set which might be the most 050

helpful to improve generalization on the target dis- 051

tribution. This selection is typically conducted by 052

estimating the probability that each data point be- 053

longs to the target domain (Moore and Lewis, 2010; 054

Axelrod et al., 2011). Recently, (Aharoni and Gold- 055

berg, 2020) introduced the use of domain classifiers 056

for data selection. 057

This work examines the benefit of data selection 058

for language modeling and machine translation. 059

We compare different selection methods and ex- 060

amine their effect for short and long pretraining 061

sessions. We also examine the benefit of selecting 062

varying amount of training data and the impact of 063

selection on the subsequent benefit of fine-tuning. 064

In addition to this novel analysis, our machine trans- 065

lation experiments compare the benefit of selecting 066

data with a classifier based on source language, 067

target language or both. 068

The effectiveness of data selection is dependent 069

on (i) the similarity of the pretraining data to the 070

target domain data, (ii) the precision of the selec- 071

tion method to identify in-domain examples from 072

the pretraining set, (iii) the extent to which train- 073

ing on the selected data is complementary to fine- 074

tuning. This work focuses on selecting data from 075

the pretraining set so (i) is fixed. We show that 076

(ii) benefits from the use of domain classifiers, in 077

particular, fine-tuned pretrained language models, 078

outperforming the more popular constrastive meth- 079

ods (eg. Wang et al. (2018)) in all settings that we 080

tested. We present the first analysis of (iii), which 081

we refer to as the complimentarity of selected data 082
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to finetuning data. We show that some data selec-083

tion methods can actually erode the effectiveness of084

subsequent fine-tuning. In some settings, we even085

report that a poor complementarity of selection and086

fine tuning can result in their combination reaching087

worse results than fine tuning alone.088

Effective application of data selection requires089

careful selection of when to switch from pretrain-090

ing to selection, how much selected data to train091

on and how long to train on selected data before092

switching to finetuning. Much of the previous work093

on data selection either evaluates small models that094

converge quickly (Moore and Lewis, 2010; Axel-095

rod et al., 2011) or does not describe the extent096

of grid search over selection size, number of steps097

of pretraining and number of steps of training on098

selected data. We are the first to analyze the hy-099

perparameter selection tradeoffs for data selection100

on large neural models, where models may be un-101

dertrained (Liu et al., 2019) and evaluating many102

selection sizes may be prohibitively expensive. We103

evaluate data selection on checkpoints with vari-104

able numbers of pretraining steps and show that105

data selection provides consistent results between106

minimally and extensively pretrained models. We107

also show the challenges of searching over selec-108

tion sizes because smaller selection sizes always109

converge more quickly but are outperformed by110

larger selection sizes trained for more steps.111

Our findings are the following: (i) the data se-112

lection mechanism must select data that is similar,113

but complementary to the fine tuning dataset (ii)114

the amount of selected data introduces a trade-off115

between quick but limited improvements when lim-116

iting selection to the best data, and long lasting117

but slow progress when selecting more data with118

an overall worse quality, (iii) data selection tech-119

niques are not created equal and domain classifiers120

often outperform contrastive scoring, the most com-121

mon data selection method, (iv) we propose three122

simple variants of domain classifiers for machine123

translation that can conditions the classifier on ei-124

ther source, target or both. We demonstrate these125

findings on language modeling and two language126

pairs for neural machine translation.127

2 Related Work128

In Natural Language Processing (NLP), adapta-129

tion methods have been applied to language mod-130

eling (Moore and Lewis, 2010), machine transla-131

tion (Axelrod et al., 2011; Daumé III and Jagarla-132

mudi, 2011), dependency parsing (Finkel and Man- 133

ning, 2009) or sentiment analysis (Tan et al., 2009; 134

Glorot et al., 2011). With the growing popularity of 135

neural methods (Collobert et al., 2011; Bahdanau 136

et al., 2015; Goldberg, 2017), the adaptation of neu- 137

ral models via fine tuning has become wide-spread 138

for various NLP applications (Devlin et al., 2019; 139

Liu et al., 2019; Raffel et al., 2020). Data selection 140

is another popular technique (van der Wees et al., 141

2017b; Wang et al., 2018) which can be used on its 142

own or in combination to fine tuning. 143

Data selection is a common domain adaptation 144

method. It has been been introduced before neural 145

methods were popular (Moore and Lewis, 2010; 146

Axelrod et al., 2011) and has later been adapted to 147

neural networks (Duh et al., 2013; van der Wees 148

et al., 2017b; Wang et al., 2018). Data selection 149

relies on an intermediate classifier which discrim- 150

inate between in-domain and out-of-domain data. 151

This classifier is trained relying on the small in- 152

domain dataset and the large out-of-domain dataset 153

and is then applied to the out-of-domain set to iden- 154

tify the examples closest to the targeted domain. 155

Choosing a selection model and the amount of out- 156

of-domain data to select have a strong impact on 157

the effectiveness of the selection methods (Aharoni 158

and Goldberg, 2020; Gururangan et al., 2020). Our 159

experiments explore these aspects, in addition to 160

the complementarity of selection with fine tuning. 161

Data selection can be performed in multiple 162

rounds, either to gradually restrict the out-of- 163

domain dataset to less and less data (van der Wees 164

et al., 2017b) or to re-evaluate out-of-domain data 165

as pretraining progresses (Wang et al., 2018). Data 166

selection can also be performed as a continuous 167

online process (Wang et al., 2018, 2021; Dou et al., 168

2020). Our work focus on single round data se- 169

lection, the most common setting. The benefit of 170

dynamic selection effectiveness has shown to be 171

variable (Wang et al., 2018) and its use involves 172

defining a complex schedule which is a research 173

topic in itself (Kumar et al., 2019). 174

Data selection for domain adaptation is also re- 175

lated to data selection for multitask learning. In 176

that case, the out-of-domain dataset is composed of 177

heterogeneous data from different tasks/domains 178

and the training algorithm favor data from some 179

tasks at the expense of others (Graves et al., 2017; 180

Wu et al., 2020; Standley et al., 2020). Contrary to 181

our setting, selection operates only at the task level 182

and the association of training examples to tasks 183
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is already known. Multitask learning is an active184

area of research. This area has explored dynamic185

selection with reinforcement learning (Graves et al.,186

2017; Guo et al., 2019) as well as update projec-187

tions to align out-of-domain gradients to in-domain188

gradients (Yu et al., 2020; Dery et al., 2021). Some189

of these ideas have later been investigated in the190

context of data selection for domain adaptation (Wu191

et al., 2018; Kumar et al., 2019; Wang et al., 2021).192

3 Data Selection Methods193

This section presents the selection method our ex-194

periments will focus on and introduce the trade-offs195

involved in choosing data selection hyperparame-196

ters.197

3.1 In-Domain Data Selection198

Domain adaptation has been introduced for appli-199

cation domains where data reflecting the inference200

conditions is only available in limited quantity.201

This setting considers that two training sets are202

available, a large generic out-of-domain dataset203

and a small specialized in-domain dataset from the204

targeted domain (Søgaard, 2013). Classical ma-205

chine learning assumes that training and test data206

originate from the same distribution. At the same207

time, statistical modeling reaches better generaliza-208

tion performance with large training sets (Vapnik,209

1998). Domain adaptation therefore faces a tension210

between using a large data set with a distribution211

possibly far from the test conditions and using a212

small training set matching the test condition.213

Data selection tries to address this dilemma. It214

examines the out-of-domain data and identifies215

training examples likely to be most effective at216

improving the in-domain training loss. For neural217

methods, data selection is often used in conjunction218

with fine tuning in a three phases process, as shown219

in Algorithm 1. In a first phase, the model is pre-220

trained on all the out-of-domain data. In a second221

phase, an intermediate classifier is trained to dis-222

tinguish in-domain from out-of-domain data, using223

both training sets. The classifier is applied to the224

out-of-domain set to identify examples considered225

close to in-domain data. The intermediate classifier226

is then no longer required and the main model is227

trained on the selected data starting from the pre-228

trained parameters. Finally, the main model is fine229

tuned, i.e. it is trained on the small in-domain train-230

ing dataset starting from the parameters after the231

selection phase.232

Algorithm 1: Data Selection & Fine Tun-
ing for Neural Models
Input: D,T out and in domain train sets.
Output: θ trained model parameters.

Function Select(D, T , n):
w ← trainClassifier(D ∪ T )
Y ← classify(w,D)
return argtopn(Y )

Function Main(D, T):
θ0 ← initParam()
θpre ← train(θ0, D) #pretraining
Dsel ← select(D,T, n)
θsel ← train(θpre, Dsel)
θft ← train(θsel, T ) #fine-tuning
return θft

Contrastive Data Selection: Commonly, classifi- 233

cation is done by estimating the probability that 234

a given out-of-domain example x belongs to the 235

target domain, P (T |x). Such an estimation can 236

be done by contrasting the likelihood estimated by 237

in-domain LM, P (·|T ) and an out-of-domain LM, 238

P (·|D), i.e. 239

logP (T |x) = logP (x|T |)− logP (x|D) + C (1) 240

whereC is a constant (log prior ratio). This method 241

was introduced as intelligent selection (Moore and 242

Lewis, 2010) and was later renamed contrastive 243

data selection (CDS) (Wang et al., 2018). Initially, 244

it relied on independent n-gram LMs for estimat- 245

ing P (·|T ) and P (·|D), trained respectively on the 246

(small) in-domain training set T and the (large) out- 247

of-domain training set D (Moore and Lewis, 2010; 248

Axelrod et al., 2011). With neural LMs, P (·|T ) can 249

be estimated by fine-tuning P (·|D) as suggested 250

by (van der Wees et al., 2017b; Wang et al., 2018). 251

The fine tuning strategy is particularly efficient 252

when one performs data selection to adapt a lan- 253

guage model. In that case, there is no need for 254

an intermediate model. The pretrained language 255

model to adapt is itself fine-tuned in a few steps on 256

T and is itself used to score the out-of-domain set. 257

Classifier Selection: Discriminative classification 258

(DC), introduced by Aharoni and Goldberg (2020); 259

Jacovi et al. (2021), trains a binary classifier to 260

distinguish T and D examples. This classifier is 261

either trained from scratch or fine tuned from a pre- 262
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trained model (Devlin et al., 2019; Liu et al., 2019).263

Aharoni and Goldberg (2020) train the domain clas-264

sifier, which they refer to as “Domain-Finetune”,265

only on the source (English) side of the parallel266

corpus. We propose two alternative domain classi-267

fiers, that instead condition the classifier on either268

the target language or both source and target con-269

catenated. To finetune language models on the270

target language data, we use BERT models that are271

pretrained on German (deepset.ai), Russian (Kura-272

tov and Arkhipov, 2019) and multilingual BERT273

(Devlin et al., 2018).274

The motivation for these alternative classifiers275

are two fold: (1) noisy web crawled translation276

datasets often have incorrect translations (or even277

languages) which could be missed by the do-278

main classifier if only conditioning on the English279

source data, (2) the multilingual domain classifier280

is able to model the interaction between the source281

and target and is more analogous to the bilingual282

cross-entropy difference proposed by Axelrod et al.283

(2011)284

Compared to CDS, DC trains a different model285

which adds training overhead. On the other hand, a286

distinct intermediate model offers more flexibility.287

The classifier might be pretrained on a different task288

(e.g. masked LM to select translation data) and its289

capacity can be selected independently from the290

hyperparameter of the model to be adapted. Both291

aspects are important since intermediate models292

can easily overfit given the small size of the target293

domain set T .294

Nearest Neighbor Selection: A lesser used meth-295

ods is sentence embedding nearest neighbors (Gu-296

rurangan et al., 2020; Aharoni and Goldberg, 2020).297

Embedding nearest neighbors relies on a pretrained298

model (Devlin et al., 2019; Liu et al., 2019) to299

represent sentences as vectors and then measure a300

domain-score by comparing the distance between301

a candidate sentence vector v(x) and the average302

in-domain sentence vector 1
|T |

∑
x∈T x.303

In our experiments, we evaluate both con-304

strastive data selection, the most common method305

by far, and selection with discriminitative classi-306

fiers as it has been shown more effective in sub-307

sequent work (Aharoni and Goldberg, 2020). Pre-308

vious work and our preliminary experiments indi-309

cated that nearest neighbor selection was not com-310

petitive with other baselines so we do not include311

it in our analysis.312

3.2 Hyperparameter Trade-offs 313

Data selection for domain adaptation requires se- 314

lecting several hyperparameters: the number of 315

pretraining steps, i.e. when to transition from train- 316

ing on the full out-of-domain set to the selected 317

subset; the number of selection steps, i.e. how long 318

to train the model on the selected data; the fraction 319

of selected data, i.e. the size of the selected subset. 320

These parameters are important as they impact 321

the computational cost of training and the target 322

domain generalization performance. To examine 323

these trade-offs, the difference between pretraining 324

and fine-tuning is important. Pretraining on a large 325

dataset starts with an initial strong generalization 326

improvement, followed by a long session where the 327

rate of generalization improvement is still positive 328

but ever diminishing. Fine tuning gives a strong 329

generalization improvement in a few steps before 330

overfitting quickly. The fraction of selected data 331

allows trading off between these two extremes: a 332

large fraction of selected data results in a large 333

training set with a distribution close to the out-of- 334

domain distribution while a small fraction results 335

in small training set with a distribution close to 336

the in-domain distribution. This means that set- 337

tings with large fractions can perform more steps 338

with generalization improvement albeit at a slower 339

pace compared to lower fraction settings. Thus the 340

number of selection steps and the selected fraction 341

parameter interact. Our experiments investigate 342

this interaction. 343

We characterize the effects of overfitting of the 344

intermediate selection classifier, which uniquely 345

affects data selection in conjunction with finetun- 346

ing. The intermediate classifier is trained on the 347

small target domain set T . As any machine learn- 348

ing model, it is biased toward its training set and 349

the data it selects can reflect this bias. The selected 350

out-of-domain examples might resemble the ex- 351

amples of T more than other in-domain examples 352

unseen during training. This bias transferred to 353

the selected data is itself inherited by the model 354

trained on the selected data. This indirect overfit- 355

ting is crucial for later fine tuning: we report that, 356

in some cases, the selected data is too similar to 357

T . There, the complementary value of selection 358

and fine tuning vanishes as data selection fails to 359

identify data providing updates complementary to 360

those provided later by fine tuning on T . 361
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4 Experiments362

We evaluate domain adaptation with data selection363

on two tasks, language modeling (LM) and ma-364

chine translation (MT). For both tasks, we have a365

large out-of-domain dataset and a small number of366

examples from the target domain. Both sets of data367

fulfil two functions each. The out-of-domain data368

is used to pretrain the model and all the selected369

data come from the out-of-domain set. The small370

target domain set is used to train the intermediate371

model that scores examples for data selection and,372

critically, this same set is used for finetuning the373

final model. For evaluation, we also have a valida-374

tion set and test set from the target domain. The375

validation set is used to select hyperparameters and376

early stopping points and the test set is only used377

for the final model evaluation.378

For language modeling, we use the 4.5 mil-379

lion sentences from the One Billion Word corpus380

(Chelba et al., 2013) as the out-of-domain set and381

5k sentences from the Yelp corpus as the target382

domain. This dataset was used for domain adapta-383

tion by (Oren et al., 2019) and we use their filtered384

and preprocessed version of the data, including the385

1k Yelp validation set and 10k Yelp test set. We386

train 2 language models; a 2-layer LSTM recur-387

rent network (Zaremba et al., 2014) and a base-size388

transformer (Vaswani et al., 2017).389

Our machine translation experiments focus on390

English-to-German and English-to-Russian. For391

the out-of-domain set, we use 4.5 million English-392

to-German pairs and and 5.2 million English-to-393

Russian pairs taken from filtered Paracrawl (Esplà394

et al., 2019). Paracrawl is composed of translations395

crawled from the web. Even though we use the fil-396

tered version of the dataset, Paracrawl is still noisy397

including examples of entirely mismatched sen-398

tences and occasionally incorrect languages. As in399

domain data, we rely on news data from the News400

Commentary Dataset (Tiedemann, 2012), which401

are high quality translations from the news domain.402

Our in-domain set is limited to 6k sentence pairs.403

We use an additional 3k for validation and 10k as404

the test set. As a neural MT model, we train a405

base transformer (Vaswani et al., 2017). Code to406

reproduce our experiments is available1. Models407

are implemented with Flax (Heek et al., 2020).408

We finetune on the small in-domain set by grid409

searching for a learning rate and using the valida-410

tion set for early stopping.411

1Hidden for anonymity

4.1 Selection Methods 412

Contrastive Data Selection The base pretrained 413

(PT) model is fine-tuned (FT) on the small target 414

domain dataset. This model acts as the “interme- 415

diate” model in this setting. Each example in the 416

out-of-domain dataset is scored by the difference 417

between the log likelihoods of the fine-tuned model 418

and the pretrained model. The full dataset can be 419

ranked by this score and a threshold is selected 420

to train on a uniform distribution of only the top 421

examples. 422

Discriminative Classifier The target domain 423

dataset is used as positive examples and random 424

samples from the out-of-domain dataset are used 425

as negative examples to train a discriminative do- 426

main classifier. The classifier can be a new model 427

trained from random weights, the base model with 428

a binary classification head or a pretrained model 429

from another task (such as a generic masked lan- 430

guage model). Unlike CDS, the base model is not 431

necessarily reused. The input features to the clas- 432

sifier may either be representations learned from 433

the pretrained base model, other embeddings or the 434

raw text data. In the case of machine translation, 435

the classifier can be trained on the source, target or 436

both. 437

In our transformer experiments, we evaluate 438

CDS and two classifiers, (i) a logistic regression 439

model on bytepair encodings (Sennrich et al., 2016) 440

and (ii) a fine-tuned BERT classifier (deepset.ai; 441

Kuratov and Arkhipov, 2019; Devlin et al., 2018). 442

We use four settings for the BERT classifier, train- 443

ing on the source, target, mean of the former two, 444

and concatenated language pairs, using the respec- 445

tive language specific pretrained BERT. For the 446

concatenated case, we use a multilingual BERT. 447

En-De En-Ru
logPPL BLEU logPPL BLEU

PT 1.666 23.71 1.815 23.20
+FT 1.612 26.89 1.708 24.92
PT + CDS 1.626 26.77 1.757 24.08
+FT 1.608 27.27 1.707 25.08
PT + DC (LogReg) 1.624 26.22 1.762 23.43
+FT 1.575 27.54 1.666 25.35
PT + DC (BERT) 1.599 26.33 1.752 23.66
+FT 1.550 27.78 1.645 25.52

Table 1: Data selection for machine translation of En-
glish to German and English to Russian. BLEU in ital-
ics next to log-perplexity (log PPL). For both datasets,
models were trained to 200K steps of pretraining and
15k steps of data selection.
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En-De En-Ru LM
lgPPL BLEU lgPPL BLEU lgPPL

PT 1.00 1.00 1.00 1.00 1.00
+FT 1.00 1.00 1.00 0.992 1.00
CDS 1.00 1.00 1.00 1.00 1.00
+FT 1.00 0.998 1.00 0.975 1.00
DC-LR 1.00 1.00 1.00 1.00 1.00
+FT 0.951 0.890 0.840 0.742 0.998
DC-BERT 1.00 1.00 1.00 1.00 1.00
+FT - - - - -

Table 2: Paired bootstrap comparison: each value re-
ports the fraction of samples with worse mean perfor-
mance than PT + DC-BERT + FT for 1k samples of
10k sentences sampled from a 10k sample test set.

4.2 Training on Selected Data448

Machine Translation Table 1 reports the log-449

perplexity and BLEU scores on two language pairs450

for each of the selection methods described above.451

Data selection always outperforms the baseline452

without selection, with the BERT domain classifier453

producing the best log-probability and BLEU on454

both datasets. The effectiveness of DC compared455

to CDS is a surprising result given the popularity456

of CDS. We fix the number of training steps on457

the selected data to 15K and pretrain the baseline458

model for an additional 15k steps so there is the459

same number of pretraining + finetuning steps for460

all settings. We search the optimal selection size461

for this cutoff of training steps, which we found to462

be 1 million for En-Ru and 500k for En-De. We re-463

port results before and after finetuning to highlight464

the variation in effectiveness of finetuning after the465

alternative selection methods. This is particularly466

noticeable for En-Ru where CDS outperforms the467

logistic regression classifier before finetuning but468

is worse after finetuning. In all settings, finetuning469

is more effective after data selection with a discrim-470

inative classifier rather than with CDS. Section 4.3471

provides insight as to why this is the case.472

Table 2 reports the paired bootstrap resampling473

(Koehn, 2004) where the PT + DC (BERT) + FT474

model is compared to the baseline models, in terms475

of loss and BLEU, corresponding to Table 1. Each476

value is computed from the 10,000 example test477

set. We draw 1,000 bootstrap samples of 10,000478

points each, with replacement. This test shows that479

the classifier method of data selection outperforms480

CDS with over 99% statistical significance on log-481

perplexity.482

Figure 1 shows the log-probabilities at different483

checkpoints ranging from 50k to 1 million steps484

of training. The relative benefit of FT and DC+FT 485

over PT is diminishing as training progresses. How- 486

ever, there are consistent benefits from data selec- 487

tion, so longer pretraining on large models is not 488

sufficient to replace data selection. Even pretrain- 489

ing up to 1m steps and finetuning (log ppl = 1.530) 490

does not reach the loss from DC + FT at 400k (log 491

ppl = 1.519). The relative improvement between 492

methods is surprisingly constant across pretraining 493

steps with a slight decline in the complementary 494

benefit of combining fine tuning with selection. 495

This means that comparing the adaptation methods 496

early in the pretraining process is indicative of their 497

relative loss at a later stage. 498

Further evaluation of performance at different 499

checkpoints throughout pretraining can be found 500

in the Appendix. 501

0.2 0.4 0.6 0.8 1.0
Steps (million)

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

Lo
ss

PT
PT+FT
PT+CDS
PT+CDS+FT
PT+DC (BERT)
PT+DC+FT

Figure 1: The validation loss curves for pretraining,
data selection and finetuning (MT En-De). The pre-
training loss (PT) is a single training run, whereas all
the other points are checkpoints from the base run that
were trained on selected data and/or finetuned.

Domain Classifier Variants Table 3 reports the 502

log-perplexities and BLEU scores for the four 503

variants of the BERT domain classifier. Aha- 504

roni and Goldberg (2020) propose the Source 505

DC method. We propose also exploring target- 506

language-conditioned domain classifiers, and in 507

fact, find that the Target DC selection method out- 508

performs Source DC on En-DE. Concatenation DC 509

does not yield the best results despite having access 510

to the most data (ie. both source and target). This 511

may be because of the pretraining mismatch, in that 512

Multilingual BERT was not trained on pairs of seg- 513

ments from different languages. We also take eval- 514

uate using the mean score of the source and target 515

models as a simple alternative to the multilingual 516

BERT approach. Future work may explore alterna- 517
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tive methods for fusing source and target language518

representations for training a domain classifier.519

En-De En-Ru
log PPL BLEU log PPL BLEU

Target DC 1.550 27.78 1.653 25.21
Source DC 1.557 27.52 1.645 25.52
Concat DC 1.560 27.68 1.657 25.20
Mean DC 1.555 27.71 1.647 25.29

Table 3: Different types of BERT classifiers, target uses
the target language (De/Ru), the source is English and
Concat concatenates source and target and trains classi-
fier on multilingual BERT. Mean takes the mean scores
from source and target classifiers. All models are eval-
uated at 200k pretraining steps, similar to Table 1.

LSTM Transformer
PT 4.978 4.582
+FT 4.284 4.145
PT + CDS 4.548 4.392
+FT 4.183 4.151
PT + DC (LogReg) 4.644 4.456
+FT 4.183 4.108
PT + DC (LM Hidden) 4.603 -
+FT 4.179 -
PT + DC (BERT) - 4.385
+FT - 4.069

Table 4: Language modeling results (log-perplexity)
across selection methods for an LSTM and a base-
transformer. The LSTM was pretrained for 115k steps
and the transformer was trained for 20k steps.

Language Modeling For language modeling we520

evaluate on both a modestly sized LSTM and a521

base-size transformer. For the LSTM domain clas-522

sifier, we reuse the pretrained language model as523

the feature representation for a simple linear do-524

main classifier (LM Hidden), as a smaller domain525

classifier seems appropriate given the smaller lan-526

guage model. We see similar results for the two527

models despite the large differences in number of528

parameters, training steps and proximity to conver-529

gence. The LM results in Table 4 show that fine530

tuning (PT+FT) and data selection (CDS, DC) are531

improving the pretrained model on target domain532

validation data. The benefit of FT alone is generally533

greater than selection alone but both approaches are534

complementary with the best result obtained with535

combined approaches (CDS+FT, DC+FT). When536

comparing methods we observe that DC is worse537

than CDS on its own but it is equivalent or bet-538

ter in combination with fine tuning (DC+FT vs539

CDS+FT). This indicates that the methods differ540

in their complementarity with FT and evaluating541

selection approaches before fine tuning is not suffi- 542

cient. 543

4.3 Overfitting and Complementarity 544

Our work compares two common data selection 545

techniques, contrastive data selection (CDS) and 546

a discriminative domain classifier (DC). As dis- 547

cussed in the previous section, we found the combi- 548

nation of DC+FT to be the most effective combina- 549

tion both for our LM and MT settings. One reason 550

of this success is the complementarity of DC with 551

FT. CDS did not benefit as much from subsequent 552

fine tuning as DC selection. 553

In Figure 2 (left), we show the learning curves 554

for both CDS and DC (BERT) with the same se- 555

lection size of 1m for MT with 200k steps of pre- 556

training. The red dotted curve show that the CDS 557

model reaches excellent performance on the target- 558

domain training set, but fail to perform as well on 559

the target-domain validation set. This means that 560

the MT model trained on CDS selected data suffers 561

more from overfitting than the MT model trained 562

on DC selected data. This is particularly surpris- 563

ing given the large selection size of nearly 1/4th of 564

pretraining data. The data selected by CDS is too 565

specific to the target-domain training set. This bias 566

also certainly explains the worse complementary 567

of CDS and FT, i.e. if CDS selects a training set 568

whose effect is similar to the target-domain training 569

set T , the updates from T at fine-tuning are less 570

beneficial. 571

Lastly, we examine important pitfalls to avoid 572

when comparing selection methods and validat- 573

ing their parameters. Figure 2 (middle) shows 574

that when considering selection sets of different 575

sizes, training curves converges at different rates. 576

Small selected subsets progress at the fastest rate 577

but reaches their best generalization quickly, and 578

subsequently overfit, while large subsets progress 579

at a slower rate but their best generalization later. 580

This means that short diagnostics to pick the sub- 581

set size will under estimate the value of large sub- 582

sets. This is problematic for efficiently defining 583

curriculum with data selection (Kumar et al., 2019). 584

Similarly, the generalization loss of model which 585

went through a data selection phase but prior to fine 586

tuning is also misleading to predict its loss after 587

fine tuning as illustrated in Figure 2 (right). 588

4.4 Effectiveness of Data Selection 589

The purpose of the intermediate data selection 590

model is to rank all the out-of-domain data from 591
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Figure 2: Effects of overfitting and complementarity: Left: Validation and training loss on the target domain
during training on selected data (MT En-De). The dotted line falling below the solid line indicates the model is
overfitting to the small target domain dataset despite never seeing this data in training. Middle: Loss curves for 6
different data selection sizes for DC (BERT) at the 100k checkpoint (MT En-De). Larger sizes improve loss more
slowly but can be trained for longer to eventually outperform the smaller sets. For readability, we display the best
checkpoint up to each step. Right: Validation loss on MT En-De during finetuning. Both data selection methods
start at a loss that is better than pretraining but CDS does not benefit much from finetuning, reaching a loss similar
to finetuning without data selection. Classifier selection has large a improvement from finetuning.

most to least similar with respect to the in-domain592

data. We evaluate and report the performance of593

CDS and DC for both LM and MT tasks. The594

data selection model is never used explicitly as a595

binary classifier but rather as a scorer. However, as596

a proxy for the quality of scoring, we evaluate the597

binary classification accuracy on an unseen set of598

in-domain and out-of-domain data. We also report599

the average quantile of the in-domain validation600

data which simulates where in the ranking true601

in-domain examples would appear. We split the602

out-of-domain data into 100 equal bins and take603

the average of the bin index that each in-domain604

example would fall into by its data selection score.605

Table 5 shows good performance of CDS and606

DC for language modeling but clear underperfor-607

mance of CDS as a binary classifier in the MT608

setting. Also, it is noteworthy that logistic regres-609

sion on byte-pair unigrams outperforms CDS and610

approaches the performance of BERT while having611

many fewer parameters and a much lower training612

cost.613

Classifier Accuracy Avg Quant.

LM
CDS 91.65% 3.6
MLP 89.02% 4.9

MT
(En-De)

CDS 66.94% 26.0
LogReg 87.52% 3.9
BERT 93.51% 2.0

Table 5: Binary classification accuracy of domain clas-
sifier and average quantile of in-domain data when
binned with ranked out-of-domain data.

5 Conclusions 614

This work explores data selection, a popular 615

method for domain adaption for neural language 616

modeling and neural machine translation. Data se- 617

lection typically divides a training run into three 618

phases: pretraining on out-of-domain data, training 619

on out-of-domain data selected to resemble target 620

domain data and fine tuning on target domain data. 621

We compare the most common selection methods, 622

contrastive data selection and discriminative model 623

classifier and measure their complementarity with 624

fine tuning. 625

Our experiments motivate several practical rec- 626

ommendations for the practitioner: (i) pretraining 627

followed by data selection and fine tuning can reach 628

a given generalization loss several time faster in 629

terms of total training steps than pretraining with 630

fine tuning; (ii) a data selection method should 631

not be evaluated before fine tuning since not all 632

methods/parameters bring the same complemen- 633

tary value compared to fine tuning; (iii) data selec- 634

tion should care about overfitting to the in-domain 635

training set, since this type of overfitting results in 636

selected data very similar to the fine tuning set and 637

impacts the complementarity of data selection and 638

fine tuning; (iv) longer pretraining runs are always 639

beneficial to later adaptation stages for fine-tuning, 640

data selection and their combination but pretraining 641

has diminishing return; (v) despite the popularity 642

of contrastive data selection, discriminative domain 643

classifiers consistently outperformed this method 644

in our experiments. 645
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A Appendix918

A.1 Training Steps919

Figure 3 shows the acceleration of training as a920

function of pretraining + finetuning (PT+FT) steps921

needed to reach an equivalent loss for translation.922
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Figure 3: Data selection (MT En-De) as an accelera-
tion method. This table shows the speedup of reaching
a given loss at each checkpoint relative to how many
steps of pretraining and finetuning are required to reach
the same loss. Values lower than 1 indicate that the loss
can be reached in fewer steps without data selection.
The final bar for DC is shaded to indicate extrapolation
and is off the y-axis because the loss is lower than any
loss reachable in 1 million steps with pretraining and
finetuning.

This figure highlights the effectiveness of pretrain- 923

ing since the performance obtained by data selec- 924

tion for early checkpoints can be matched by sim- 925

ply pretraining longer. Furthermore, DC+FT at 926

400k pretraining steps cannot be matched, even 927

when pretraining for up to 1m steps. This figure 928

shows that a practitioner with a given generaliza- 929

tion requirement can consider data selection early 930

since the target domain generalization gain for early 931

checkpoints might avoid a long pretraining run. 932

At 50k steps, data selection accelerates training 933

by a factor of about 3.5x, meaning the same perfor- 934

mance can be reached with an additional 150k steps 935

of pretraining. However, for later checkpoints, the 936

marginal benefits of pretraining decreases while 937

the improvements from data selection are steady 938

making data selection a clear choice for later check- 939

points. In particular for well trained smaller mod- 940

els, such as the LSTM we evaluate for language 941

modeling, the performance after data selection may 942

actually be unreachable just through pretraining 943

either due to the noisiness of the training data that 944

might be filtered from data selection or due to the 945

limited model capacity. 946

A.2 Complementary Finetuning vs 947

Overfitting 948

Figure 4 measures the correlation between the rel- 949

ative difference between the train and valid best 950

in-domain loss prior to fine tuning (selection over- 951

fitting rate) and the relative difference between the 952

valid loss before and after fine tuning (fine tuning 953
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Figure 4: Impact of selection overfitting (MT En-De).
When data selection overfits to the in domain set, the
improvements from finetuning are lower. The x-axis is
the overfitting relative difference and the y-axis is the
relative improvement from finetuning. Pearson Corre-
lation Coefficient : -0.91

rate). There is a strong anti-correlation between954

these factors, showing that overfitting at the selec-955

tion stage indeed impacts negatively the impact of956

FT. We include points on this graph selecting the957

top 4m examples, effectively filtering out the bot-958

tom 500k, which has a slight overfitting effect, to in-959

clude more points with an intermediate overfitting-960

to-improvement tradeoff.961
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