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Abstract

Recent breakthroughs in large language mod-
els (LLMs), alongside powerful speech mod-
els achieving high zero-shot accuracy (e.g.,
Whisper (Radford et al., 2022)), have catalyzed
the emergence of Audio LLMs—unified mod-
els bridging acoustic and linguistic modalities.
This first systematic review contrasts them with
domain-specific predecessors (e.g., Wav2Vec
2.0 for speech, BERT for text). We analyze au-
dio’s dual nature through HuBERT units (Hsu
et al., 2021) and expose data biases (e.g., 82%
English in Common Voice vs. <3% Swabhili).
Architecturally, block-sparse attention (BSA)
(Gong et al., 2023) cuts memory use by 40%
for 1-hour audio. Alignment strategies like mul-
timodal prompting (Huang et al., 2023) achieve
90% voice cloning similarity with 3-second ref-
erences. However, challenges remain: 40-60%
higher WER in low-resource languages, ~50t
CO, emissions per 1B-parameter model, and
300% annual rise in voice spoofing (Al-Smadi
et al., 2024). We advocate self-supervised mul-
tilingual pretraining and neuro-symbolic hy-
brids as pivotal next steps, aiming to democra-
tize speech technology while mitigating risks.

1 Introduction

Audio processing and understanding have been
long-standing challenges in artificial intelligence
research. Traditional approaches have relied on spe-
cialized models for specific audio tasks, such as au-
tomatic speech recognition (ASR), text-to-speech
synthesis (TTS), music generation, and environ-
mental sound classification. While effective in their
respective domains, these specialized models often
lacked generalizability and required task-specific
architectures and training paradigms. The land-
scape of audio Al has been fundamentally trans-
formed by the convergence of two critical devel-
opments: the rise of self-supervised representation
learning for audio [1] and the emergence of Large
Language Models (LLMs) with remarkable gen-

erative and reasoning capabilities [2]. This con-
vergence has given birth to Audio Language Mod-
els (Audio LLMs), which extend the principles of
language modeling to the audio domain, enabling
unified architectures that can process, understand,
and generate various forms of audio content.

2 Data

Data serves as the foundational building block for
Audio LLM capabilities. Unlike text, audio, as a
carrier of spoken language, is complex and rich
in acoustic detail.

2.1 Data Characteristics and Core Challenges

Audio LLMs primarily process spoken audio data
(dialogues, lectures, etc.), whose complexity stems
from:

* Linguistic Properties: Accents, speaking rate,
dialects, non-fluencies (mumbling, disfluencies).

* Acoustic Properties: Speaker identity, emotion,
environmental noise, channel variations.

Key challenges include high annotation costs
(requiring expert transcription, approximately
$5/minute according to Rev.ai 2023 quotes). There
is significant data inequality, with English data
dominance (e.g., English constitutes around 82%
of data in some large speech datasets) leading to
poor multilingual generalization. The long-tail
distribution of rare dialects/accents exacerbates
this issue. Furthermore, processing non-standard
speech and achieving accurate multimodal align-
ment (audio-text synchronization) present technical
hurdles.

2.2 Representation Methods and Technical
Selection

Converting continuous audio into model input re-
quires a representation layer. Different methods



offer trade-offs in capturing linguistic content and
acoustic properties:

* Log-Mel: Computationally efficient, provides
time-frequency visualization, but loses phase in-
formation. Typically used as front-end features
for ASR.

* SSL. Acoustic Units: Discretized and LLM-
compatible, learned from large pre-trained mod-
els (e.g., wav2vec 2.0 (Polyak et al., 2020), Hu-
BERT (Hsu et al., 2021)). These serve as the
LLM’s "audio vocabulary" and are suitable for
speech generation and cross-modal tasks.

* Raw Waveform: Informationally lossless but
has high computational cost and complex mod-
eling. Primarily used in high-fidelity synthesis
research.

Technical Selection: SSL representations (fea-
tures or discrete acoustic units (Polyak et al., 2020;
Hsu et al., 2021)) are widely adopted due to their
effective encoding of linguistic content. Contro-
versy: While SSL representations dominate, (Gu
and Goel, 2021) suggests raw waveform input +
novel architectures (like S4) show potential on spe-
cific tasks, possibly reshaping future representation
learning paradigms.

2.3 Datasets and Bias Analysis

Training relies on massive datasets. Representa-
tive Speech Data include LibriSpeech (960 hours
of English read speech, ASR benchmark), Com-
mon Voice (crowdsourced multilingual data with
accent diversity, ~3k+ hours, ~100+ languages,
CCO license), and GigaSpeech (10k+ hours, En-
glish, LDC License, crawled). Multimodal Associ-
ated Data such as AudioCaps (Fonseca et al., 2019)
(~50k clips, English, Audio Captioning, CC BY-
SA license, crawled) provide audio-text descrip-
tions. Comprehensive Audio Data like AudioSet
(Gemmeke et al., 2017) (~2M clips, N/A lan-
guages, Audio Event annotation, YouTube Terms
license, crawled) covers broader audio events. Key
biases include the read speech style in LibriSpeech,
non-native accents in Common Voice, and event
distribution imbalance in AudioSet.

Bias Analysis and Mitigation: Severe reliance
on English data limits universality. Acquisition
methods (crawled/crowdsourced) influence quality
and bias. Mitigation strategies: multilingual mixed
training, adversarial learning to reduce speaker bias

Ethics and Privacy: Crowdsourced data re-
quires speaker informed consent (e.g., Common
Voice’s CCO protocol) and de-identification (re-
moving sensitive voiceprint information). Data ac-
quisition pipelines often involve steps like sourcing,
crawling or crowdsourcing, filtering, and annota-
tion. Ethical data collection within this pipeline can
follow a process such as: Record — Sign Consent
— De-identify — Encrypt Storage.

2.4 Preprocessing and Alignment Techniques

Standard audio preprocessing (noise reduction,
VAD-based long audio segmentation). Noise re-
duction methods like spectral subtraction can re-
duce WER by 12% at SNR<5dB (based on DNS-
MOS data). VAD parameters might include a 20ms
frame length with a threshold of -40dBFS. For tasks
involving audio-text association, high-precision
audio-text alignment (e.g., CTC forced alignment,
error < 50ms) is fundamental for generating high-
quality training data.

3 Architecture

Audio LLM architectures adapt and extend text
LLM designs to accommodate the temporal and
multimodal nature of audio data. The core chal-
lenge lies in efficiently processing audio input and
serving speech and language tasks.

3.1 Basic Architecture Paradigms: Serving
Speech and Language Tasks

Based on task requirements, Audio LLMs employ
different Transformer variants:

3.2 MokEs vs. Dense: Handling Audio
Diversity

Mixture-of-Experts (MoE) architectures process
different inputs by activating sparse expert net-
works (Shazeer et al., 2017; Lepikhin et al., 2020;
Riquelme et al., 2021). This theoretically allows
for more efficient handling of audio data diversity
(accents, environments) or multiple tasks. Com-
pared to dense models, MoEs have a larger number
of parameters but controlled computational cost,
representing a direction for scaling model size (Fe-
dus et al., 2022).

3.3 Attention Mechanisms: Long-Range
Dependencies and Cross-Modality

Attention mechanisms are central to Transformers.
Self-attention captures long-range dependencies



Architecture
Type

Input/Output

Typical Applications

Core Advantage & Scale

Encoder-Only

Audio — Embed-
ding

Classification, Retrieval

Efficient inference; typi-
cally <100M parameters

Decoder-Only

Audio Representa-
tion — Audio/Text

Speech synthesis (Wang
et al., 2023), audio gen-
eration (Kreuk et al.,
2022; Copet et al., 2023;
Polyak et al., 2022), uni-
fied modeling (Zhang
et al., 2023)

Generative flexibility;
scales from hundreds of
millions to trillions

Encoder-
Decoder

Audio Encoder —
Text/Audio Decoder

ASR, ST (Radford et al.,
2022; Peng et al., 2023;
Zhou et al., 2022), audio
captioning (Wang et al.,
2023)

Precise sequence conver-
sion; 100M to tens of bil-
lions

Table 1: Comparison of major architecture paradigms for audio LLMs.

within audio sequences, enabling the model to un-
derstand speech structure. Cross-modal attention
in Encoder-Decoder models facilitates alignment
and information exchange between audio represen-
tations from the encoder and generated sequences
(text or audio) from the decoder (Zhou et al., 2022).

The standard attention computation for long au-
dio sequences has a quadratic complexity O(N?),
which is computationally prohibitive. Optimization
techniques (Gong et al., 2023) (e.g., local attention,
sparse attention, linear attention) are necessary to
reduce the computation to O(N log N) or O(N).
The core scaled dot-product attention is calculated
as:

Attention(Q, K, V) ft QKT v
ention(Q, K,V) = softmax

Vg
where ), K,V are query, key, and value matrices,
and dy, is the dimension of the keys.

3.4 Architecture Evolution and Practice

Audio LLM architectures have evolved from early
modular models combining CNNs/RNNs towards
large-scale Transformer-based end-to-end and uni-
fied modeling approaches (Zhang et al., 2023; Liu
et al., 2024).

In practice, sparsity (e.g., MoE) and model com-
pression techniques (quantization, pruning) are cru-
cial for reducing model size and computation, en-
abling edge deployment (e.g., quantized Whisper
models on mobile devices). Training and running

large models also incur high energy consumption,
contributing to carbon footprint challenges.

4 Post-Training

After pre-training or initial fine-tuning, post-
training aims to further optimize model behavior
to better align with user intent, follow instructions,
and improve output quality. This is crucial for Au-
dio LLMs to understand and respond to spoken
instructions and achieve reliable interaction.

4.1 Reward Models and Human Feedback

Reward Models play a central role in Reinforce-
ment Learning from Human Feedback (RLHF).
They learn to predict human preferences or evaluate
the quality of model outputs (e.g., ASR WER, TTS
MOS, or subjective human ratings). Building a Re-
ward Model for Audio LLMs involves collecting
human ratings or rankings of different audio/text
outputs to quantify performance in spoken lan-
guage understanding and generation.

Building an effective Reward Model for Audio
LLMs involves collecting human annotations, rang-
ing from simple preference rankings between dif-
ferent model outputs to multi-dimensional scoring
of various output aspects, such as naturalness, ac-
curacy, emotional tone, and relevance. This human
feedback provides the ground truth for training the
Reward Model. The model itself is typically a neu-
ral network that takes the model’s input (original
audio) and output (generated audio or text) as in-



put and produces a scalar reward score. Designing
multimodal Reward Models that can effectively
evaluate both acoustic and linguistic aspects of the
output is a key challenge; architectures often em-
ploy dual encoders or fusion layers to process audio
and text features before predicting a unified reward.
Balancing rewards for potentially conflicting crite-
ria, such as maximizing speech naturalness while
ensuring content accuracy, is an active research
area.

Loss Function: Commonly MSE loss (for regres-
sion ratings) or ranking loss (for preference data).

Multimodal Scoring Design Example: For TTS
tasks, the reward function can combine: natu-
ralness (MOS prediction model score), pronun-
ciation accuracy (phoneme error rate), and emo-
tion matching (consistency with text emotion la-
bels). Ablation studies show that combining
multi-dimensional scores (e.g., naturalness + pro-
nunciation + emotion) significantly improves over-
all model performance compared to single dimen-
sions.

Challenges and Solutions: High subjectivity in
evaluation (requires multiple annotators for consen-
sus), balancing multimodal rewards (e.g., speech
naturalness vs. content accuracy).

4.2 Alignment Strategies and Technical
Selection

Various strategies are used to align Audio LLM
behavior to better match human preferences and
instructions:

1. Instruction Tuning: Training the model on (au-
dio input, instruction, output) pairs (Zhang et al.,
2023; Liu et al., 2024) to improve its ability to
understand and execute complex spoken or text
instructions, enhancing generalization. The
effectiveness hinges on the size and diversity
of the instruction dataset; datasets contain-
ing tens of thousands of varied spoken instruc-
tions and corresponding outputs are typically
required.

2. Multimodal Prompting: Using text Prompts
(text instructions) or audio Prompts (e.g.,
speaker reference audio) to guide the Audio
LLM to generate desired audio or text (Huang
et al., 2023; Chen et al., 2023) (e.g., controlling
audio generation via text instructions (Huang
et al., 2023)). High sensitivity to ambiguous
instructions is a potential failure point. Case

study: when instructed "say this in a happy
voice but not too exaggerated", 25% of Prompt-
ing outputs had inadequate emotional intensity.
Handling ambiguous instructions can involve an
instruction clarification module.

3. RLHF: Using a trained Reward Model, fine-
tuning the pre-trained model via reinforce-
ment learning (e.g., using the PPO algorithm)
to maximize the reward signal (Huang et al.,
2023). The RLHF objective function is typically
max, E[Ry(a,t) — BDkL(7||mpre)], Where
is the current policy, 7. is the pre-trained pol-
icy, and 3 controls the KL divergence penalty.
Applying RLHF to audio generation presents
challenges in defining the discrete or continuous
action space representing audio modifications
(e.g., operating on acoustic units or latent dif-
fusion variables) and ensuring training stability.
This is particularly effective for subjective tasks
like generating natural dialogue or creative au-
dio, often showing significant gains in perceived
quality (e.g., MOS improvements).

These strategies collectively enhance the Au-
dio LLM’s ability to engage in natural spoken
dialogue, follow complex instructions, and per-
form multimodal tasks by better aligning their out-
puts with human expectations. However, achiev-
ing seamless real-time spoken interaction also ne-
cessitates addressing engineering challenges like
minimizing latency and robustly handling speech
disfluencies or interruptions.

Data Source: Based on results from Whis-
per fine-tuning experiments (OpenAl, 2023),
AudioLM-RLHF (Google, 2024), and other related
literature.*

4.3 Safety and Ethics

The generative capabilities of Audio LLMs in-
troduce potential safety risks, particularly voice
cloning abuse (Deepfake). Beyond spoofing, con-
cerns include the perpetuation of biases (e.g., ac-
cent or gender bias in synthetic speech) and pri-
vacy risks related to training data compliance and
the potential for re-identifying individuals from
voiceprints.

Addressing these issues requires a multi-faceted
approach:

* Technical Safeguards: This includes developing
robust detection models trained to distinguish



Strategy Goal Data Req. | Core Func. | Pros Cons Typical Train
App. Cost
Instruct. Tuning Follow In-| Input- Improve Stable, Less | Limited Spoken In-| Low (40
structions Output General. Data General. struct. GPU hrs)
Pairs
Multimodal Prompt. | Flexible No Extra | Guide Be-| Zero-shot | Lower Pre-| Cross- Very
Control Training havior cision modal Low
RLHF Align  w/ | Human Rat- | Optimize Adapts to | High Data | Gen. Dia-| High
Pref. ings Gen. Pref. Cost logue (120
GPU hrs)

Table 2: Comparison of major alignment strategies for Audio LLMs.

Strategy Data Vol. WER/(ASR) MOST(TTS)
Instruction T. | 10k Labeled Ex. 12% +0.3
RLHF 5k Preference 18% +0.7
Prompting No Extra T. 8% (Zero-shot) | +0.1 (Zero-shot)

Table 3: Illustrative performance gains of different post-training strategies on representative audio tasks.

between genuine and synthetic speech, often us-
ing datasets like ASVspoof, achieving detection
performance measured by metrics like Equal Er-
ror Rate (EER=2.1% on ASVspoof LA20). Ex-
ploring techniques like audio watermarking to
embed inaudible signals in generated audio for
source tracing is another avenue.

 Ethical Considerations: Implementing user au-
thentication mechanisms (preventing malicious
use), adding "Al Voice" labels to generated con-
tent (clearly informing listeners), establishing
usage guidelines and legal regulations. Ensuring
training data is collected and used in compliance
with privacy regulations (e.g., GDPR) and im-
plementing techniques to reduce inherent biases
in the training data and model outputs are also
critical ethical imperatives.

Glossary:

¢ WER (Word Error Rate): Measures ASR ac-
curacy.

* MOS (Mean Opinion Score): Average sub-
jective score, measures speech quality (e.g.,
naturalness).

* EER (Equal Error Rate): Equal Error Rate,
measures performance of binary classification
systems (e.g., spoof detection).

5 Limitations

Despite the significant progress in Audio LLMs,
several fundamental limitations and challenges
must be addressed for their widespread adoption

and responsible development. These challenges
span data, modeling, computational efficiency, eval-
uation, and ethical considerations.

5.1 Data Scarcity and Bias

A primary limitation stems from the scarcity
and bias of high-quality audio data. Anno-
tation remains prohibitively expensive (approx.
$5/minute), hindering the creation of diverse and
comprehensive corpora. Existing datasets suffer
from severe English data dominance (e.g., over
80% in some large corpora), leading to substan-
tial performance disparities in low-resource lan-
guages (40-60% higher WER on benchmarks like
Common Voice). The long-tail distribution of
rare accents, dialects, and specific acoustic condi-
tions means models struggle to generalize to less
represented speech variations. Processing non-
standard speech (mumbling, disfluencies, speech
disorders) also remains a significant challenge due
to limited dedicated data. Achieving accurate mul-
timodal alignment between audio and text is cru-
cial for many tasks but technically difficult, im-
pacting training data quality. Future efforts should
focus on data augmentation techniques tailored
for audio (e.g., advanced SpecAugment variants,
noise injection) and low-resource language learn-
ing strategies (e.g., cross-lingual transfer, unsu-
pervised adaptation) to mitigate these biases and
improve generalization.

5.2 Computational and Architectural
Bottlenecks

Processing the inherently sequential and high-
dimensional nature of audio data introduces sub-



stantial computational challenges. The quadratic
complexity of standard Transformer attention
(O(N?)) is a major bottleneck for long audio se-
quences (e.g., >1 hour), necessitating complex op-
timization techniques (Gong et al., 2023). While
techniques like sparse attention (e.g., FlashAt-
tention, Memory-Efficient Transformers) and effi-
cient architectures (e.g., Conformer (Gulati et al.,
2020)) offer improvements, processing very long
contexts efficiently remains an active area. Training
and deploying large-scale Audio LLMs require im-
mense computational resources, resulting in high
energy consumption and a significant carbon foot-
print (~50t CO2 per 1B-parameter model train-
ing). While model compression techniques like
quantization and distillation enable some edge de-
ployment, running multi-billion parameter models
on resource-constrained devices remains challeng-
ing. Furthermore, current models still face speech-
text modality asymmetry, potentially struggling
to fully capture and generate subtle acoustic nu-
ances like prosody when interacting with text.

5.3 Evaluation and Alignment Challenges

Evaluating the performance of Audio LLMs, espe-
cially for generative and subjective tasks, presents
significant challenges. Standard metrics like WER
and MOS capture certain aspects but often fail to
fully assess the quality of complex outputs (e.g.,
naturalness in diverse contexts, emotional congru-
ence, adherence to nuanced instructions). Evalu-
ating multimodal outputs comprehensively is par-
ticularly difficult. Aligning model behavior with
human preferences through techniques like RLHF
requires collecting large amounts of expensive and
subjective human preference data. Models can also
be highly sensitive to ambiguous or subtly con-
tradictory instructions, highlighting limitations
in current instruction-following capabilities. Fu-
ture work should explore developing more robust
automated evaluation metrics for complex au-
dio and multimodal outputs and investigate more
data-efficient alignment techniques (e.g., explor-
ing synthetic data for reward models or alternative
feedback mechanisms).

5.4 Safety, Ethical, and Societal Concerns

The powerful capabilities of Audio LLMs raise
critical safety and ethical concerns. The increas-
ing sophistication of voice synthesis technology
enables malicious applications like voice spoof-
ing (Deepfake audio), with detection defenses cur-

rently facing challenges in robustness (ASVspoof
EER >5% (Al-Smadi et al., 2024)) and incidents
rising (300% increase reported by FTC in 2023).
Audio LLMs can also perpetuate biases present
in training data, leading to unfair or stereotypical
outputs in synthetic speech (e.g., accent or gender
bias). Privacy risks are also significant, related
to the collection and use of training data and the
potential for re-identifying individuals from voice
characteristics. Addressing these issues requires
robust technical safeguards like audio watermark-
ing and improved detection models, alongside eth-
ical considerations such as differential privacy
(DP) training, user authentication, clear labeling
of Al-generated content, and effective regulatory
frameworks.

6 Conclusion

Audio Large Language Models represent a signif-
icant step towards unified speech and language
processing, extending the powerful capabilities of
LLMs to the domain of audio, particularly spoken
language. This survey has provided an overview
of the key components enabling this progress, from
the unique characteristics and representation of au-
dio data to the adaptation of advanced architectural
paradigms and the development of sophisticated
post-training strategies for alignment and task adap-
tation.

We highlighted how Audio LLMs leverage large-
scale datasets and self-supervised learning for ef-
fective audio representation, employ Transformer
variants (Encoder-Only, Decoder-Only, Encoder-
Decoder) tailored for various speech and audio
tasks, and utilize techniques like attention opti-
mization for handling long sequences and cross-
modal interactions. Furthermore, we discussed the
crucial role of post-training methods, including
reward modeling, instruction tuning, and multi-
modal prompting, in shaping model behavior and
enabling natural spoken instruction following. The
increasing focus on practical considerations like
model sparsity, edge deployment, and energy effi-
ciency underscores the field’s move towards real-
world applicability.

Despite the remarkable progress, the field of
Audio LLMs is still in its early stages and faces
considerable challenges as outlined in Section 5.
Addressing data biases through improved collec-
tion and augmentation, enhancing computational
efficiency for long and complex audio inputs via ad-



vanced architectures and optimization, developing
robust and comprehensive evaluation protocols for
diverse tasks, and navigating the ethical landscape
(including voice Deepfake risks and bias mitiga-
tion) are critical for future development. Promising
future research directions include self-supervised
multilingual pretraining to improve low-resource
language performance, exploring neuro-symbolic
hybrids (e.g., integrating differentiable finite-state
machines) for enhanced control and interpretability,
and investigating cross-modal contrastive learn-
ing (e.g., inspired by AudioCLIP) to better bridge
the audio-text modality gap. Furthermore, devel-
oping more data-efficient alignment techniques
(e.g., using automated reward models or synthetic
data) and exploring novel applications in domains
like education (personalized voice tutoring) and
mental health (emotional recognition and inter-
vention) represent exciting avenues. Continued
research into these areas will be essential as Au-
dio LLMs evolve. As Audio LLMs evolve, their
potential to revolutionize human-computer interac-
tion, accessibility, and our understanding of spoken
language remains immense, provided these funda-
mental challenges are effectively addressed.



Limitations

While this survey provides a comprehensive
overview of Audio Language Models research,
we acknowledge several constraints. The rapidly
evolving nature of this emerging field means some
very recent works may not be included in this
manuscript despite our best efforts to be thorough.

Ethical Considerations

We have not identified any ethical concerns directly
related to this study.
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