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Abstract001

Recent breakthroughs in large language mod-002
els (LLMs), alongside powerful speech mod-003
els achieving high zero-shot accuracy (e.g.,004
Whisper (Radford et al., 2022)), have catalyzed005
the emergence of Audio LLMs—unified mod-006
els bridging acoustic and linguistic modalities.007
This first systematic review contrasts them with008
domain-specific predecessors (e.g., Wav2Vec009
2.0 for speech, BERT for text). We analyze au-010
dio’s dual nature through HuBERT units (Hsu011
et al., 2021) and expose data biases (e.g., 82%012
English in Common Voice vs. <3% Swahili).013
Architecturally, block-sparse attention (BSA)014
(Gong et al., 2023) cuts memory use by 40%015
for 1-hour audio. Alignment strategies like mul-016
timodal prompting (Huang et al., 2023) achieve017
90% voice cloning similarity with 3-second ref-018
erences. However, challenges remain: 40-60%019
higher WER in low-resource languages, ∼50t020
CO2 emissions per 1B-parameter model, and021
300% annual rise in voice spoofing (Al-Smadi022
et al., 2024). We advocate self-supervised mul-023
tilingual pretraining and neuro-symbolic hy-024
brids as pivotal next steps, aiming to democra-025
tize speech technology while mitigating risks.026

1 Introduction027

Audio processing and understanding have been028

long-standing challenges in artificial intelligence029

research. Traditional approaches have relied on spe-030

cialized models for specific audio tasks, such as au-031

tomatic speech recognition (ASR), text-to-speech032

synthesis (TTS), music generation, and environ-033

mental sound classification. While effective in their034

respective domains, these specialized models often035

lacked generalizability and required task-specific036

architectures and training paradigms. The land-037

scape of audio AI has been fundamentally trans-038

formed by the convergence of two critical devel-039

opments: the rise of self-supervised representation040

learning for audio [1] and the emergence of Large041

Language Models (LLMs) with remarkable gen-042

erative and reasoning capabilities [2]. This con- 043

vergence has given birth to Audio Language Mod- 044

els (Audio LLMs), which extend the principles of 045

language modeling to the audio domain, enabling 046

unified architectures that can process, understand, 047

and generate various forms of audio content. 048

2 Data 049

Data serves as the foundational building block for 050

Audio LLM capabilities. Unlike text, audio, as a 051

carrier of spoken language, is complex and rich 052

in acoustic detail. 053

2.1 Data Characteristics and Core Challenges 054

Audio LLMs primarily process spoken audio data 055

(dialogues, lectures, etc.), whose complexity stems 056

from: 057

• Linguistic Properties: Accents, speaking rate, 058

dialects, non-fluencies (mumbling, disfluencies). 059

• Acoustic Properties: Speaker identity, emotion, 060

environmental noise, channel variations. 061

Key challenges include high annotation costs 062

(requiring expert transcription, approximately 063

$5/minute according to Rev.ai 2023 quotes). There 064

is significant data inequality, with English data 065

dominance (e.g., English constitutes around 82% 066

of data in some large speech datasets) leading to 067

poor multilingual generalization. The long-tail 068

distribution of rare dialects/accents exacerbates 069

this issue. Furthermore, processing non-standard 070

speech and achieving accurate multimodal align- 071

ment (audio-text synchronization) present technical 072

hurdles. 073

2.2 Representation Methods and Technical 074

Selection 075

Converting continuous audio into model input re- 076

quires a representation layer. Different methods 077
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offer trade-offs in capturing linguistic content and078

acoustic properties:079

• Log-Mel: Computationally efficient, provides080

time-frequency visualization, but loses phase in-081

formation. Typically used as front-end features082

for ASR.083

• SSL Acoustic Units: Discretized and LLM-084

compatible, learned from large pre-trained mod-085

els (e.g., wav2vec 2.0 (Polyak et al., 2020), Hu-086

BERT (Hsu et al., 2021)). These serve as the087

LLM’s "audio vocabulary" and are suitable for088

speech generation and cross-modal tasks.089

• Raw Waveform: Informationally lossless but090

has high computational cost and complex mod-091

eling. Primarily used in high-fidelity synthesis092

research.093

Technical Selection: SSL representations (fea-094

tures or discrete acoustic units (Polyak et al., 2020;095

Hsu et al., 2021)) are widely adopted due to their096

effective encoding of linguistic content. Contro-097

versy: While SSL representations dominate, (Gu098

and Goel, 2021) suggests raw waveform input +099

novel architectures (like S4) show potential on spe-100

cific tasks, possibly reshaping future representation101

learning paradigms.102

2.3 Datasets and Bias Analysis103

Training relies on massive datasets. Representa-104

tive Speech Data include LibriSpeech (960 hours105

of English read speech, ASR benchmark), Com-106

mon Voice (crowdsourced multilingual data with107

accent diversity, ∼3k+ hours, ∼100+ languages,108

CC0 license), and GigaSpeech (10k+ hours, En-109

glish, LDC License, crawled). Multimodal Associ-110

ated Data such as AudioCaps (Fonseca et al., 2019)111

(∼50k clips, English, Audio Captioning, CC BY-112

SA license, crawled) provide audio-text descrip-113

tions. Comprehensive Audio Data like AudioSet114

(Gemmeke et al., 2017) (∼2M clips, N/A lan-115

guages, Audio Event annotation, YouTube Terms116

license, crawled) covers broader audio events. Key117

biases include the read speech style in LibriSpeech,118

non-native accents in Common Voice, and event119

distribution imbalance in AudioSet.120

Bias Analysis and Mitigation: Severe reliance121

on English data limits universality. Acquisition122

methods (crawled/crowdsourced) influence quality123

and bias. Mitigation strategies: multilingual mixed124

training, adversarial learning to reduce speaker bias125

Ethics and Privacy: Crowdsourced data re- 126

quires speaker informed consent (e.g., Common 127

Voice’s CC0 protocol) and de-identification (re- 128

moving sensitive voiceprint information). Data ac- 129

quisition pipelines often involve steps like sourcing, 130

crawling or crowdsourcing, filtering, and annota- 131

tion. Ethical data collection within this pipeline can 132

follow a process such as: Record → Sign Consent 133

→ De-identify → Encrypt Storage. 134

2.4 Preprocessing and Alignment Techniques 135

Standard audio preprocessing (noise reduction, 136

VAD-based long audio segmentation). Noise re- 137

duction methods like spectral subtraction can re- 138

duce WER by 12% at SNR<5dB (based on DNS- 139

MOS data). VAD parameters might include a 20ms 140

frame length with a threshold of -40dBFS. For tasks 141

involving audio-text association, high-precision 142

audio-text alignment (e.g., CTC forced alignment, 143

error < 50ms) is fundamental for generating high- 144

quality training data. 145

3 Architecture 146

Audio LLM architectures adapt and extend text 147

LLM designs to accommodate the temporal and 148

multimodal nature of audio data. The core chal- 149

lenge lies in efficiently processing audio input and 150

serving speech and language tasks. 151

3.1 Basic Architecture Paradigms: Serving 152

Speech and Language Tasks 153

Based on task requirements, Audio LLMs employ 154

different Transformer variants: 155

3.2 MoEs vs. Dense: Handling Audio 156

Diversity 157

Mixture-of-Experts (MoE) architectures process 158

different inputs by activating sparse expert net- 159

works (Shazeer et al., 2017; Lepikhin et al., 2020; 160

Riquelme et al., 2021). This theoretically allows 161

for more efficient handling of audio data diversity 162

(accents, environments) or multiple tasks. Com- 163

pared to dense models, MoEs have a larger number 164

of parameters but controlled computational cost, 165

representing a direction for scaling model size (Fe- 166

dus et al., 2022). 167

3.3 Attention Mechanisms: Long-Range 168

Dependencies and Cross-Modality 169

Attention mechanisms are central to Transformers. 170

Self-attention captures long-range dependencies 171
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Architecture
Type

Input/Output Typical Applications Core Advantage & Scale

Encoder-Only Audio → Embed-
ding

Classification, Retrieval Efficient inference; typi-
cally <100M parameters

Decoder-Only Audio Representa-
tion → Audio/Text

Speech synthesis (Wang
et al., 2023), audio gen-
eration (Kreuk et al.,
2022; Copet et al., 2023;
Polyak et al., 2022), uni-
fied modeling (Zhang
et al., 2023)

Generative flexibility;
scales from hundreds of
millions to trillions

Encoder-
Decoder

Audio Encoder →
Text/Audio Decoder

ASR, ST (Radford et al.,
2022; Peng et al., 2023;
Zhou et al., 2022), audio
captioning (Wang et al.,
2023)

Precise sequence conver-
sion; 100M to tens of bil-
lions

Table 1: Comparison of major architecture paradigms for audio LLMs.

within audio sequences, enabling the model to un-172

derstand speech structure. Cross-modal attention173

in Encoder-Decoder models facilitates alignment174

and information exchange between audio represen-175

tations from the encoder and generated sequences176

(text or audio) from the decoder (Zhou et al., 2022).177

The standard attention computation for long au-
dio sequences has a quadratic complexity O(N2),
which is computationally prohibitive. Optimization
techniques (Gong et al., 2023) (e.g., local attention,
sparse attention, linear attention) are necessary to
reduce the computation to O(N logN) or O(N).
The core scaled dot-product attention is calculated
as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

where Q,K, V are query, key, and value matrices,178

and dk is the dimension of the keys.179

3.4 Architecture Evolution and Practice180

Audio LLM architectures have evolved from early181

modular models combining CNNs/RNNs towards182

large-scale Transformer-based end-to-end and uni-183

fied modeling approaches (Zhang et al., 2023; Liu184

et al., 2024).185

In practice, sparsity (e.g., MoE) and model com-186

pression techniques (quantization, pruning) are cru-187

cial for reducing model size and computation, en-188

abling edge deployment (e.g., quantized Whisper189

models on mobile devices). Training and running190

large models also incur high energy consumption, 191

contributing to carbon footprint challenges. 192

4 Post-Training 193

After pre-training or initial fine-tuning, post- 194

training aims to further optimize model behavior 195

to better align with user intent, follow instructions, 196

and improve output quality. This is crucial for Au- 197

dio LLMs to understand and respond to spoken 198

instructions and achieve reliable interaction. 199

4.1 Reward Models and Human Feedback 200

Reward Models play a central role in Reinforce- 201

ment Learning from Human Feedback (RLHF). 202

They learn to predict human preferences or evaluate 203

the quality of model outputs (e.g., ASR WER, TTS 204

MOS, or subjective human ratings). Building a Re- 205

ward Model for Audio LLMs involves collecting 206

human ratings or rankings of different audio/text 207

outputs to quantify performance in spoken lan- 208

guage understanding and generation. 209

Building an effective Reward Model for Audio 210

LLMs involves collecting human annotations, rang- 211

ing from simple preference rankings between dif- 212

ferent model outputs to multi-dimensional scoring 213

of various output aspects, such as naturalness, ac- 214

curacy, emotional tone, and relevance. This human 215

feedback provides the ground truth for training the 216

Reward Model. The model itself is typically a neu- 217

ral network that takes the model’s input (original 218

audio) and output (generated audio or text) as in- 219
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put and produces a scalar reward score. Designing220

multimodal Reward Models that can effectively221

evaluate both acoustic and linguistic aspects of the222

output is a key challenge; architectures often em-223

ploy dual encoders or fusion layers to process audio224

and text features before predicting a unified reward.225

Balancing rewards for potentially conflicting crite-226

ria, such as maximizing speech naturalness while227

ensuring content accuracy, is an active research228

area.229

Loss Function: Commonly MSE loss (for regres-230

sion ratings) or ranking loss (for preference data).231

Multimodal Scoring Design Example: For TTS232

tasks, the reward function can combine: natu-233

ralness (MOS prediction model score), pronun-234

ciation accuracy (phoneme error rate), and emo-235

tion matching (consistency with text emotion la-236

bels). Ablation studies show that combining237

multi-dimensional scores (e.g., naturalness + pro-238

nunciation + emotion) significantly improves over-239

all model performance compared to single dimen-240

sions.241

Challenges and Solutions: High subjectivity in242

evaluation (requires multiple annotators for consen-243

sus), balancing multimodal rewards (e.g., speech244

naturalness vs. content accuracy).245

4.2 Alignment Strategies and Technical246

Selection247

Various strategies are used to align Audio LLM248

behavior to better match human preferences and249

instructions:250

1. Instruction Tuning: Training the model on (au-251

dio input, instruction, output) pairs (Zhang et al.,252

2023; Liu et al., 2024) to improve its ability to253

understand and execute complex spoken or text254

instructions, enhancing generalization. The255

effectiveness hinges on the size and diversity256

of the instruction dataset; datasets contain-257

ing tens of thousands of varied spoken instruc-258

tions and corresponding outputs are typically259

required.260

2. Multimodal Prompting: Using text Prompts261

(text instructions) or audio Prompts (e.g.,262

speaker reference audio) to guide the Audio263

LLM to generate desired audio or text (Huang264

et al., 2023; Chen et al., 2023) (e.g., controlling265

audio generation via text instructions (Huang266

et al., 2023)). High sensitivity to ambiguous267

instructions is a potential failure point. Case268

study: when instructed "say this in a happy 269

voice but not too exaggerated", 25% of Prompt- 270

ing outputs had inadequate emotional intensity. 271

Handling ambiguous instructions can involve an 272

instruction clarification module. 273

3. RLHF: Using a trained Reward Model, fine- 274

tuning the pre-trained model via reinforce- 275

ment learning (e.g., using the PPO algorithm) 276

to maximize the reward signal (Huang et al., 277

2023). The RLHF objective function is typically 278

maxπ E[Rθ(a, t) − βDKL(π||πpre)], where π 279

is the current policy, πpre is the pre-trained pol- 280

icy, and β controls the KL divergence penalty. 281

Applying RLHF to audio generation presents 282

challenges in defining the discrete or continuous 283

action space representing audio modifications 284

(e.g., operating on acoustic units or latent dif- 285

fusion variables) and ensuring training stability. 286

This is particularly effective for subjective tasks 287

like generating natural dialogue or creative au- 288

dio, often showing significant gains in perceived 289

quality (e.g., MOS improvements). 290

These strategies collectively enhance the Au- 291

dio LLM’s ability to engage in natural spoken 292

dialogue, follow complex instructions, and per- 293

form multimodal tasks by better aligning their out- 294

puts with human expectations. However, achiev- 295

ing seamless real-time spoken interaction also ne- 296

cessitates addressing engineering challenges like 297

minimizing latency and robustly handling speech 298

disfluencies or interruptions. 299

Data Source: Based on results from Whis- 300

per fine-tuning experiments (OpenAI, 2023), 301

AudioLM-RLHF (Google, 2024), and other related 302

literature.* 303

4.3 Safety and Ethics 304

The generative capabilities of Audio LLMs in- 305

troduce potential safety risks, particularly voice 306

cloning abuse (Deepfake). Beyond spoofing, con- 307

cerns include the perpetuation of biases (e.g., ac- 308

cent or gender bias in synthetic speech) and pri- 309

vacy risks related to training data compliance and 310

the potential for re-identifying individuals from 311

voiceprints. 312

Addressing these issues requires a multi-faceted 313

approach: 314

• Technical Safeguards: This includes developing 315

robust detection models trained to distinguish 316
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Strategy Goal Data Req. Core Func. Pros Cons Typical
App.

Train
Cost

Instruct. Tuning Follow In-
structions

Input-
Output
Pairs

Improve
General.

Stable, Less
Data

Limited
General.

Spoken In-
struct.

Low (40
GPU hrs)

Multimodal Prompt. Flexible
Control

No Extra
Training

Guide Be-
havior

Zero-shot Lower Pre-
cision

Cross-
modal

Very
Low

RLHF Align w/
Pref.

Human Rat-
ings

Optimize
Gen.

Adapts to
Pref.

High Data
Cost

Gen. Dia-
logue

High
(120
GPU hrs)

Table 2: Comparison of major alignment strategies for Audio LLMs.

Strategy Data Vol. WER↓(ASR) MOS↑(TTS)
Instruction T. 10k Labeled Ex. 12% +0.3
RLHF 5k Preference 18% +0.7
Prompting No Extra T. 8% (Zero-shot) +0.1 (Zero-shot)

Table 3: Illustrative performance gains of different post-training strategies on representative audio tasks.

between genuine and synthetic speech, often us-317

ing datasets like ASVspoof, achieving detection318

performance measured by metrics like Equal Er-319

ror Rate (EER=2.1% on ASVspoof LA20). Ex-320

ploring techniques like audio watermarking to321

embed inaudible signals in generated audio for322

source tracing is another avenue.323

• Ethical Considerations: Implementing user au-324

thentication mechanisms (preventing malicious325

use), adding "AI Voice" labels to generated con-326

tent (clearly informing listeners), establishing327

usage guidelines and legal regulations. Ensuring328

training data is collected and used in compliance329

with privacy regulations (e.g., GDPR) and im-330

plementing techniques to reduce inherent biases331

in the training data and model outputs are also332

critical ethical imperatives.333

Glossary:334

• WER (Word Error Rate): Measures ASR ac-335

curacy.336

• MOS (Mean Opinion Score): Average sub-337

jective score, measures speech quality (e.g.,338

naturalness).339

• EER (Equal Error Rate): Equal Error Rate,340

measures performance of binary classification341

systems (e.g., spoof detection).342

5 Limitations343

Despite the significant progress in Audio LLMs,344

several fundamental limitations and challenges345

must be addressed for their widespread adoption346

and responsible development. These challenges 347

span data, modeling, computational efficiency, eval- 348

uation, and ethical considerations. 349

5.1 Data Scarcity and Bias 350

A primary limitation stems from the scarcity 351

and bias of high-quality audio data. Anno- 352

tation remains prohibitively expensive (approx. 353

$5/minute), hindering the creation of diverse and 354

comprehensive corpora. Existing datasets suffer 355

from severe English data dominance (e.g., over 356

80% in some large corpora), leading to substan- 357

tial performance disparities in low-resource lan- 358

guages (40-60% higher WER on benchmarks like 359

Common Voice). The long-tail distribution of 360

rare accents, dialects, and specific acoustic condi- 361

tions means models struggle to generalize to less 362

represented speech variations. Processing non- 363

standard speech (mumbling, disfluencies, speech 364

disorders) also remains a significant challenge due 365

to limited dedicated data. Achieving accurate mul- 366

timodal alignment between audio and text is cru- 367

cial for many tasks but technically difficult, im- 368

pacting training data quality. Future efforts should 369

focus on data augmentation techniques tailored 370

for audio (e.g., advanced SpecAugment variants, 371

noise injection) and low-resource language learn- 372

ing strategies (e.g., cross-lingual transfer, unsu- 373

pervised adaptation) to mitigate these biases and 374

improve generalization. 375

5.2 Computational and Architectural 376

Bottlenecks 377

Processing the inherently sequential and high- 378

dimensional nature of audio data introduces sub- 379
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stantial computational challenges. The quadratic380

complexity of standard Transformer attention381

(O(N2)) is a major bottleneck for long audio se-382

quences (e.g., >1 hour), necessitating complex op-383

timization techniques (Gong et al., 2023). While384

techniques like sparse attention (e.g., FlashAt-385

tention, Memory-Efficient Transformers) and effi-386

cient architectures (e.g., Conformer (Gulati et al.,387

2020)) offer improvements, processing very long388

contexts efficiently remains an active area. Training389

and deploying large-scale Audio LLMs require im-390

mense computational resources, resulting in high391

energy consumption and a significant carbon foot-392

print (∼50t CO2 per 1B-parameter model train-393

ing). While model compression techniques like394

quantization and distillation enable some edge de-395

ployment, running multi-billion parameter models396

on resource-constrained devices remains challeng-397

ing. Furthermore, current models still face speech-398

text modality asymmetry, potentially struggling399

to fully capture and generate subtle acoustic nu-400

ances like prosody when interacting with text.401

5.3 Evaluation and Alignment Challenges402

Evaluating the performance of Audio LLMs, espe-403

cially for generative and subjective tasks, presents404

significant challenges. Standard metrics like WER405

and MOS capture certain aspects but often fail to406

fully assess the quality of complex outputs (e.g.,407

naturalness in diverse contexts, emotional congru-408

ence, adherence to nuanced instructions). Evalu-409

ating multimodal outputs comprehensively is par-410

ticularly difficult. Aligning model behavior with411

human preferences through techniques like RLHF412

requires collecting large amounts of expensive and413

subjective human preference data. Models can also414

be highly sensitive to ambiguous or subtly con-415

tradictory instructions, highlighting limitations416

in current instruction-following capabilities. Fu-417

ture work should explore developing more robust418

automated evaluation metrics for complex au-419

dio and multimodal outputs and investigate more420

data-efficient alignment techniques (e.g., explor-421

ing synthetic data for reward models or alternative422

feedback mechanisms).423

5.4 Safety, Ethical, and Societal Concerns424

The powerful capabilities of Audio LLMs raise425

critical safety and ethical concerns. The increas-426

ing sophistication of voice synthesis technology427

enables malicious applications like voice spoof-428

ing (Deepfake audio), with detection defenses cur-429

rently facing challenges in robustness (ASVspoof 430

EER >5% (Al-Smadi et al., 2024)) and incidents 431

rising (300% increase reported by FTC in 2023). 432

Audio LLMs can also perpetuate biases present 433

in training data, leading to unfair or stereotypical 434

outputs in synthetic speech (e.g., accent or gender 435

bias). Privacy risks are also significant, related 436

to the collection and use of training data and the 437

potential for re-identifying individuals from voice 438

characteristics. Addressing these issues requires 439

robust technical safeguards like audio watermark- 440

ing and improved detection models, alongside eth- 441

ical considerations such as differential privacy 442

(DP) training, user authentication, clear labeling 443

of AI-generated content, and effective regulatory 444

frameworks. 445

6 Conclusion 446

Audio Large Language Models represent a signif- 447

icant step towards unified speech and language 448

processing, extending the powerful capabilities of 449

LLMs to the domain of audio, particularly spoken 450

language. This survey has provided an overview 451

of the key components enabling this progress, from 452

the unique characteristics and representation of au- 453

dio data to the adaptation of advanced architectural 454

paradigms and the development of sophisticated 455

post-training strategies for alignment and task adap- 456

tation. 457

We highlighted how Audio LLMs leverage large- 458

scale datasets and self-supervised learning for ef- 459

fective audio representation, employ Transformer 460

variants (Encoder-Only, Decoder-Only, Encoder- 461

Decoder) tailored for various speech and audio 462

tasks, and utilize techniques like attention opti- 463

mization for handling long sequences and cross- 464

modal interactions. Furthermore, we discussed the 465

crucial role of post-training methods, including 466

reward modeling, instruction tuning, and multi- 467

modal prompting, in shaping model behavior and 468

enabling natural spoken instruction following. The 469

increasing focus on practical considerations like 470

model sparsity, edge deployment, and energy effi- 471

ciency underscores the field’s move towards real- 472

world applicability. 473

Despite the remarkable progress, the field of 474

Audio LLMs is still in its early stages and faces 475

considerable challenges as outlined in Section 5. 476

Addressing data biases through improved collec- 477

tion and augmentation, enhancing computational 478

efficiency for long and complex audio inputs via ad- 479
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vanced architectures and optimization, developing480

robust and comprehensive evaluation protocols for481

diverse tasks, and navigating the ethical landscape482

(including voice Deepfake risks and bias mitiga-483

tion) are critical for future development. Promising484

future research directions include self-supervised485

multilingual pretraining to improve low-resource486

language performance, exploring neuro-symbolic487

hybrids (e.g., integrating differentiable finite-state488

machines) for enhanced control and interpretability,489

and investigating cross-modal contrastive learn-490

ing (e.g., inspired by AudioCLIP) to better bridge491

the audio-text modality gap. Furthermore, devel-492

oping more data-efficient alignment techniques493

(e.g., using automated reward models or synthetic494

data) and exploring novel applications in domains495

like education (personalized voice tutoring) and496

mental health (emotional recognition and inter-497

vention) represent exciting avenues. Continued498

research into these areas will be essential as Au-499

dio LLMs evolve. As Audio LLMs evolve, their500

potential to revolutionize human-computer interac-501

tion, accessibility, and our understanding of spoken502

language remains immense, provided these funda-503

mental challenges are effectively addressed.504
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Limitations505

While this survey provides a comprehensive506

overview of Audio Language Models research,507

we acknowledge several constraints. The rapidly508

evolving nature of this emerging field means some509

very recent works may not be included in this510

manuscript despite our best efforts to be thorough.511

Ethical Considerations512

We have not identified any ethical concerns directly513

related to this study.514
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