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Figure 1: Previous conventional video diffusion models (b) directly extend image diffusion mod-
els (a) utilizing a single scalar timestep on the whole video clip. This straightforward adaption re-
stricts the flexibilities of VDM’s in downstream tasks, e.g., image-to-video generation, longer video
generation. In this paper, we propose Frame-Aware Video Diffusion Model (FVDM), which trains
the denoiser via a vectorized timestep variable (c). Our method attains superior visual quality not
only in standard video generation but also enables multiple downstream tasks in a zero-shot manner.

ABSTRACT

Diffusion models have revolutionized image generation, and their extension to
video generation has shown promise. However, current video diffusion mod-
els (VDMs) rely on a scalar timestep variable applied at the clip level, which
limits their ability to model complex temporal dependencies needed for various
tasks like image-to-video generation. To address this limitation, we propose a
frame-aware video diffusion model (FVDM), which introduces a novel vectorized
timestep variable (VTV). Unlike conventional VDMs, our approach allows each
frame to follow an independent noise schedule, enhancing the model’s capacity to
capture fine-grained temporal dependencies. FVDM’s flexibility is demonstrated
across multiple tasks, including standard video generation, image-to-video gen-
eration, video interpolation, and long video synthesis. Through a diverse set of
VTV configurations, we achieve superior quality in generated videos, overcoming
challenges such as catastrophic forgetting during fine-tuning and limited general-
izability in zero-shot methods. Our empirical evaluations show that FVDM out-
performs state-of-the-art methods in video generation quality, while also excelling
in extended tasks. By addressing fundamental shortcomings in existing VDMs,
FVDM sets a new paradigm in video synthesis, offering a robust framework with
significant implications for generative modeling and multimedia applications.

1 INTRODUCTION

The advent of diffusion models (Song et al., 2020b; Ho et al., 2020) has heralded a paradigm shift
in generative modeling, particularly in the domain of image synthesis. These models, which lever-
age an iterative noise reduction process, have demonstrated remarkable efficacy in producing high-
fidelity samples. Naturally, we can extend this framework to video generation (Ho et al., 2022; He
et al., 2022; Chen et al., 2023a; Wang et al., 2023; Ma et al., 2024; OpenAI, 2024; Xing et al.,
2023b) by denoising a whole video clip jointly. These methods have shown promising results, yet
it has also exposed fundamental limitations in modeling the complex temporal dynamics inherent to
video data.
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The crux of the problem lies in the naive adaptation of image diffusion principles to the video
domain. As shown in Fig. 1, conventional video diffusion models (VDMs) typically treat a video as
a monolithic entity, employing a scalar timestep variable to govern the diffusion process uniformly
across all frames following image diffusion models. While this approach has proven adequate for
generating short video clips, it fails to capture the nuanced temporal dependencies that characterize
real-world video sequences. This limitation not only constrains the model’s flexibility but also
impedes its scalability in handling more sophisticated temporal structures.

The temporal modeling deficiency of current VDMs has spawned a plethora of task-specific adap-
tations, particularly in domains such as image-to-video generation (Xing et al., 2023a; Guo et al.,
2023; Ni et al., 2024), video interpolation (Wang et al., 2024a;b), and long video generation (Qiu
et al., 2023; Henschel et al., 2024). These approaches have largely relied on two primary strategies:
fine-tuning and zero-shot techniques. For instance, DynamiCrafter (Xing et al., 2023a) achieves
open-domain image animation through fine-tuning a pre-trained VDM (Chen et al., 2023a) con-
ditioned on input images. In the realm of video interpolation, Wang et al. (2024b) propose a
lightweight fine-tuning technique coupled with a bidirectional diffusion sampling process. Con-
currently, zero-shot methods such as DDIM inversion (Mokady et al., 2023) and noise reschedul-
ing (Qiu et al., 2023) have been employed to adapt pretrained VDMs for tasks like image-to-video
generation (Ni et al., 2024) and long video synthesis (Qiu et al., 2023). However, these approaches
often grapple with issues such as catastrophic forgetting during fine-tuning or limited generalizabil-
ity in zero-shot scenarios, resulting in suboptimal utilization of the VDMs’ latent capabilities.

To address these fundamental limitations, we introduce a novel framework: the frame-aware video
diffusion model (FVDM). At the heart of our approach lies a vectorized timestep variable (VTV) that
enables independent frame evolution (shown in Fig. 1(c)). This stands in stark contrast to existing
VDMs, which rely on a scalar timestep variable that enforces uniform temporal dynamics across
all frames. Our innovation allows each frame to traverse its own temporal trajectory during the
forward process while simultaneously recovering from noise to the complete video sequence in the
reverse process. This paradigm shift significantly enhances the model’s capacity to capture intricate
temporal dependencies and markedly improves the quality of generated videos.

The contributions of our work are threefold:

Enhanced Temporal Modeling: Introducing the Frame-Aware Video Diffusion Model (FVDM),
which utilizes a vectorized timestep variable (VTV) to enable independent frame evolution and
superior temporal dependency modeling.

Numerous (Zero-Shot) Applications: FVDM’s flexible VTV configurations support a wide array
of tasks, including standard video synthesis (i.e., synthesizing video clips), image-to-video transi-
tions, video interpolation, long video generation, and so on, all without re-training.

Superior Performance Validation: Our empirical evaluations demonstrate that FVDM not only
exceeds current state-of-the-art methods in video quality for standard video generation but also
excels in various extended applications, highlighting its robustness and versatility.

Our proposed FVDM represents a significant advancement in the field of video generation, offering
a powerful and flexible framework that opens new avenues for both theoretical exploration and
practical application in generative modeling. By addressing the fundamental limitations of existing
VDMs, FVDM paves the way for more sophisticated and temporally coherent video synthesis, with
far-reaching implications for various domains in computer vision and multimedia processing.

2 METHODS

2.1 PRELIMINARIES: DIFFUSION MODELS

Diffusion models have emerged as a powerful framework for generative modeling, grounded in the
theory of stochastic differential equations (SDEs). These models generate data by progressively
adding noise to the data distribution and then reversing this process to sample from the noise dis-
tribution (Song et al., 2020b; Karras et al., 2022). In the following, we provide a foundational
understanding of diffusion models, essential to our work.

2
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At the core of diffusion models is the concept of data diffusion, where the original data distribution
pdata(x) is perturbed over time t ∈ [0, T ] via a continuous process governed by an SDE:

dx = µ(x, t) dt+ σ(t) dw, (1)

where µ(·, ·) and σ(·) represent the drift and diffusion coefficients, and {w(t)}t∈[0,T ] denotes the
standard Brownian motion. This diffusion process results in a time-dependent distribution pt(x(t)),
with the initial condition p0(x) ≡ pdata(x).

The generative process in diffusion models is achieved by reversing the diffusion SDE, allowing
sampling from an initially Gaussian noise distribution. This reverse process is characterized by the
reverse-time SDE using the score function ∇x log pt(x):

dx = [µ(x, t)− σ(t)2∇x log pt(x)]dt+ σ(t)dw̄, (2)

where w̄ represents the standard Wiener process in reverse time.

A crucial aspect of this SDE framework is the associated Probability Flow (PF) ODE (Song et al.,
2020b), which describes the corresponding deterministic process sharing the same marginal proba-
bility densities {pt(x)}Tt=0 as the SDE:

dx =

[
µ(x, t)− 1

2
σ(t)2∇x log pt(x)

]
dt. (3)

In practice, this reverse process involves training a score model to approximate the score function,
which is then integrated into the empirical PF ODE for sampling.

While diffusion models have shown promise in various domains, their application to video data
presents unique challenges, especially the modeling of high-dimensional temporal data.

2.2 FRAME-AWARE VIDEO DIFFUSION MODEL

We present a novel frame-aware video diffusion model that significantly enhances the generative
capabilities of traditional diffusion models by introducing a vectorized timestep variable. This ap-
proach allows for the independent evolution of each frame in a video clip, capturing complex tempo-
ral dependencies and improving performance across various video generation tasks. In this section,
we provide a detailed mathematical formulation of our model, its underlying principles, and its
applications.

2.2.1 VECTORIZED TIMESTEP VARIABLE

Inherited from image diffusion models, current video diffusion models also employ a scalar time
variable t ∈ [0, T ] that applies uniformly across all elements of the data being generated (Xing
et al., 2023b). In the context of video generation, this approach fails to capture the nuanced temporal
dynamics inherent in video sequences. To address this limitation, we introduce a vectorized timestep
variable τ (t) : [0, T ] → [0, T ]N , defined as:

τ (t) = [τ (1)(t), τ (2)(t), . . . , τ (N)(t)]⊤ (4)

where N is the number of frames in the video sequence, and τ (i)(t) represents the individual time
variable for the i-th frame. This vectorization allows for independent noise perturbation for each
frame, enabling a more flexible and detailed diffusion process.

2.2.2 FORWARD SDE WITH INDEPENDENT NOISE SCALES

We extend the conventional forward stochastic differential equation (SDE) to accommodate our
vectorized timestep variable. For each frame x(i), the forward process is governed by:

dx(i) = µ(x(i), τ (i))dt+ σ(τ (i))dw(i) (5)

This formulation allows each frame to experience noise from an independent Gaussian distribution,
governed by its specific τ (i)(t).

3
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For representation simplicity, we integrate all frame SDEs into one single SDE for the whole video.
Let’s define the video as X ∈ RN×d, where N is the number of frames and d is the dimensionality
of each frame. We can represent the video as a matrix:

X = [x(1),x(2), . . . ,x(N)]⊤ (6)

where each x(i) ∈ Rd represents a single frame. We can now formulate an integrated forward SDE
for the entire video:

dX = U(X, τ (t))dt+Σ(τ (t))dW (7)
where U(·, τ (·)) : RN×d × [0, T ] → RN×d is the drift coefficient for the entire video, Σ(τ (·)) :
[0, T ] → RN×N is a diagonal matrix of diffusion coefficients, W is an standard Brownian motion.

The drift and diffusion terms can be expressed as:

U(X, τ (t)) =
[
µ(x(1), τ (1)(t)),µ(x(2), τ (2)(t)), . . . ,µ(x(N), τ (N)(t))

]⊤
(8)

Σ(τ (t)) =


σ(τ (1)(t)) 0 · · · 0

0 σ(τ (2)(t)) · · · 0
...

...
. . .

...
0 0 · · · σ(τ (N)(t))

 (9)

This formulation preserves the independent noise scales for each frame while providing a unified
representation for the entire video. In the context of DDPMs (Ho et al., 2020), the drift coefficient
µ(x(i), τ (i)(t)) and the diffusion coefficient σ(τ (i)(t)) for each frame i (where 1 ≤ i ≤ N ) are given
by: µ(x(i), τ (i)(t)) = − 1

2β(τ
(i)(t))x(i), σ(τ (i)(t)) =

√
β(τ (i)(t)), where β(·) is the noise scale

function, which is a predefined non-negative, non-decreasing function that determines the amount
of noise added at each timestep i with β(0) = 0.1 and β(T ) = 20 (Song et al., 2020b).

2.2.3 REVERSE SDE AND SCORE FUNCTION

In the context of the reverse process, we define an integrated reverse SDE to encapsulate the depen-
dencies across joint frames:

dX =

[
U(X, τ (t))− 1

2
Σ(τ (t))Σ(τ (t))⊤∇X log pt(X)

]
dt+Σ(τ (t))dW̄ (10)

where W̄ is an N -dimensional standard Brownian motion with dt < 0.

The score-based model sθ(·, τ (·)) : RN×d × [0, T ] → RN×d is designed to operate over the entire
video sequence. The model’s learning objective is to approximate the score function:

sθ(X, τ (t)) ≈ ∇X log pt(X) (11)

The optimization problem for the model parameters θ is formulated as:

θ∗ = argmin
θ

EtEτ (t)

[
λ(t)EX(0)EX(τ (t))|X(0)

[∥∥sθ(X(τ (t)), τ (t))−∇X(τ (t)) log pt(X(τ (t))|X(0))
∥∥2
2

]] (12)

where λ(·) is a positive weighting function that can be chosen proportional to
1/E

[
||∇X(τ (t)) log pt(X(τ (t))|X(0))||22

]
, as discussed in the context of score matching in

Hyvärinen (2005); Särkkä & Solin (2019); Song et al. (2020b).

2.3 IMPLEMENTATION

Network Architecture. Our proposed method can work for all current VDMs’ backbones with
small adaptation. For the sake of simplicity, we choose a novel video diffusion transformer model
developed by Ma et al. (2024) as our backbone in this work. To adapt the scalar timestep variable

4
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Figure 2: Diverse Applications of FVDM. (a) Standard Video Generation: Implements uniform
timestep across frames, [t, t, . . . , t]. (b) Image-to-Video Generation: Transforms a static image
into a video using a customized vectorized timestep, [τ1, t, . . . , t], τ1 ≡ 0. (c) Video Interpola-
tion: Smoothly interpolates frames between start and end, using [τ1, t, . . . , t, τN ], τ1 = τN ≡
0. (d) Long Video Generation: Extends sequences by conditioning on final frames, applying
[τ1, . . . , τM , t, . . . , t], τ1 = ... = τM ≡ 0 (e) Many More Zero-Shot Applications: Highlights
potential for tasks such as any frame conditioning, video transition, and next frame prediction.

to vectorized timestep variable, we replace the original scalar timestep input, which had a shape of
(B), with a vectorized version (B,N), where B is the batch size and N is the number of frames.
Then, using sinusoidal positional encoding, we transform the input timesteps from shape (B,N)
to (B,N,D), where D is the embedding dimension. These vectorized timestep embeddings are
then fed into the transformer block, where they condition both the attention and MLP layers through
adaptive layer norm zero (adaLN-Zero) conditioning (Peebles & Xie, 2023). This process ensures
that each frame’s temporal dynamics are handled independently, resulting in improved temporal
fidelity and noise prediction across frames.

Training. To address the potential computational explosion inherent in training diffusion models
with vectorized timesteps, we introduce a novel probabilistic timestep sampling strategy (PTSS).
In conventional VDMs, a scalar timestep t is sampled for each batch element. However, when
extending this approach to FVDM, where each frame evolve independently, the naive strategy of
sampling a different timestep for each frame results in a combinatorial explosion, with N frames
yielding 1000N combinations for 1000 timesteps, compared to just 1000 combinations for scalar
timesteps. To mitigate this, we introduce a probability p that governs the sampling process. With
probability p, we sample distinct timesteps for each frame in the sequence, allowing for independent
evolution. With probability 1 − p, we sample the timestep for the first frame and let the other
frames’ timesteps be the same. This hybrid strategy significantly prevents excessive computational
overhead and improves the standard video generation quality while retaining flexibility of frame-
wise temporal evolution. An ablation study on different values of p demonstrates the effectiveness
of this approach, as shown in Fig. 3.

Inference. Despite using vectorized timesteps, our model remains compatible with standard diffu-
sion sampling schedules like as DDPM (Ho et al., 2020) and DDIM (Song et al., 2020a). The PTSS
allows the model to generalize effectively during inference, using established schedules without re-
quiring new mechanisms. This balances the advantages of vectorized timesteps with the practicality
of established diffusion model techniques, facilitating a smooth inference process.

2.4 APPLICATIONS

Beyond standard video generation, our Frame-aware Video Diffusion Model (FVDM) demonstrates
remarkable versatility, performing a variety of tasks in a zero-shot manner, including image-to-video
generation, video interpolation, and long video generation, as depicted in Fig. 2. The model’s ability
to flexibly manage complex temporal dynamics through the vectorized timestep variable τ (t) allows
it to generalize to a broad range of video-related scenarios, extending well beyond conventional
video synthesis.

5
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Standard Video Generation: In the most basic application, the FVDM operates similarly to tra-
ditional video diffusion models. Every frame is initialized with ϵ(i) = N (0, I), 1 ≤ i ≤ N , the
timestep is applied uniformly across all frames by setting τ (t) = t · 1, where each frame evolves
according to the same scalar timestep. This approach mirrors the dynamics of conventional diffusion
models, where temporal coherence is maintained across frames.

Image-to-Video Generation: Our model is capable of generating dynamic video sequences from
a static image I . By treating the image as the first frame, x(0)

0 = I , we specially design τ (i)(t),
1 ≤ i ≤ N , for every frame. Experimentally, we find the simplest way to set the first frame noise-
free τ (1)(t) ≡ 0, while set other frames with regular noise τ (i)(t) = t, 2 ≤ i ≤ N yields satisfactory
results. This formulation enables the smooth transformation of a still image into a coherent, multi-
frame video sequence.

Video Interpolation: To interpolate intermediate frames between given starting and ending frames,
similar to image-to-video generation, this intuitively way is to set the timesteps of the first and last
frames to τ (1)(t) = τ (N)(t) ≡ 0, and applies regular noise to the intervening frames, i.e., τ (i)(t) = t
for 1 < i < N . This indeed process results in the smooth synthesis of intermediate frames, ensuring
seamless transitions between the start and end frames of the sequence.

Long Video Generation: Our model also supports the extension of video sequences by condi-
tioning on the final frames of a previously generated clip. Similarly, given the last M frames
{x̂(k−1,i)

0 }Ni=N−M+1 from the (k−1)th video clip, we generate the next video clip with N−M new
frames by setting τ (i)(t) = 0 for the first M frames, where x

(k,i)
0 = x̂

(k−1,N−M+i)
0 , and applying

τ (i)(t) = t for M < i < N . This method allows for seamless continuation of video sequences
without temporal artifacts.

Other Possible Applications: Leveraging the flexibility of the VTV τ (t), our FVDM has great
potential to be extended to a multitude of tasks. For instance, videos can be generated from any
arbitrary frame x

(h)
0 , 1 ≤ h ≤ N , by treating this frame as noise-free (τ (h)(t) = 0) and applying

regular noise to the other frames (τ (i)(t) = t for i ̸= h). Additionally, by generating transitions
between two videos, we can connect video clips or predict the next future frame similarly to long
video generation but by generating only a single frame while maintaining the remaining frames from
previous generations. Lastly, we think it should be very interesting to explore diverse inference
schedules like noise progressively increase by frames, e.g., τ (i)(t) = inf(0.1 · i · t, t), 1 ≤ i ≤ N
for image-to-video generation, and more complex applications like frame-level video editing (Meng
et al., 2021) and video ControlNet (Zhang et al., 2023a) based on FVDM in the future.

3 EXPERIMENTS

3.1 SETUP

In this section, we detail the experimental setup for evaluating the proposed Frame-Aware Video
Diffusion Model (FVDM). Our experiments are designed to assess the model’s performance across
a variety of tasks and compare it with state-of-the-art methods. We follow the principles of (Sko-
rokhodov et al., 2022a) to evaluate our model with Fréchet Video Distance (FVD) (Unterthiner
et al., 2019). Due to limited resources, we conducted ablation studies using a batch size of 3 for
200k iterations and trained our model for baseline comparison with a batch size of 4 for 250k it-
erations using two A6000 GPUs or one A800 GPU. We selected four diverse datasets for training
and evaluation: FaceForensics (Rössler et al., 2018), SkyTimelapse (Xiong et al., 2018), UCF101
(Soomro, 2012), and Taichi-HD (Siarohin et al., 2019). We compared FVDM with several baselines
for standard video generation, including MoCoGAN (Tulyakov et al., 2018), VideoGPT (Yan et al.,
2021), MoCoGAN-HD (Tian et al., 2021), DIGAN (Yu et al., 2022), PVDM (Yu et al., 2023), and
Latte (Ma et al., 2024).

3.2 ABLATION STUDY

We conducted a comprehensive ablation study to evaluate the impact of various hyperparameters and
model configurations on standard video generation performance. All experiments were performed
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Figure 3: Comprehensive ablation study on FaceForensics dataset (Rössler et al., 2018) for video
generation using FVD metric (lower is better) with training iterations from 50k to 200k. Top, bot-
tom left, and bottom right figures indicate ablation studies for sampling probability (p), inference
schedule, and model scale, respectively.

Method FaceForensics SkyTimelapse UCF101 Taichi-HD

MoCoGAN (Tulyakov et al., 2018) 124.7 206.6 2886.9 -
VideoGPT (Yan et al., 2021) 185.9 222.7 2880.6 -
MoCoGAN-HD (Tian et al., 2021) 111.8 164.1 1729.6 128.1
PVDM (Yu et al., 2023) 355.92 75.48 1141.9 540.2
Latte (Ma et al., 2024) 77.70 110.45 604.64 267.12

FVDM 55.01 106.09 468.23 194.61

Table 1: FVD results comparing FVDM with the baseline on four different datasets. Lower FVD
values indicate better performance. For Latte’s result, we use the official code, and strictly follow the
original configuration, except that we train it with batchsize 4 for 250k iterations and inference with
DDIM-50, all the same as FVDM. Other results can be sourced in Ma et al. (2024); Skorokhodov
et al. (2022b).

on the FaceForensics dataset (Rössler et al., 2018) and conducted with models of scale B, training
with batch size 3, and inference with DDIM-50 (Song et al., 2020a) if no specification, using the
FVD as the primary metric, where lower values indicate better performance. Fig. 3 presents the
results of our ablation study graphically.

Sampling Probability The first part of our ablation study (Fig. 3) investigates the effect of the sam-
pling probability p in our PTSS. We observe that the model’s performance is highly sensitive to this
parameter, with p = 0.2 consistently yielding the best results across different training iterations.
Notably, at 200k steps, p = 0.2 achieves an FVD score of 74.31, outperforming both the base-
line Latte model (82.28) and other probability values. This finding suggests that a moderate level
of probabilistic sampling strikes an optimal balance between exploration and exploitation during
training.

Sampling Schedule In Fig. 3, we compare different sampling schedules, including DDPM (Ho
et al., 2020) with 250 steps and DDIM (Song et al., 2020a) with varying step counts (100, 50, and
10). Our results indicate that DDPM-250 and DDIM with 100 or 50 steps perform comparably, with

7
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Figure 4: Qualitative comparison of real samples and generated video samples from FVDM/Ours
and Latte (Ma et al., 2024) on four datasets, i.e., FaceForensics (Rössler et al., 2018), SkyTime-
lapse (Xiong et al., 2018), UCF101 (Soomro, 2012), and Taichi-HD (Siarohin et al., 2019) (from
top to bottom). For a fair comparison, we select samples either of the same class w.r.t. UCF101
(Soomro, 2012) or with similar content w.r.t. other datasets. FVDM produces more coherent and
realistic video sequences compared to the baseline.

DDIM-100 slightly edging out the others at 200k steps. However, DDIM-10 shows a significant
performance degradation, suggesting that overly aggressive acceleration of the sampling process
can be detrimental to generation quality. Based on these findings, we adopt the DDIM-50 schedule
for our subsequent experiments, as it offers a good trade-off between efficiency and performance.

Model Scale The impact of model scale on generation quality is examined in Fig. 3. We evaluate
four model sizes: S (32.59M parameters), B (129.76M parameters), L (457.09M parameters), and
XL (674.00M parameters). Our results demonstrate a clear trend of improved performance with
increasing model scale. The XL model consistently outperforms smaller variants, achieving the best
FVD score of 57.25. This observation aligns with the scaling law (Kaplan et al., 2020).

3.3 STANDARD VIDEO GENERATION

In our evaluation of standard video generation, FVDM demonstrates superior performance com-
pared to state-of-the-art methods. As shown in Table 1, FVDM achieves the lowest FVD scores on
FaceForensics and UCF101, and the second lowest scores on other datasets, outperforming Latte
and other leading models. This indicates enhanced video quality and temporal coherence.

FVDM leverages its innovative vectorized timestep variable to enhance temporal dependency mod-
eling, which is evident in its ability to outperform Latte in most categories and maintain competitive
performance in others. This effectiveness is further illustrated in Fig. 4, where qualitative compar-
isons reveal that FVDM generates video sequences with greater fidelity and smoother transitions
compared to Latte. The visual results highlight FVDM’s capacity to handle complex temporal dy-
namics, producing high-quality video outputs that closely mimic real-world sequences. This estab-
lishes FVDM as a robust and versatile tool in the realm of generative video modeling.
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(a) Image-to-video generation

(b) Video interpolation

(c) Long video generation

Figure 5: Zero-shot adaptations of FVDM on FaceForensics (Rössler et al., 2018). (a) image-to-
video generation, where FVDM animates the first image into a coherent video sequence; (b) video
interpolation, where FVDM generates smooth transitions between given the first frame and the last
frame; and (c) long video generation, where FVDM generates long video sequences (we show 128
frames in this figure) while maintaining temporal coherence.

3.4 ZERO-SHOT APPLICATIONS OF FVDM

To demonstrate the versatility of FVDM, we evaluated its zero-shot performance on tasks such
as image-to-video generation, video interpolation, and long video generation. Fig. 5 showcases
qualitative results.

Image-to-Video Generation: As shown in Fig. 5(a), the model successfully generates a smooth
and temporally coherent video from a single image, demonstrating its ability to infer motion and
facial expressions without explicit training on such a task.

Video Interpolation: FVDM is also capable of generating smooth transitions between given start
and end frames. Fig. 5(b) illustrates this capability, where the model interpolates between the first
frame and last frame, creating a seamless video sequence that maintains the integrity of the original
frames while filling in the intermediate motions.

Long Video Generation: One of the most challenging tasks for generative models is to produce
long video sequences while maintaining temporal coherence. FVDM addresses this challenge by
generating 128-frame videos that exhibit consistent motion and expression throughout the sequence,
as depicted in Fig. 5(c). This demonstrates the model’s ability to capture long-term dependencies in
video data.

These zero-shot applications showcase the adaptability of FVDM across different video generation
tasks, highlighting its potential for real-world applications where training data may be limited or
diverse scenarios need to be addressed without prior fine-tuning. The model’s performance in these
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tasks is a testament to its robust architecture and the effectiveness of the vectorized timestep variable
in capturing complex temporal dynamics.

4 RELATED WORK

The limitations in temporal modeling of conventional VDMs have led to a surge in approaches tai-
lored to tasks. These methods predominantly rely on fine-tuning or employing zero-shot techniques
to handle domain-specific challenges.

Image-to-Video Generation. Notably, DynamiCrafter (Xing et al., 2023a) introduces a model that
animates open-domain images by utilizing video diffusion priors and projecting images into a con-
text representation space. Furthermore, I2V-Adapter (Guo et al., 2023) presents a general adapter for
VDMs that can convert static images into dynamic videos without altering the base model’s struc-
ture or pretrained parameters. I2VGen-XL (Zhang et al., 2023b) addresses semantic accuracy and
continuity through a cascaded diffusion model that initially produces low-resolution videos and then
refines them for clarity and detail enhancement. Li et al. (2024) tackles fidelity loss in I2V genera-
tion by adding noise to the image latent and rectifying it during the denoising process, resulting in
videos with improved detail preservation. Lastly, TI2V-Zero (Ni et al., 2024) introduces a zero-shot
image conditioning method for text-to-video models, enabling frame-by-frame video synthesis from
an input image without additional training or tuning.

Video Interpolation. MCVD (Voleti et al., 2022) stands out as the first to address this task us-
ing diffusion models, which presents a conditional score-based denoising diffusion model capable
of handling future/past prediction, unconditional generation, and interpolation with a single model.
Besides, LDMVFI (Danier et al., 2024) introduces a latent diffusion model that formulates video
frame interpolation as a conditional generation problem, showing superior perceptual quality in in-
terpolated videos, especially at high resolutions. Meanwhile, generative inbetweening (Wang et al.,
2024b) adapts image-to-video models to perform high-quality keyframe interpolation, demonstrat-
ing the versatility of these models for video-related tasks. Finally, EasyControl (Wang et al., 2024a)
transfers ControlNet (Zhang et al., 2023a) to video diffusion models, enabling controllable genera-
tion and interpolation with significant improvements in evaluation metrics.

Long Video Generation. On the one hand, ExVideo (Duan et al., 2024) enhances the video diffu-
sion model’s capacity to generate videos five times longer than the original model’s duration through
a parameter-efficient post-tuning strategy. Meanwhile, StreamingT2V (Henschel et al., 2024) intro-
duces a conditional attention module and an appearance preservation module to generate long videos
with smooth transitions through an autoregressive approach. Moreover, SEINE (Chen et al., 2023b)
focuses on creating long videos with smooth transitions and varying lengths of shot-level videos
through a random mask video diffusion model. On the other hand, FreeNoise (Qiu et al., 2023),
FIFO-Diffusion (Kim et al., 2024), and FreeLong (Lu et al., 2024) achieve long video generation
without additional training by noise rescheduling, iterative diagonal denoising, and SpectralBlend
temporal attention, respectively.

5 CONCLUSIONS

We introduced the Frame-Aware Video Diffusion Model (FVDM), which addresses key limitations
in existing video diffusion models by employing a vectorized timestep variable (VTV) for inde-
pendent frame evolution. This approach significantly improves the video quality and flexibility of
video generation across various tasks, including image-to-video, video interpolation, and long video
synthesis. Extensive experiments demonstrated FVDM’s superior performance over state-of-the-art
models, highlighting its adaptability and robustness. By enabling finer temporal modeling, FVDM
sets a new standard for video generation and offers a promising direction for future research in gen-
erative modeling. Potential extensions include better training schemes and different VTV configura-
tions for other tasks like video infilling. In conclusion, FVDM paves the way for more sophisticated,
temporally coherent generative models, with broad implications for video synthesis and multimedia
processing.
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