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Abstract

The ability of learning useful features is one of the major advantages of neural
networks. Although recent works show that neural network can operate in a neural
tangent kernel (NTK) regime that does not allow feature learning, many works
also demonstrate the potential for neural networks to go beyond NTK regime
and perform feature learning. Recently, a line of work highlighted the feature
learning capabilities of the early stages of gradient-based training. In this paper we
consider another mechanism for feature learning via gradient descent through a
local convergence analysis. We show that once the loss is below a certain threshold,
gradient descent with a carefully regularized objective will capture ground-truth
directions. We further strengthen this local convergence analysis by incorporating
early-stage feature learning analysis. Our results demonstrate that feature learning
not only happens at the initial gradient steps, but can also occur towards the end of
training.

1 Introduction

Feature learning has long been considered to be a major advantage of neural networks. However,
how gradient-based training algorithms can learn useful features is not well-understood. In particular,
the most widely applied analysis for overparametrized neural networks is the neural tangent kernel
(NTK) (Jacot et al., 2018; Du et al., 2019; Allen-Zhu et al., 2019b). In this setting, the neurons don’t
move far from their initialization and the features are determined by the network architecture and
random initialization (Chizat et al., 2019).

While there are empirical and theoretical evidence on the limitation of NTK regime (Chizat et al.,
2019; Arora et al., 2019), extending the analysis beyond the NTK regime has been challenging. For
2-layer networks, an alternative framework for analyzing overparametrized neural networks called
mean-field analysis was introduced. Earlier mean-field analysis (e.g., Chizat and Bach, 2018; Mei
et al., 2018) require either infinite or exponentially many neurons. Later works (e.g., Li et al., 2020;
Ge et al., 2021; Bietti et al., 2022; Mahankali et al., 2024) can analyze the training dynamics of
mildly overparametrized networks with polynomially many neurons with stronger assumptions on
the ground-truth function.

Recently, a growing line of works (Daniely and Malach, 2020; Damian et al., 2022; Abbe et al., 2021,
2022, 2023; Yehudai and Shamir, 2019; Shi et al., 2022; Ba et al., 2022; Mousavi-Hosseini et al.,
2023; Barak et al., 2022; Dandi et al., 2023; Wang et al., 2024; Nichani et al., 2024a,b) showed that
early stages of gradient training (either one/a few steps of gradient descent or a small amount of time
of gradient flow) can be useful in feature learning. These works show that after the early stages of
gradient training, the first layer in a 2-layer neural network already captures useful features (usually
in the form of a low dimensional subspace), and continuing training the second layer weights will
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give performance guarantees that are stronger than any kernel or random feature based models. In
this work, we consider the natural follow-up question:

Does feature learning only happen in the early stages of gradient training?

We show that this is not the case by demonstrating feature learning capability for the final stage of
gradient training – local convergence. In particular, we prove the following result:

Theorem 1 (Informal). If the data is generated by a 2-layer teacher network f∗, as long as the width
of student network m is at least some quantity m0 that only depends on f∗, a variant of gradient
descent algorithm (Algorithm 1, roughly gradient descent with decreasing weight decay) can recover
the target network within polynomial time. Moreover, the student neurons align with the teacher
neurons at the end.

Our result highlights the different mechanisms of feature learning: previous works show that in the
early stages of gradient descent, the network learns the subspace spanned by the neurons in the
teacher network. Our local convergence result shows that at later stages, gradient descent is able to
learn the exact directions of the teacher neurons, which are much more informative compared to the
subspace and lead to stronger guarantees.

Analyzing the entire training dynamics is still challenging so in our algorithm (see Algorithm 1) we
use a convex second stage to “fast-forward” to the local analysis. Our technique for local convergence
is similar to the earlier work (Zhou et al., 2021), however we consider a more complicated setting with
ReLU activation and allow second-layer weights to be both positive or negative. This change requires
additional regularization in the form of standard weight decay and new dual certificate analysis.

1.1 Related works

Neural Tangent Kernel Early works often studied neural network optimization using NTK theory
(Jacot et al., 2018; Allen-Zhu et al., 2019b; Du et al., 2019). It is shown that highly-overparametrized
neural nets are essentially kernel methods under certain initialization scale. However, NTK theory
cannot explain the performance of neural nets in practice (Arora et al., 2019) and leads to lazy training
dynamics that neurons stay close to their initialization (Chizat et al., 2019). Hence, later research
efforts (e.g., Allen-Zhu et al., 2019a; Bai and Lee, 2020; Li et al., 2020), as well as current paper,
focus on feature learning regime where neural nets can learn features and outperform kernel methods.

Early stage feature learning Researchers have recently tried to understand how neural networks
trained with gradient descent (GD) can learn features, going beyond the kernel/lazy regime (Jacot
et al., 2018; Chizat et al., 2019). A typical setup is to use 2-layer neural networks to learn certain target
function, often equipped with low-dimensional structure. Examples include learning polynomials
(Yehudai and Shamir, 2019; Damian et al., 2022), single-index models (Ba et al., 2022; Mousavi-
Hosseini et al., 2023; Moniri et al., 2024; Cui et al., 2024), multi-index models (Dandi et al., 2023),
sparse boolean functions (Abbe et al., 2021, 2022, 2023), sparse parity functions (Daniely and
Malach, 2020; Shi et al., 2022; Barak et al., 2022) and causal graph (Nichani et al., 2024b). Also, few
works use 3-layer networks as learner model (Nichani et al., 2024a; Wang et al., 2024). These works
essentially showed that feature learning happens in the early stage of training. Specifically, they often
use 2-stage layer-wise training procedure: first-layer weights/features are only trained with one or
few steps of gradient descent/flow and only update the second-layer afterwards. Our results give a
complementary view that feature learning can also happen in the final stage training that leading
student neurons eventually align with ground-truth directions. This cannot be achieved if first-layer
weights are fixed after few steps.

Learning single/multi-index models with neural networks Single/Multi-index models are the
functions that only depend on one or few directions of the high dimensional input. Many recent works
have studied the problem of using 2-layer networks to learn single-index models (Soltanolkotabi,
2017; Yehudai and Ohad, 2020; Frei et al., 2020; Wu, 2022; Bietti et al., 2022; Xu and Du, 2023;
Berthier et al., 2023; Mahankali et al., 2024) and multi-index models (Damian et al., 2022; Bietti et al.,
2023; Suzuki et al., 2024; Glasgow, 2024). These works show the advantages of feature learning over
fixed random features in various settings. In this paper, we consider target multi-index function that
can be represented by a small 2-layer network, and show a variant of GD with weight decay can learn
it and, moreover, recover the ground-truth directions.
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Local loss landscape Safran et al. (2021) showed that in the overparametrized case with orthogonal
teacher neurons, even around the local region of global minima, the landscape neither is convex nor
satisfies PL condition. Chizat (2022) considered square loss with ℓ2 regularization similar to our setup
and showed the local loss landscape is strongly-convex under certain non-degenerate assumptions.
However, it is not known when such assumptions actually hold and the proof cannot handle ReLU.
Later Akiyama and Suzuki (2021) gives a result for ReLU, but the non-degeneracy assumption is still
required (and also focus on effective ℓ1 regularization instead of ℓ2 regularization). Zhou et al. (2021)
studies a similar local convergence setting but restricts second-layer weights to be positive and uses
absolute activation. In this paper, we focus on a more natural but technically challenging case that
second-layer can be positive and negative and using ReLU activation. We develop new techniques to
overcome the above challenges (additional assumption, ReLU, standard second-layer, etc).

2 Preliminary
Notation Let [n] be set {1, . . . , n}. For vector w, we use ∥w∥2 for its 2-norm and w = w/ ∥w∥2
as its normalized version. For two vectors w,v we use ∠(w,v) = arccos(|w⊤v|/(∥w∥2 ∥v∥2)] ∈
[0, π/2] as the angle between them (up to a sign).For matrix A let ∥A∥F be its Frobenius norm. We
use standard O,Ω,Θ to hide constants and Õ, Ω̃, Θ̃ to hide polylog factors. We use O∗,Ω∗,Θ∗ to
hide problem dependent parameters that only depend on the target network (see paragraph above (1)).

Teacher-student setup We will consider the teacher-student setup for two-layer neural networks
with Gaussian input x ∼ N(0, Id). The goal is to learn the teacher network of size m∗

f∗(x) =

m∗∑
i=1

a∗i σ(w
∗⊤
i x) +w∗⊤

0 x+ b∗0,

where σ(x) := max{0, x} is ReLU activation, S∗ := span{w∗
1 , . . . ,w

∗
m∗} is the target subspace.

Without loss of generality, we will assume ∥w∗
i ∥2 = 1 due to the homogeneity of ReLU.

Following the recent line of works in learning single/multi-index models (Ba et al., 2022; Damian
et al., 2022), we assume the target network has low dimensional structure.
Assumption 1. Teacher neurons form a low dimensional subspace in Rd, that is

dim(S∗) = dim(span{w∗
1 , . . . ,w

∗
m∗}) = r ≪ d.

We will also assume the teacher neurons are non-degenerate in the following sense:
Assumption 2. Teacher neurons are ∆-separated, that is angle ∠(w∗

i ,w
∗
j ) ≥ ∆ for all i ̸= j.

Assumption 3. H :=
∑m∗

i=1 a
∗
iw

∗
iw

∗⊤
i is non-degenerate in target subspace S∗, i.e., rank(H) = r.

Denote κ := |λr(H)|.

Assumption 2 simply requires all teacher neurons pointing to different directions, which is crucial for
identifiability (Zhou et al., 2021).

Assumption 3 says the target network contains low-order (second-order) information, which is related
with the notion of information exponent (Arous et al., 2021). In our setting, the information exponent
is at most 2 due to Assumption 3. Indeed, one can show Ex[f∗(x)h2(v

⊤x)] = σ̂2v
⊤Hv, where

h2(x) is the 2nd-order normalized Hermite polynomial and σ̂2 is the 2nd Hermite coefficient of ReLU.
See Appendix A for more details. Many previous works also rely on same or similar assumption to
show neural networks can learn features to perform better than kernels (Damian et al., 2022; Abbe
et al., 2022; Ba et al., 2022).

In this paper, we are interested in the case where the complexity of target network is small. There-
fore, we will use O∗,Ω∗,Θ∗ to hide poly(r,m∗,∆, |a1|, . . . , |am∗ |, κ), which is the polynomial
dependency on relevant parameters of target f∗ (does not depend on student network).

We will use the following overparametrized student network:

f(x;θ) =

m∑
i=1

aiσ(w
⊤
i x) + α+ β⊤x, (1)

where a = (a1, . . . , am)⊤ ∈ Rm, W = (w1 · · ·wm)⊤ ∈ Rm×d and θ = (a,W , α,β).
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Loss and algorithm Consider the square loss function with ℓ2 regularization under Gaussian input

Lλ(θ) = Ex∼N(0,Id)[(f(x;θ)− ỹ)2] +
λ

2
∥a∥22 +

λ

2
∥W ∥22 . (2)

We will use L to denote the square loss for simplicity. The ℓ2 regularization is the same as the
commonly used weight decay in practice. Our goal is to find the minima of unregularized problem
(λ = 0) to recover teacher network f∗. However, directly analyzing the unregularized problem is
challenging so instead we choose to analyze the regularized problem and will gradually let λ→ 0.

In above, we use preprocessed data (x, ỹ) in the loss function as in Damian et al. (2022). Specifically,
given any (x, y) with y = f∗(x), denote α∗ = Ex[y] and β∗ = Ex[yx], we get

f̃∗(x) = ỹ = y − α∗ − β⊤
∗ x. (3)

This preprocessing process essentially removes the 0-th and 1-st order term in the Hermite expansion
of σ. See Appendix A for a brief introduction of Hermite polynomials and Claim B.1.

Our algorithm is shown in Algorithm 1. It is roughly the standard GD following a given schedule of
weight decay λt that goes to 0. Due to the difficulty in analyzing gradient descent training beyond
early and final stage, we choose to only train the norms in Stage 2 as a tractable way to reach the
local convergence regime.

We will use symmetric initialization that ai = −ai+m/2, wi = wi+m/2 with ai ∼ Unif{±
√
d},

wi ∼ Unif((1/
√
m)Sd−1), α = 0, β = 0. Our analysis is not sensitive to the initialization scale we

choose here. The choice is just for the simplicity of the proof.

Algorithm 1: Learning 2-layer neural networks

Input: initialization θ(0), weight decay λt and stepsize ηt
Data preprocess: get (x, ỹ) according to (3)
Stage 1: one step gradient update

θ(1) ← θ(0) − η0∇θLλ0(θ
(0))

Stage 2: norm adjustment by convex program
a(T2), α(T2),β(T2) ← mina,α,β L(a,W (1), α,β) + λ

∑
i ∥wi∥2 |ai|

Balancing norm between two layers s.t. |ai| = ∥wi∥2 for all i
Stage 3: local convergence

for k ≤ K do // for each epoch, run GD until convergence
for T3,k−1 ≤ t ≤ T3,k do

θ(t+1) ← θ(t) − η∇θLλ3,k
(θ(t))

Output: θ(T3,K) = (a(T3,K),W (T3,K), α(T3,K),β(T3,K))

3 Main results

In this section, we give our main result that shows training student network using Algorithm 1 can
recover the target network within polynomial time. We will focus on the case that d ≥ Ω∗(1) when
the complexity of target function is small.

Theorem 2 (Main result). Under Assumption 1, 2, 3, consider Algorithm 1 on loss (2). There exists a
schedule of weight decay λt and step size ηt such that given m ≥ m0 = Õ∗(1) · (1/ε0)O(r) neurons
with small enough ε0 = Θ∗(1), with high probability we will recover the target network L(θ) ≤ ε
within time T = O∗(1/ηε

2) where η = poly(ε, 1/d, 1/m).

Moreover, when ε → 0 every student neuron wi either aligns with one of teacher neuron w∗
j as

∠(wi,w
∗
j ) = 0 or vanishes as |ai| = ∥wi∥ = 0.

Note that our results can be extended to only have access to polynomial number of samples by using
standard concentration tools. We omit the sample complexity for simplicity. See more discussion
in Appendix J. We emphasize that the required width m0 only depends on the complexity of target
function f∗ (only quantities that are related to f∗, not student network f or error ε), so any mildly
overparametrized networks can learn f∗ efficiently to arbitrary small error.
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The analysis consists of three stages: early-stage feature learning (Stage 1 and 2) and final-stage
feature learning/local convergence (Stage 3). It will be clear in the later section that ε0 is in fact the
threshold to enter the local convergence regime. See Section 4 for more details.

Our result improves the previous works that only train the first layer weight with small number of
gradient steps at the beginning (Damian et al., 2022; Ba et al., 2022; Abbe et al., 2021, 2022, 2023).
In these works, neural networks only learn the target subspace and do random features within it (see
Section 4.1 for more details). Intuitively, these random features need to span the whole space of the
target function class to perform well, which means its number (the width) should be on the order of
the dimension of target function class. For 2-layer networks, random features in the target subspace
need (1/ε)O(r) neurons to achieve desired accuracy ε. In contrast, continue training both layer at the
last phase of training allows us to learn not only subspace but also exactly the ground-truth directions.
Moreover, we only use (1/ε0)

O(r) neurons that only depends on the complexity of target network.
This highlights the benefit of continue training first layer weights instead of fixing them after first
step.

4 Proof overview
In this section, we give the proof overview of these three stages separately.

Denote the optimality gap ζ at time t as the difference between current loss and the best loss one
could achieve with networks of any size (including infinite-width networks)

ζt =Lλt
(θ(t))− min

µ∈M(Sd−1)
Lλt

(µ), (4)

whereM(Sd−1) is the set of measures on the sphere Sd−1. As an example, if µ =
∑

i ai ∥wi∥ δwi
,

then Lλ(µ) recovers Lλ(θ) when linear term α,β are perfectly fitted and norms are balanced
|ai| = ∥wi∥. We defer the precise definition of Lλ(µ) to (6) in appendix.

4.1 Stage 1

For Stage 1, we show in the lemma below that the first step of gradient descent identifies the target
subspace and ensures there always exists student neuron that is close to every teacher neuron.
Lemma 3 (Stage 1). Under Assumption 1,2,3, consider Algorithm 1 with λ0 = η0 = 1 and
m ≥ m0 = Õ∗(1) · (1/ε0)O(r) with any ε0 = Θ∗(1). After first step, with probability 1− δ we have

(i) for every teacher neuron w∗
i , there exists at least one student neuron wj s.t. ∠(w∗

i ,wj) ≤ ε0.

(ii)
∥∥∥w(1)

i

∥∥∥
2
= Θ∗(1), |a(1)i | ≤ O∗(1/

√
m) for all i ∈ [m∗], α1 = 0 and β1 = 0.

The key observation here is similar to Damian et al. (2022) that w(1)
i ≈ −2η0a(0)i

(
σ̂2
2Hwi

)
so that

given H is non-degenerate in target subspace S∗ we essentially sample w(1)
i from the target subspace.

It is then natural to expect that the neurons form an ε0-net in the target subspace given m0 neurons.

4.2 Stage 2

Given the learned features (first-layer weights) in Stage 1, we now perform least squares to adjust the
norms and reach a low loss solution in Stage 2.
Lemma 4 (Stage 2). Under Assumption 1,2,3, consider Algorithm 1 with λt =

√
ε0. Given Stage 1 in

Lemma 3, we have Stage 2 ends within time T2 = Õ∗(1/ηε0) such that optimality gap ζT2 = O∗(ε0).

It remains an open problem to prove the convergence when training both layers simultaneously
beyond early and final stage. To overcome this technical challenge, we choose to use a simple least
square for Stage 2. We use the simple (sub)gradient descent to optimize this loss. There exist many
other algorithms that can solve this Lasso-type problem, but we omit it for simplicity as this is not
the main focus of this paper.

Note that the regularization in Algorithm 1 is the same as standard weight decay when we train
both layers. This regularization leads to several desired properties at the end of Stage 2: (1) prevent
norm cancellation between neurons: neurons with similar direction but different sign of second layer
weights cancel with each other; (2) neurons mostly concentrate around ground-truth directions. As
we will see later, these nice properties continue to hold in Stage 3, thanks to the regularization.
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4.3 Stage 3

After Stage 2 we are in the local convergence regime. The following lemma shows that we could
recover the target network within polynomial time using a multi-epoch gradient descent with decreas-
ing weight decay λ at every epoch. Note that this result only requires the initial optimality gap is
small and width m ≥ m∗ (target network width, not m0).
Lemma 5 (Stage 3). Under Assumption 1,2,3, consider Algorithm 1 on loss (2). Given Stage 2
in Lemma 4, if the initial optimality gap ζ3,0 ≤ O∗(λ

9/5
3,0 ), weight decay λ follows the schedule of

initial value λ3,0 = O∗(1), and k-th epoch λ3,k = λ3,k−1/2 and stepsize η3k = η ≤ O∗(λ
12
3,kd

−3)

for all T3,k ≤ t ≤ T3,k+1 in epoch k, then within K = O∗(log(1/ε)) epochs and total T3 − T2 =

O∗(λ
−4
3,0η

−1ε−2) time we recover the ground-truth network L(θ) ≤ ε.

The lemma above relies on the following result that shows the local landscape is benign in the sense
that it satisfies a special case of Łojasiewicz property (Lojasiewicz, 1963). This means GD can always
make progress until the optimality gap ζ is small.

Lemma 6 (Gradient lower bound). When Ω∗(λ
2) ≤ ζ ≤ O∗(λ

9/5) and λ ≤ O∗(1), we have

∥∇θLλ∥2F ≥ Ω∗(ζ
4/λ2).

Note that this generalizes previous result in Zhou et al. (2021) that only focuses on 2-layer networks
with positive second layer weights. This turns out to be technically challenging as two neurons with
different signs can cancel each other. We discuss how to deal with this challenge in the next section.

5 Descent direction in local convergence (Stage 3): the benefit of weight decay

In this section, we give the high-level proof ideas for the most technical challenging part of our results
— characterize the local landscape in Stage 3 (Lemma 6).

The key idea is to construct descent direction — a direction that has positive correlation with the
gradient direction. The gradient lower bound follows from the existence of such descent direction.

It turns out that the existence of both positive and negative second-layer weights introduces significant
challenge for the analysis: there might exist neurons with similar directions (e.g., (a,w) and (−a,w))
that can cancel with each other to have no effect on the output of network. Intuitively, we would hope
all of them to move towards 0, but they have no incentive to do so. Moreover, if they are not exactly
symmetric it’s hard to characterize which directions these neurons will move.

We use standard weight decay to address the above challenge. Specifically, weight decay helps us to

• Balance norm between neurons. When norm between two layers are balanced, the ℓ2 regular-
ization

∑
i |ai|2 + ∥wi∥2 would become the effective ℓ1 regularization 2

∑
i |ai| ∥wi∥ over the

distribution of neurons. Such sparsity penalty ensures most neurons concentrate around the
ground-truth directions, especially preventing norm cancellation between far-away neurons.

• Reduce cancellation between close-by neurons. For close-by neurons, weight decay helps to
reduce the norm of neurons with the ‘incorrect’ sign (different sign with the ground-truth neuron).
This is because weight decay prefers low norm solutions, and reducing cancellations between
neurons can reduce total norm (regularization term) while keeping the square loss same.

We will group the neurons (i.e., partitioning Sd−1) based on their distance to the closest teacher
neurons: denote Ti = {w : ∠(w,w∗

i ) ≤ ∠(w,w∗
j ) for any j ̸= i} (break the tie arbitrarily) so that

∪iTi = Sd−1. We will also use δj to denote ∠(wj ,w
∗
i ) for j ∈ Ti.

As described above, weight decay can always lead to descent direction when norms are not balanced
or norm cancellation happens (see Lemma F.15 and Lemma F.16). The following lemma shows that
in other scenarios we can always improve features towards the ground-truth directions.
Lemma 7 (Feature improvement descent direction, informal). When norms are balanced and no
norm cancellation happens, there exists properly chosen qij ≥ 0 and

∑
j∈Ti

ajqij = a∗i such that∑
i∈[m∗]

∑
j∈Ti

⟨∇wi
Lλ,wj − qijw

∗
i ⟩ = Ω(ζ).
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Figure 1: Illustration of descent direction

In words, this descent direction is the following: we move neuron wj ∈ Ti toward either ground-truth
direction w∗

i or 0 depending on whether it is in the neighborhood of teacher neuron w∗
i . Specifically,

we move far-away neurons towards 0 (and thus setting qij = 0) and move close-by neurons towards
its ’closest’ minima qijw

∗
i (the fraction of w∗

i that neuron wj should target to approximate). See
Figure 1 for an illustration.

The proof of the above lemma requires a dedicated characterization of the low loss solution’s structure,
which we describe in Section 6.

6 Structure of (approximated) minima

In this section, we first highlight the importance of understanding local geometry by showing the
challenges in proving the existence of descent direction (Lemma 7). Then after presenting the main
result of this section to show the structure of (approximated) minima (Lemma 8), we discuss several
proof ideas such as dual certificate analysis in the remaining part.

6.1 Constructing descent direction requires better understanding of local geometry

To show the existence of descent direction in Lemma 7, we compute the inner product between
gradient and constructed descent direction. We can lower bound it by (assuming norms are balanced)

ζ + 2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))],

where R(x) = f(x)− f̃∗(x) is the residual. Thus, in order to get a lower bound, the goal is to show
second term above is small than ζ . As we can see, this term is quite complicated and can be viewed as
the inner product between R(x) and h(x) =

∑
i∈[m∗]

∑
j∈Ti

ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x)).

Average neuron and residual decomposition To deal with above challenge, we use the idea of
average neuron and residual decomposition. For each teacher neuron w∗

i , denote vi =
∑

j∈Ti
ajwj

as the average neuron. Intuitively, this average neuron vi stands for an idealize case where all neurons
belong to Ti (closer to w∗

i than other w∗
j ) collapse into a single neuron.

We decompose the residual R(x) = f(x)− f̃∗(x) into the 3 terms below: denote v̂i = vi −w∗
i

R1(x) =
1

2

∑
i∈[m∗]

v̂⊤
i x sign(w∗⊤

i x), R2(x) =
1

2

∑
i∈[m∗],j∈Ti

ajw
⊤
j x(sign(w

⊤
j x)− sign(w∗⊤

i x)),

R3(x) =
1√
2π

 ∑
i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m]

ai ∥wi∥2

+ α− α̂+ (β − β̂)⊤x.

R1 can be thought as the exact-parametrization setting (use m∗ neurons to learn m∗ neurons),
where the average neurons {vi}m∗

i=1 are the effective neurons. The difference between this exact-
parametrization and overparametrization setting is then characterized by the term R2, which captures
the difference in nonlinear activation pattern. This term in fact suggests the loss landscape is
degenerate in overparametrized case and slows down the convergence (Zhou et al., 2021; Xu and
Du, 2023). Overall, this residual decomposition is similar to Zhou et al. (2021), with additional
modification of R3 to deal with ReLU activation and linear term α,β.
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To some extent, our residual decomposition can be viewed as a kind of ‘bias-variance’ decomposition
in the sense that the ‘bias’ term R1 captures the overall average contribution of all neurons, and the
‘variance’ term R2 captures the individual contributions of each neuron that are not reflected in R1.

High-level proof plan of Lemma 7 We now are ready to give a proof plan for Lemma 7. The key
is to show properties of minima that can help us to bound ⟨R, h⟩.

1. Show that neurons mostly concentrate around ground-truth directions.
2. Show that average neuron vi is close to teacher neuron w∗

i for all i ∈ [m].
3. Use above structure to bound ⟨Ri, h⟩. Specifically, bounding ⟨R1, h⟩ relies on the fact that

average neuron is close to teacher neuron (step 2); a bound on ⟨R2, h⟩ follows from far-away
neurons are small (step 1); third term ⟨R3, h⟩ can be directly bounded using the loss. Detailed
calculations are deferred into Appendix H.3.

We give main result of this section that shows the desired local geometry properties more precisely
((i)(ii) corresponding to step 1 and (iii) corresponding to step 2 above).
Lemma 8 (Informal). Suppose the optimality gap is ζ, we have

(i) Total norm of far-away neurons is small:
∑

i∈[m∗]

∑
j∈Ti
|aj | ∥wj∥2 δ

2
j = O∗(ζ/λ), where

angle δj = ∠(wj ,w
∗
i ) for wj that j ∈ Ti.

(ii) For every w∗
i , there exists at least one close-by neuron w s.t. ∠(w,w∗

i ) ≤ δclose = O∗(ζ
1/3).

(iii) Average neuron is close to teach neurons: we have ∥vi −w∗
i ∥2 ≤ O∗((ζ/λ)

3/4).

These properties give us a sense of what the network should look like when loss is small: neurons
have large norm only if they are around the ground-truth directions. Moreover, when ζ/λ → 0,
student neuron must align with one of teacher neurons (δj = 0) or norm becomes 0 (|aj | ∥wj∥ = 0).
This can be understood from the ℓ1 regularized loss (equivalent to ℓ2 regularization on both layers)
that promotes the sparsity over the distribution of neurons. In the rest of this section, we discuss new
techniques such as dual certificate that we develop for the proof.

6.2 Neurons concentrate around teacher neurons: dual certificate analysis and test function

We focus on Lemma 8(i)(ii) here. We will use a dual certificate technique similar to Poon et al. (2023)
to prove Lemma 8(i), and a more general construction of test function to prove Lemma 8(ii). In below,
we consider a relaxed version of original optimization problem (2) by allowing infinite number of
neurons, i.e., distribution of neurons, with σ≥2(x) = ReLU(x)− 1/

√
2π − x/2 instead of ReLU:

min
µ∈M(Sd−1)

Lλ(µ) := L(µ;σ≥2) + λ|µ|1, (5)

where µ∗
λ is the minimizer. We use σ≥2 activation because this is the effective activation when linear

terms α, β are perfectly fitted (remove 0th and 1st order Hermite expansion of ReLU, see Claim B.1
and (6) in appendix).

This is the loss function we would have in the idealized setting: (1) linear term α, β reach their
global minima (this is easy to achieve as loss is convex in them); (2) use ℓ1 regularization instead of
ℓ2 regularization, since this is the case when the first and second layer norm are balanced (weight
decay encourages this to happen). Note that the results in this part can handle almost all activation as
long as its Hermite expansion is well-defined, generalizing Zhou et al. (2021) that can only handle
absolute/ReLU activation. In below we will focus on the activation σ≥2 for simplicity.

Dual certificate This optimization problem (5) can be viewed as a natural extension of the classical
compressed sensing problem (Donoho, 2006; Candès et al., 2006) and Lasso-type problem (Tibshirani,
1996) in the infinite dimensional space, which has been studied in recent years (Bach, 2017; Poon
et al., 2023). One common way is to study its dual problem. The dual solution p0(x) (maps Rd to R)
of (5) when λ = 0 satisfies Ex[p0(x)σ≥2(w

⊤x)] ∈ ∂|µ∗|(Sd−1) (more detailed discussions on this
dual problem can be found in e.g., Poon et al. (2023)). Here η(w) = Ex[p(x)σ≥2(w

⊤x)] is often
called dual certificate, as it serves as a certificate of whether a solution µ is optimal. Its meaning will
be clear in the discussions below.
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We now introduce the notion of non-degenerate dual certificate, motivated by Poon et al. (2023).
Note that the condition η(w) ∈ ∂|µ∗|(Sd−1) implies that η(w∗

i ) = sign(a∗i ) and ∥η∥∞ ≤ 1. The
following definition is a slightly stronger version of the above implications as it requires η to decay at
least quadratic when moves away from w∗

i .

Definition 1 (Non-degenerate dual certificate). η(w) is called a non-degenerate dual certificate if
there exists p(x) such that η(w) = Ex[p(x)σ≥2(w

⊤x)] for w ∈ Sd−1 and

(i) η(w∗
i ) = sign(a∗i ) for i = 1, . . . ,m∗.

(ii) |η(w)| ≤ 1− ρηδ(w,w∗
i )

2 if w ∈ Ti, where δ(w,w∗
i ) = ∠(w,w∗

i ).

+1

-1

0

η(w)

w∗
1

w∗
2

w∗
3

Figure 2: Dual certificate
η.

The existence and construction of the non-degenerate dual certificate
is deferred to Appendix G. We focus on the implications of such non-
degenerate dual certificate below.

Roughly speaking, the dual certificate only focuses on the position of ground-truth directions w∗
i

as it decays fast when moving away from these directions (Figure 2). Thus, if µ exactly recovers
ground-truth µ∗, then we have ⟨η, µ∗⟩ = |µ∗|1. The gap between ⟨η, µ⟩ and |µ|1 is large when µ is
away from µ∗. Therefore, η can be viewed as a certificate to test the optimality of µ. The lemma
below makes it more precise.

Lemma 9. Given a non-degenerate dual certificate η, then

(i) ⟨η, µ∗⟩ = |µ∗|1 and |⟨η, µ− µ∗⟩| ≤ ∥p∥2
√
L(µ).

(ii) For any measure µ ∈M(Sd−1), |⟨η, µ⟩| ≤ |µ|1 − ρη
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ|(w).

In the finite width case, we have
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ|(w) =

∑
i |ai| ∥wi∥ δ2i . This is exactly

the quantity that we are interested in Lemma 8.

To see the usefulness of Lemma 9, we show a proof for total norm bound of the optimal solution µ∗
λ.

The proof for general µ with optimality gap ζ is similar (Lemma F.5).

Claim 1 (Lemma 8(i) for µ∗
λ).

∑
i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ∗

λ|(w) ≤ O∗(λ)

Proof. It is not hard to show |µ∗
λ|1 ≤ |µ∗|1 (Lemma F.3) so we have

|µ∗
λ|1 − |µ∗|1 − ⟨η, µ∗

λ − µ∗⟩ ≤ −⟨η, µ∗
λ − µ∗⟩.

Using Lemma 9 and the fact L(µ∗
λ) = O∗(λ

2) from Lemma F.3,

LHS =|µ∗
λ|1 − ⟨η, µ∗

λ⟩ ≥ ρη
∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ∗
λ|(w), RHS ≤ ∥p∥2

√
L(µ∗

λ) = O∗(λ).

We have
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ∗

λ|(w) = O∗(λ).

Test function The idea of using test function is to identify certain properties of the target func-
tion/distribution that we are interested in. Specifically, we construct test function so that it only
correlates well with the target function that has the desired property. Generally speaking, the dual
certificate above can be consider as a specific case of a test function: the correlation between dual
certificate η and distribution of neurons µ is large (reach |µ|1) only when µ ≈ µ∗.

In below, we use this test function idea to show that every ground-truth direction has close-by neuron
(Lemma 8(ii)). Denote Ti(δ) := {j : ∠(wj ,wi) ≤ δ} ∩ Ti as the neurons that are δ-close to w∗

i .

Lemma 10 (Lemma 8(ii), informal). Given the optimality gap ζ, we have the total mass near each
target direction is large, i.e., µ(Ti(δ)) sign(a∗i ) ≥ |a∗i |/2 for all i ∈ [m∗] and any δ ≥ Θ∗

(
ζ1/3

)
.

Note that although the results in the dual certificate part (Lemma 9(ii)) can imply that there are
neurons close to teacher neurons, the bound we get here using carefully designed test function are
sharper (ζ1/3 vs. ζ1/4). This is in fact important to the descent direction construction (Lemma 7).
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0

g(x)

w∗
1 w∗

2 w∗
3

Figure 3: Test function g.

In the proof, we view the residual R(x) = fµ(x)− f∗(x) as the target
function and construct test function that will only have large correlation if
there is a teacher neuron that have no close student neurons. Specifically,
the test function g only consists of high-order Hermite polynomial such
that it is large around the ground-truth direction and decays fast when
moving away (Figure 3). It looks like a single spike in dual certificate
η, but in fact decays much faster than η when moving away. It is more
flexible to choose test function than dual certificate, so test function g can focus only on a local region
of one ground-truth direction and give a better guarantee than dual certificate analysis.

6.3 Average neuron is close to teacher neuron: residual decomposition and average neuron

We give the proof idea for Lemma 8(iii) that shows average neuron vi is close to teacher neuron w∗
i

using the residual decomposition R = R1 +R2 +R3.

The key is to observe that R1 is an analogue to exact-parametrization case where loss is often
strongly-convex, so we have ∥R1∥22 = Ω∗(1)

∑
i ∥vi −w∗

i ∥
2
2. Then the goal is to upper bound ∥R1∥.

Given the decomposition R = R1 + R2 + R3, it is easy to bound ∥R1∥ ≤ ∥R∥ + ∥R2∥ + ∥R3∥.
We focus on ∥R2∥ as the other two are not hard to bound (loss is small in local regime). R2

is in fact closely related with the total weighted norm bound in Lemma 8: we show ∥R2∥ =

O∗(1)
(∑

j∈Ti
|aj | ∥wj∥2 δ

2
j

)3/2
= O∗((ζ/λ)

3/2). Thus, we get a bound for ∥vi −w∗
i ∥. See

Appendix F.1.4 for details.

7 Conclusion

In this paper we showed that gradient descent converges in a large local region depending on the
complexity of the teacher network, and the local convergence allows 2-layer networks to perform a
strong notion of feature learning (matching the directions of ground-truth teacher networks). We hope
our result gives a better understanding of why gradient-based training is important for feature learning
in neural networks. Our results rely on adding standard weight decay and new constructions of dual
certificate and test functions, which can be helpful in understanding local optimization landscape in
other problems. A natural but challenging next step is to understand whether the intermediate steps
are also important for feature learning.
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A Some properties of Hermite polynomials

In this section, we give several properties of Hermite polynomials that are useful in our analysis.
See O’Donnell (2021) for a more complete discussion on Hermite polynomials. Let Hk be the
probabilists’ Hermite polynomial where

Hk(x) = (−1)kex
2/2 dk

dxk
(e−x2/2)

and hk = 1√
k!
Hk be the normalized Hermite polynomials.

Hermite polynomials are classical orthogonal polynomials, which means Ex∼N(0,1)[hm(x)hn(x)] =

1 if m = n and otherwise 0. Given a function σ, we call σ(x) =
∑∞

k=0 σ̂khk(x) as the Hermit
expansion of σ and σ̂k = Ex∼N(0,1)[σ(x)hk(x)] as the k-th Hermite coefficient of σ.

The following is a useful property of Hermite polynomial.

Claim A.1 ((O’Donnell, 2021), Section 11.2). Let (x, y) be ρ-correlated standard normal variables
(that is, both x, y have marginal distribution N(0, 1) and E[xy] = ρ). Then, E[hm(x)hn(y)] =
ρnδmn, where δmn = 1 if m = n and otherwise 0.

The following lemma gives the Hermite coefficients for absolute value function and ReLU.

Lemma A.1. Let σ̂k = Ex∼N(0,1)[σ(x)hk(x)] be the Hermite coefficient of σ. For σ is ReLU or
absolute function, we have |σ̂k| = Θ(k−5/4).

Proof. From Goel et al. (2020); Zhou et al. (2021) we have

σ̂abs,k =


0 , k is odd√
2/π , k = 0

(−1) k
2−1
√

2
π

(k−2)!√
k!2k/2−1(k/2−1)!

, k is even and k ≥ 2

σ̂relu,k =


0 , k is odd and k ≥ 3√
1/2π , k = 0

1/2 , k = 1

(−1) k
2−1
√

1
2π

(k−2)!√
k!2k/2−1(k/2−1)!

, k is even and k ≥ 2

Using Stirling’s formula, we get |σ̂abs,k|, |σ̂relu,k| = Θ(k−5/4).

B Useful facts and proof of Theorem 2

In this section we provide several useful facts and present the proof of Theorem 2.

The following claim shows that the square loss can be decomposed into 3 terms, where α,β are
corresponding to 0th and 1st order of Hermite expansion. The effective activation is in fact σ≥2 as
defined below.

Claim B.1. Denote α̂ = −(1/
√
2π)

∑m
i=1 ai ∥wi∥2, β̂ = −(1/2)

∑m
i=1 aiwi.We have square loss

L(θ) = |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+ Ex[(f≥2(x)− f̃∗(x))

2]

where f≥2(x;θ) =
∑

i∈[m] aiσ≥2(w
⊤
i x) and σ≥2(x) = σ(x)−1/

√
2π−x/2 is the activation that

after removing 0th and 1st order term in Hermite expansion.

As a result, when α,β are perfectly fitted and norms are balanced we have

Lλ(θ) = Ex[(f≥2(x)− f̃∗(x))
2] + λ

∑
i∈[m]

.|ai| ∥wi∥2
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Proof. Following Ge et al. (2018), we can write the loss L(θ) as a sum of tensor decomposition
problem using Hermite expansion as in Section A (recall ∥w∗

i ∥2 = 1 and preprocessing procedure
removes the 0-th and 1-st order term in the Hermite expansion of σ):

L(θ) =Ex


∑

i∈[m]

ai ∥wi∥2
∑
k≥0

σ̂khk(w
⊤
i x) + α+ h1(β

⊤x)−
∑

i∈[m∗]

a∗i ∥w∗
i ∥2

∑
k≥2

σ̂khk(w
∗⊤
i x)

2


=

∣∣∣∣∣∣α+ σ̂0

∑
i∈[m]

ai ∥wi∥2

∣∣∣∣∣∣
2

+

∥∥∥∥∥∥β + σ̂1

∑
i∈[m]

aiwi

∥∥∥∥∥∥
2

2

+
∑
k≥2

σ̂2
k

∥∥∥∥∥∥
∑
i∈[m]

ai ∥wi∥2 w
⊗k
i −

∑
i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
2

F

.

Note that σ̂0 = 1/
√
2π, σ̂1 = 1/2 as in Lemma A.1, we get the result.

The proof of main result Theorem 2 is simply a combination of few lemmas appear in other sections.
We refer the detailed proof and discussion to their corresponding sections.

Theorem 2 (Main result). Under Assumption 1, 2, 3, consider Algorithm 1 on loss (2). There exists a
schedule of weight decay λt and step size ηt such that given m ≥ m0 = Õ∗(1) · (1/ε0)O(r) neurons
with small enough ε0 = Θ∗(1), with high probability we will recover the target network L(θ) ≤ ε
within time T = O∗(1/ηε

2) where η = poly(ε, 1/d, 1/m).

Moreover, when ε → 0 every student neuron wi either aligns with one of teacher neuron w∗
j as

∠(wi,w
∗
j ) = 0 or vanishes as |ai| = ∥wi∥ = 0.

Proof. Combine Lemma 3 (Stage 1), Lemma 4 (Stage 2) and Lemma 5 (Stage 3) together and follow
the choice of λt and ηt we get the result.

For the student neurons’ alignment, it is a direct corollary from Lemma F.6 and Lemma F.5.

C Stage 1: first gradient step

In this section, we show that after the first gradient update the first layer weights w1, . . . ,wm form a
ε0-net of the target subspace S∗, given m = (1/ε0)

O(r) neurons. The proof is deferred to Section C.1.

Lemma 3 (Stage 1). Under Assumption 1,2,3, consider Algorithm 1 with λ0 = η0 = 1 and
m ≥ m0 = Õ∗(1) · (1/ε0)O(r) with any ε0 = Θ∗(1). After first step, with probability 1− δ we have

(i) for every teacher neuron w∗
i , there exists at least one student neuron wj s.t. ∠(w∗

i ,wj) ≤ ε0.

(ii)
∥∥∥w(1)

i

∥∥∥
2
= Θ∗(1), |a(1)i | ≤ O∗(1/

√
m) for all i ∈ [m∗], α1 = 0 and β1 = 0.

The proof relies on the following lemma from Damian et al. (2022) that shows after the first step
update wi’s are located at positions as if they are sampled within the target subspace S∗.

Lemma C.1 (Lemma 4, Damian et al. (2022)). Under Assumption 3, we have with high probability
in the ℓ2 norm sense

w
(1)
i = −η0∇wiL(a

(0),W (0)) = −2η0a(0)i

(
σ̂2
2Hwi ± Õ(

√
r

d
)

)
,

where σ̂k := Ex[σ(x)hk(x)] is the k-th Hermite polynomial coefficient.

C.1 Proofs in Section C

We now are ready to give the proof of Lemma 3.
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Lemma 3 (Stage 1). Under Assumption 1,2,3, consider Algorithm 1 with λ0 = η0 = 1 and
m ≥ m0 = Õ∗(1) · (1/ε0)O(r) with any ε0 = Θ∗(1). After first step, with probability 1− δ we have

(i) for every teacher neuron w∗
i , there exists at least one student neuron wj s.t. ∠(w∗

i ,wj) ≤ ε0.

(ii)
∥∥∥w(1)

i

∥∥∥
2
= Θ∗(1), |a(1)i | ≤ O∗(1/

√
m) for all i ∈ [m∗], α1 = 0 and β1 = 0.

Proof. We show them one by one.

Part (i) From Lemma C.1 and the fact that w(0)
i samples uniformly from unit sphere, we know

the probability of ∠(w(1)
i ,w) for any given w is at least Ω∗(ε

r
0). Applying union bound we get the

desired result.

Part (ii) We have

w
(1)
i = −η0∇wi

L(a(0),W (0)) = a
(0)
i Ex[f̃∗(x)σ

′(w⊤
i x)x]

For the norm bound, using Lemma C.1 we know

√
d

(∥∥∥Hw
(0)
i

∥∥∥
2
− Õ(

√
r

d
)

)
≤
∥∥∥w(1)

i

∥∥∥
2
≤
√
d

(∥∥∥Hw
(0)
i

∥∥∥
2
+ Õ(

√
r

d
)

)
.

Since w
(0)
i initializes from Gaussian distribution, we know the desired bound hold. Similarly, one

can bound |a(1)i |.
Since we use a symmetric initialization and have preprocessed the data, it is easy to see α,β remains
at 0.

D Stage 2: reaching low loss

In Stage 2, we show that given the features learned in Stage 1 one can adjust the norms on top of it to
reach low loss that enters the local convergence regime in Stage 3.

Procedure We first specify the procedure to solve mina minα,β L(θ) + λ
∑

i ∥wi∥2 |ai|. For a
at current point, we first solve the inner optimization problem, which is a linear regression on α,β.
From Claim B.1 we know the global minima is (α̂, β̂). For simplicity of the proof, we just directly set
(α,β) = (α̂, β̂). Then given the α,β, the outer optimization is a convex optimization for a, which
can also be solved efficiently. Specifically, we perform 1 step of (sub)gradient on the loss function.
We repeat the above 2 steps until convergence.

From Claim B.1 we know the actual objective that we optimize is

L̃1,λ(a) = Ex[(a
⊤σ≥2(Wx)− ỹ)2] + λ

∑
i

∥wi∥2 |ai|.

The following lemma shows that after Stage 2 we reach a low loss solution given the first layer
features learned after first gradient step. The proof requires η to be small enough that depends on
1/m, mostly due to the large gradient norm. We believe using more advance algorithm for this type
of problem can alleviate this issue. However, as this is not the focus of this paper, we omit it for
simplicity.

Lemma 4 (Stage 2). Under Assumption 1,2,3, consider Algorithm 1 with λt =
√
ε0. Given Stage 1 in

Lemma 3, we have Stage 2 ends within time T2 = Õ∗(1/ηε0) such that optimality gap ζT2
= O∗(ε0).
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Proof. Denote ã∗ as the minima of L̃1,λ. Then, we have∥∥∥a(t+1) − ã∗

∥∥∥2
2
=
∥∥∥a(t) − ã∗

∥∥∥2
2
− 2η⟨∇aL̃1,λ(a

(t)),a(t) − ã∗⟩+ η2
∥∥∥∇aL̃1,λ(a

(t))
∥∥∥2
2

(a)
≤
∥∥∥a(t) − ã∗

∥∥∥2
2
− 2η(L̃1,λ(a

(t))− L̃1,λ(ã∗)) + η2O∗(m)

=
∥∥∥a(t) − ã∗

∥∥∥2
2
− 2η(L̃1,λ(a

(t))− L̃1,λ(ã∗)) + ηε0/2,

where (a) we use idea loss L̃1,λ is convex in a.

Iterating the above inequality over all t we have∥∥∥a(T ) − ã∗

∥∥∥2
2
≤
∥∥∥a(1) − ã∗

∥∥∥2
2
− 2η

∑
t≤T

(L̃1,λ(a
(t))− L̃1,λ(ã∗)) + ηTε0/2,

which means

min
t≤T

L̃1,λ(a
(t))− L̃1,λ(ã∗) ≤

1

T

∑
t≤T

(L̃1,λ(a
(t))− L̃1,λ(ã∗)) ≤

∥∥a(1) − ã∗
∥∥2
2

ηT
+ ε0/2.

It is easy to see
∥∥a(1)

∥∥
2
, ∥ã∗∥1 = O∗(1). Thus, when T ≥ O∗(1/ηε0) we know L̃1,λ(a

(T2)) −
L̃1,λ(ã∗) ≤ 3ε0/4.

This suggests the optimality gap after balancing the norm (so that Lλ(θ
(T2)) = L̃1,λ(a

(T2)))

ζT2 =Lλ(θ
(T2))− min

µ∈M(Sd−1)
Lλ(µ)

=L̃1,λ(a
(T2))− L̃1,λ(ã∗) + L̃1,λ(ã∗)− min

µ∈M(Sd−1)
Lλ(µ).

For L̃1,λ(a
(T2))− L̃1,λ(ã∗), we just show above that it is less than 3ε0/4.

For L̃1,λ(ã∗)−minµ∈M(Sd−1) Lλ(µ), we have

L̃1,λ(ã∗)− min
µ∈M(Sd−1)

Lλ(µ) ≤L̃1,λ(â∗)− min
µ∈M(Sd−1)

Lλ(µ)

≤O∗(ε
2
0) + λ ∥a∗∥1 − λ|µ∗

λ|1 ≤ O∗(λ
2),

where in the last inequality we use Lemma F.3 and µ∗
λ = argminµ∈M(Sd−1) Lλ(µ). Here â∗ is a

rescaled version of a∗ and is constructed as: for every teacher neuron w∗
i choose the closest neuron

wj s.t. ∠(wj ,w
∗
i ) ≤ ε0 and set â∗,j = a∗i / ∥wj∥2. Set all other â∗,k = 0.

Together with above calculations, we have ζT2
≤ O∗(ε0).

E Stage 3: local convergence for regularized 2-layer neural networks

In this section we show the local convergence that loss eventually goes to 0 within polynomial time
and recovers teacher neurons’ direction.

The results in this section only need the width m ≥ m∗ as long as its initial loss is small.
Lemma 5 (Stage 3). Under Assumption 1,2,3, consider Algorithm 1 on loss (2). Given Stage 2
in Lemma 4, if the initial optimality gap ζ3,0 ≤ O∗(λ

9/5
3,0 ), weight decay λ follows the schedule of

initial value λ3,0 = O∗(1), and k-th epoch λ3,k = λ3,k−1/2 and stepsize η3k = η ≤ O∗(λ
12
3,kd

−3)

for all T3,k ≤ t ≤ T3,k+1 in epoch k, then within K = O∗(log(1/ε)) epochs and total T3 − T2 =

O∗(λ
−4
3,0η

−1ε−2) time we recover the ground-truth network L(θ) ≤ ε.

The goal of each epoch is to minimize the loss Lλ with a fix λ. The lemma below shows that as long
as the initial optimality gap is O∗(λ

9/5), then at the end of each epoch, Lλ could decrease to O∗(λ
2).

Therefore, using a slow decay of weight decay parameter λ for each epoch we could stay in the local
convergence regime for each epoch and eventually recovers the target network.
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Lemma E.1 (Loss improve within one epoch). Suppose |a(0)i | ≤
∥∥∥w(0)

i

∥∥∥
2

for all i ∈ [m]. If

ζ0 ≤ O∗(λ
9/5) and λ ≤ O∗(1) and η ≤ O∗(λ

12d−3), then within O∗(λ
−4η−1) time the optimality

gap becomes Lλ − Lλ(µ
∗
λ) = O∗(λ

2).

The above result relies on the following characterization of local landscape of regularized loss. We
show the gradient is large whenever the optimality gap is large. This is the main contribution of this
paper, see Section F for detailed proofs.

Lemma 6 (Gradient lower bound). When Ω∗(λ
2) ≤ ζ ≤ O∗(λ

9/5) and λ ≤ O∗(1), we have

∥∇θLλ∥2F ≥ Ω∗(ζ
4/λ2).

In order to use the above landscape result with standard descent lemma, we also need certain
smoothness condition on the loss function. We show below that this regularized loss indeed satisfies
certain smoothness condition (though weaker than standard smoothness condition) to allow the
convergence analysis.

Lemma E.2 (Smoothness). Suppose |ai| ≤ ∥wi∥2 and
∥∥∥Ex[R(x)σ′(w

(t)⊤
i x)x]

∥∥∥2
2
= O∗(d) for all

i ∈ [m]. If η = O∗(1/d), then

Lλ(θ − η∇θLλ) ≤ Lλ(θ)− η ∥∇θLλ∥2F +O∗(η
3/2d3/2)

E.1 Proofs in Section E

We now are ready to show the convergence of Stage 3 by using Lemma E.1 to show the loss makes
progress every epoch.
Lemma 5 (Stage 3). Under Assumption 1,2,3, consider Algorithm 1 on loss (2). Given Stage 2
in Lemma 4, if the initial optimality gap ζ3,0 ≤ O∗(λ

9/5
3,0 ), weight decay λ follows the schedule of

initial value λ3,0 = O∗(1), and k-th epoch λ3,k = λ3,k−1/2 and stepsize η3k = η ≤ O∗(λ
12
3,kd

−3)

for all T3,k ≤ t ≤ T3,k+1 in epoch k, then within K = O∗(log(1/ε)) epochs and total T3 − T2 =

O∗(λ
−4
3,0η

−1ε−2) time we recover the ground-truth network L(θ) ≤ ε.

Proof. Since |a(0)i | ≤
∥∥∥w(0)

i

∥∥∥
2

for all i ∈ [m] at the beginning of Stage 3, from Lemma E.3 we know
they will remain hold for all epoch and all time t.

From Lemma E.1 we know for epoch k it finishes within O∗(λ
−4
k η−1) time and achieves Lλk

−
Lλk

(µ∗
λk
) = O∗(λ

2
k). To proceed to next epoch k + 1, we only need to show the solution at the end

of epoch k θ(k) gives the optimality gap ζ = O∗(λ
9/5
k+1) for the next λk+1. We have

Lλk+1
(θ(k))− Lλk+1

(µ∗
λk+1

) =L(θ(k))− L(µ∗
λk+1

) +
λk+1

2

∥∥∥a(k)
∥∥∥2
2
+

λk+1

2

∥∥∥W (k)
∥∥∥2
F
− λk+1|µ∗

λk+1
|1

(a)
≤O∗(λ

2
k) +

λk+1

λk

(
λk

2

∥∥∥a(k)
∥∥∥2
2
+

λk

2

∥∥∥W (k)
∥∥∥2
F
− λk|µ∗

λk+1
|1
)

(b)
≤O∗(λ

2
k) +

λk+1

λk

(
O∗(λ

2
k) + L(µ∗

λk
)− L(θ(k))

)
(c)
≤O∗(λ

2
k) ≤ O∗(λ

9/5
k+1)

where (a) due to Lemma F.4 that L(θ(k)) is small; (b) the optimality gap at the end of epoch k is
O∗(λ

2
k) and |µ∗

λk
|1 − |µ∗

λk+1
|1 = O∗(λk) from Lemma F.3; (c) due to Lemma F.3 that L(µ∗

λk
) is

small. In this way, we can apply Lemma E.1 again for epoch k + 1.

From Lemma F.4 we know at the end of epoch k the square loss L(θ(k)) = O∗(λ
2
k). Thus, to reach

ε square loss, we need λk = O∗(ε
1/2), which means we need to take O∗(log(1/ε)) epoch. Since

epoch k it finishes within O∗(λ
−4
k η−1) time, we know the total time is at most O∗(λ

−4
0 η−1ε−2)

time.
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To show the lemma below that loss makes progress within every epoch, we rely on the gradient lower
bound (Lemma 6) and smoothness condition of loss function (Lemma E.2).

Lemma E.1 (Loss improve within one epoch). Suppose |a(0)i | ≤
∥∥∥w(0)

i

∥∥∥
2

for all i ∈ [m]. If

ζ0 ≤ O∗(λ
9/5) and λ ≤ O∗(1) and η ≤ O∗(λ

12d−3), then within O∗(λ
−4η−1) time the optimality

gap becomes Lλ − Lλ(µ
∗
λ) = O∗(λ

2).

Proof. Since |a(0)i | ≤
∥∥∥w(0)

i

∥∥∥
2

for all i ∈ [m] at the beginning of current epoch, from Lemma E.3
we know they will remain hold for all time t. Then combine Lemma E.4 and Lemma E.2 we know

Lλ(θ − η∇θLλ) ≤ Lλ(θ)− η ∥∇θLλ∥2F +O∗(η
3/2d3/2).

Recall ζt = Lλ(θ
(t))− Lλ(µ

∗
λ). Using gradient lower bound Lemma 6 and consider the time before

ζt reach O∗(λ
2) we have

ζt+1 ≤ ζt − ηΩ∗(ζ
4
t /λ

2) +O∗(η
3/2d3/2) ≤ ζt − Ω∗(ηζ

4
t /λ

2),

where we use η = O∗(λ
12d−3) to be small enough.

The above recursion implies that

ζt = O∗((t/λ
2 + ζ−3

0 )−1/3).

Thus, within O∗(1/λ
4) the optimality gap ζt reaches O∗(λ

2).

The lemma below shows a regularity condition on the norm between two layers.

Lemma E.3. If we start at |a(0)i | ≤
∥∥∥w(0)

i

∥∥∥
2

and η = O∗(1), then we have |a(t)i |2 ≤
∥∥∥w(t)

i

∥∥∥2
2

for

all i ∈ [m∗] and all time t.

Proof. Denote R(x) = f(x)− f∗(x). Assume |a(t)i |2 −
∥∥∥w(t)

i

∥∥∥2
2
≤ 0 we show it remains at t+ 1.

We have

|a(t+1)
i |2 −

∥∥∥w(t+1)
i

∥∥∥2
2

=|a(t)i − η∇aiLλ(θ
(t))|2 −

∥∥∥w(t)
i − η∇wiLλ(θ

(t))
∥∥∥2
2

=|a(t)i |
2 −

∥∥∥w(t)
i

∥∥∥2
2
+ η2|∇ai

Lλ(θ
(t))|2 − η2

∥∥∥∇wi
Lλ(θ

(t))
∥∥∥2
2

=|a(t)i |
2 −

∥∥∥w(t)
i

∥∥∥2
2
+ η2|2Ex[R(x)σ(w

(t)⊤
i x)] + λa

(t)
i |

2 − η2
∥∥∥2Ex[R(x)a

(t)
i σ′(w

(t)⊤
i x)x] + λw

(t)
i

∥∥∥2
2

We first focus on the last 2 terms. We have

|2Ex[R(x)σ(w
(t)⊤
i x)] + λa

(t)
i |

2 −
∥∥∥2Ex[R(x)a

(t)
i σ′(w

(t)⊤
i x)x] + λw

(t)
i

∥∥∥2
2

=
∥∥∥w(t)

i

∥∥∥2
2
|2Ex[R(x)σ(w

(t)⊤
i x)]|2 + λ2|a(t)i |

2 − |a(t)i |
2
∥∥∥2Ex[R(x)σ′(w

(t)⊤
i x)x]

∥∥∥2
2
− λ2

∥∥∥w(t)
i

∥∥∥2
2

(a)
≤
(
|a(t)i |

2 −
∥∥∥w(t)

i

∥∥∥2
2

)(
λ2 −

∥∥∥2Ex[R(x)σ′(w
(t)⊤
i x)x]

∥∥∥2
2

)
,

where (a) due to |2Ex[R(x)σ(w
(t)⊤
i x)]|2 ≤

∥∥∥2Ex[R(x)σ′(w
(t)⊤
i x)x]

∥∥∥2
2
.

Therefore, plug it back to the above equation, we have

|a(t+1)
i |2 −

∥∥∥w(t+1)
i

∥∥∥2
2
≤
(
|a(t)i |

2 −
∥∥∥w(t)

i

∥∥∥2
2

)(
1 + η2λ2 − η2

∥∥∥2Ex[R(x)σ′(w
(t)⊤
i x)x]

∥∥∥2
2

)
(a)
≤0,
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where (a) due to |a(t)i |2 −
∥∥∥w(t)

i

∥∥∥2
2
≤ 0 and we use

∥∥∥2Ex[R(x)σ′(w
(t)⊤
i x)]x

∥∥∥2
2
= O∗(d) from

Lemma E.4 and η is small enough.

Therefore, we can see that |a(t)i |2 −
∥∥∥w(t)

i

∥∥∥2
2
≤ 0 remains for all t.

This lemma shows the smoothness of loss function. The proof requires a careful calculations to bound
the error terms.

Lemma E.2 (Smoothness). Suppose |ai| ≤ ∥wi∥2 and
∥∥∥Ex[R(x)σ′(w

(t)⊤
i x)x]

∥∥∥2
2
= O∗(d) for all

i ∈ [m]. If η = O∗(1/d), then

Lλ(θ − η∇θLλ) ≤ Lλ(θ)− η ∥∇θLλ∥2F +O∗(η
3/2d3/2)

Proof. Denote Rθ(x) = fθ(x) − f∗(x) to denote the dependency on θ. For simplicity, we will

use ∇̃θ = −η∇θLλ and same for others. Since
∥∥∥Ex[R(x)σ′(w

(t)⊤
i x)x]

∥∥∥2
2
= O∗(d), we know

|∇̃ai
| = O∗(η ∥wi∥2 d) and

∥∥∥∇̃wi

∥∥∥
2
= O∗(η|ai|d)

We have

Lλ(θ − η∇θ)− Lλ(θ) + η ∥∇θ∥2F
=Lλ(θ − η∇θ)− Lλ(θ)− ⟨∇θ,−η∇θ⟩

=Ex[Rθ+∇̃θ
(x)2] +

λ

2

∥∥∥a+ ∇̃a

∥∥∥2
2
+

λ

2

∥∥∥W + ∇̃W

∥∥∥2
F
− Ex[Rθ(x)

2]− λ

2
∥a∥22 −

λ

2
∥W ∥2F

−
∑
i∈[m]

Ex[Rθ(x)σ(w
⊤
i x)∇̃ai

]−
∑
i∈[m]

Ex[Rθ(x)aiσ
′(w⊤

i x)x
⊤∇̃wi

]− Ex[Rθ(x)∇̃α]− Ex[Rθ(x)x
⊤∇̃β]

− λ⟨a, ∇̃a⟩ − λ⟨W , ∇̃W ⟩
=Ex[(Rθ+∇̃θ

(x)−Rθ(x))
2]︸ ︷︷ ︸

(I)

+ 2Ex

Rθ(x)

Rθ+∇̃θ
(x)−Rθ(x)−

∑
i∈[m]

σ(w⊤
i x)∇̃ai

−
∑
i∈[m]

aiσ
′(w⊤

i x)x
⊤∇̃wi

− ∇̃α − x⊤∇̃β


︸ ︷︷ ︸

(II)

+
λ

2

∥∥∥∇̃a

∥∥∥2
2
+

λ

2

∥∥∥∇̃W

∥∥∥2
F
.

The last line is easy to see on O∗(η
2d2) using norm bound in Lemma F.12, so in below we are going

to bound (I) and (II) one by one. The goal is to show they are small in the sense of on order o(η).

Bound (I) For (I), we can write out the expression as

Ex[(Rθ+∇̃θ
(x)−Rθ(x))

2] =Ex


∑

i∈[m]

(ai + ∇̃ai
)σ((wi + ∇̃wi

)⊤x)− aiσ(w
⊤
i x) + ∇̃α + x⊤∇̃β

2


≤2Ex


∑

i∈[m]

(ai + ∇̃ai
)σ((wi + ∇̃wi

)⊤x)− aiσ(w
⊤
i x)

2


︸ ︷︷ ︸
(I.i)

+ 2Ex

[(
∇̃α + x⊤∇̃β

)2]
︸ ︷︷ ︸

(I.ii)
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For (I.i), we can split into 2 terms as

Ex


∑

i∈[m]

(ai + ∇̃ai)σ((wi + ∇̃wi)
⊤x)− aiσ(w

⊤
i x)

2


≤2Ex


∑

i∈[m]

∇̃ai
σ((wi + ∇̃wi

)⊤x)

2
+ 2Ex


∑

i∈[m]

aiσ((wi + ∇̃wi
)⊤x)− aiσ(w

⊤
i x)

2


≤2Ex


∑

i∈[m]

|∇̃ai
||(wi + ∇̃wi

)⊤x|

2
+ 2Ex


∑

i∈[m]

|ai||∇̃⊤
wi

x|

2
 .

We then can bound them separately as

(I.i)
(a)
≤O(1)

∑
i∈[m]

|∇̃ai |
∥∥∥wi + ∇̃wi

∥∥∥
2

2

+O(1)

∑
i∈[m]

|ai|
∥∥∥∇̃wi

∥∥∥
2

2

(b)
≤O∗(d

2)

∑
i∈[m]

η ∥wi∥22 + η2|ai| ∥wi∥2 d

2

+O∗(d
2)

∑
i∈[m]

ηa2i

2

(c)
≤O∗(η

2d2),

where (a) we use Lemma E.5; (b) recall |∇̃ai | = O∗(η ∥wi∥2 d) and
∥∥∥∇̃wi

∥∥∥
2
= O∗(η|ai|d); (c)

∥a∥ , ∥W ∥F ,
∑

i∈[m] |ai| ∥wi∥2 = O∗(1) from Lemma F.12 and Lemma F.4, as well as η is small
enough.

For (I.ii), we have

Ex

[(
∇̃α + x⊤∇̃β

)2]
≤ O(|∇̃α|2 +

∥∥∥∇̃β

∥∥∥2
2
) = O∗(η

2d2),

where we use Lemma F.4.

Combine (I.i) and (I.ii) we know (I)=O∗(η
2d2).

Bound (II) For (II), we have

Ex

Rθ(x)

Rθ+∇̃θ
(x)−Rθ(x)−

∑
i∈[m]

σ(w⊤
i x)∇̃ai

−
∑
i∈[m]

aiσ
′(w⊤

i x)x
⊤∇̃wi

− ∇̃α − x⊤∇̃β


=Ex

Rθ(x)

∑
i∈[m]

(ai + ∇̃ai)σ((wi + ∇̃wi)
⊤x)− aiσ(w

⊤
i x)− σ(w⊤

i x)∇̃ai − aiσ
′(w⊤

i x)x
⊤∇̃wi︸ ︷︷ ︸

Ii(x)




≤
∑
i∈[m]

∥Rθ∥ ∥Ii∥

We focus on bound ∥Ii∥ below. The goal is to show it is o(η). For Ii(x), we have

∥Ii∥22 =Ex

[(
(ai + ∇̃ai

)σ((wi + ∇̃wi
)⊤x)− aiσ(w

⊤
i x)− σ(w⊤

i x)∇̃ai
− aiσ

′(w⊤
i x)x

⊤∇̃wi

)2]
≤Ex

[
2
(
∇̃ai(σ((wi + ∇̃wi)

⊤x)− σ(w⊤
i x))

)2
+ 2

(
ai(σ((wi + ∇̃wi)

⊤x)− σ(w⊤
i x)− σ′(w⊤

i x)x
⊤∇̃wi)

)2]
≤2Ex

[
|∇̃ai |2|∇̃⊤

wi
x|2
]

︸ ︷︷ ︸
(II.i)

+2a2i Ex

[
|(wi + ∇̃wi

)⊤x|2(σ′((wi + ∇̃wi
)⊤x)− σ′(w⊤

i x))
2
]

︸ ︷︷ ︸
(II.ii)
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For (II.i), recall |∇̃ai
| = O∗(η ∥wi∥2 d) and

∥∥∥∇̃wi

∥∥∥
2
= O∗(η|ai|d) we have

Ex

[
|∇̃ai
|2|∇̃⊤

wi
x|2
]
≤ |∇̃ai

|2
∥∥∥∇̃wi

∥∥∥2 = O∗(η
4|ai|2 ∥wi∥22 d

4).

For (II.ii), we have

Ex

[
|wi + ∇̃⊤

wi
x|2(σ′((wi + ∇̃wi

)⊤x)− σ′(w⊤
i x))

2
]

=Ex

[
|(wi + ∇̃wi

)⊤x|21sign((wi+∇̃wi
)⊤x)̸=sign(w⊤

i x)

]
≤O(

∥∥∥wi + ∇̃wi

∥∥∥2
2
δ3),

where δ = ∠(wi+∇̃wi ,wi) is the angle between wi+∇̃wi and wi. Since
∥∥∥∇̃wi

∥∥∥
2
= O∗(η|ai|d) =

O∗(η ∥wi∥2 d), we know δ = O(
∥∥∥∇̃wi

∥∥∥) given η = O∗(1/d) to be small enough.

Combine (II.i) and (II.ii) we have

∥Ii∥22 ≤ O∗(η
4a2i ∥wi∥22 d

4) +O(a2i

∥∥∥wi + ∇̃wi

∥∥∥2
2

∥∥∥∇̃wi

∥∥∥3
2
) ≤ O∗(η

3a2i ∥wi∥22 d
3).

Since ∥Rθ∥ = O∗(1), this implies

(II) ≤
∑
i∈[m]

O∗(η
3/2ai ∥wi∥2 d

3/2) = O∗(η
3/2d3/2).

Combine (I)(II) Finally, combing (I) and (II) we have

Lλ(θ − η∇θ)− Lλ(θ) + η ∥∇θ∥2F = O∗(η
3/2d3/2).

Going back to the beginning of this proof, we get the desired result.

E.2 Technical Lemma

We present technical lemmas that are used in the proof of this section. They mostly follow from
direct calculations.

Lemma E.4. We have
∥∥∥Ex[R(x)σ′(w

(t)⊤
i x)x]

∥∥∥2
2
= O∗(d)

Proof. It is easy to see given ∥R∥ = O∗(1).

Lemma E.5 (Lemma D.4 in Zhou et al. (2021)). Consider αi ∈ Rd for i ∈ [n]. We have

Ex∼N(0,I)

( n∑
i=1

|α⊤
i x|

)2
 ≤ c0

(
n∑

i=1

∥αi∥

)2

,

where c0 is a constant.

F Local landscape of population loss

In this section, we are going to show Lemma 6 that characterizing the population local landscape
with a fixed λ by giving the lower bound of gradient.
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Outline We generally follow the high-level proof plan that outlines in Section 6. In Section F.1 and
Section F.2, we characterize the local geometry as in Lemma 8. Then, we use it to construct descent
direction in Section F.3. Finally we give the proof of Lemma 6 in Section F.4.

We start by identifying the structure of (approximated) solution of a closely-related problem in
Section F.1 (rewrite (5)):

min
µ∈M(Sd−1)

Lλ(µ) :=L(µ) + λ|µ|1 := Ex,ỹ[(fµ(x)− ỹ)2] + λ|µ|1 (6)

=Ex

[(∫
w

σ≥2(w
⊤x)d µ− µ∗

)2
]
+ λ|µ|1, (7)

whereM(Sd−1) is the measure space over unit sphere Sd−1, µ∗ =
∑

i∈[m∗]
a∗i δw∗

i
and σ≥2(x) =

σ(x)−1/
√
2π−x/2 is the activation that after removing 0th and 1st order term in Hermite expansion.

Note that when µ represents a finite-wdith network, we have µ =
∑

i∈[m] ai ∥wi∥2 δwi
is a empirical

measure over the neurons. In particular, when µ = µ∗, model fµ recovers the target f̃∗.

We call (5) as the ideal loss because the original problem (2) would become the above (5) when we
balance the norms (∥wi∥2 = |ai|), perfectly fit α, β and relax the finite-width constraints to allow
infinite-width (see Claim B.1). This is why we slightly abused the notation to use Lλ in both (2) and
(5).

In Section F.3 we will use the solution structure to construct descent direction that are positively
correlated with gradient and also handle the case when norms are not balanced or α, β are not fitted
well.

Notation Denote the optimality gap between the loss at µ and the optimal distribution µ∗
λ as

ζ(µ) := Lλ(µ)− Lλ(µ
∗
λ),

where µ∗
λ is the optimal measure that minimize (5). For simplicity denote ãi = ai ∥wi∥2 so that

|µ|1 = ∥ã∥1 when µ =
∑

i∈[m] ai ∥wi∥2 δwi . Often we use ζt = ζ(µt) to denote the optimality gap
at time t and just ζ for simplicity. We slightly abuse the notation to also use ζ = Lλ(θ)− Lλ(µ

∗
λ).

Finally denote µ∗ =
∑

i∈[m∗]
a∗i δw∗

i
(assuming ∥w∗

i ∥2 = 1) so that fµ∗(x) = Ew∼µ∗ [σ≥2(w
⊤x)].

F.1 Structure of the ideal loss solution

In this section, we will focus on the structure of approximated solution for the ℓ1 regularized
regression problem (5).

In the rest of this section, we will first introduce the idea of non-degenerate dual certificate and then
use it as a tool to characterize the structure of the solutions. The proofs are deferred to Section H.

F.1.1 Non-degenerate dual certificate

We first recall the definition of non-degenerate dual certificate, which is similar as in (Poon et al.,
2023) but slightly adapted for fit our need.
Definition 1 (Non-degenerate dual certificate). η(w) is called a non-degenerate dual certificate if
there exists p(x) such that η(w) = Ex[p(x)σ≥2(w

⊤x)] for w ∈ Sd−1 and

(i) η(w∗
i ) = sign(a∗i ) for i = 1, . . . ,m∗.

(ii) |η(w)| ≤ 1− ρηδ(w,w∗
i )

2 if w ∈ Ti, where δ(w,w∗
i ) = ∠(w,w∗

i ).

We first show that there exist such non-degenerate dual certificate. More discussion and a detailed
proof are deferred to Section G.
Lemma F.1. There exists a non-degenerate dual certificate η = Ex[p(x)σ≥2(w

⊤x)] with ρη = Θ(1)
and ∥p∥2 ≤ poly(m∗,∆)

The following lemma (restate of Lemma 9) gives the properties that will be used in the later proofs:
the non-degenerate dual certificate η allows us to capture the gap between the current position µ and
the target µ∗.
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Lemma F.2. Given a non-degenerate dual certificate η, then

(i) ⟨η, µ∗⟩ = |µ∗|1

(ii) For any measure µ ∈M(Sd−1), |⟨η, µ⟩| ≤ |µ|1 − ρη
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ|(w).

(iii) ⟨η, µ − µ∗⟩ = ⟨p, fµ − fµ∗⟩, where fµ(x) = Ew∼µ[σ≥2(w
⊤x)]. Then |⟨η, µ − µ∗⟩| ≤

∥p∥2
√

L(µ).

F.1.2 Properties of µ∗
λ

Given the non-degenerate dual certificate η, we now are ready to identify several useful properties of
µ∗
λ. The lemma below essentially says that µ∗

λ is similar to µ∗ in the sense that most of the norm are
concentrated in the ground-truth direction and the square loss is small. The proof relies on comparing
µ∗
λ with µ∗ using the optimality conditions.

Lemma F.3. We have the following hold

(i) |µ∗|1 − λ ∥p∥22 ≤ |µ∗
λ|1 ≤ |µ∗|1 = ∥a∗∥1

(ii) L(µ∗
λ) ≤ λ2 ∥p∥22 = O∗(λ

2)

(iii)
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ∗

λ|(w) ≤ λ ∥p∥22 /ρη = O∗(λ)

F.1.3 Properties of µ with optimality gap ζ

We now characterize the structure of µ when the optimality gap is ζ. The proof mostly relies on
comparing µ with µ∗

λ and the structure of µ∗
λ in previous section.

The following lemma shows the square loss is bounded by the optimality gap and norms are always
bounded. Note that the conditions are true under Lemma 6.
Lemma F.4. Recall the optimality gap ζ = Lλ(µ)− Lλ(µ

∗
λ). Then, the following holds:

(i) L(µ) ≤ 5λ2 ∥p∥2 + 4ζ = O∗(λ
2 + ζ).

(ii) if ζ ≤ λ|µ∗|1 and λ ≤ |µ∗|1/ ∥p∥22, then |µ|1 ≤ 3|µ∗|1 = 3 ∥a∗∥1.

The following two lemma characterize the structure of µ using the fact that the square loss is small in
previous lemma. The lemma below says that the total norm of far away neuron is small.
Lemma F.5. Recall the optimality gap ζ = Lλ(µ)− Lλ(µ

∗
λ). Then, we have∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ|(w) ≤ (ζ/λ+ 2λ ∥p∥22)/ρη = O∗(ζ/λ+ λ).

In particular, when µ =
∑

i∈[m] ai ∥wi∥2 δwi represents finite number of neurons, we have∑
i∈[m∗]

∑
j∈Ti

|aj | ∥wj∥2 δ
2
j ≤ (ζ/λ+ 2λ ∥p∥22)/ρη = O∗(ζ/λ+ λ),

where δj = ∠(wj ,w
∗
i ) for j ∈ Ti.

The lemma below shows there are neurons close to the teacher neurons once the gap is small. The
proof idea is similar to Section 5.3 in Zhou et al. (2021) that use test function to lower bound the loss,
but now we can handle almost all activation.
Lemma F.6. Under Lemma 6, if the Hermite coefficient of σ decays as |σ̂k| = Θ(k−cσ ) with some
constant cσ > 0, then the total mass near each target direction is large, i.e., µ(Ti(δ)) sign(a∗i ) ≥
|a∗i |/2 for all i ∈ [m∗] and any δclose ≥ Ω̃

(
(L(µ)
a2
min

)1/(4cσ−2)
)

with large enough hidden constant.

In particular, for σ is ReLU or absolute function, δclose ≥ Ω̃
(
(L(µ)
a2
min

)1/3
)

. Here amin = min |ai| is
the smallest entry of a∗ in absolute value.

As a corollary, if the optimality gap ζ = Lλ(µ) − Lλ(µ
∗
λ), then δclose ≥ Ω̃∗

(
(ζ + λ2)1/(4cσ−2)

)
and for ReLU or absolute δclose ≥ Ω̃∗

(
(ζ + λ2)1/3

)
.
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F.1.4 Residual decomposition and average neuron

In this section, we introduce the residual decomposition and average neuron as in (Zhou et al., 2021)
that will be used when proving the existence of descent direction.

Denote the decomposition R(x) = fµ(x)−fµ∗(x) = R1(x)+R2(x)+R3(x) (this can be directly
verified noticing that σ≥2(x) = |x|/2− 1/

√
2π),

R1(x) =
1

2

∑
i∈[m∗]

∑
j∈Ti

ajwj −w∗
i

⊤

x sign(w∗⊤
i x),

R2(x) =
1

2

∑
i∈[m∗]

∑
j∈Ti

ajw
⊤
j x(sign(w

⊤
j x)− sign(w∗⊤

i x)),

R3(x) =
1√
2π

 ∑
i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m]

ai ∥wi∥2

 .

(8)

In the following we characterize R1, R2, R3 separately. In Lemma F.7 we relate R1 with the average
neuron. In Lemma F.8 and Lemma F.9 we bound R2 and R3 respectively.

Lemma F.7 (Zhou et al. (2021), Lemma 11). ∥R1∥22 = Ω(∆3/m3
∗)
∑

i∈[m∗]

∥∥∥∑j∈Ti
ajwj −w∗

i

∥∥∥2
2
.

Lemma F.8. Under Lemma 6, recall the optimality gap ζ = Lλ(µ)− Lλ(µ
∗
λ). Then

∥R2∥22 = O∗((ζ/λ+ λ)3/2).

Lemma F.9. Under Lemma 6 and recall the optimality gap ζ = Lλ(µ) − Lλ(µ
∗
λ). If σ̂0 = 0 and

σ̂k > 0 with some k = Θ((1/∆2) log(ζ/ ∥a∗∥1)), then

∥R3∥2 =Õ∗((ζ + λ2)1/2/σ̂k + (ζ/λ+ λ) + ζ).

Now we are ready to bound the difference between average neuron with its corresponding ground-truth
neuron.
Lemma F.10. Under Lemma 6, recall the optimality gap ζ = Lλ(µ) − Lλ(µ

∗
λ). Then for any

i ∈ [m∗], ζ = Ω(λ2) and ζ, λ ≤ 1/poly(m∗,∆, ∥a∗∥1)∥∥∥∥∥∥
∑
j∈Ti

ajwj −w∗
i

∥∥∥∥∥∥
2

≤

 ∑
i∈[m∗]

∥∥∥∥∥∥
∑
j∈Ti

ajwj −w∗
i

∥∥∥∥∥∥
2

2


1/2

= O∗((ζ/λ)
3/4).

F.2 From ideal loss solution to real loss solution

In previous section, we consider the ideal loss solution that assumes the norms are perfectly balanced
(|ai| = ∥wi∥2) and α,β are perfectly fitted. However, during the training we are not able to guarantee
achieve these exactly but only approximately. This section is devoted to show that the results in
previous section still hold though the conditions are only approximately satisfied. Recall that the
original loss

Lλ(θ) = L(θ) +
λ

2
∥a∥22 +

λ

2
∥W ∥2F

so that when norm are balanced and α,β are perfectly fitted, Lλ(θ) = L(θ) + λ
∑

i |ai| ∥wi∥2 =
Lλ(µ).

The lemma below shows that the properties of ideal loss solution in previous section still hold for the
solution of original loss, when α,β are approximately fitted.

Lemma F.11. Given any θ = (a,W , α,β) satisfying |α− α̂|2 = O(ζ),
∥∥∥β − β̂

∥∥∥2
2
= O(ζ), where

α̂ = −(1/
√
2π)

∑m
i=1 ai ∥wi∥2 and β̂ = −(1/2)

∑m
i=1 aiwi. Let its corresponding balanced
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version θbal = (abal,Wbal, αbal,βbal) as abal,i = sign(ai)
√
|ai| ∥wi∥2, wbal,i = wi

√
|ai| ∥wi∥2,

αbal = α̂ and βbal = β̂. Then, we have

Lλ(θ)− Lλ(θbal) = |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+

λ

2

∑
i∈[m]

(|ai| − ∥wi∥2)
2 ≥ 0.

Moreover, let the optimality gap ζ = Lλ(θ)− Lλ(µ
∗
λ), we have results in Lemma F.4, Lemma F.5,

Lemma F.6, Lemma F.7, Lemma F.8, Lemma F.9 and Lemma F.10 still hold for Lλ(θ), with the change
of R3 in (8) as

R3(x) =
1√
2π

 ∑
i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m]

ai ∥wi∥2

+ α− α̂+ (β − β̂)⊤x.

The following lemma shows the norm remains bounded.

Lemma F.12. Under Lemma 6, suppose optimality gap ζ = Lλ(θ)−Lλ(µ
∗
λ). Then ∥a∥22+∥W ∥

2
F ≤

3 ∥a∗∥1.

F.3 Descent direction

In this section, we show that there is a descent direction as long as the optimality gap is small until it
reaches O(λ2). We will assume ζ = Ω(λ2) in this section for simplicity.

We first show gradient is always large whenever α,β are not fitted well. This is a direct corollary of
Claim B.1.
Lemma F.13 (Descent direction, α and β). We have

|∇αLλ|2 = 4(α− α̂)2, ∥∇βLλ∥22 = 4
∥∥∥β − β̂

∥∥∥2
2
.

Before proceeding to the following descent direction, we first make a simplification assumption that
Assumption F.1. For every Ti, for all neuron wj ∈ Ti, assume w⊤

j w
∗
i ≥ 0.

This is because due to the linear term β, the effective activation is symmetry σ≥2(x) = σ≥2(−x).
This introduce the ambiguity of the sign of neurons. Such assumption clarifies the ambiguity of
neurons’ direction.

As the lemma below shows, there always exists a set of parameter (by flipping the sign of neurons)
that satisfy the assumption and gives almost same gradient norm. Thus, making such assumption will
not cause any issue when α, β are perfectly fitted.

Lemma F.14. Suppose (α − α̂)2,
∥∥∥β − β̂

∥∥∥2
2
≤ τ to be small enough and ∥a∥2 , ∥W ∥F = O∗(1).

Then, given any parameter θ, there exists another set of parameter θ̃ that satisfies Assumption F.1
such that fθ = fθ̃ and | ∥∇θLλ∥ −

∥∥∇θ̃Lλ

∥∥
F
| ≤ O∗(

√
τ).

Proof. Denote θ = (a,w1, . . . ,wm, α,β). We first construct θ̃ = (ã, w̃1, . . . , w̃m, α̃, β̃).

Let ã = a. For w̃i, there exists such sign vector s = (s1, . . . , sm) ∈ {±1}m so that by flipping
the sign of neurons we have w̃i = siwi satisfies Assumption F.1. Let α̃ = α and β̃ = β +
+
∑

i:si=−1 aiwi.

One can verify that fθ = fθ̃. Moreover, for the gradient of α,β we have

∇αLλ = ∇α̃Lλ,∇βLλ = ∇β̃Lλ,

For gradient of a,wi, when si = 1 we know they are the same. When si = −1, note that

∇ai
Lλ −∇ãi

Lλ = 2Ex[R(x)(σ(w⊤
i x)− σ(w̃⊤

i x))] = 2(β − β̂)⊤wi

∇wi
Lλ +∇w̃i

Lλ = 2aiEx[R(x)(σ′(w⊤
i x) + σ′(w̃⊤

i x))x] = 2ai(β − β̂).

Therefore, we get the desired result by noting the norm bound.
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We then show that if norms are not balanced or norm cancellation happens for neurons with similar
direction, then one can always adjust the norm to decrease the loss due to the regularization term.

Lemma F.15 (Descent direction, norm balance). We have∑
i

∑
j∈Ti

∣∣⟨∇ajLλ,−aj⟩+ ⟨∇wjLλ,wj⟩
∣∣ =λ

∑
i∈[m∗]

∣∣∣a2i − ∥wi∥22
∣∣∣

≥max

λ| ∥a∥22 − ∥W ∥
2
F |, λ

∑
i∈[m∗]

(|ai| − ∥wi∥2)
2


Lemma F.16 (Descent direction, norm cancellation). Under Lemma 6 and Assumption F.1, suppose
the optimality gap ζ = Lλ(θ) − Lλ(µ

∗
λ). For any w∗

i , consider δsign such that δclose < δsign =

O(λ/ζ1/2) with small enough hidden constant (δclose defined in Lemma F.6), then

∑
s∈{+,−}

∑
j∈Ti,s(δsign)

〈
∇ajLλ,

aj∑
j∈Ti,s(δsign)

|aj | ∥wj∥2

〉
+

〈
∇wjLλ,

wj∑
j∈Ti,s(δsign)

|aj | ∥wj∥2

〉
= Ω(λ).

where Ti,+(δsign) = {j ∈ Ti : δ(wj ,w
∗
i ) ≤ δsign, sign(aj) = sign(a∗i )}, Ti,−(δsign) = {j ∈ Ti :

δ(wj ,w
∗
i ) ≤ δsign, sign(aj) ̸= sign(a∗i )} are the set of neurons that close to w∗

i with/without same
sign of a∗i .

As a result,

∥∇aLλ∥22 + ∥∇WLλ∥2F ≥λ
2

∑
j∈Ti,−(δsign)

|aj | ∥wj∥2

Now given the above lemmas, it suffices to consider the remaining case that α,β are well fitted,
norms are balanced and no cancellation. In this case, the loss landscape is roughly the same as
the ideal loss (5) from Lemma F.11. Thus, we could leverage these detailed characterization of the
solution (far-away neurons are small and average neuron is close to corresponding ground-truth
neuron) to construct descent direction.

Lemma F.17 (Descent direction). Under Lemma 6 and Assumption F.1, suppose the optimality gap
ζ = Lλ(θ)− Lλ(µ

∗
λ). Suppose

(i) norms are (almost) balanced: | ∥W ∥2F −∥a∥
2
2 | ≤ ζ/λ,

∑
i∈[m](|aj | − ∥wj∥2)

2 = O∗(ζ
2/λ2)

(ii) (almost) no norm cancellation: consider all neurons wj that are δsign-close w.r.t. teacher
neuron w∗

i but has a different sign, i.e., sign(aj) ̸= sign(a∗i ) with δsign = Θ∗(λ/ζ
1/2), we

have
∑

j∈Ti,−(δsign)
|aj | ∥wj∥2 ≤ τ = O∗(ζ

5/6/λ) with small enough hidden constant, where
Ti,−(δ) defined in Lemma F.16.

(iii) α,β are well fitted: |α− α̂|2 = O∗(ζ),
∥∥∥β − β̂

∥∥∥2
2
= O∗(ζ) with small enough hidden factor.

Then, we can construct the following descent direction

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wi
Lλ,wj − qijw

∗
i ⟩ = Ω(ζ),

where qij satisfy the following conditions with δclose < δsign and δclose = O∗(ζ
1/3): (1)∑

j∈Ti
ajqij = a∗i ; (2) qij ≥ 0; (3) qij = 0 when sign(aj) ̸= sign(a∗i ) or δj > δclose. (4)∑

i∈[m∗]

∑
j∈Ti

q2ij = O∗(1).

F.4 Proof of Lemma 6

Now we are ready to prove the gradient lower bound (Lemma 6) by combining all descent direction
lemma in the previous section together.

27



Lemma 6 (Gradient lower bound). When Ω∗(λ
2) ≤ ζ ≤ O∗(λ

9/5) and λ ≤ O∗(1), we have

∥∇θLλ∥2F ≥ Ω∗(ζ
4/λ2).

Proof. We check the assumption of Lemma F.17 one by one. We first assume Assumption F.1 holds
to get a gradient lower bound.

For assumption (i) (norm balance) in Lemma F.17, whenever
∑

i∈[m∗]

∣∣∣a2i − ∥wi∥22
∣∣∣ = Ω∗(ζ

2/λ2),
by Lemma F.15 we know∑

i

∑
j∈Ti

∣∣⟨∇aj
Lλ,−aj⟩+ ⟨∇wj

Lλ,wj⟩
∣∣ ≥Ω∗(ζ

2/λ).

With Lemma F.12, this implies√
∥∇aLλ∥22 + ∥∇WLλ∥2F ·O(∥a∗∥1) ≥

√
∥∇aLλ∥22 + ∥∇WLλ∥2F

√
∥a∥22 + ∥W ∥

2
F = Ω∗(ζ

2/λ),

which means

∥∇θLλ∥2F ≥ ∥∇aLλ∥22 + ∥∇WLλ∥2F ≥ Ω∗(ζ
4/λ2)

For assumption (ii) (norm cancellation) in Lemma F.17, whenever it does not hold, by Lemma F.16
we know

∥∇θLλ∥2F ≥ ∥∇aLλ∥22 + ∥∇WLλ∥2F ≥λ
2

∑
j∈Ti,−(δsign)

|aj | ∥wj∥2 ≥ Ω∗(ζ
5/6λ).

For assumption (iii) (α,β) in Lemma F.17, whenever it does not hold, by Lemma F.13 we know

|∇αLλ|2 = (α− α̂)2 = Ω∗(ζ
2), ∥∇βLλ∥22 = 4

∥∥∥β − β̂
∥∥∥2
2
= Ω∗(ζ

2),

which implies

∥∇θLλ∥2F ≥ |∇αLλ|2 + ∥∇βLλ∥22 = Ω∗(ζ
2).

Thus, the remaining case is the one that all assumption (i)-(iii) in Lemma F.17 hold and also∑
i∈[m∗]

∣∣∣a2i − ∥wi∥22
∣∣∣ = O∗(ζ

2/λ2), we choose

qij =

{
aja

∗
i∑

j∈Ti,+(δclose) a
2
j

, if j ∈ Ti,+(δclose)

0 , otherwise

so that condition (1)-(4) on qij all hold: condition (1)-(3) are easy to check, Lemma H.4 shows
condition (4) holds. Now we know from Lemma F.17 that

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wiLλ,wj − qijw
∗
i ⟩ = Ω(ζ).

Note that

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wi
Lλ,wj − qijw

∗
i ⟩

≤
√
|∇αLλ|2 + ∥∇βLλ∥22 + ∥∇aLλ∥22 + ∥∇WLλ∥2F

√
(α+ α∗)2 + ∥β + β∗∥22 +

∑
i∈[m∗]

∑
j∈Ti

∥wj − qijw∗
i ∥

2
2

and

|α+ α∗| ≤ |α̂|+ |α∗|+O∗(ζ)
(a)
≤ O∗(1)

∥β + β∗∥2 ≤
∥∥∥β̂∥∥∥

2
+ ∥β∗∥2 +O∗(ζ)

(b)
≤ O∗(1)∑

i∈[m∗]

∑
j∈Ti

∥wj − qijw
∗
i ∥

2
2 ≤ 2

∑
i∈[m∗]

∑
j∈Ti

∥wj∥22 + q2ij ∥w∗
i ∥

2
2

(c)
≤ O∗(1),
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where (a)(b) by Lemma F.4; (c) we use Lemma F.12 and condition (4) on qij .

Therefore, we get

∥∇θLλ∥2F = |∇αLλ|2 + ∥∇βLλ∥22 + ∥∇aLλ∥22 + ∥∇WLλ∥2F = Ω∗(ζ
2).

Combine all cases above, we know

∥∇aLλ∥22 + ∥∇WLλ∥2F = Ω∗(min{ζ4/λ2, ζ5/6λ, ζ2}) = Ω∗(ζ
4/λ2),

as long as ζ = O(λ9/5/ poly(r,m∗,∆, ∥a∗∥1 , amin)).

We now use Lemma F.14 to show when Assumption F.1 is not true, we can get similar gradient lower
bound. Denote the above gradient lower bound as τ0 = Ω∗(ζ

4/λ2). Let τ = τ0/2.

When (α− α̂)2 ≥ τ or
∥∥∥β − β̂

∥∥∥2
2
≥ τ , from Lemma F.13 we know ∥∇θLλ∥2F ≥ τ .

When (α−α̂)2,
∥∥∥β − β̂

∥∥∥2
2
≤ τ , using Lemma F.14 we know there exists θ̃ such that

∥∥∇θ̃Lλ

∥∥2
F
≥ τ0

and |
∥∥∇θ̃Lλ

∥∥
F
− ∥∇θLλ∥F | ≤

√
τ . Thus, we know ∥∇θLλ∥2F ≥ 0.1τ .

Therefore, combine above we can show ∥∇θLλ∥2F = Ω∗(ζ
4/λ2).

G Non-degenerate dual certificate

In this section, we show that there indeed exists a non-degenerate dual certificate that satisfies
Definition 1 and therefore proving Lemma F.1.
Lemma F.1. There exists a non-degenerate dual certificate η = Ex[p(x)σ≥2(w

⊤x)] with ρη = Θ(1)
and ∥p∥2 ≤ poly(m∗,∆)

Recall that we want to use the dual certificate η to characterize the (approximate) solution for the
following regression problem:

min
µ∈M(Sd−1)

Lλ(µ) = Ex,ỹ[(fµ(x)− ỹ)2] + λ|µ|1 = Ex

[(∫
w

σ≥2(w
⊤x)d µ− µ∗

)2
]
+ λ|µ|1,

where σ≥2 is the ReLU activation after removing 0th and 1st order (corresponding to α and β terms)
and µ∗ =

∑
i∈[m∗]

a∗i δw∗
i

is the ground-truth.

Notation We need to first introduce few notations before proceeding to the proof. Denote the kernel
K≥ℓ(w,u) = Ex∼N(0,I)[σ≥ℓ(w

⊤x)σ≥ℓ(u
⊤x)] as the kernel induced by activation σ≥ℓ(x), where

σ≥ℓ(x) =
∑

k≥ℓ σ̂khk(x)/Zσ, Zσ = ∥σ≥ℓ∥2 =
√∑

k≥ℓ σ̂
2
k = Θ(ℓ−3/4) is the normalizing factor,

hk(x) is the normalized k-th (probabilistic) Hermite polynomial and σ̂k is the corresponding Hermite
coefficient. We will specify the value of ℓ later and use K instead of K≥ℓ for simplicity.

We will construct the dual certificate η following the proof strategy in Poon et al. (2023) with the
form below (the difference is that we now only keep high order terms that are at least ℓ):

η(w) =
∑

j∈[m∗]

α1,jK(w∗
j ,w) +

∑
j∈[m∗]

α⊤
2,j∇1K(w∗

j ,w)

such that it satisfies

η(w∗
i ) = sign(a∗i ) and ∇η(w∗

i ) = 0 for all i ∈ [m∗]. (9)

Here α1 = (α1, . . . , αm∗)
⊤ ∈ Rm∗ ,α2 = (α⊤

2,1, . . . ,α
⊤
2,m∗

)⊤ ∈ Rm∗d are the parameters that we
are going to solve and ∇i means the gradient w.r.t. i-th variable (for example, ∇1K(x,y) means
gradient with respect to x).

One can rewrite the above constraints (9) into the matrix form:

Υ

(
α1

α2

)
= b, (10)
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where b = (sign(a∗1), . . . , sign(a
∗
m∗

),0⊤
m∗d)

⊤ ∈ Rm∗(d+1), Υ = Ex[γ(x)γ(x)
⊤] ∈

Rm∗(d+1)×m∗(d+1),

γ(x) = (σ≥ℓ(w
∗⊤
1 x), . . . , σ≥ℓ(w

∗⊤
m∗

x),∇wσ≥ℓ(w
∗⊤
1 x)⊤, . . . ,∇wσ≥ℓ(w

∗⊤
m∗

x)⊤)⊤ ∈ Rm∗(d+1).

Here ∇wσ≥ℓ(w
∗⊤
i x) = Pw∗

i
σ≥ℓ

′(w∗⊤
i x)x ∈ Rd, where Pw∗

i
is the projection matrix defined

below.

Notions on the unit sphere As we could see, the kernel K is invariant under the change of norms,
so it suffices to focus on the input on the unit sphere Sd−1. On the unite sphere, we could compute
the gradient and hessian of a function f(w) on the sphere (e.g., Absil et al. (2013))

grad f(w) = Pw∇f(w),

H f(w)[z] = Pw(∇2f(w)−w⊤∇f(w)I)z for all tangent vector z that z⊤w = 0,

where Pw = I −ww⊤ is the projection matrix.

Then, we could define the derivative as in Poon et al. (2023); Absil et al. (2008): for tangent vectors
z, z′

D0 f(w) := f(w)

D1 f(w)[z] := ⟨z, grad f(w)⟩ = z⊤Pw∇f(w)

D2 f(w)[z, z′] := ⟨H f(w)[z], z′⟩ = z⊤Pw(∇2f(w)−w⊤∇f(w)I)Pwz′,

and their associated norms

∥D1 f(w)∥w := sup
∥z∥w=1

D1 f(w)[z] = ∥Pw∇f(w)∥2 ,

∥D2 f(w)∥w := sup
∥z∥w,∥z′∥w=1

D2 f(w)[z, z′] = ∥Pw H f(w)Pw∥2 ,

where ∥z∥w = ∥Pwz∥2.

For simplicity, we will use K(ij)(w,u) to denote∇i
1∇

j
2K(w,u). One can check that this is in fact

the same as the one defined Poon et al. (2023) under our specific kernel K, i+ j ≤ 3 and i, j ≤ 2.
Let ∥∥∥K(ij)(w,u)

∥∥∥
w,u

:= sup
∥z(p)

w ∥w=∥z(q)
u ∥u=1,

w⊤z(p)
w =u⊤z(q)

u =0 ∀p∈[i],q∈[j]

K(ij)(w,u)[z(1)
w , . . . ,z(j)

u ],

where z
(p)
w applies to the dimension corresponding to w and similarly z

(q)
u for u.

Before solving (10), we first present some useful proprieties of kernel K that will be used later (see
Section I for the proofs). The lemma below shows that kernel K(w,u) is non-degenerate in the
sense that it decays at least quadratic at each ground-truth direction (w ≈ u ≈ w∗

i ) and contributes
almost nothing when w,u are away.
Lemma G.1 (Non-degeneracy of kernel K). For any h > 0, let ℓ ≥ Θ(∆−2 log(m∗ℓ/h∆)), kernel
K≥ℓ is non-degenerate in the sense that there exists r = Θ(ℓ−1/2), ρ1 = Θ(1), ρ2 = Θ(ℓ) such that
following hold:

(i) K(w,u) ≤ 1− ρ1 for all δ(w,u) := ∠(w,u) ≥ r.

(ii) K(20)(w,u)[z, z] ≤ −ρ2 ∥z∥2 for tangent vector z that z⊤w = 0 and δ(w,u) ≤ r.

(iii)
∥∥K(ij)(w∗

1 ,w
∗
k)
∥∥
w∗

i ,w
∗
k

≤ h/m2
∗ for (i, j) ∈ {0, 1} × {0, 1, 2}

The following lemma shows that K and its derivatives are bounded.

Lemma G.2 (Regularity conditions on kernel K). Let Bij := supw,u

∥∥K(ij)(w,u)
∥∥
w,u

and

B0 = B00 + B10 + 1, B2 = B20 + B21 + 1. We have B00 = O(1), B10 = O(ℓ1/2), B11 = O(ℓ),
B20 = O(ℓ), B21 = O(ℓ3/2), and therefore B0 = O(ℓ1/2), B2 = O(ℓ3/2).
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The following lemma from Poon et al. (2023) connects the non-degeneracy of kernel K to the dual
certificate η that we are interested in.
Lemma G.3 (Lemma 2, Poon et al. (2023), adapted in our setting). Let a ∈ {±1}. Suppose that for
some ρ > 0, B > 0 and 0 < r ≤ B−1/2 we have: for all δ(w,w0) and z ∈ Rd with z⊤w = 0, it
holds that −K(02)(w0,w)[z, z] > ρ ∥z∥22 and

∥∥K(02)(w0,w)
∥∥
w
≤ B. Let η be a smooth function.

If η(w0) = a, ∇η(w0) = 0 and
∥∥aD2 η(w)−K(02)(w0,w)

∥∥
w
≤ τ for all δ(w,w0) ≤ r with

τ < ρ/2, then we have |η(w)| ≤ 1− ((ρ− 2τ)/2)δ(w,w0)
2 for all δ(w,w0) ≤ r.

We now are ready to proof the main result in this section Lemma F.1 that shows the non-degenerate
dual certificate exists. Roughly speaking, following the same proof as in Poon et al. (2023), we can
show that α ≈ sign(a∗) and α2 ≈ 0 and therefore we can transfer the non-degeneracy of kernel K
to the dual certificate η with Lemma G.3.
Lemma F.1. There exists a non-degenerate dual certificate η = Ex[p(x)σ≥2(w

⊤x)] with ρη = Θ(1)
and ∥p∥2 ≤ poly(m∗,∆)

Proof. Note that Υ = SDΥ̃DS, where

D =


Im∗

Pw∗
1

. . .
Pw∗

m∗

 , S =


Im∗

(Zσ′/Zσ)Im∗

. . .
(Zσ′/Zσ)Im∗


are block diagonal matrices, Υ̃ = Ex[γ̃(x)γ̃(x)

⊤] ∈ Rm∗(d+1)×m∗(d+1),

γ̃(x) = (σ≥ℓ(w
∗⊤
1 x), . . . , σ≥ℓ(w

∗⊤
m∗

x), (Zσ/Zσ′)σ≥ℓ
′(w∗⊤

1 x)x⊤, . . . , (Zσ/Zσ′)σ≥ℓ
′(w∗⊤

m∗
x)x⊤)⊤ ∈ Rm∗(d+1),

Zσ′ =
√∑

k≥ℓ σ̂
2
kk = Θ(ℓ−1/4) is the normalizing factor so that the diagonal of Υ̃ are all 1.

Thus, to solve (10), it is sufficient to solve the following: denote K̃ = DΥ̃D

K̃

(
α̃1

α̃2

)
= b, (11)

and let α1 = α̃1, α2,i = (Zσ/Zσ′)α̃2,i to get the solution of (10).

In the following, we are going to first show that K̃ ≈DD because all the off-diagonal terms of Υ̃
are small due to Lemma G.1 (iii) (we can choose h to be small enough, and we will choose it later).
Specifically, we have∥∥∥K̃ −DD

∥∥∥
2
= sup

∥z∥2=1

|z⊤(K̃ −DD)z|

= sup
∥z∥2=1

∣∣∣∣∣∣
∑
i,j

z1,iK(w∗
i ,w

∗
j )z1,j + 2(Zσ/Zσ′)

∑
i,j

z1,i∇1K(w∗
i ,w

∗
j )

⊤z2,j

+ (Zσ/Zσ′)2
∑
i,j

z⊤
2,i∇1∇2K(w∗

i ,w
∗
j )

⊤z2,j

∣∣∣∣∣∣
≤
∑
i,j

|K(w∗
i ,w

∗
j )|+Θ(ℓ−1/2)

∥∥∥K(10)(w∗
i ,w

∗
j )
∥∥∥
w∗

i

+Θ(ℓ−1)
∥∥∥K(11)(w∗

i ,w
∗
j )
∥∥∥
w∗

i ,w
∗
j

≤ 2h,

where z = (z⊤
1 , z⊤

2 )⊤, z1 = (z1,1, . . . ,z1,m∗)
⊤ and z2 = (z⊤

2,1, . . . ,z
⊤
2,m∗

)⊤ has the same block
structure as (α1,α2) and we use Lemma G.1 and Lemma G.2 in the last line.

Note that DD has exactly m∗d eigenvalues of 1 and m∗ eigenvalues of 0, and K̃ also has m∗ eigen-
values of 0. By Weyl’s inequality, we know |γi−1| ≤ 2h where K̃ =

∑
i∈[m∗d]

γiviv
⊤
i is its eigende-

composition. Here v⊤
i v⊥ = 0 for all v⊥ ∈ V⊥ = span{(0,w∗

1 ,0, . . . ,0)
⊤, . . . (0, . . . ,0,w∗

m∗
)⊤}
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in the null space of D. Since b⊤v⊥ = 0 for all v⊥ ∈ V⊥, we have(
α̃1

α̃2

)
=K̃†b =

∑
i∈[m∗d]

γ−1
i viv

⊤
i b =

∑
i∈[m∗d]

(γ−1
i − 1)viv

⊤
i b+

∑
i∈[m∗d]

viv
⊤
i b

=
∑

i∈[m∗d]

(γ−1
i − 1)viv

⊤
i b+ b.

Therefore,∥∥∥∥(α̃1

α̃2

)
− b

∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

i∈[m∗d]

(γ−1
i − 1)viv

⊤
i b

∥∥∥∥∥∥
2

≤ max
i
|γ−1

i − 1|
√
m∗ = O(h

√
m∗) =: h′.

This implies ∥α1 − sign(a∗)∥∞ = ∥α̃1 − sign(a∗)∥∞ ≤ h′, ∥α1∥∞ = ∥α̃1∥∞ ≤ 1 + h′ and
∥α2∥2 = (Zσ/Zσ′) ∥α̃2,i∥2 ≤ Θ(h′ℓ−1/2).

Now, given the α1, α2, we can show the corresponding η is non-degenerate. Choosing h =

O(m
−1/2
∗ ) and ℓ = Θ(∆−2 log(m∗/∆)) so that the condition in Lemma G.1 holds.

Consider w ∈ Ti, when δ(w,w∗
i ) ≥ r = Θ(ℓ−1/2), using Lemma G.1 and Lemma G.2 we have

|η(w)| =

∣∣∣∣∣∣
∑

j∈[m∗]

α1,jK(w∗
j ,w) +

∑
j∈[m∗]

α⊤
2,j∇1K(w∗

j ,w)

∣∣∣∣∣∣
≤
∑

j∈[m∗]

|α1,j ||K(w∗
j ,w)|+

∑
j∈[m∗]

∥α2,j∥w∗
j

∥∥∇1K(w∗
j ,w)

∥∥
w∗

j

≤(1 + h′)(1− ρ1 + h) + Θ(h′ℓ−1/2)(B10 + h) ≤ 1− ρ1/2 ≤ 1−Θ(ρ1)δ(w,w∗
i )

2,

where we choose h = O(m
−1/2
∗ ) to be small enough.

When δ(w,w∗
i ) ≤ r = Θ(ℓ−1/2), again using Lemma G.1 and Lemma G.2 we have∥∥∥a∗i D2 η(w)−K(02)(w∗

i ,w)
∥∥∥
w

≤
∥∥∥α1,iK

(02)(w∗
i ,w)−K(02)(w∗

i ,w)
∥∥∥
w
+
∑
j ̸=i

∥∥∥α1,jK
(02)(w∗

j ,w)
∥∥∥
w
+
∑

j∈[m∗]

∥α2,j∥w∗
j

∥∥∥K(12)(w∗
j ,w)

∥∥∥
w∗

j ,w

≤h′B02 + (1 + h′)h+Θ(h′ℓ−1/2)(B21 + h) ≤ ρ2/16,

where again due to our choice of small h. Using Lemma G.3 we know that |η(w)| ≤ 1 −
(ρ2/4)δ(w,w∗

i )
2.

Combine the above two cases, we have |η(w)| ≤ 1−Θ(1)δ(w,w∗
i )

2 and η(w) = Ex[p(x)σ(w
⊤x)]

with

p(x) =
1

Z2
σ

 ∑
j∈[m∗]

α1,jσ≥ℓ(w
∗⊤
j x) +

∑
j∈[m∗]

α⊤
2,j(I −w∗

iw
∗⊤
i )xσ′

≥ℓ(w
∗⊤
i x)

 .

We have ∥p∥ = O(ℓ3/4m∗ +m∗h
′ℓ−1/2ℓ5/4) = Õ(∆−3/2m∗).

H Proofs in Section F

In this section, we give the omitted proofs in Section F.

H.1 Omitted proofs in Section F.1

We give the proofs for these results that characterize the structure of ideal loss solution.

The following proof follows from the definition of non-degenerate dual certificate η.
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Lemma F.2. Given a non-degenerate dual certificate η, then

(i) ⟨η, µ∗⟩ = |µ∗|1

(ii) For any measure µ ∈M(Sd−1), |⟨η, µ⟩| ≤ |µ|1 − ρη
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ|(w).

(iii) ⟨η, µ − µ∗⟩ = ⟨p, fµ − fµ∗⟩, where fµ(x) = Ew∼µ[σ≥2(w
⊤x)]. Then |⟨η, µ − µ∗⟩| ≤

∥p∥2
√

L(µ).

Proof. We show the results one by one.

Part (i)(ii) We have

|⟨η, µ⟩| ≤
∫
Sd−1

|η(w)|d|µ|(w) =
∑

i∈[m∗]

∫
Ti

|η(w)|d|µ|(w) ≤ |µ|1 − ρη
∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ|(w).

where the last inequality follows the property of non-degenerate dual certificate (Definition 1). The
other part then follows directly by the definition of µ∗.

Part (iii) We have

⟨η, µ− µ∗⟩ =
∫
Sd−1

η(w) d(µ− µ∗)(w) =

∫
Sd−1

Ex[p(x)σ≥2(w
⊤x)] d(µ− µ∗)(w)

=Ex

[
p(x)

∫
Sd−1

σ≥2(w
⊤x) d(µ− µ∗)(w)

]
=Ex[p(x)(fµ(x)− fµ∗(x))].

Note that L(µ) = ∥fµ − fµ∗∥22, this leads to |⟨η, µ− µ∗⟩| ≤ ∥p∥2
√
L(µ).

Given the above lemma and the optimality of µ∗
λ, we are able to characterize the structure of µ∗

λ as
below: norm is bounded, square loss is small and far-away neurons are small.

Lemma F.3. We have the following hold

(i) |µ∗|1 − λ ∥p∥22 ≤ |µ∗
λ|1 ≤ |µ∗|1 = ∥a∗∥1

(ii) L(µ∗
λ) ≤ λ2 ∥p∥22 = O∗(λ

2)

(iii)
∑

i∈[m∗]

∫
Ti
δ(w,w∗

i )
2 d|µ∗

λ|(w) ≤ λ ∥p∥22 /ρη = O∗(λ)

Proof. We show the results one by one.

Part (i) Due to the optimality of µ∗
λ, we have

L(µ∗
λ) + λ|µ∗

λ|1 = Lλ(µ
∗
λ) ≤ Lλ(µ

∗) = L(µ∗) + λ|µ∗|1.

Rearranging the terms, we have

λ|µ∗
λ|1 − λ|µ∗|1 ≤ L(µ∗)− L(µ∗

λ) = −L(µ∗
λ) ≤ 0.

For the lower bound, with Lemma F.2 we have

0 ≤ |µ∗
λ|1 − |µ∗|1 − ⟨η, µ∗

λ − µ∗⟩ ≤ |µ∗
λ|1 − |µ∗|1 + ∥p∥2

√
L(µ∗

λ).

Using part (ii) we get the desired lower bound.
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Part (ii) We first have the following inequality due to the optimality of µ∗
λ and adding λ⟨η, µ∗

λ−µ∗⟩
on both side:

L(µ∗
λ) + λ(|µ∗

λ|1 − |µ∗|1)− λ⟨η, µ∗
λ − µ∗⟩︸ ︷︷ ︸

(I)

≤ L(µ∗)− λ⟨η, µ∗
λ − µ∗⟩.

For (I), we have

(I) = λ(|µ∗
λ|1 − ⟨η, µ∗

λ⟩) + λ(⟨η, µ∗⟩ − |µ∗|1) ≥ 0,

where we use Lemma F.2 in the last inequality.

Therefore, the above inequality leads to

L(µ∗
λ) ≤ L(µ∗)− λ⟨η, µ∗

λ − µ∗⟩ ≤ λ ∥p∥2
√

L(µ∗
λ),

where we again use Lemma F.2. This further leads to L(µ∗
λ) ≤ λ2 ∥p∥22.

Part (iii) Using part (i) we have

|µ∗
λ|1 − |µ∗|1 − ⟨η, µ∗

λ − µ∗⟩ ≤ −⟨η, µ∗
λ − µ∗⟩.

With Lemma F.2, LHS and RHS become

LHS =|µ∗
λ|1 − ⟨η, µ∗

λ⟩ ≥ ρη
∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ∗
λ|(w)

RHS ≤∥p∥2
√
L(µ∗

λ).

Then using part (ii) we have the desired result.

We are now ready to characterize the approximated solution by comparing µ and µ∗
λ.

Lemma F.4. Recall the optimality gap ζ = Lλ(µ)− Lλ(µ
∗
λ). Then, the following holds:

(i) L(µ) ≤ 5λ2 ∥p∥2 + 4ζ = O∗(λ
2 + ζ).

(ii) if ζ ≤ λ|µ∗|1 and λ ≤ |µ∗|1/ ∥p∥22, then |µ|1 ≤ 3|µ∗|1 = 3 ∥a∗∥1.

Proof. We show the results one by one.

Part (i) By the definition of the optimality gap ζ and adding −λ⟨η, µ− µ∗⟩ on both side, we have

L(µ) + λ(|µ|1 − |µ∗
λ|1)− λ⟨η, µ− µ∗⟩ ≤ L(µ∗

λ) + ζ − λ⟨η, µ− µ∗⟩.
Note that on LHS,

λ(|µ|1 − |µ∗
λ|1)− λ⟨η, µ− µ∗⟩ = λ(|µ|1 − ⟨η, µ⟩) + λ(|µ∗|1 − |µ∗

λ|1) ≥ 0,

where we use Lemma F.2 and Lemma F.3.

Therefore, with Lemma F.2 and Lemma F.3 we get

L(µ) ≤ L(µ∗
λ) + ζ − λ⟨η, µ− µ∗⟩ ≤ λ2 ∥p∥22 + ζ + λ ∥p∥2

√
L(µ).

Solving the above inequality on L(µ) gives L(µ) ≤ 5λ2 ∥p∥22 + 4ζ.

Part (ii) Again from the definition of the optimality gap ζ, we have

λ|µ|1 ≤ L(µ∗
λ) + λ|µ∗

λ|1 + ζ − L(µ) ≤ λ2 ∥p∥22 + λ|µ∗|1 + ζ,

where we use Lemma F.3. Thus, |µ|1 ≤ λ ∥p∥22 + |µ∗|1 + ζ/λ ≤ 3|µ∗|1.

The lemma below shows that far-away neurons are still small even for the approximated solution.
Intutively, we use the non-degenerate dual certificate to certify the gap between µ and µ∗

λ and give a
bound for it.
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Lemma F.5. Recall the optimality gap ζ = Lλ(µ)− Lλ(µ
∗
λ). Then, we have∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ|(w) ≤ (ζ/λ+ 2λ ∥p∥22)/ρη = O∗(ζ/λ+ λ).

In particular, when µ =
∑

i∈[m] ai ∥wi∥2 δwi
represents finite number of neurons, we have∑

i∈[m∗]

∑
j∈Ti

|aj | ∥wj∥2 δ
2
j ≤ (ζ/λ+ 2λ ∥p∥22)/ρη = O∗(ζ/λ+ λ),

where δj = ∠(wj ,w
∗
i ) for j ∈ Ti.

Proof. By the definition of the optimality gap ζ, we have

L(µ) + λ|µ|1 = L(µ∗
λ) + λ|µ∗

λ|1 + ζ.

Rearranging the terms and adding −⟨η, µ− µ∗⟩ on both side, we get

|µ|1 − |µ∗
λ|1 − ⟨η, µ− µ∗⟩ = 1

λ
(L(µ∗

λ)− L(µ) + ζ)− ⟨η, µ− µ∗⟩.

For LHS, with Lemma F.2 and Lemma F.3 we have

LHS = |µ|1 − ⟨η, µ⟩ − |µ∗
λ|1 + |µ∗|1 ≥ ρη

∑
i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ|(w).

For RHS, with Lemma F.2 and Lemma F.3 we have

RHS ≤ 1

λ
(λ2 ∥p∥22 − L(µ) + ζ) + ∥p∥2

√
L(µ) =

ζ

λ
+ λ ∥p∥22 −

L(µ)

λ
+ ∥p∥2

√
L(µ).

When L(µ) ≥ λ2 ∥p∥22, we have RHS ≤ ζ/λ + λ ∥p∥22. When L(µ) ≤ λ2 ∥p∥22, we have RHS ≤
ζ/λ+ 2λ ∥p∥22. Thus, in summary RHS ≤ ζ/λ+ 2λ ∥p∥22.

Combine the bounds on LHS and RHS we have

ρη
∑

i∈[m∗]

∫
Ti

δ(w,w∗
i )

2 d|µ|(w) ≤ ζ/λ+ 2λ ∥p∥22 .

The following lemma shows that every teacher neuron must have at least one close-by student neuron
within angle O∗(ζ

1/3). This generalize and greatly simplify the previous results Lemma 9 in Zhou
et al. (2021). In particular, we design a new test function using the Hermite expansion to achieve this.

Lemma F.6. Under Lemma 6, if the Hermite coefficient of σ decays as |σ̂k| = Θ(k−cσ ) with some
constant cσ > 0, then the total mass near each target direction is large, i.e., µ(Ti(δ)) sign(a∗i ) ≥
|a∗i |/2 for all i ∈ [m∗] and any δclose ≥ Ω̃

(
(L(µ)
a2
min

)1/(4cσ−2)
)

with large enough hidden constant.

In particular, for σ is ReLU or absolute function, δclose ≥ Ω̃
(
(L(µ)
a2
min

)1/3
)

. Here amin = min |ai| is
the smallest entry of a∗ in absolute value.

As a corollary, if the optimality gap ζ = Lλ(µ) − Lλ(µ
∗
λ), then δclose ≥ Ω̃∗

(
(ζ + λ2)1/(4cσ−2)

)
and for ReLU or absolute δclose ≥ Ω̃∗

(
(ζ + λ2)1/3

)
.

Proof. Assume towards contradiction that there exists some i ∈ [m∗] with some δclose ≥
Ω̃
(
(L(µ)
a2
min

)1/(4cσ−2)
)

with large enough hidden constant such that µ(Ti(δ)) sign(a∗i ) ≤ |a∗i |/2.
For simplicity, we will use δ for δclose in the following.

Let g(x) =
∑

ℓ≤k<2ℓ sign(a
∗
i ) sign(σ̂k)hk(w

∗⊤
i x) be a test function, where hk(x) is the k-th

normalized probabilistic Hermite polynomial and ℓ will be chosen later.
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Denote R(x) = fµ(x)− fµ∗(x) so that ∥R∥22 = L(µ). We have√
L(µ) ∥g∥2 ≥⟨−R, g⟩

=Ex

[(
a∗i σ(w

∗⊤
i x)−

∫
Ti(δ)

σ(w⊤x) dµ(w)

)
g(x)

]

+ Ex

∑
j ̸=i

a∗jσ(w
∗⊤
j x)−

∫
Sd−1\Ti(δ)

σ(w⊤x) dµ(w)

 g(x)

 .

Recall the Hermite expansion of σ(x) =
∑

k≥0 σ̂khk(x) and its property in Claim A.1. For the first
term, it becomes∑

ℓ≤k<2ℓ

(
|a∗i ||σ̂k| −

∫
Ti(δ)

|σ̂k| sign(a∗i )(w⊤w∗
i )

k dµ(w)

)
≥ 1

2
|a∗i |

∑
ℓ≤k<2ℓ

|σ̂k|.

For the second term, it becomes∑
ℓ≤k<2ℓ

∑
j ̸=i

a∗j |σ̂k| sign(a∗i )(w∗⊤
j w∗

i )
k −

∫
Sd−1\Ti(δ)

|σ̂k| sign(a∗i )(w⊤w∗
i )

k dµ(w)


≤(∥a∗∥1 + |µ|1)

∑
ℓ≤k≤2ℓ

|σ̂k| max
∠(w,w∗

i )≥δ
(w⊤w∗

i )
k

≤(∥a∗∥1 + |µ|1)
∑

ℓ≤k<2ℓ

|σ̂k|(1− δ2/5)ℓ

≤4 ∥a∗∥1 (1− δ2/5)ℓ
∑

ℓ≤k<2ℓ

|σ̂k| ≤
1

4
|a∗i |

∑
ℓ≤k<2ℓ

|σ̂k|,

where (i) in the third line we use cos δ ≤ 1 − δ2/5 for δ ∈ [0, π/2] and (ii) in the last line we use
Lemma F.4 and choose ℓ = ⌈(5/δ2) log(16 ∥a∗∥1 /|a∗i |)⌉.

Thus, given |σ̂k| = Θ(k−cσ ) we have√
L(µ)

√
ℓ =

√
L(µ) ∥g∥2 ≥

1

4
|a∗i |

∑
ℓ≤k<2ℓ

|σ̂k| =
1

4
|a∗i |

∑
ℓ≤k<2ℓ

Θ(k−cσ ) = |a∗i |Θ(ℓ1−cσ ).

With the choice of ℓ = Θ̃(1/δ2), we have δ = Õ

((
L(µ)
|a∗

i |2

)1/(4cσ−2)
)

. Since δ ≥

Ω̃
(
(L(µ)
a2
min

)1/(4cσ−2)
)

with a large enough hidden constant, we know this is a contradiction.

As a corollary, with Lemma F.4 that L(µ) = 4ζ + 5λ2 ∥p∥22, we have δ ≥
Ω̃
(
(
4ζ+5λ2∥p∥2

2

a2
min

)1/(4cσ−2)
)

.

For the activation σ is ReLU or absolute function, by Lemma A.1 we know cσ = 5/4, which gives
the desired result.

The lemma below bounds R2 using the fact that it is spiky (has small non-zero support).
Lemma F.8. Under Lemma 6, recall the optimality gap ζ = Lλ(µ)− Lλ(µ

∗
λ). Then

∥R2∥22 = O∗((ζ/λ+ λ)3/2).

Proof. Using the same calculation as in Lemma 12 in Zhou et al. (2021), we have

∥R2∥22 ≤O(m∗)
∑

i∈[m∗]

∑
j∈Ti

|aj | ∥wj∥2

1/2∑
j∈Ti

|aj | ∥wj∥2 δ
2
j

3/2

With Lemma F.4 and Lemma F.5, we have ∥R2∥22 = O(m2
∗|µ∗|1/2(ζ/λ+ λ)3/2).
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The following lemma bounds R3. In fact, in the view of expressing the loss as a sum of tensor
decomposition problem, R3 corresponds to the 0-th order term in the expansion. It would become
small when high-order terms become small, as shown in the proof below.
Lemma F.9. Under Lemma 6 and recall the optimality gap ζ = Lλ(µ) − Lλ(µ

∗
λ). If σ̂0 = 0 and

σ̂k > 0 with some k = Θ((1/∆2) log(ζ/ ∥a∗∥1)), then

∥R3∥2 =Õ∗((ζ + λ2)1/2/σ̂k + (ζ/λ+ λ) + ζ).

Proof. As shown in Ge et al. (2018); Li et al. (2020), we can write the loss L(µ) as sum of tensor
decomposition problem (recall ∥w∗

i ∥2 = 1):

L(µ) =
∑
k≥0

σ̂2
k

∥∥∥∥∥∥
∫
w∈Sd−1

w⊗k dµ(w)−
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
2

F

.

Thus, we know for any k ≥ 1,∥∥∥∥∥∥
∫
w∈Sd−1

w⊗k dµ(w)−
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
2

F

≤ L(µ)/σ̂2
k.

Given any w∗
j and even k, we have∥∥∥∥∥∥

∫
w∈Sd−1

w⊗k dµ(w)−
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
F

≥

∣∣∣∣∣∣
〈 ∑

i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i −

∫
w∈Sd−1

w⊗k dµ(w),w∗⊗k
j

〉∣∣∣∣∣∣
≥

∣∣∣∣∣a∗j ∥∥w∗
j

∥∥
2
−
∫
Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣−
∣∣∣∣∣∣
∑
i ̸=j

a∗i ∥w∗
i ∥2 ⟨w

∗
i ,w

∗
j ⟩k −

∫
Sd−1\Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣∣
≥

∣∣∣∣∣a∗j ∥∥w∗
j

∥∥
2
−
∫
Tj

dµ(w)

∣∣∣∣∣−
∣∣∣∣∣
∫
Tj

dµ(w)−
∫
Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣
−

∣∣∣∣∣∣
∑
i ̸=j

a∗i ∥w∗
i ∥2 ⟨w

∗
i ,w

∗
j ⟩k −

∫
Sd−1\Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣∣
We show the last 2 terms are small.

For the second term on RHS, we have∣∣∣∣∣
∫
Tj

dµ(w)−
∫
Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣ ≤
∫
Tj

(
1− ⟨w,w∗

j ⟩k
)
d|µ|(w)

(a)
≤
∫
Tj

1− (1− δ(w,w∗
j )

2/2)k d|µ|(w)

(b)
≤
∫
Tj ,δ(w,w∗

j )
2≤1

O(k) · δ(w,w∗
j )

2 d|µ|(w) +

∫
Tj ,δ(w,w∗

j )
2>1

d|µ|(w)

≤O(k)

∫
Tj

δ(w,w∗
j )

2 d|µ|(w),

where (a) cos δ ≥ 1− δ2/2 for δ ∈ [0, π/2]; (b) (1− x)k ≥ 1− kx for x ∈ [0, 1].

For the third term on RHS, we have∣∣∣∣∣∣
∑
i ̸=j

a∗i ∥w∗
i ∥2 ⟨w

∗
i ,w

∗
j ⟩k −

∫
Sd−1\Tj

⟨w,w∗
j ⟩k dµ(w)

∣∣∣∣∣∣ ≤(∥a∗∥1 + |µ|1) max
∠(w,w∗

j )≥∆/2
(w⊤w∗

j )
k

(a)
≤(∥a∗∥1 + |µ|1)(1−∆2/10)k

(b)
≤ O(ζ),
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where (a) cos δ ≤ 1 − δ2/5 for δ ∈ [0, π/2]; (b) we choose k = Θ((1/∆2) log(ζ/ ∥a∗∥1)) and
Lemma F.4.

Therefore, we have∥∥∥∥∥∥
∫
w∈Sd−1

w⊗kµ(w)−
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
F

≥

∣∣∣∣∣a∗j ∥∥w∗
j

∥∥
2
−
∫
Tj

µ(w)

∣∣∣∣∣−O(k)

∫
Tj

δ(w,w∗
j )

2|µ|(w)−O(ζ).

This implies that

m∗
√

L(µ)/σ̂k ≥
∑

j∈[m∗]

∣∣∣∣∣a∗j ∥∥w∗
j

∥∥
2
−
∫
Tj

µ(w)

∣∣∣∣∣−O(k)
∑

j∈[m∗]

∫
Tj

δ(w,w∗
j )

2|µ|(w)−O(m∗ζ)

≥

∣∣∣∣∣∣
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 −

∫
Sd−1

µ(w)

∣∣∣∣∣∣− Õ∗(ζ/λ+ λ)−O(m∗ζ),

where we use Lemma F.5. Rearranging the terms and recalling L(µ) = O∗(ζ + λ2) from Lemma F.4,
we get the bound.

The following lemma gives the bound on the average neuron to its corresponding teacher neuron. It
follows directly from the residual decomposition and previous lemmas that characterize R1, R2, R3

respectively.
Lemma F.10. Under Lemma 6, recall the optimality gap ζ = Lλ(µ) − Lλ(µ

∗
λ). Then for any

i ∈ [m∗], ζ = Ω(λ2) and ζ, λ ≤ 1/poly(m∗,∆, ∥a∗∥1)∥∥∥∥∥∥
∑
j∈Ti

ajwj −w∗
i

∥∥∥∥∥∥
2

≤

 ∑
i∈[m∗]

∥∥∥∥∥∥
∑
j∈Ti

ajwj −w∗
i

∥∥∥∥∥∥
2

2


1/2

= O∗((ζ/λ)
3/4).

Proof. With the relation of residual decomposition, Lemma F.7, Lemma F.8 and Lemma F.9, we have
for any i ∈ [m∗]

Ω(∆3/2/m
3/2
∗ )

 ∑
i∈[m∗]

∥∥∥∥∥∥
∑
j∈Ti

ajwj −w∗
i

∥∥∥∥∥∥
2

2


1/2

≤ ∥R1∥2 ≤ ∥R∥2 + ∥R2∥2 + ∥R3∥2

=O∗((ζ + λ2)1/2 + (ζ/λ+ λ)3/4) + Õ∗((ζ + λ2)1/2 + (ζ/λ+ λ) + ζ).

Rearranging the terms, we get the result.

H.2 Omitted proofs in Section F.2

In this section, we give the omitted proofs in Section F.2. The key observation used in the proofs is
that balancing the norm and setting α,β perfectly to their target values only decrease the optimality
gap.

Lemma F.11. Given any θ = (a,W , α,β) satisfying |α− α̂|2 = O(ζ),
∥∥∥β − β̂

∥∥∥2
2
= O(ζ), where

α̂ = −(1/
√
2π)

∑m
i=1 ai ∥wi∥2 and β̂ = −(1/2)

∑m
i=1 aiwi. Let its corresponding balanced

version θbal = (abal,Wbal, αbal,βbal) as abal,i = sign(ai)
√
|ai| ∥wi∥2, wbal,i = wi

√
|ai| ∥wi∥2,

αbal = α̂ and βbal = β̂. Then, we have

Lλ(θ)− Lλ(θbal) = |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+

λ

2

∑
i∈[m]

(|ai| − ∥wi∥2)
2 ≥ 0.
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Moreover, let the optimality gap ζ = Lλ(θ)− Lλ(µ
∗
λ), we have results in Lemma F.4, Lemma F.5,

Lemma F.6, Lemma F.7, Lemma F.8, Lemma F.9 and Lemma F.10 still hold for Lλ(θ), with the change
of R3 in (8) as

R3(x) =
1√
2π

 ∑
i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m]

ai ∥wi∥2

+ α− α̂+ (β − β̂)⊤x.

Proof. Recall in Claim B.1 we have

L(θ) = |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+
∑
k≥2

σ̂2
k

∥∥∥∥∥∥
∑
i∈[m]

ai ∥wi∥2 w
⊗k
i −

∑
i∈[m∗]

a∗i ∥w∗
i ∥2 w

∗⊗k
i

∥∥∥∥∥∥
2

F

.

Note that |ai| ∥wi∥2 = |abal,i| ∥wbal,i∥2 so that L(θ) = L(θbal) + |α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
. We then

have

Lλ(θ)− Lλ(θbal) =|α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+

λ

2
∥a∥22 +

λ

2
∥W ∥22 −

λ

2
∥abal∥22 −

λ

2
∥Wbal∥22

=|α− α̂|2 +
∥∥∥β − β̂

∥∥∥2
2
+

λ

2

∑
i∈[m]

(|ai| − ∥wi∥2)
2.

Therefore, we have the optimality gap ζ = Lλ(θ) − Lλ(µ
∗
λ) ≥ Lλ(θbal) − Lλ(µ

∗
λ) = ζbal. Note

that θbal corresponds to a network that has perfect balanced norms and fitted α,β, thus all results in
Lemma F.4, Lemma F.5, Lemma F.6, Lemma F.7, Lemma F.8, Lemma F.9 and Lemma F.10 hold
for θbal. Since ζ ≥ ζbal, |ai| ∥wi∥2 = |abal,i| ∥wbal,i∥2 and L(θ) = L(θbal) +O(ζ), we can easily
check that all of them also hold for θ. For the bound on R3, note that

∥R3∥2 ≤
1√
2π

∣∣∣∣∣∣
∑

i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m]

ai ∥wi∥2

∣∣∣∣∣∣+ |α− α̂|+
∥∥∥β − β̂

∥∥∥
2

so that the same bound still hold for R3.

Lemma F.12. Under Lemma 6, suppose optimality gap ζ = Lλ(θ)−Lλ(µ
∗
λ). Then ∥a∥22+∥W ∥

2
F ≤

3 ∥a∗∥1.

Proof. We have

λ

2
∥a∥22 +

λ

2
∥W ∥2F = ζ + L(µ∗

λ) + λ|µ∗
λ|1 − L(θ) ≤ ζ + λ2 ∥p∥22 + λ|µ∗

λ|1,

where we use Lemma F.3. Rearranging the terms, we get the result by noting that |µ∗
λ|1 ≤ ∥a∗∥1.

H.3 Omitted proofs in Section F.3

In this section, we give the omitted proofs in Section F.3. We will consider them case by case.

The lemma below says that one can always decrease the loss if norms are not balanced.

Lemma F.15 (Descent direction, norm balance). We have∑
i

∑
j∈Ti

∣∣⟨∇aj
Lλ,−aj⟩+ ⟨∇wj

Lλ,wj⟩
∣∣ =λ

∑
i∈[m∗]

∣∣∣a2i − ∥wi∥22
∣∣∣

≥max

λ| ∥a∥22 − ∥W ∥
2
F |, λ

∑
i∈[m∗]

(|ai| − ∥wi∥2)
2
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Proof. We have∑
i∈[m]

∣∣⟨∇ajLλ,−aj⟩+ ⟨∇wjLλ,wj⟩
∣∣

=
∑
i∈[m]

∣∣∣−2Ex[(f(x)− f∗(x))ajσ(w
⊤
j x)]− λa2j + 2Ex[(f(x)− f∗(x))ajσ(w

⊤
j x)] + λ ∥wi∥22

∣∣∣
=λ

∑
i∈[m]

∣∣∣a2i − ∥wi∥22
∣∣∣

Note that |ai|+ ∥wi∥2 ≥ ||ai| − ∥wi∥2 |, we get the result.

The following lemma shows that one can always decrease the loss if there are close-by neurons that
cancels with others. Intuitively, reducing such norm cancellation decrease the regularization term
while keeping the square loss term, which decreasing the total loss as a whole.
Lemma F.16 (Descent direction, norm cancellation). Under Lemma 6 and Assumption F.1, suppose
the optimality gap ζ = Lλ(θ) − Lλ(µ

∗
λ). For any w∗

i , consider δsign such that δclose < δsign =

O(λ/ζ1/2) with small enough hidden constant (δclose defined in Lemma F.6), then∑
s∈{+,−}

∑
j∈Ti,s(δsign)

〈
∇ajLλ,

aj∑
j∈Ti,s(δsign)

|aj | ∥wj∥2

〉
+

〈
∇wjLλ,

wj∑
j∈Ti,s(δsign)

|aj | ∥wj∥2

〉
= Ω(λ).

where Ti,+(δsign) = {j ∈ Ti : δ(wj ,w
∗
i ) ≤ δsign, sign(aj) = sign(a∗i )}, Ti,−(δsign) = {j ∈ Ti :

δ(wj ,w
∗
i ) ≤ δsign, sign(aj) ̸= sign(a∗i )} are the set of neurons that close to w∗

i with/without same
sign of a∗i .

As a result,

∥∇aLλ∥22 + ∥∇WLλ∥2F ≥λ
2

∑
j∈Ti,−(δsign)

|aj | ∥wj∥2

Proof. Denote R(x) = f(x)− f̃∗(x). We have∑
s∈{+,−}

∑
j∈Ti,s(δsign)

〈
∇ajLλ,

aj∑
j∈Ti,s(δsign)

|aj | ∥wj∥2

〉
+

〈
∇wj

Lλ,
wj∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

〉

=
∑

s∈{+,−}

∑
j∈Ti,s(δsign)

aj ∥wj∥2∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
· 2Ex[R(x)σ(w⊤

j x)] +
λa2j∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

+
∑

s∈{+,−}

∑
j∈Ti,s(δsign)

aj ∥wj∥2∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
· 2Ex[R(x)σ(w⊤

j x)] +
λ ∥wj∥22∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

We split the above into two terms (depending on square loss or regularization). WLOG, assume
sign(a∗i ) = 1. For the first term that depends on gradient on square loss,

(I) =4
∑

s∈{+,−}

∑
j∈Ti,s(δsign)

aj ∥wj∥2∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
· Ex[R(x)σ(w⊤

j x)]

=4
∑

j∈Ti,+(δsign)

|aj | ∥wj∥2∑
j∈Ti,+(δsign)

|aj | ∥wj∥2
Ex[R(x)σ(w⊤

j x)]

− 4
∑

j∈Ti,−(δsign)

|aj | ∥wj∥2∑
j∈Ti,−(δsign)

|aj | ∥wj∥2
Ex[R(x)σ(w⊤

j x)]

=4
∑

j∈Ti,+(δsign)

|aj | ∥wj∥2∑
j∈Ti,+(δsign)

|aj | ∥wj∥2
Ex[R(x)(σ(w⊤

j x)− σ(w∗⊤
i x))]

− 4
∑

j∈Ti,−(δsign)

|aj | ∥wj∥2∑
j∈Ti,−(δsign)

|aj | ∥wj∥2
Ex[R(x)(σ(w⊤

j x)− σ(w∗⊤
i x))]
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Since wj is δsign-close to w∗
i and ∥R∥22 = L(θ), we have

|(I)| ≤ O(δsign) ∥R∥2 = O∗(δsignζ
1/2),

where we use Lemma F.11 that L(θ) = O∗(ζ).

For the second term that depends on regularization, we have

(II) =λ
∑

s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
≥ 2λ+ 2λ = 4λ.

Therefore, when (I) ≤ 2λ, i.e., δsign = O∗(λ/ζ
1/2), we have∑

s∈{+,−}

∑
j∈Ti,s(δsign)

〈
∇ajLλ,

sign(aj)|aj |∑
j∈Ti,s(δsign)

|aj | ∥wj∥2

〉
+

〈
∇wjLλ,

wj∑
j∈Ti,s(δsign)

|aj | ∥wj∥2

〉

≥λ

2

∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
.

We compute a upper bound for LHS. Note that∑
s∈{+,−}

∑
j∈Ti,s(δsign)

〈
∇aj

Lλ,
aj∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

〉
+

〈
∇wj

Lλ,
wj∑

j∈Ti,s(δsign)
|aj | ∥wj∥2

〉

≤
√ ∑

s∈{+,−}

∑
j∈Ti,s(δsign)

(∇ajLλ)2 +
∥∥∇wjLλ

∥∥2
2

√√√√ ∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22
(
∑

j∈Ti,s(δsign)
|aj | ∥wj∥2)2

≤
√
∥∇aLλ∥22 + ∥∇WLλ∥2F

√√√√ ∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22
(
∑

j∈Ti,s(δsign)
|aj | ∥wj∥2)2

≤
√
∥∇aLλ∥22 + ∥∇WLλ∥2F

√√√√ ∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
1√∑

j∈Ti,−(δsign)
|aj | ∥wj∥2

,

where the last line we use Lemma F.6:
∑

j∈Ti,−(δsign)
|aj | ∥wj∥2 <

∑
j∈Ti,+(δsign)

|aj | ∥wj∥2
because µ(Ti(δ)) =

∑
j∈Ti(δsign)

aj ∥wj∥2 > 0.

Combine with the above descent direction, we have√
∥∇aLλ∥22 + ∥∇WLλ∥2F

√√√√ ∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
1√∑

j∈Ti,−(δsign)
|aj | ∥wj∥2

≥λ

2

∑
s∈{+,−}

∑
j∈Ti,s(δsign)

a2j + ∥wj∥22∑
j∈Ti,s(δsign)

|aj | ∥wj∥2
,

which implies

∥∇aLλ∥22 + ∥∇WLλ∥2F ≥λ
2

∑
j∈Ti,−(δsign)

|aj | ∥wj∥2

The lemma below shows that when all previous cases are not hold, then there is a descent direction
that move all close-by neurons towards their corresponding teacher neuron. The proof relies on
calculations that generalize Lemma 8 in Zhou et al. (2021).
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Lemma F.17 (Descent direction). Under Lemma 6 and Assumption F.1, suppose the optimality gap
ζ = Lλ(θ)− Lλ(µ

∗
λ). Suppose

(i) norms are (almost) balanced: | ∥W ∥2F −∥a∥
2
2 | ≤ ζ/λ,

∑
i∈[m](|aj | − ∥wj∥2)

2 = O∗(ζ
2/λ2)

(ii) (almost) no norm cancellation: consider all neurons wj that are δsign-close w.r.t. teacher
neuron w∗

i but has a different sign, i.e., sign(aj) ̸= sign(a∗i ) with δsign = Θ∗(λ/ζ
1/2), we

have
∑

j∈Ti,−(δsign)
|aj | ∥wj∥2 ≤ τ = O∗(ζ

5/6/λ) with small enough hidden constant, where
Ti,−(δ) defined in Lemma F.16.

(iii) α,β are well fitted: |α− α̂|2 = O∗(ζ),
∥∥∥β − β̂

∥∥∥2
2
= O∗(ζ) with small enough hidden factor.

Then, we can construct the following descent direction

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wi
Lλ,wj − qijw

∗
i ⟩ = Ω(ζ),

where qij satisfy the following conditions with δclose < δsign and δclose = O∗(ζ
1/3): (1)∑

j∈Ti
ajqij = a∗i ; (2) qij ≥ 0; (3) qij = 0 when sign(aj) ̸= sign(a∗i ) or δj > δclose. (4)∑

i∈[m∗]

∑
j∈Ti

q2ij = O∗(1).

Proof. Recall residual R(x) = f(x)− f̃∗(x). We have

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wiLλ,wj − qijw
∗
i ⟩

(a)
=2Ex[R(x)(α+ α∗)] + 2Ex[R(x)(β + β∗)

⊤x]

+ 2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajσ(w
⊤
j x)]− 2

∑
i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijσ(w
∗⊤
i x)]

+ 2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
i x))]

+ λ
∑
i∈[m]

∥wj∥22 − λ
∑

i∈[m∗]

∑
j∈Ti

qijw
⊤
j w

∗
i

(b)
=2 ∥R∥22 + λ ∥W ∥2F − λ

∑
i∈[m∗]

∑
j∈Ti

qijw
⊤
j w

∗
i

+ 2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]

(c)
≥Lλ(µ

∗
λ) + ζ +

λ

2
(∥W ∥2F − ∥a∥

2
2)− λ

∑
i∈[m∗]

∑
j∈Ti

qij ∥wj∥2

+ 2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))], (12)

where (a) we plug in the gradient expression and add and minus the term
2
∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijσ(w
∗⊤
i x)]; (b) rearranging the terms; (c) using Lλ(θ) =

∥R∥22 + (λ/2) ∥W ∥2F + (λ/2) ∥a∥22 = Lλ(µ
∗
λ) + ζ.
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For the first line on RHS of (12), we have

Lλ(µ
∗
λ) + ζ +

λ

2
(∥W ∥2F − ∥a∥

2
2)− λ

∑
i∈[m∗]

∑
j∈Ti

qij ∥wj∥2

(a)
≥ζ/2 + L(µ∗

λ) + λ|µ∗
λ| − λ

∑
i∈[m∗]

∑
j∈Ti

qij ∥wj∥2

(b)
≥ζ/2 + λ|µ∗

λ| − λ ∥a∗∥1 + λ
∑

i∈[m∗]

∑
j∈Ti

qij(|aj | − ∥wj∥2)

(c)
≥ζ/2−O∗(λ

2)− λ

 ∑
i∈[m∗]

∑
j∈Ti

q2ij

1/2∑
i∈[m]

(|aj | − ∥wj∥2)
2

1/2

(d)
≥ ζ/4,

where (a) due to assumption that norms are balanced; (b) we ignore L(µ∗
λ) and add and minus

λ ∥a∗∥1; (c) due to Lemma F.3; (d) due to assumption that norms are balanced and the choice of qij .

In the following, we will lower bound the last term of (12) to show it is no smaller than −ζ/8 so
that we get the desired lower bound. Recall the residual decomposition (8) that R(x) = R1(x) +
R2(x) +R3(x), we have∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w⊤

j x)− σ′(w∗⊤
i x))]

=
∑

i∈[m∗]

∑
j∈Ti

Ex[R1(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]︸ ︷︷ ︸

(I)

+
∑

i∈[m∗]

∑
j∈Ti

Ex[R2(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]︸ ︷︷ ︸

(II)

+
∑

i∈[m∗]

∑
j∈Ti

Ex[R3(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]︸ ︷︷ ︸

(III)

Bound (I) For (I), recall R1(x) = (1/2)
∑

i∈[m∗]
v⊤
i x sign(w∗⊤

i x), where vi =∑
j∈Ti

ajwj −w∗
i is the difference between average neuron and corresponding ground-truth and

(
∑

i∈[m∗]
∥vi∥22)1/2 = O∗((ζ/λ)

3/4) from Lemma F.10 and Lemma F.11. We have∑
i∈[m∗]

∑
j∈Ti

Ex[R1(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]

(a)
≥ − 1

2

∑
i∈[m∗]

∑
j∈Ti

∑
k∈[m∗]

Ex[|v⊤
k x||ajqij ||w∗⊤

i x|1sign(w⊤
j x)̸=sign(w∗⊤

i x)]

(b)
= − 1

2

∑
i∈[m∗]

∑
j∈Ti

∑
k∈[m∗]

|ajqij | ∥vk∥2 Ex̃[|v⊤
k x̃||w∗⊤

i x̃|1sign(w⊤
j x̃)̸=sign(w∗⊤

i x̃)]

(c)
≥ − 1

2

∑
i∈[m∗]

∑
j∈Ti

∑
k∈[m∗]

|ajqij | ∥vk∥2 δjEx̃[∥x̃∥22 1sign(w⊤
j x̃)̸=sign(w∗⊤

i x̃)]

(d)
≥ − 1

2

∑
i∈[m∗]

∑
j∈Ti

∑
k∈[m∗]

|ajqij | ∥vk∥2 Θ(δ2j )

(e)
≥ −Θ∗((ζ/λ)

3/4δ2close)
∑

i∈[m∗]

∑
j∈Ti

|ajqij | = −Θ∗((ζ/λ)
3/4δ2close),
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where in (a) we plug in the definition of R1 and using the fact that w∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x)) =

|w∗⊤
i x|1sign(w⊤

j x)̸=sign(w∗⊤
i x); (b) x̃ is a 3-dimensional Gaussian since the expectation only depends

on vk,w
∗
i ,wj ; (c) |w∗⊤

i x̃| ≤ δj ∥x̃∥2 when sign(w⊤
j x̃) ̸= sign(w∗⊤

i x̃); (d) a direct calculation
bound as Lemma H.2; (e) definition of qij .

Bound (II) For (II), recall

R2(x) =
1

2

∑
i∈[m∗]

∑
j∈Ti

ajw
⊤
j x(sign(w

⊤
j x)−sign(w∗⊤

i x)) =
∑

i∈[m∗]

∑
j∈Ti

aj |w⊤
j x|1sign(w⊤

j x)̸=sign(w∗⊤
i x)).

For each term in (II) with j ∈ Ti, we can split it into two terms that corresponding to Ti and other
Tk’s.

Ex[R2(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]

=
∑

k∈[m∗]

∑
ℓ∈Tk

Ex[aℓ|w⊤
ℓ x|1sign(w⊤

ℓ x) ̸=sign(w∗⊤
k x) · ajqijw∗⊤

i x(σ′(w∗⊤
i x)− σ′(w⊤

j x)]

=
∑

k∈[m∗]

∑
ℓ∈Tk

aℓajqijEx[|w⊤
ℓ x|1sign(w⊤

ℓ x) ̸=sign(w∗⊤
k x) · |w∗⊤

i x|1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

=
∑
ℓ∈Ti

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x)̸=sign(w⊤

j x)]︸ ︷︷ ︸
(II.i)

+
∑
k ̸=i

∑
ℓ∈Tk

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

k x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]︸ ︷︷ ︸
(II.ii)

. (13)

For (II.i), we further split neurons into Ti(δsign) and others:

(II.i) =
∑

ℓ∈Ti(δsign)

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

+
∑

ℓ∈Ti\Ti(δsign)

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

(14)

Consider the first line of (14), from the choice of qij we know ajqija
∗
i ≥ 0. For ℓ ∈ Ti,+(δsign), we

know sign(aℓ) = sign(a∗i ), which implies aℓajqij ≥ 0 for these terms. We thus only need to deal
with neurons in Ti,−(δsign), we have the first line is bounded as∑

ℓ∈Ti(δsign)

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

≥
∑

ℓ∈Ti,−(δsign)

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x) ̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x)̸=sign(w⊤

j x)]

(a)
≥ − |ajqij |

∑
ℓ∈Ti,−(δsign)

|aℓ| ∥wℓ∥2 Ex[|w⊤
ℓ x̃||w∗⊤

i x̃|1sign(w⊤
ℓ x̃)̸=sign(w∗⊤

i x̃) · 1sign(w∗⊤
i x̃) ̸=sign(w⊤

j x̃)]

(b)
≥ − |ajqij |

∑
ℓ∈Ti,−(δsign)

|aℓ| ∥wℓ∥2 δℓδjEx[∥x̃∥22 1sign(w⊤
ℓ x̃)̸=sign(w∗⊤

i x̃) · 1sign(w∗⊤
i x̃) ̸=sign(w⊤

j x̃)]

(c)
≥ − |ajqij |

∑
ℓ∈Ti,−(δsign)

|aℓ| ∥wℓ∥2 O(δℓδ
2
j )

(d)
≥ − |ajqij |O(τδsignδ

2
close),

44



where (a) x̃ is a 3-dimensional Gaussian since the expectation only depends on wℓ,wj ,w
∗
i ; (b)

|w⊤
ℓ x̃| ≤ δℓ ∥x̃∥2 when sign(w∗⊤

i x̃) ̸= sign(w⊤
ℓ x̃) and |w∗⊤

i x̃| ≤ δj ∥x̃∥2 when sign(w∗⊤
i x̃) ̸=

sign(w⊤
j x̃); (c) a direct calculation as in Lemma H.2; (d) assumption that norm cancellation is small.

For the second term of (14), similar as above, we have

2
∑

ℓ∈Ti\Ti(δsign)

aℓajqijEx[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

i x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

(a)
≥ − 2|ajqij |

∑
ℓ∈Ti\Ti(δsign)

|aℓ| ∥wℓ∥2 Ex̃[|w⊤
ℓ x̃||w∗⊤

i x̃|1sign(w⊤
ℓ x̃) ̸=sign(w∗⊤

i x̃) · 1sign(w∗⊤
i x̃)̸=sign(w⊤

j x̃)]

(b)
≥ − 2|ajqij |

∑
ℓ∈Ti\Ti(δsign)

|aℓ| ∥wℓ∥2 δℓδjEx̃[∥x̃∥22 1sign(w∗⊤
i x̃) ̸=sign(w⊤

j x̃)]

(c)
≥ − 2|ajqij |O(δ2j )

∑
ℓ∈Ti\Ti(δsign)

|aℓ| ∥wℓ∥2 δℓ

(d)
≥ − 2|ajqij |O∗(δ

2
closeζλ

−1δ−1
sign),

where (a) x̃ is 3-dimensional Gaussian vector since the expectation only depends on wℓ,wj ,w
∗
i ; (b)

|w⊤
ℓ x̃| ≤ δℓ ∥x̃∥2 when sign(w∗⊤

i x̃) ̸= sign(w⊤
ℓ x̃) and |w∗⊤

i x̃| ≤ δj ∥x̃∥2 when sign(w∗⊤
i x̃) ̸=

sign(w⊤
j x̃); (c) a direct calculation as in Lemma H.2; (d) choice of qij and Lemma F.5 and

Lemma F.11 that far-away neurons are small.

Thus, for (II.i) we have

(II.i) ≥ −2|ajqij |O∗(τδsignδ
2
close + δ2closeζλ

−1δ−1
sign).

For (II.ii), we have

|(II.ii)| ≤2
∑
k ̸=i

∑
ℓ∈Tk

|aℓ||ajqij |Ex[|w⊤
ℓ x||w∗⊤

i x|1sign(w⊤
ℓ x)̸=sign(w∗⊤

k x) · 1sign(w∗⊤
i x) ̸=sign(w⊤

j x)]

(a)
≤2
∑
k ̸=i

∑
ℓ∈Tk

|aℓ||ajqij | ∥wℓ∥2 δℓδjEx̃[∥x̃∥22 1sign(w⊤
ℓ x̃) ̸=sign(w∗⊤

k x̃) · 1sign(w∗⊤
i x̃)̸=sign(w⊤

j x̃)]

(b)
≤2
∑
k ̸=i

∑
ℓ∈Tk

|aℓ||ajqij | ∥wℓ∥2 δℓδjEx̃[∥x̃∥22 1|w∗⊤
k x̃|≤δℓ∥x̃∥2

· 1|w∗⊤
i x̃|≤δj∥x̃∥2

]

(c)
≤2|ajqij |δj

∑
k ̸=i

∑
ℓ∈Tk

|aℓ| ∥wℓ∥2 δℓ ·O(δℓδj/∆)

(d)
=2|ajqij |O∗(δ

2
closeζλ

−1∆−1),

where (a)(b) x̃ is a 4-dimensional Gaussian vector, |w⊤
ℓ x̃| ≤ δℓ ∥x̃∥2 when sign(w∗⊤

i x̃) ̸=
sign(w⊤

ℓ x̃) and |w∗⊤
i x̃| ≤ δj ∥x̃∥2 when sign(w∗⊤

i x̃) ̸= sign(w⊤
j x̃); (c) by Lemma H.1; (d)

choice of qij and Lemma F.5 and Lemma F.11 that far-away neurons are small.

Combine (II.i) (II.ii), we have for (13)

Ex[R2(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))] ≥ −2|ajqij |O(τδsignδ

2
close + δ2closeζλ

−1δ−1
sign).

This further gives the lower bound on (II):∑
i∈[m∗]

∑
j∈Ti

Ex[R2(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]

≥− 2
∑

i∈[m∗]

∑
j∈Ti

|ajqij |O(τδsignδ
2
close + δ2closeζλ

−1δ−1
sign)

=−O∗(τδsignδ
2
close + δ2closeζλ

−1δ−1
sign)
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Bound (III) For (III), recall R3(x) =
1√
2π

(∑
i∈[m∗]

a∗i ∥w∗
i ∥2 −

∑
i∈[m] ai ∥wi∥2

)
+ α− α̂+

(β − β̂)⊤x. We have∑
i∈[m∗]

∑
j∈Ti

Ex[R3(x)ajqijw
∗⊤
i x(σ′(w∗⊤

i x)− σ′(w⊤
j x))]

(a)
≥ −O∗(ζ/λ)

∑
i∈[m∗]

∑
j∈Ti

|ajqij |Ex[|w∗⊤
i x|1sign(w⊤

j x) ̸=sign(w∗⊤
i x)]

−
∑

i∈[m∗]

∑
j∈Ti

|ajqij |Ex[|(β − β̂)⊤x||w∗⊤
i x|1sign(w⊤

j x)̸=sign(w∗⊤
i x)]

(b)
≥ −O∗(ζ/λ)

∑
i∈[m∗]

∑
j∈Ti

|ajqij |O(δ2j )

−O(ζ1/2)
∑

i∈[m∗]

∑
j∈Ti

|ajqij |δjEx[∥x̃∥22 1sign(w⊤
j x̃)̸=sign(w∗⊤

i x̃)]

(c)
≥ −O∗(ζ/λ)

∑
i∈[m∗]

∑
j∈Ti

|ajqij |O(δ2j )

(d)
≥ −O∗(δ

2
closeζ/λ),

where (a) plugging in the expression of R3 and using Lemma F.9 and Lemma F.11; (b) using
Lemma H.3 and the fact that x̃ is a 3-dimensional Gaussian vector and |w∗⊤

i x̃| ≤ δj ∥x̃∥2 when
sign(w∗⊤

i x̃) ̸= sign(w⊤
j x̃); (c) Lemma H.2; (d) choice of qij .

Combine all bounds Combine (I) (II) (III) we now get the last term of (12)∑
i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w⊤

j x)− σ′(w∗⊤
i x))] ≥ −O∗((ζ/λ)

3/4δ2close + τδsignδ
2
close + δ2closeζλ

−1δ−1
sign)

From Lemma F.6 we can choose δclose = O∗(ζ
1/3) and from Lemma F.16 we can choose δsign =

Θ∗(λ/ζ
1/2). Also with τ = O(ζ5/6/λ), we finally get∑

i∈[m∗]

∑
j∈Ti

Ex[R(x)ajqijw
∗⊤
i x(σ′(w⊤

j x)− σ′(w∗⊤
i x))] ≥ ζ/8,

as long as ζ = O(λ9/5/ poly(r,m∗,∆, ∥a∗∥1 , amin)) with small enough hidden constant.

Thus, we eventually get the lower bound of (12)

(α+ α∗)∇αLλ + ⟨∇βLλ,β + β∗⟩+
∑

i∈[m∗]

∑
j∈Ti

⟨∇wiLλ,wj − qijw
∗
i ⟩ ≥ ζ/4− ζ/8 = ζ/8.

H.4 Technical Lemma

In this section, we collect several technical lemmas that are useful in the proof.
Lemma H.1. Consider α,β ∈ R4 with ϕ = ∠(α,β) ∈ [0, π] and ∥α∥2 = ∥β∥2 = 1 and
x ∼ N(0, I). Then, for any 0 < δ1, δ2 ≤ ϕ we have

Ex[∥x∥22 1|α⊤x|≤δ1∥x∥2,|β⊤x|≤δ2∥x∥2
] = O(δ1δ2/ sinϕ).

Proof. We first consider the case when at least one of δ1, δ2 ≥ cϕ for a fixed small enough constant.
WLOG, suppose δ2 ≥ cϕ. In this case, it suffices to show a bound O(δ1). We have

Ex[∥x∥22 1|α⊤x|≤δ1∥x∥2,|β⊤x|≤δ2∥x∥2
] ≤ Ex[∥x∥22 1|α⊤x|≤δ1∥x∥2

] = O(δ1).

46



Then, we focus on the case when δ1, δ2 ≤ cϕ for a fixed small enough constant. WLOG, assume
α = (1, 0, 0, 0)⊤, β = (cosϕ, sinϕ, 0, 0) and ϕ ∈ [0, π/2]. Then we have

Ex[∥x∥22 1|α⊤x|≤δ1∥x∥2,|β⊤x|≤δ2∥x∥2
]

=
1

(2π)2

∫ ∞

0

r5e−r2/2 dr∫
0≤θ1≤π,| cos θ1|≤δ1

sin2 θ1

∫
0≤θ2≤π,| cos θ1 cosϕ+sin θ1 cos θ2 sinϕ|≤δ2

sin θ2 dθ2 dθ1

∫ 2π

0

1 dθ3

=O(1) ·
∫
0≤θ1≤π,| cos θ1|≤δ1

sin2 θ1

∫
0≤θ2≤π,

−δ2−cos θ1 cosϕ
sin θ1 sinϕ ≤cos θ2≤ δ2−cos θ1 cosϕ

sin θ1 sinϕ

sin θ2 dθ2 dθ1

=

∫
0≤θ1≤π,| cos θ1|≤δ1

sin2 θ1 ·O
(

δ2
sin θ1 sinϕ

)
dθ1

=O

(
δ1δ2
sinϕ

)
.

Lemma H.2 (Lemma C.9 in Zhou et al. (2021)). Consider α,β ∈ R3 with ∠(α,β) = ϕ and
α⊤β ≥ 0. We have

Ex[∥x∥2 1sign(α⊤x)̸=sign(β⊤x)] = O(ϕ).

Lemma H.3. Consider α,β ∈ Rd with ∠(α,β) = ϕ, ∥α∥2 = ∥β∥2 = 1 and α⊤β ≥ 0. We have

Ex[|α⊤x|1sign(α⊤x)̸=sign(β⊤x)] = O(ϕ2).

Proof. It suffices to consider α,β,x ∈ R2. WLOG, assume α = (1, 0)⊤ and β = (cosϕ, sinϕ)⊤

We have

Ex[|α⊤x|1sign(α⊤x)̸=sign(β⊤x)] =
1

2π

∫ ∞

0

re−r2/2 dr

∫ 2π

0

cos θ1sign(cos θ)̸=sign(cos(θ−ϕ)) dθ

=O(ϕ2).

Lemma H.4. Under Lemma 6, let

qij =

{
aja

∗
i∑

j∈Ti,+(δclose) a
2
j

, if j ∈ Ti,+(δclose)

0 , otherwise

If
∑

i∈[m∗]

∣∣∣a2i − ∥wi∥22
∣∣∣ ≤ amin/2, then

∑
i∈[m∗]

∑
j∈Ti

q2ij = O(∥a∗∥1).

Proof. We have∑
i∈[m∗]

∑
j∈Ti

q2ij =
∑

i∈[m∗]

∑
j∈Ti,+(δclose)

a2ja
∗2
i

(
∑

j∈Ti,+(δclose)
a2j )

2
=
∑

i∈[m∗]

a∗2i∑
j∈Ti,+(δclose)

a2j
.

In the following, we aim to lower bound
∑

j∈Ti,+(δclose)
a2j . Given

∑
j∈Ti,+(δclose)

|a2j − ∥wj∥22 | ≤
|a∗i |/2, we have

2
∑

j∈Ti,+(δclose)

a2j ≥
∑

j∈Ti,+(δclose)

a2j + ∥wj∥22 − |a
∗
i |/2 ≥ 2

∑
j∈Ti,+(δclose)

|aj | ∥wj∥2 − |a
∗
i |/2 ≥ |a∗i |/2,

where the last inequality is due to Lemma F.6:
∑

j∈Ti,+(δclose)
|aj | ∥wj∥2 ≥

|
∑

j∈Ti(δclose)
aj ∥wj∥2 | ≥ |a

∗
i |/2. Thus, we have

∑
i∈[m∗]

∑
j∈Ti

q2ij = O(∥a∗∥1).
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I Proofs in Section G (non-degenerate dual certificate)

In this section, we give the omitted proofs in Section G. The proofs are mostly direct computations
with the properties of Hermite polynomials in Claim A.1.

Lemma G.1 (Non-degeneracy of kernel K). For any h > 0, let ℓ ≥ Θ(∆−2 log(m∗ℓ/h∆)), kernel
K≥ℓ is non-degenerate in the sense that there exists r = Θ(ℓ−1/2), ρ1 = Θ(1), ρ2 = Θ(ℓ) such that
following hold:

(i) K(w,u) ≤ 1− ρ1 for all δ(w,u) := ∠(w,u) ≥ r.

(ii) K(20)(w,u)[z, z] ≤ −ρ2 ∥z∥2 for tangent vector z that z⊤w = 0 and δ(w,u) ≤ r.

(iii)
∥∥K(ij)(w∗

1 ,w
∗
k)
∥∥
w∗

i ,w
∗
k

≤ h/m2
∗ for (i, j) ∈ {0, 1} × {0, 1, 2}

Proof. With the property of Hermite polynomials in Claim A.1, we have

K(w,u) =Ex[σ≥ℓ(w
⊤x)σ≥ℓ(u

⊤x)] =
1

Z2
σ

∑
k≥ℓ

σ̂2
k cos

k θ,

K(10)(w,u) =
1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ
1

∥w∥2
(I −ww⊤)u,

K(11)(w,u) =
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

1

∥w∥2 ∥u∥2
(I −ww⊤)uw⊤(I − uu⊤)

+
1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ
1

∥w∥2 ∥u∥2
(I −ww⊤)(I − uu⊤)

K(20)(w,u) =
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

1

∥w∥22
(I −ww⊤)uu⊤(I −ww⊤)

− 1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ
1

∥w∥22
w⊤u(I −ww⊤)

K(21)(w,u)i =∂uiK
(20)(w,u)

=
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1)(k − 2) cosk−3 θ

1

∥w∥22 ∥u∥2
e⊤i (I − uu⊤)w · (I −ww⊤)uu⊤(I −ww⊤)

+
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

1

∥w∥22 ∥u∥2
(I −ww⊤)

(
(I − uu⊤)eiu

⊤ + ue⊤i (I − uu⊤)
)
(I −ww⊤)

− 1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

1

∥w∥22 ∥u∥2
e⊤i (I − uu⊤)w ·w⊤u(I −ww⊤)

− 1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ
1

∥w∥22
w⊤(I − uu⊤)ei(I −ww⊤),

(15)
where θ = arccos(w⊤u).

Part (i) Given that r = Θ(1/
√
ℓ) with a small enough hidden constant, we know for δ(w,u) ≥ r

K(w,u) =
1

Z2
σ

∑
k≥ℓ

σ̂2
k cos

k θ ≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
k · (1− r2/5)ℓ = c < 1,

where c is a constant less than 1. Thus, ρ1 = Θ(1).
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Part (ii) For tangent vector z that z⊤w = 0, we have (∥w∥2 = ∥u∥2 = 1, δ(w,u) ≤ r)

K(20)(w,u)[z, z] =
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ · (u⊤z)2 − 1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ ·w⊤u ∥z∥22

=
∥z∥22
Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ · (u⊤z)2 −

∑
k≥ℓ

σ̂2
kk cos

k−1 θ ·w⊤u


≤
∥z∥22
Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ −

∑
ℓ≤k≤2ℓ

σ̂2
kk cos

k θ

 .

For the first term, we have∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ

≤
∑

k≥1/r2

σ̂2
kk(k − 1) ·Θ(1/k) +

∑
ℓ≤k≤1/r2

Θ(k−1/2)r2

≤
∑

k≥1/r2

Θ(k−3/2) + Θ(r) = Θ(r),

where we use Lemma I.1 and σ̂2
k = Θ(k−5/2) in Lemma A.1.

For the second term, we have ∑
ℓ≤k≤2ℓ

σ̂2
kk cos

k θ ≥ Θ(ℓ−1/2)(1− r2)2ℓ.

Given that r = Θ(1/
√
ℓ) with a small enough hidden constant, we know

K(20)(w,u)[z, z] ≤ −
∥z∥22
Z2
σ

Θ(ℓ−1/2) = −Θ(ℓ) ∥z∥22 ,

since Z2
σ = Θ(ℓ−3/2).

Part (iii) Recall that δ(w∗
i ,w

∗
j ) ≥ ∆ for i ̸= j. It suffices to bound

∥∥K(ij)(w,u)
∥∥
2
≤ h/m2

∗ for
θ = δ(w,u) ≥ ∆. Given that ℓ ≥ Θ(∆−2 log(m∗ℓ/h∆)) with large enough hidden constant, from
(15) we have for ∥w∥ = ∥u∥ = 1

K(w,u) ≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
k(1−∆2/5)ℓ ≤ h/m2

∗,∥∥∥K(10)(w,u)
∥∥∥
w
≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ sin θ ≤ Θ(ℓ)(1−∆2/5)ℓ−1 ≤ h/m2
∗,∥∥∥K(11)(w,u)

∥∥∥
w,u

=
1

Z2
σ

sup
z⊤
1 w=z⊤

2 u=0,
∥z1∥2=∥z2∥2=1

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θu⊤z1 ·w⊤z2 +

∑
k≥ℓ

σ̂2
kk cos

k−1 θz⊤
1 z2

≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ

≤Θ(ℓ3/2)
∑
k≥ℓ

Θ(k−1/2)(1−∆2/5)k−2 +Θ(ℓ)(1−∆2/5)ℓ−1 ≤ h/m2
∗,
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∥∥∥K(20)(w,u)
∥∥∥
w

=
1

Z2
σ

sup
z⊤
1 w=z⊤

2 w=0,
∥z1∥2=∥z2∥2=1

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ · u⊤z1 · u⊤z2 −

∑
k≥ℓ

σ̂2
kk cos

k−1 θ ·w⊤u · z⊤
1 z2

≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ

≤Θ(ℓ3/2)
∑
k≥ℓ

Θ(k−1/2)(1−∆2/5)k−2 +Θ(ℓ)(1−∆2/5)ℓ−1 ≤ h/m2
∗,

∥∥∥K(21)(w,u)
∥∥∥
w,u

= sup
z⊤
1 w=z⊤

2 w=q⊤u=0,
∥z1∥2=∥z2∥2=∥q∥2=1

1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1)(k − 2) cosk−3 θ

∑
i

qie
⊤
i (I − uu⊤)w · u⊤z1 · u⊤z2

+
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

(∑
i

qiz
⊤
1 (I − uu⊤)ei · u⊤z2 +

∑
i

qiz
⊤
2 (I − uu⊤)ei · u⊤z1

)

− 1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ

∑
i

qie
⊤
i (I − uu⊤)w ·w⊤u · z⊤

1 z2

− 1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ
∑
i

qiw
⊤(I − uu⊤)ei · z⊤

1 z2

≤ 1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1)(k − 2) cosk−3 θ sin3 θ +

2

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ sin θ

(a)
≤h/m2

∗,

where we use σ̂2
k = Θ(k−5/2) in Lemma A.1 and (a) the last two terms bound similarly as in K(20)

and first term 1
Z2

σ

∑
k≥ℓ σ̂

2
kk(k−1)(k−2) cosk−3 θ sin3 θ ≤ Θ(ℓ3/2)

∑
k≥ℓ Θ(k1/2)(1−∆2/5)k ≤

h/3m2
∗.

Lemma G.2 (Regularity conditions on kernel K). Let Bij := supw,u

∥∥K(ij)(w,u)
∥∥
w,u

and

B0 = B00 + B10 + 1, B2 = B20 + B21 + 1. We have B00 = O(1), B10 = O(ℓ1/2), B11 = O(ℓ),
B20 = O(ℓ), B21 = O(ℓ3/2), and therefore B0 = O(ℓ1/2), B2 = O(ℓ3/2).

Proof. We compute Bij one by one from (15) (see part (iii) proof in Lemma G.1). Using Lemma I.1
we have

B00 =sup
w,u

∣∣∣∣∣∣ 1Z2
σ

∑
k≥ℓ

σ̂2
k cos

k θ

∣∣∣∣∣∣ ≤ 1,

B10 ≤
1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ sin θ ≤ Θ(ℓ3/2)
∑
k≥ℓ

Θ(k−5/2)k
1√
k
= O(ℓ1/2),

B11 ≤
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ

≤Θ(ℓ3/2)
∑
k≥ℓ

Θ(k−5/2)k2
1

k
+Θ(ℓ3/2)

∑
k≥ℓ

Θ(k−5/2)k = O(ℓ),
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B20 ≤
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−2 θ sin2 θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k θ

≤Θ(ℓ3/2)
∑
k≥ℓ

Θ(k−5/2)k2
1

k
+Θ(ℓ3/2)

∑
k≥ℓ

Θ(k−5/2)k = O(ℓ),

B21 ≤
1

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1)(k − 2) cosk−3 θ sin3 θ +

2

Z2
σ

∑
k≥ℓ

σ̂2
kk(k − 1) cosk−1 θ sin θ +

1

Z2
σ

∑
k≥ℓ

σ̂2
kk cos

k−1 θ sin θ

≤Θ(ℓ3/2)
∑
k≥ℓ

Θ(k1/2)(1− θ2/5)k−3θ3 +Θ(ℓ3/2)
∑
k≥ℓ

Θ(k−1/2)(1− θ2/5)k−1θ

For first term above
∑

k≥ℓ Θ(k1/2)(1− θ2/5)k−3θ3, using Lemma I.2 we have∑
k≥ℓ

Θ(k1/2)(1− θ2/5)k−3θ3 ≤
∑
k≥ℓ

Θ(
1√

ln(1/(1− θ2))
)(1− θ2/5)k/2−3θ3

≤
∑
k≥ℓ

Θ(θ2)(1− θ2/5)k/2−3 = Θ(θ2)
(1− θ2/5)ℓ

θ2
= O(1).

For second term above
∑

k≥ℓ Θ(k−1/2)(1− θ2/5)k−1θ we have∑
k≥ℓ

Θ(k−1/2)(1− θ2/5)k−1θ ≤ Θ(θ)

∫ ∞

ℓ

x−1/2(1− θ2/5)x ≤ Θ(θ)Θ(
1√

ln(1/(1− θ2))
) = O(1).

Therefore, we have B21 = O(ℓ3/2).

I.1 Technical lemma

We collect few lemma here used in the proof. They mostly rely on direct calculations.
Lemma I.1. For large enough integer k, we have

max | cosk θ sin θ| ≤ Θ(1/
√
k),

max | cosk θ sin2 θ| ≤ Θ(1/k),

max | cosk θ sin3 θ| = Θ(1/k3/2).

Proof. We only compute the first one max | cosk θ sin θ| = 1/
√
k. Others are similar.

We compute the gradient of f(θ) = cosk θ sin θ and get f ′(θ) = cosk−1 θ(cos2 θ − k sin2 θ). We
only need to consider θ ∈ [0, 2π]. So the maximum is achieved either at boundary θ = 0, π or
f ′(θ) = 0. Then one can verify that the bound is true.

Lemma I.2. For β < 1 and k > 0, we have k1/2βk/2 ≤ 1√
2 ln(2/β)

.

Proof. Let f(k) = k1/2βk/2. We have f ′(k) = 1
2k

−1/2βk/2 + k1/2βk/2 ln(β/2). Set f ′(k0) = 0

we have k0 = 1
2 ln(2/β) . It is easy to see max f(k) = f(k0) ≤ 1√

2 ln(2/β)
.

J Notes on Sample Complexity

The current paper focuses on the analysis on population loss, which is already highly non-trivial and
requires new ideas that we developed in the paper. The finite-sample analysis is not our focus, so we
omit it in the current paper.

For sample complexity, we believe the following strategy would work to get a polynomial sample
complexity. We can break down the analysis into 2 parts: early-stage feature learning (Stage 1 and 2)
and final-stage feature learning (Stage 3).
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• Stage 1 and 2: This should follow the results in Damian et al. (2022). The most important
step is to show the concentration of first-step gradient (Stage 1). As shown in Damian et al.
(2022), using concentration tools we can get sample complexity n = Θ∗(d

2), where n is
the number of sample and d is input dimension.

• Stage 3: In local convergence regime, all weights have norms bounded in O∗(1) due to
ℓ2 regularization we have. Thus, we can apply standard concentration tools to show the
empirical gradients are close to population gradients given a large enough polynomial
number of samples.

Achieving a tight sample complexity is an interesting and challenging open problem that is beyond
the scope of current work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contribution is our Theorem 2, which matches the claims in abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This is a theory paper so all assumptions are clearly listed and discussed. The
limitations, for example Stage 2 in Algorithm 1, are clearly discussed in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All assumptions are clearly listed in the main text and full proofs are given in
the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: No experiments in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: No experiments in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: No experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: No experiments in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theory paper and has no foresee direct societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theory paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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