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Abstract

Information retrieval in Large Language Models (LLMs) is
increasingly recognized as intertwined with generation capa-
bilities rather than mere lookup. While longer contexts are of-
ten assumed to improve retrieval, the effects of intra-context
interference remain understudied. To address this, we adapt
the proactive interference (PI) paradigm from cognitive sci-
ence, where earlier information disrupts recall of newer up-
dates. In humans, susceptibility to such interference is in-
versely linked to working memory capacity. We introduce PI-
LLM, an evaluation that sequentially streams co-referenced
key–value updates and queries only the final values. Although
these final values are clearly positioned just before the query,
LLM retrieval accuracy declines log-linearly toward zero as
co-referenced interference accumulates; errors arise from re-
trieving previously overwritten values. Attempts to mitigate
interference via prompt engineering (e.g., instructing models
to ignore earlier input) yield limited success. These findings
reveal a fundamental constraint on LLMs’ ability to disen-
tangle interference and flexibly manipulate information, sug-
gesting a working memory bottleneck beyond mere context
access.
For agentic systems, reliable operation hinges on reconciling
past and present states. Proactive interference corrupts long-
horizon state maintenance; dependable agent tracking there-
fore needs explicit memory control and interference-aware
context management. We expose a “know, cannot do” fail-
ure. Coreference-only needles expose a plan–execute disjunc-
tion: LLMs form the correct last-value retrieval plan but fail
to carry it out, with execution reliability declining systemat-
ically with task complexity. Code and data will be publicly
available.

1 Introduction
Current research indicates that Large Language Models
(LLMs) generally struggle with retrieval tasks when closely
related pieces of information are present (Vodrahalli et al.
2024). Furthermore, reasoning models do not effectively
improve performance in these scenarios (OpenAI 2025a).
However, most studies—having already labeled retrieval as
a ‘long-context’ challenge—prioritize input length as the
primary determinant of retrieval difficulty, relegating other
factors to a secondary role.

Current studies often conflate search difficulty—the chal-
lenge of locating the relevant “needle” in a vast contextual

haystack—with interference—the challenge of correctly
identifying that needle when it is surrounded by similar-
looking but incorrect items. Recent long-context bench-
marks—most of which evolve from the original Needle-in-a-
Haystack paradigm, such as DeepMind’s Michelangelo (Vo-
drahalli et al. 2024) and OpenAI’s MRCR (OpenAI 2025b)
primarily raise task difficulty by lengthening the prompt. Al-
though these studies acknowledge interfering information’s
impact on the retrieval tasks, they do so only in a prelim-
inary way, without explicitly isolating or quantifying inter-
ference’s independent effect on LLMs’ context usage. Con-
sequently, current research implicitly attributes the difficulty
of distinguishing similar information mainly to greater input
length, thereby overlooking interference as a separate, quan-
tifiable factor.

Our work demonstrates that the amount of interfering
information, co-referenced information, independently and
significantly impacts retrieval accuracy in LLMs (Figure 1).
By systematically varying interference load, we obtain the
first quantitative curve that isolates interference as an inde-
pendent factor. To demonstrate that interference effects are
independent of input length, we include a control condition
in which input length is held constant. Anti-interference ca-
pacity varies sharply across models, making it a useful dis-
criminative trait. Crucially, even modest distractor loads ex-
pose a fundamental weakness: current LLMs cannot reliably
suppress competing cues.

Interfering information consists of co-referenced infor-
mation and is common in many data processing tasks. One
of the simplest forms involves key–value pairs, where the
key remains the same but the associated value is repeat-
edly updated within a sequence. For example, consider a se-
quence of blood-pressure (BP) readings, where the task is to
keep track of the most recent BP value. BP: 120 – triage; BP:
128 – 10 min later; BP: 125 – discharge. In this task, the de-
sired output is ‘BP: 125,’ the last-presented key–value pair.
However, retrieval may be impaired by prior co-referenced
BP values, which act as distractors. The search difficulty in
such key-value tracking tasks is minimized, as the target an-
swer is always the last value of a certain key.

Notably, humans demonstrate high accuracy on these
tasks. In contrast, our experiments show that retrieval ac-
curacy in state-of-the-art LLMs declines in a log-linear
fashion as the amount of interference information pre-
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Figure 1: Universal log-linear decline in retrieval perfor-
mance due to interference. Increasing the amount of inter-
fering information preceding a retrieval target within a lan-
guage model’s input context results in a log-linear decrease
in retrieval accuracy across diverse models. The target is po-
sitioned after the interfering information and explicitly ref-
erenced in the prompt to reduce search difficulty and isolate
interference effects. (x-axis: the number of co-referenced
times, log-scaled; asterisk: MoE models)

ceding the target key–value pair increases, as shown in
(Figure 1), a pattern we observed consistently across all
models tested.

While standard synthetic key–value retrieval tasks are
widely used in LLM evaluations (e.g., Lost in the Middle),
our approach uniquely leverages insights from the proactive
interference (PI) paradigm in cognitive psychology. In clas-
sic PI experiments, participants recall the most recent asso-
ciation for a repeated cue while earlier associations cause
interference. Drawing from the PI paradigm, we fix the re-
trieval target as the last-presented value of a particular key,
thereby minimizing search difficulty and isolating interfer-
ence as an independent factor. We ensure this by explicitly
prompting LLMs to retrieve the most recent key–value pair
for a given key. We systematically manipulate the amount
of co-referenced interfering information preceding the tar-
get and measure the effect on retrieval accuracy. This ap-

proach allows us to directly quantify the impact of interfer-
ence strength, independent of search difficulty.

Surprisingly, we found that a higher interference load
leads to a log-scale reduction in retrieval accuracy even
when input length remains constant, revealing that input
length and interference are independent factors affecting
retrieval. Moreover, we observed that log-linear declines oc-
cur across multiple interference dimensions (e.g., increasing
the token length of the retrieval target), consistent with the
idea that LLM retrieval is limited by a unified capacity—a
resource that can be exhausted along any one dimension, or
conserved by reducing load along another. This shared bot-
tleneck closely mirrors the working memory limit observed
in humans.

Cognitive science research on proactive interference (PI)
shows that, although humans are also affected by prior in-
terference information, their recall performance typically
plateaus: after a certain threshold, further interference pro-
duces minimal additional impairment. This robustness is at-
tributed to humans’ ability to actively unbind outdated asso-
ciations from working memory before encoding new infor-
mation (Oberauer and Vockenberg 2009).

Building on these observations, we further investigated
whether LLMs could adopt human-like strategies for man-
aging interference through explicit modulation of memory
content. Humans benefit from direct instructions to depriori-
tize prior interfering information (Festini and Reuter-Lorenz
2014). To test whether similar explicit strategies could aid
LLM performance, we provided natural language annota-
tions marking the majority of prior information as outdated
and irrelevant. Despite clear instructional cues and explicit
annotations, we observed only minimal improvements in
LLM retrieval accuracy.

We evaluated reasoning models with an unlimited rea-
soning budget and observed the same log-linear decline
in retrieval accuracy. We further injected explicit chain-of-
thought (CoT) prompts into non-reasoning models, instruct-
ing them to first analyze the task goal and then retrieve the
last value. However, this intervention yielded no improve-
ment over the baseline; retrieval performance continued to
decline log-linearly. These findings reveal a dissociation be-
tween analytical reasoning and execution: LLMs are ca-
pable of articulating the correct retrieval procedure, yet they
consistently fail to implement it in execution when under in-
terference.

2 Interference Dominates Retrieval Despite
Recency and Instructions:

Our objective is to understand how Large Language Mod-
els (LLMs) manage interference when retrieving informa-
tion. To reduce searching difficulty and measure the impact
of interference, we designed a synthetic key-value retrieval
experiment.

In this test, the input is a sequence of key–value pairs,
where a fixed set of keys—each representing a variable of
interest—appears repeatedly throughout the sequence, each
time paired with a different value. Updates for different keys
are randomly interleaved. This design mimics, in a simpli-



fied manner, real-world logging systems that track multiple
physiological variables over time—for example, blood pres-
sure, heart rate, and oxygen level readings recorded in a pa-
tient’s health log.

Experimental Design

As my secretary, I need you to carefully read a text stream 
where the values of multiple keys are being continuously 
updated. The 3 keys to track include visual art, tools, 
landform. I will ask you to identify the current value of 
each key later. The text stream starts on the next line.

1*visual art: Braque; 1*tools: hook remover; 2*visual 
art: Pollock; 1*landform: moraine; 3*visual art: 
Basquiat; 2*tools: plunger; 2*landform: plain; 3*tools: 
ruler; 4*visual art: seascape; 3*landform: valley; 
4*tools: hammer; 4*landform: dune.

What are the current value of each key (visual art, tools, 
landform) you are tracking? End your response with: 'The 
current value of <key> is <value>.'

The current value of visual art is seascape. The current value 
of tools is hammer. The current value of landform is dune. 

INPUT

DESIRED ANSWER

Update Count = 4; Updated Keys = 3
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Figure 2: Basic input example for LLM Proactive Inter-
ference (LLM-PI) test. In this example, three keys (“vi-
sual art”, “tools”, and “landform”)—color-coded for clar-
ity—each undergo four updates. In the actual experiment,
up to 46 keys were used, each updated up to 400 times with
distinct values. For visual clarity, numerical prefixes (e.g.,
“1*”) were added to show the update order, but these were
not present in the input. The model is instructed to retrieve
the final value for each tracked key, indicated in bold for il-
lustration. The keys to check are cued both before and after
the update stream.

In this task (Figure 2), each input sequence consisted of
three parts: 1. Instruction—a brief directive indicating the
task and specifying which keys to track for value updates.
2. Update stream—a sequence of key–value pairs, where a
fixed set of keys each receive an equal number of updates.
The updates for different keys are randomly interleaved and
are organized such that the same key does not appear in two
consecutive key-value pairs. 3. Query—a prompt instructing
the model to retrieve the final value associated with each
tracked key.

The retrieval objective was to return the most recent value
associated with each specified key. For each key with update
count X, the preceding X–1 key–value pairs served as irrel-
evant, interfering updates—sharing the same key but differ-
ing in value. This design allowed us to isolate the effect of
interference.

Because the retrieval target is always the value from the
last occurrence of each key, search difficulty is ideally low:
the model simply needs to locate the most recent update for
each key. While the random interleaving of updates does

not guarantee that the last occurrence of each key is near
the end of the sequence, the retrieval target’s relative posi-
tion is always clearly defined as the most recent appearance.
As a result, the search space is small and well-informed.
The main challenge, therefore, is not finding the target, but
correctly identifying it in the presence of multiple earlier,
competing updates. This mirrors realistic data environments
where many variables are updated concurrently, and inter-
ference—rather than search—becomes the limiting factor.

In this particular experiment, we used 46 unique keys,
each receiving multiple value updates throughout the se-
quence. For each key, the last value it receives is the re-
trieval target, while all earlier key–value pairs for that
key—totaling 46 × (update count – 1) interfering distrac-
tors—serve to induce interference. Figure 2 provides an ex-
ample input and its corresponding output for three keys un-
dergoing multiple updates. We measure accuracy by count-
ing the number of correctly retrieved final values across all
keys.

This synthetic key–value retrieval task is related to “Lost-
in-the-Middle” (Liu et al. 2024), which examines how the
position of the retrieval target within the context affects ac-
curacy. In contrast, our approach offers finer experimental
control over interference: by always probing the most re-
cently updated value for each key, we hold the target’s rel-
ative position constant. In later experiments, we also fix the
total input length, allowing us to systematically isolate and
measure the effects of interference in the retrieval task.

Results and Discussion
Interference information severely impairs the ability of
LLMs to effectively utilize context information. Across
models of varying parameter sizes, we observe a robust log-
linear decline in retrieval accuracy as additional interfering
key–value pairs are inserted before the target value for each
key (Figures 1 and 9) This log-linear trend reflects rapid
initial accuracy loss, with subsequent interference causing
smaller additional declines. Notably, the log-linear effect
persists across models of different developmental stages and
model sizes; larger models exhibit a more gradual decline
than smaller ones.

For a comprehensive comparison of over 35 models
grouped by size L M S XS and their respective resilience to
interference, refer to the detailed performance graphs pro-
vided in the Appendix C (Figure 9).

Robustness: Prompt and Sequential Mode
We validated robustness with additional prompt variants and
by switching between random and sequential modes; across
all variants, the declining trend persisted (Appendix D; Fig-
ure 13). Each evaluation used freshly sampled input se-
quences, and we report 95% confidence intervals via non-
parametric bootstrapping for all tests in this paper.

Incorrect extractions are primarily attributed to
proactive interference
LLM extraction errors increase consistently when interfer-
ence information is present, and analysis reveals that most



errors are from earlier, outdated key-value pairs—mirroring
proactive interference (PI) in cognitive science, where pre-
viously learned information hinders the retrieval of more re-
cent information.

We observed a systematic shift in the distribution of
model outputs as interference increased as shown in Figure 3
(see also Figure 24 for more detailed examples). Across
increasing interference, LLM retrieval errors displayed a
systematic three-stage evolution. Stage 1—at low interfer-
ence, errors were rare and highly localized to the most recent
updates for each key. (“recency errors”). Stage 2—as in-
terference accumulated, retrieval accuracy rapidly dropped
towards zero; errors shifted further back in the update his-
tory, with the model increasingly favoring earlier updates.
The growing temporal span of the error distribution marked
a clear drift from recency towards primacy. Stage 3—as in-
terference further intensified, retrieval accuracy remained
near zero. The error distribution evolved from a dispersed
pattern to a tight anchoring on the earliest updates, signi-
fying a complete dominance of primacy effects. Simultane-
ously, hallucinations—the output of values never present in
the update history—also increased.

This distribution change aligns with our “limited re-
source” hypothesis. Specifically, we observed a migration in
error distribution: as interference increased, models shifted
from making localized recency errors to being strongly an-
chored in early updates. Even when retrieval accuracy was
near zero, this capacity continued to be consumed, causing
the model’s responses to drift progressively further from the
correct values.

In cognitive science, PI resilience is highly correlated
with human working memory capacity. Our results suggest
that an LLM’s anti-interference capability could serve as a
metric for its working-memory-like capacity—not merely
the ability to store information, but also the capacity to ac-
tively maneuver and manage it. However, whether this pro-
cess is continuous or involves distinct phase transitions re-
quires further investigation.

We further defined an Interference Endurance Score (IES)
to quantify each model’s resistance to interference (Fig-
ures 21 and 22). Regression analyses show that model pa-
rameter size is predictive of IES, whereas context window
length is not. This suggests that, much like working mem-
ory in humans, an LLM’s resilience to interference depends
more on its underlying computational resources (parameter
size) than on the sheer amount of information it can process
(context window). See Figure 11, Table 1 and Appendix C
for more details.

However, not all parameters contribute equally to a
model’s interference resilience. Mixture-of-Experts (MoE)
models tend to underperform dense models with similar to-
tal parameters, likely because only a subset of parameters is
active per forward pass (see Figure 12 in Appendix C)

3 Interference Is Independent of Input
Length

Retrieval accuracy in language models declines log-linearly
as the update count per key increases, suggesting a limited
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Figure 3: Distribution of model responses across update po-
sitions, showing increasing signs of PI as update count in-
creases (left to right). The y-axis lists 11 equal-width bins
(Bin 1–Bin 11, green) covering the entire update sequence.
The earthy yellow bar indicates the single final update—the
correct retrieval target. Light gray bars (“off values”) denote
cases where the model returns a value not present in the up-
date history (i.e., hallucinations). Dark gray bars (“off keys”)
indicate failures to return any value for the queried key. As
update count increases, errors shift from clustering near the
final update to earlier bins, with rising rates of off-values
and off-keys. For the complete version, see Figure 24 in Ap-
pendix.

working-memory-like capacity. However, in the previous
experiment, input length was not controlled; thus, the ob-
served decline might simply reflect increasing context length
rather than genuine interference. To directly test the role of
interference, we designed two additional experimental set-
tings.

Experiment Setup
1. Settings A – Number of Updated Keys (NU ): We fixed

the update count for each key and increased interference
by varying the number of distinct keys updated in the se-
quence (NU , from 2 to 46). This contrasts with our ear-
lier experiment, which held the number of keys constant
while varying the update count per key.

2. Settings B – Number of Tracked Keys (NT ) at Fixed
Input Length: In this condition, both the update count
per key and the number of updated keys (NU ) were



fixed, so each input sequence contained the same num-
ber of key–value pairs. However, we varied the number
of keys the model was instructed to track and retrieve at
the end—these are the tracked keys (NT ), chosen from
among the NU updated keys, with 2 ≤ NT ≤ NU . Fig-
ure 14 in the appendix provides an example: among 3
distinct keys updated in the sequence (NU = 3), only 2
are tracked (NT = 2) and queried at the end.

By manipulating interference both with and without
changes in input length, we can dissociate the effects of
interference from those of context length; observing simi-
lar declines in retrieval accuracy across both settings would
provide strong evidence that interference, rather than con-
text length alone, constrains model performance. Input ex-
ample illustrating how the model is prompted to track and
return values for a subset of updated keys in the appendix.
Figure 14.

As my secretary, I need you to carefully read a text stream 
where the values of multiple keys are being continuously 
updated. The 2 keys to track include visual art, landform. I will 
ask you to identify the current value of each key later. The text 
stream starts on the next line.
1*visual art: Braque; 1*tools: hook remover; 2*visual art: 
Pollock; 1*landform: moraine; 3*visual art: Basquiat; 2*tools: 
plunger; 2*landform: plain; 3*tools: ruler; 4*visual art: 
seascape; 3*landform: valley; 4*tools: hammer; 4*landform: 
dune.

What are the current value of each key (visual art, landform) 
you are tracking? End your response with: 'The current value of 
<key> is <value>.'

The current value of visual art is seascape. The current value 
of landform is dune. 

INPUT

DESIRED ANSWER

Tracked Keys = 2; Updated Keys = 3

Figure 4: Input example illustrating how the model is
prompted to track and return values for a subset of up-
dated keys, as specified by the parameters tracked keys and
updated keys. In this minimal example, the tracked keys
include “visual art” (blue) and “landform” (orange); the
“tools” key (prefixed with a gray index like “1*”) appears in
the update stream but is not referenced in the initial instruc-
tion or final query. Ideally, the model should return only the
most recent values for the tracked keys. This setup enables
testing whether model performance depends primarily on
task-relevant information, rather than irrelevant updates or
input length. Bold text highlights the target key-value pairs
the model is expected to retrieve.

Results for Both Settings
Both Settings A and B exhibit nearly identical log-linear
declines in retrieval accuracy, as shown in Figure 5.Notably,
Setting B kept input length fixed while Setting A allowed
it to grow.

• Left panel: Number of updated keys in Setting A
• Right panel: Number of tracked keys in Setting B

This similarity indicates that the observed performance
drop cannot be attributed solely to longer input se-
quences; rather, it is driven by increased interference
from tracking more keys.

Furthermore, models that excel in the variable input
length setting (Setting A) also performed well in the fixed-
length setting (Setting B), underscoring the robustness of
this pattern across experimental setups. The universal log-
linear decline observed, even under fixed input length,
suggests that anti-interference capacity operates as a dis-
tinct resource, independent of the total input length. See
Appendix E for a more detailed analysis.

4 Retrieval Capacity Is Limited by a Single
Interference Bottleneck Across Dimensions

Additionally, we observed similar log-linear declines in re-
trieval accuracy when manipulating other dimensions of
information load, such as increasing the token length of the
value in the key-value pair. The analysis of these different
Settings implies that the LLM’s capacity to resist inter-
ference is Limited by a Single Interference Bottleneck
Across Multiple Dimensions, paralleling findings on hu-
man working memory capacity. (Baddeley, Thomson, and
Buchanan 1975)

A comprehensive analysis and corresponding perfor-
mance graphs are provided in Appendix F, which further il-
lustrate the log-linear decline pattern emerges again as token
length increases (see Figure 16).

5 Mitigating Interference
Evidence from cognitive science indicates that humans are
capable of actively unbinding prior associations before en-
coding new information (Oberauer and Vockenberg 2009).
We hypothesize that LLMs lack such unbinding mecha-
nisms, which explains their continuous monotonic decline
in retrieval accuracy as interference increases—ultimately
dropping to 0%, indicating complete retrieval failure under
high interference conditions.

We therefore evaluated whether LLMs could adopt
human-like mechanisms to manage their working memory
content explicitly or implicitly in response to interference.
Specifically, we tested interventions with prompts instruct-
ing the models either to explicitly “forget” prior associations
or to implicitly disregard irrelevant information by marking
certain prior updates as outdated. However, these strategies
yielded minimal improvement, revealing that current LLMs
lack the ability to effectively translate either explicit or im-
plicit forgetting instructions into genuine enhancements in
retrieval accuracy.

Natural Language Interventions fail to relieve interfer-
ence (i) Attempts to mitigate interference through natu-
ral language prompts (Figure 17)—whether by explicitly
marking information as outdated, instructing the model to
“forget” earlier updates, or emphasizing newer informa-
tion—consistently prove ineffective. Across diverse prompt
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Figure 5: Varying the number of updated keys (left panels) versus the number of tracked keys (right panels, with updated
keys fixed at maximum) yields only minor differences in retrieval accuracy. In all conditions, accuracy declines approximately
log-linearly with the number of keys. Each key is updated a fixed number of times—125 in the upper panels and 350 in the
lower panels. Some models exhibit a two-phase decline; MoE models are indicated by “X” markers. Error bars represent 95%
confidence intervals computed via bootstrapping. Model acronyms are used to label the corresponding curves.

types and experiment settings, retrieval accuracy shows lit-
tle to no improvement and forget prompts can even reshape
errors toward the injection point (i.e., models preferentially
pick values just before the “forget” cue). See Figure 6 for ac-
curacy under each prompt and Figure 19 for the error local-
ization pattern; full prompt designs appear in Appendix G.
These results indicate the robustness of the interference ef-
fect and its resistance to standard language-based prompt in-
terventions. (ii) A “hack” prompt. Inspired by LLM “hack-
ing” studies showing that models can be coaxed to bypass
earlier instructions (Kuo et al. 2025), we devised a non-
natural-language prompt that coaxed the model to treat pre-
ceding input as belonging to an already processed prior task,
thereby partially mitigating interference and improving re-
trieval accuracy. This ad-hoc “reset” lifts retrieval accuracy
across models (orange dashed line in Fig. 23); however, the
overall log-linear decay persist. Full design and extensive
test details are in Appendix G.

6 Why Reasoning Models Fail to Improve
Retrieval: Top Down vs Bottom Up

Additionally, when we compared various prompt styles, we
found that LLMs were susceptible to interference across

all tested prompts. To eliminate potential ambiguities in
task instruction, we designed a CoT style—“activate-locate”
prompt (full prompt in Relevance meta-prompt in Fig-
ure 17), which first required the LLM to analyze and state
the location of the target key-value pair within the input.
While models could correctly identify that the answer was
at the very end, this knowledge did not translate into im-
proved retrieval performance; accuracy remained compara-
ble to baseline conditions and still exhibited a consistent de-
cline (Figure 6).

This reveals a discrepancy between an LLM’s top-down
analytical reasoning and its bottom-up information process-
ing and retrieval execution: knowing “where” the answer is
does not translate into its ability to retrieve it under interfer-
ence.

To further substantiate this finding, we conducted ad-
ditional tests across a range of models and retrieval set-
tings. We evaluated various models alongside their CoT-
enabled/Reasoning counterparts. Consistently, we observed
that the latency and cost of reasoning models are signifi-
cantly higher than non-reasoning models on this retrieval
task, yet reasoning models do not improve performance in
this test (Figure 7).
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Figure 6: Explicit forgetting and focusing prompts inserted
during the update stream (as shown in Figure 17 yielded
only marginal improvements in retrieval accuracy. The black
line indicates the baseline condition with no intervention
prompt. Solid lines represent several simple natural lan-
guage prompts designed to instruct the model to forget pre-
vious updates, focus on upcoming ones, or reset context.
For most models, these interventions had limited effect, es-
pecially at higher update counts, where the baseline perfor-
mance is low. The per-key forget even had a negative effect
on gpt-4.1-mini. The relevance meta-prompt (green dotted),
which asked the model to self-assess what to focus on, was
ineffective for all models and even harmful for gpt-4.1-mini.
Only the mock QA reset intervention (orange dashed line),
which simulates a user-model interaction, led to a substan-
tial improvement in retrieval accuracy. However, this strat-
egy was not immune to the overall trend: accuracy continued
to decline with increasing update count (log-spaced).

This gap highlights the absence of top-down executive
control in guiding retrieval behavior. This also helps ex-
plain why reasoning models not effectively improve in
broader benchmarks like the latest MRCR test brought
by OpenAI, which inherently include interference effects as
part of their task structure (OpenAI 2025a).

7 Conclusion
Based on these findings, we propose a framework of ’Lim-
ited Anti-Interference Capacity’ in LLMs, which shares sev-
eral conceptual similarities with human working memory.
We argue that an LLM’s working memory–like capacity is
not defined by its context window, but is better character-
ized by its ability to resist interference. Our findings can be
distilled into the following points.

• Interference overrides recency and instruction. In-
terfering information consistently and substantially de-
grades LLMs’ ability to retrieve target content. Errors
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Figure 7: Chain-of-Thought (CoT) does not improve re-
trieval performance. Accuracy as a function of update count
is shown for four pairs of CoT-enabled models and their cor-
responding base (non-CoT) versions. In three of the four
comparisons, the CoT variant performs worse than or equal
to its base model. CoT variants are only tested up to about
100 updates or less due to output overflow (“thinking” ex-
haustion). Solid lines denote base models; dashed lines de-
note CoT variants. The x-axis is log-scaled.

are dominated by the retrieval of overwritten values,
even when the correct answers are unambiguously lo-
cated near the end of the input, just before the query.
This demonstrates that neither recency bias nor explicit
prompt cues are sufficient to overcome interference.

• Universal log-linear decay. Across all state-of-the-art
models in our study, retrieval accuracy declines in a clear
log-linear fashion toward zero with increasing update
count (Figure 1), number of tracked keys (Figure 5), and
value length (Figure 16). Together, these results suggest
a consistent negative log-linear relationship between re-
trieval performance and task-relevant information load.

• Marginal effectiveness of reasoning models and natu-
ral language prompt interventions. LLMs are capable
of articulating the correct retrieval procedure, yet they
consistently fail to implement it in execution when un-
der interference. These findings reveal a dissociation be-
tween analytical reasoning and execution
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A Appendix:Notes
All experiments were concluded by May 5th, 2025. For a
detailed list of model versions, please refer to Appendix K.

B Full Detailed Experimental Overview
Experimental Overview
Our experiments systematically demonstrate that interfer-
ence is among the primary factors limiting retrieval accuracy
in LLMs. Experiment 1 reveals a robust, log-linear decline
in accuracy as interference increases. Experiment 2, which
holds input length constant, confirms that this effect is driven
by interference itself rather than input length. Experiment 3
further shows that retrieval performance is universally con-
strained by an interference capacity limit, which can be lated

in multiple ways. Finally, we investigate mitigation strate-
gies, offering new insights into LLMs’ ability to manage in-
context information under interference.

C Interference Dominates Retrieval Despite
Recency and Instructions:

Our objective is to understand how Large Language Mod-
els (LLMs) manage interference when retrieving informa-
tion. To reduce searching difficulty and isolate the impact
of interference, we designed a synthetic key-value retrieval
experiment.

In this test, the input is a sequence of key–value pairs,
where a fixed set of keys—each representing a variable of
interest—appears repeatedly throughout the sequence, each
time paired with a different value. Updates for different keys
are randomly interleaved, with the constraint that the same
key does not appear twice in succession. This design mim-
ics, in a simplified manner, real-world logging systems that
track multiple physiological variables over time—for exam-
ple, blood pressure, heart rate, and oxygen level readings
recorded in a patient’s health log.

After the entire sequence is presented, the language model
is prompted to return the most recent value associated with
each key—that is, the value from the last occurrence of
each key in the sequence. All prior occurrences of the same
key (with earlier values) serve as distractors. Since the re-
trieval target is always the value from the last occurrence
of each key, the search is straightforward, and errors can be
attributed primarily to interference rather than search diffi-
culty.

Experimental Design
In this task (Figure 8), each input sequence consisted of three
parts: 1. Instruction—a brief directive indicating the task and
specifying which keys to track for value updates. 2. Update
stream—the input consists of a sequence of key–value pairs,
where a fixed set of keys each receive an equal number of
updates. The updates for different keys are randomly inter-
leaved and are organized such that the same key does not ap-
pear in two consecutive key-value pairs. This setup mimics
concurrent updates in real-world data logs, without grouping
updates for the same key contiguously. 3. Query—a prompt
directing the model to retrieve the final value associated with
each tracked key, thereby reconfirming which keys’ values
are to be extracted.

The retrieval objective was to return the most recent value
associated with each specified key. For each key with up-
date count X, the preceding (X–1) key–value pairs served
as irrelevant, interfering updates—sharing the same key but
differing in value. This design allowed us to isolate the effect
of interference.

Because the retrieval target is always the value from the
last occurrence of each key, search difficulty is ideally low:
the model simply needs to locate the most recent update for
each key. While the random interleaving of updates does not
guarantee that the last occurrence of each key is near the end
of the sequence, the retrieval target’s relative position is al-
ways clearly defined as the most recent appearance. As a re-



As my secretary, I need you to carefully read a text stream 
where the values of multiple keys are being continuously 
updated. The 3 keys to track include visual art, tools, 
landform. I will ask you to identify the current value of 
each key later. The text stream starts on the next line.

1*visual art: Braque; 1*tools: hook remover; 2*visual 
art: Pollock; 1*landform: moraine; 3*visual art: 
Basquiat; 2*tools: plunger; 2*landform: plain; 3*tools: 
ruler; 4*visual art: seascape; 3*landform: valley; 
4*tools: hammer; 4*landform: dune.

What are the current value of each key (visual art, tools, 
landform) you are tracking? End your response with: 'The 
current value of <key> is <value>.'

The current value of visual art is seascape. The current value 
of tools is hammer. The current value of landform is dune. 
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Figure 8: Basic input example for LLM-PI test. A continu-
ous stream of key-value updates is presented to the model,
with up to 46 updated keys and 400 distinct values (update
count) used in the actual experiments. In this example, three
distinct keys (“visual art”, “tools”, and “landform”)—color-
coded for clarity—each undergo four updates. Numerical
prefixes (e.g., ”1*”) denote update order for visualization
purposes only and were not part of the input. The model was
instructed to retrieve the final value for each tracked key, in-
dicated in bold for illustration. The keys to check were cued
both before and after the update stream.

sult, the search space is small and well-informed. The main
challenge, therefore, is not finding the target, but correctly
identifying it in the presence of multiple earlier, competing
updates for the same key. This mirrors realistic data environ-
ments where many variables are updated concurrently, and
interference—rather than search—becomes the limiting fac-
tor.

In this particular experiment, we used 46 unique keys,
each receiving multiple value updates throughout the se-
quence. For each key, the last value it receives is the re-
trieval target, while all earlier key–value pairs for that
key—totaling 46 × (update count – 1) interfering distrac-
tors—serve to induce interference. (Figure8) provides an ex-
ample input and its corresponding output for three keys un-
dergoing multiple updates. We measure accuracy by count-
ing the number of correctly retrieved final values across all
keys.
Data and Performance Evaluation
To maintain comparability with human performance, we
constructed a word dictionary with up to 46 categories, each
comprising 400 words. The token lengths of words within
each category were selected to fall within a similar range.
Keys were drawn from these category names, and values
were randomly selected from the corresponding categories
in the dictionary. This dictionary design aligns with cog-
nitive psychology proactive interference tests related to hu-

man working memory. Words were randomly selected from
the dictionary in each test run to eliminate the potential ef-
fects of specific semantic combinations. Confidence inter-
vals (CI95) were computed using bootstrap methods after
multiple test repetitions.

This synthetic key–value retrieval task is closely related
to “Lost-in-the-Middle” (Liu et al. 2024), which examines
how the position of the retrieval target within the context
affects accuracy. In contrast, our approach offers finer ex-
perimental control over interference: by always probing the
most recently updated value for each key, we hold the tar-
get’s relative position constant. In later experiments, we also
fix the total input length, allowing us to systematically iso-
late and measure the effects of interference in the retrieval
task.
Models
We evaluated a broad spectrum of state-of-the-art open-
source and proprietary LLMs, ranging from 0.6B (Qwen3-
0.6B) to 637B parameters (Deepseek-V3), and including
major proprietary models such as GPT, Claude, Gemini, and
Grok. Our benchmark covers both dense and Mixture-of-
Experts (MoE) architectures, spanning diverse training data
volumes and hardware resources.

Results and Discussion
In this first experiment, we investigated how different lev-
els of interference affected the model’s ability to retrieve
information—specifically, the most recent value associated
with each key. To manipulate interference strength, we
fixed the number of unique keys at 46 and varied the up-
date count—the number of key–value pairs presented per
key—from 3 to 400. A higher update count corresponded to
a greater interference load for each queried key. By requiring
the model to retrieve only the most recently presented value
of each key, we kept search difficulty low and isolated the ef-
fect of interference. This design allowed us to systematically
assess how increasing the amount of interfering information
impacts retrieval accuracy.

Interference information significantly impairs the
ability of LLMs to effectively utilize context information.
Across models of varying parameter sizes, we observe a ro-
bust log-linear decline in retrieval accuracy as additional in-
terfering key–value pairs are inserted before the target value
for each key (Figure 9). This log-linear trend reflects rapid
initial accuracy loss, with subsequent interference causing
smaller additional declines. Notably, the log-linear effect
persists across models of different developmental stages and
model sizes; larger models exhibit a more gradual decline
than smaller ones. For example, both M and L models be-
gin with perfect accuracy, but at 400 updates per key, the
L models maintain relatively high accuracy, whereas the M
group’s accuracy drops sharply to 0%—with only one ex-
ception—indicating a near—complete inability to retrieve
the most recent value at the end of the context window.

Incorrect extractions are primarily attributed to proac-
tive interference Given the consistent decline in LLM ex-
traction accuracy when interference information is intro-
duced, we investigated the underlying causes of these er-
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Figure 9: Model retrieval accuracy declined approximately log-linearly as the number of updates per key increased. For visual-
ization, models were grouped by estimated parameter size into four tiers—XS, S, M, and L—shown from top to bottom. Larger
models (L group) tended to degrade more slowly, while smaller models (XS group) declined the fastest. The x-axis is log-
scaled, covering update counts from 3 to 400 (log-spaced). The number of keys updated was fixed at 46. Most models exhibited
a quasi-log-linear drop, reaching near-zero performance midway or projected to do so at higher update counts. Models were
color-coded by developer, with similar hues representing models from the same organization. Each panel (e.g., for ”M” models)
assigns sequential labels (m1, m2, m3, ...) to models, following the IES ranking shown in Figure 22. If applicable, model names
were suffixed with “MoE” or “CoT”. On the plots, MoE models are indicated with “X” markers, and CoT variants with dashed
lines. These color, style, and naming conventions are used consistently across figures. Error bars indicate bootstrapped 95%
confidence intervals.

rors. Our analysis of the input sequences that appeared in
the LLM’s responses reveals that errors are predominantly
influenced by information encountered before the final,
correct update to a given key. This phenomenon is anal-
ogous to proactive interference (PI) in cognitive science,
where previously learned information hinders the retrieval
of more recent information.

We observe a three-stage progression in error distribution
patterns as interference increases:

Stage 1 – Low Interference, Tightly Focused Errors:
When interference is low, retrieval accuracy is high and the
model’s error distribution is sharply peaked around the cor-
rect value. Errors, when they occur, are not random but show
a consistent pattern: they tend to be earlier key–value pairs
for the same key, typically located in positions (bins) imme-
diately preceding the final, correct value.This indicates that
the model’s confusion is narrowly constrained and spatially

localized.
Stage 2 – Moderate Interference, Dispersed Errors::

As interference increases, retrieval accuracy drops, and the
output distribution spreads. Retrieval errors now stem from
much earlier updates—far upstream from the target value
rather than adjacent positions (bins). with a small but grow-
ing fraction now involve values never presented at all (“hal-
lucinations”). This increasing dispersion marks rising proac-
tive interference and a decline in retrieval fidelity.

Stage 3 – High Interference, Hallucinatory Responses
At high levels of interference, retrieval accuracy collapses
and the model’s output distribution undergoes a qualitative
shift. The model increasingly returns values that never ap-
peared in the prompt—so-called hallucinations. At the same
time, a substantial portion of errors remains anchored to
the earliest bins, reflecting a persistent primacy bias toward
the first few updates for each key, even as retrieval fidelity



breaks down. This change in retrieval behavior resembles a
phase transition: once the model’s anti-interference capac-
ity is exhausted, it no longer retrieves plausible candidates,
consistent with limited-resource theories of working mem-
ory failure.

Figure 10 illustrates this progression: as the update count
increases (moving left to right in the panels), the model’s in-
correct responses shift from the most recent value to much
earlier, outdated values, and eventually to off-target ‘hallu-
cinated’ values.
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Figure 10: Distribution of model responses across update
positions, showing increasing signs of PI as update count
increases (left to right). The y-axis lists 11 equal-width bins
(Bin 1–Bin 11, green) covering the entire update sequence.
The earthy yellow bar indicates the single final update—the
correct retrieval target. Light gray bars (“off values”) denote
cases where the model returns a value not present in the up-
date history (i.e., hallucinations). Dark gray bars (“off keys”)
indicate failures to return any value for the queried key. As
update count increases, errors shift from clustering near the
final update to earlier bins, with rising rates of off-values and
off-keys. For response distributions from additional models,
see Figure 24 in the Appendix.

This distribution change aligns with our ”limited re-
source” hypothesis, suggesting a phase transition in LLM
behavior once their anti-interference resources are depleted.
In human studies, PI resilience is highly correlated with
working memory capacity. Our results suggest that an
LLM’s anti-interference capability could serve as a metric
for its working memory capacity—not just its ability to store

information, but to actively maneuver and manage it.
To strengthen the generalizability of our findings, we con-

ducted additional experiments on a broader set of models,
with consistent results shown in Supplementary Figure 24

Size Over Input Context Window Statistical tests con-
firm that anti-interference performance correlates with
model size and is weakly correlated with the context win-
dow.

To quantify each model’s robustness to interference, we
introduce the Interference Endurance Score (IES). The IES
is defined as the area under the curve (AUC) of retrieval ac-
curacy, calculated across log-scaled update counts. We mea-
sure how well a model maintains accurate retrieval as in-
terference increases, with a higher IES indicating greater
resistance to interference. For comparability and statistical
reliability, we compute the IES using the accuracy-versus-
update-count function (see Figure 5), which is available for
all models tested.

To determine whether model performance is driven more
by parameter size or by context length, we conducted a re-
gression analysis of the Interference Endurance Score (IES)
against both variables. We grouped models into four param-
eter size classes—XS, S, M, and L—as defined in Figure 9.
Reasoning models were excluded because their more exten-
sive inference processes caused latency to exceed 200 sec-
onds per task, preventing most tests from completing. To
minimize noise from closed-source models with uncertain
parameter counts, we focused on these defined size classes
and restricted our analysis to open models.

The regression (in Table ) shows that parameter size class
is a significant predictor of IES (t = 3.03, p = 0.005, N = 30),
while context length has no significant effect (t = –0.144, p =
0.886). The combined model explains 26.1% of the variance
in IES (R² = 0.261). To further clarify the role of model size,
we performed a separate analysis restricted to models with
similar context lengths (128k–131k tokens), which encom-
passes two-thirds of the non-CoT models. Within this range,
the Spearman correlation between parameter size and IES
remains strong and significant (ρ2 = 0.673, p = 0.0016; see
Figure 11). .

Our analysis shows that
Model size—not context window length—is the pri-

mary factor that underlies robustness to interference.
MoE architectures underperform dense models with

comparable total parameters (we conjecture that this is
because the number of activated parameters in an MoE
model is much smaller than its nominal total).

In cognitive science, performance under proactive inter-
ference is a classic probe of working-memory capacity: in-
dividuals with greater ability to maintain and manipulate
information show greater resistance to interference. Our
findings reveal a striking parallel in large language models
(LLMs). Across all tested LLMs, we observe a consistent,
characteristic decline in retrieval accuracy as interference
increases. Moreover, larger models demonstrate greater re-
sistance to interference—a pattern reminiscent of individual
differences in human working memory.

This universal decline, present even in state-of-the-art
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Figure 11: Interference Endurance Score (IES, from Fig-
ure 21) shows a strong correlation with model size class
(XS, S, M, L; as defined in Figure 9). Each dot represents a
model, color-coded as in Figure 21. A linear regression line
is included for visualization, with shaded regions indicating
95% confidence intervals. The analysis is restricted to mod-
els with similar context lengths (128k–131k tokens, cover-
ing about two-thirds of tested non-CoT models. R-squared
value is derived from Spearman correlation.

models spanning a wide range of scales, training data, and
computational resources, suggests that limited resistance to
interference is an inherent property of transformer-based ar-
chitectures, rather than a byproduct of specific model size or
dataset.

Importantly, our metric captures more than just the con-
text window length or the sheer amount of information a
model can store. It quantifies each model’s effective abil-
ity to manage and control information in the presence
of substantial distractors—tracking, updating, and selec-
tively retrieving relevant data amid interference. Thus, anti-
interference performance reflects not only storage capacity,
but also the executive control processes that underlie work-
ing memory in humans. This framework enables us to oper-
ationalize and compare the working-memory-like functions
of LLMs and human cognition on a principled, quantitative
basis.

D Robustness: Prompt Variations and
Sequential Mode

Although absolute retrieval accuracy can shift with changes
in prompt wording (He et al. 2024), our study emphasizes
the relative trend of performance decline rather than raw ac-
curacy scores. This approach effectively neutralizes variabil-
ity arising from individual prompt formulations.

To further confirm the robustness of the observed proac-
tive interference (PI) effect, we tested additional prompt
templates explicitly designed to verify task comprehension.
Specifically, we introduced meta-relevant prompts that first
ask the LLM to articulate the ”task mission”—for exam-
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Figure 12: Comparison of retrieval accuracy between
Mixture-of-Experts (MoE) and dense models. Each curve
shows retrieval accuracy versus update count for a single
model. MoE models are denoted by ”X” markers and labeled
with “MoE” in the legend. Across update counts, MoE ar-
chitectures consistently match or underperform dense mod-
els with similar total parameter counts, and in many cases
perform comparably to much smaller dense models. (MoE
models shown: Llama-4-maverick-MoE (400B), Llama-4-
scout-MoE (109B), Qwen3-30B-A3B-MoE (30B).)

ple, explicitly prompting the model to ”describe the goal
of this task” before retrieval. This step ensured the mod-
els fully understood the retrieval objective of identifying
”the last value” (see Figure 6, ‘Relevance meta-prompt’).
Across these prompt variations, the qualitative trend of per-
formance decline—specifically, the log-linear decay in ac-
curacy—remained consistently robust.

Additionally, we rearranged the input organization to test
PI under both randomly shuffled and strictly sequential up-
date sequences (i.e., sequential key–value updates without
randomization; see Figure 13). Notably, in sequential mode,
retrieval accuracy remains stable until reaching a model-
specific interference threshold, after which performance
sharply and consistently drops to near-zero—a two-plateau,
step-like pattern contrasting with the gradual log-linear de-
cay observed in random mode. The consistent interference-
induced decline across diverse models and input structures
further underscores the robustness and generalizability of
the observed PI phenomenon.

E Interference Is Independent of Input
Length

Retrieval accuracy in language models declines log-linearly
as the update count per key increases, suggesting a limited
working-memory-like capacity. However, in the previous
experiment, input length was not controlled; thus, the ob-
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Figure 13: Step-like failure pattern in sequential key–value
update tests. Retrieval accuracy remains near-perfect as in-
terfering information is added in strictly sequential order,
until a model-specific threshold is reached—after which
performance drops abruptly to near-zero. Within the same
model family, larger models exhibit a higher threshold (bet-
ter capacity). Despite quantitative differences, all models
show the same two-plateau, step-function pattern, reflecting
a hard capacity limit. This stands in contrast to the gradual
log-linear decay observed under random update order (see
Figure 1). (x-axis: number of interfering items, log-scaled;
asterisk: MoE models)

served decline might simply reflect increasing context length
rather than genuine interference. To directly test the role of
interference, we designed two additional manipulations.

1. Number of Updated Keys: Increasing the number of
distinct keys that are updated within the context, while
holding the update count per key constant.

2. Partial Query at Fixed Input Length: Fixing both the
total number of keys and the update count per key (thus
keeping the input length constant), but varying the num-
ber of keys queried—asking the language model to track
and retrieve only a subset of the keys presented.

By manipulating interference both with and without
changes in input length, we can dissociate the effects of
interference from those of context length; observing simi-
lar declines in retrieval accuracy across both manipulations
would provide strong evidence that interference, rather than
context length alone, constrains model performance.

Experiment Setup
Manipulation A: Varying the Number of Updated Keys
In this experiment, we fixed the update count for each key
(either 125 or 350 update count per key), and systemati-
cally increased interference by varying the number of dis-
tinct keys presented in the sequence-the Updated Keys (NU ,
from 2 to 46). This contrasts with our earlier experiment,

As my secretary, I need you to carefully read a text stream 
where the values of multiple keys are being continuously 
updated. The 2 keys to track include visual art, landform. I will 
ask you to identify the current value of each key later. The text 
stream starts on the next line.
1*visual art: Braque; 1*tools: hook remover; 2*visual art: 
Pollock; 1*landform: moraine; 3*visual art: Basquiat; 2*tools: 
plunger; 2*landform: plain; 3*tools: ruler; 4*visual art: 
seascape; 3*landform: valley; 4*tools: hammer; 4*landform: 
dune.

What are the current value of each key (visual art, landform) 
you are tracking? End your response with: 'The current value of 
<key> is <value>.'

The current value of visual art is seascape. The current value 
of landform is dune. 

INPUT

DESIRED ANSWER

Tracked Keys = 2; Updated Keys = 3

Figure 14: Input example illustrating how the model is
prompted to track and return values for a subset of up-
dated keys, as specified by the parameters tracked keys and
updated keys. In this minimal example, the tracked keys
include ”visual art” (blue) and ”landform” (orange); the
”tools” key (prefixed with a gray index like “1*”) appears in
the update stream but is not referenced in the initial instruc-
tion or final query. Ideally, the model should return only the
most recent values for the tracked keys. This setup enables
testing whether model performance depends primarily on
task-relevant information, rather than irrelevant updates or
input length. Bold text highlights the target key-value pairs
the model is expected to retrieve.

which held the number of keys constant while varying the
update count per key.

For each input sequence, there are NU relevant key–value
pairs, with the retrieval target being the last value for each
key. Depending on the update count, this results in NU ×
(125 – 1) or NU × (350 – 1) irrelevant, interfering key–value
pairs per input sequence. Retrieval accuracy was measured
as a function of NU -Updated Keys .

Manipulation B: Fixed Length Version To further iso-
late the effect of interference, we designed a complementary
experiment in which the total input length was held constant.
In this condition, both the update count per key and the num-
ber of updated keys (NU ) were fixed, so each input sequence
contained the same number of key–value pairs. However, we
varied the number of keys the model was instructed to track
and retrieve at the end—these are the Tracked Keys (NT ),
chosen from among the NU updated keys.

Specifically, the update count for each key was fixed (ei-
ther 125 or 350 updates per key), and the number of updated
keys NU was also fixed at 46. We then systematically var-
ied the number of tracked keys (NT , from 1 to 46), i.e., the
subset of keys for which the model was asked to report the
final value. Retrieval accuracy was measured as a function
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Figure 15: Varying the number of updated keys (left panels) versus the number of tracked keys (right panels, with updated
keys fixed at maximum) yields only minor differences in retrieval accuracy. In all conditions, accuracy declines approximately
log-linearly with the number of keys. Each key is updated a fixed number of times–125 in the upper panels and 350 in the
lower panels. Some models exhibit a two-phase decline; for example, grok-3-mini-beta maintains high performance early on,
followed by a sharp drop after a turning point. deepseek-v3 does not complete the full range in the lower panel due to context
length limitations. MoE models are indicated by ”X” markers. Error bars represent 95% confidence intervals computed via
bootstrapping. Model acronyms are used to label the corresponding curves.

of NT , the number of tracked keys.
Figure 14 provides an example input: among NU=3 dis-

tinct keys updated in the sequence, only NT =2 are tracked
(queried) at the end.

Results for Both Manipulations
Manipulation A result Increasing interference by rais-
ing the number of updated keys consistently produced a
log-linear decline in retrieval performance across all tested
model sizes (Left Panel of Figure 15 ). Notably, even though
each key received a fixed number of updates—ensuring a
constant interference load per key—requiring the model to
retrieve the final values for a greater number of keys more
rapidly exhausted its anti-interference resources, leading to
a substantial reduction in accuracy.

Specifically, in the Left Panel of Figure 15, the x-axis rep-
resents the total number of Updated Keys, and models are in-
structed to track all Updated Keys. Each key’s update count
is fixed at two values: 125 (upper panel) and 350 (lower
panel). The overall trend in log-scale is a linear decline in
accuracy, independent of the number of updates per key.

Manipulation B Fixed-length result Retrieval perfor-
mance exhibits a consistent log-linear decline across all
tested models (Right Panel of Figure 15 ). The x-axis repre-
sents the total number of Tracked Keys. Notably, larger mod-
els show shallower declines than smaller ones, reflecting
greater resistance to interference. Under fixed input length,
increasing the number of simultaneously tracked keys leads
to lower accuracy, in line with this log-linear pattern. For
instance, llama4-maverick achieves nearly 100% accuracy
when tracking just two keys, but this drops below 5% when
tracking 46 keys, consistently following the same downward
trajectory. These results indicate that, under fixed-length
conditions, tracked keys compete for a limited pool of anti-
interference resources, which are rapidly depleted as their
number grows. Practically, this suggests that reducing the
number of concurrently tracked keys can substantially im-
prove retrieval accuracy.

Combined Observations (Manipulations A and B) We
observe that both Experiments A and B exhibit nearly identi-
cal log-linear declines in retrieval accuracy as the number of
tracked keys increases (see Figure 15, left and right panels).



Notably, this occurs even though Manipulation B keeps in-
put length fixed while Manipulation A allows it to grow. This
similarity indicates that the observed performance drop can-
not be attributed solely to longer input sequences; rather, it
is driven by increased interference from tracking more keys.

Furthermore, models that excel in the variable input
length setting (Manipulation A) also perform well in the
fixed-length setting (Manipulation B), underscoring the ro-
bustness of this pattern across experimental setups.

The universal log-linear decline observed, even under
fixed input length, suggests that anti-interference capac-
ity operates as a distinct resource, separate from the to-
tal context window length. In other words, regardless of
how much context the model can technically process, its
ability to manage interference is independently limited. This
distinction highlights that interference resistance is a fun-
damental capability of LLMs—determined not by context
window size, but by deeper architectural or computational
constraints within the model.

Discussion/Implications These findings have important
implications for both model evaluation and practical deploy-
ment. They suggest that simply increasing the context win-
dow or scaling up input length does not directly translate
into better interference management. Instead, targeted ad-
vances in anti-interference mechanisms or executive control
within model architectures may be needed to substantially
improve retrieval accuracy when handling many competing,
similar items. This perspective reframes interference resis-
tance as a critical axis of model capability, worthy of fo-
cused research and explicit benchmarking alongside tradi-
tional context-length and parameter-count metrics.

F Retrieval Capacity Is Limited by a Unified
Interference Bottleneck Across Dimensions

If an LLM’s anti-interference capacity is truly analogous to
human working memory, then manipulations that increase
working memory demands in humans should produce com-
parable effects in LLMs. One such manipulation is the clas-
sic word-length effect: in human memory research, increas-
ing the length of words to be remembered impairs perfor-
mance, as longer items consume more working memory
resources (Baddeley, Thomson, and Buchanan 1975). This
phenomenon provides an additional axis along which work-
ing memory capacity can be taxed.

To probe whether LLMs exhibit a similar sensitivity, we
systematically varied the length of words within key–value
pairs by concatenating multiple words into each value. This
allowed us to directly test whether increasing the informa-
tion load per item would similarly degrade retrieval perfor-
mance in LLMs.

In this experiment, we held constant the three previously
identified sources of interference: the number of updates per
key, the number of updated keys, and the number of keys
to track. To manipulate interference strength in line with
the classic word-length effect observed in human working
memory, we systematically increased the length of the up-
dated value strings. Specifically, we concatenated multiple
dictionary words end-to-end (e.g., AppleOrangeBanana),
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Figure 16: Retrieval accuracy as a function of value length,
showing a roughly log-linear decline toward near-zero per-
formance. For clarity, models are grouped by parameter size:
large models (L; ≥150B parameters) are shown in the upper
panel, and smaller models (< 150B) in the lower panel. The
update count is fixed at 20. Some models exhibit an initial
plateau phase, with stable accuracy for short value lengths
(ranging from 1 to 4). At the largest value length tested, ac-
curacy drops to near zero for most models, with the excep-
tion of Grok-3-beta, which retains a performance of approx-
imately 0.1. MoE models are indicated with “X” markers.
Error bars represent bootstrapped 95% confidence intervals.

thereby increasing both the word length and the token
count—the fundamental unit of LLM processing. This
manipulation closely mirrors the increased cognitive load
humans experience when encoding longer words in mem-
ory tasks. Figure 20 in the Appendix provides an example
input.

Results and Interpretation
LLMs exhibit a universal, approximately log-linear de-
cline in retrieval accuracy as the length of each value in-
creases. The slope of this decline is markedly steeper than
for the other three interference manipulations: increasing
value length from one to ten words drives accuracy below
40% for every model tested, and extending it to forty words
reduces accuracy to under 5%. Notably, this sharp drop oc-
curs even when the number of keys, updates, and tracked
keys is held constant, highlighting the unique impact of item
length.

This result demonstrates that increasing the amount of
information stored in each retrieved value—by concatenat-
ing more words—adds a distinct, independent dimension



of interference, taxing the system’s capacity beyond what
can be explained by the number of tracked keys or updates
alone. The effect of value length thus exposes another axis
along which the model’s anti-interference resource can be
depleted.

This outcome closely parallels human memory perfor-
mance, where recalling longer or more complex words
substantially lowers accuracy—a classic word-length ef-
fect. Taken together with prior results, these findings re-
inforce our explanatory framework: all forms of interfer-
ence—whether from more keys, more updates, or longer val-
ues—tap into a single, unified anti-interference resource
in the model, analogous to a working-memory buffer. As
the informational load per item grows, this capacity is con-
sumed more rapidly, leading to steeper performance degra-
dation. This unified capacity constraint, shared across all
tested dimensions, underscores a structural limitation in cur-
rent LLM architectures that mirrors properties of human
working memory.

G Mitigating Interference: Empirical
Insights from LLM–Human Comparison

Our previous experiments demonstrated that LLMs pos-
sess limited anti-interference capacity, with retrieval accu-
racy declining log-linearly as interference increases. To bet-
ter understand and potentially mitigate this limitation, we
compared LLM performance to humans on the same key-
value retrieval task, drawing on strategies from human cog-
nitive experiments to design corresponding interventions for
LLMs.

In contrast to LLMs, humans exhibit a plateau in recall ac-
curacy for the most recent key-value pair, even as the num-
ber of prior updates accumulates. Classic working memory
studies attribute this resilience to executive control mech-
anisms. Two particularly relevant mechanisms are gating,
which automatically suppresses or discards outdated infor-
mation as new items are encoded (Oberauer and Vockenberg
2009), and directed forgetting, where individuals intention-
ally discard certain information when explicitly instructed to
do so (Festini and Reuter-Lorenz 2014).

LLM retrieval accuracy declines continuously with in-
creasing interference, suggesting the absence of automatic
gating mechanisms. Moreover, humans can engage in ex-
plicit, strategic forgetting. To test whether LLMs might ben-
efit from such strategic forgetting, we simulated this human
capability by providing LLMs explicit prompts instruct-
ing them to forget previous key-value pairs. If successful,
such an intervention would demonstrate that LLMs can em-
ulate human-like release from interference through exter-
nal cues, potentially alleviating the limitations of their anti-
interference capacity.

Simulating Human Directed Forgetting with
Natural Language Prompt
To simulate the human strategy of explicit directed forget-
ting, we inserted a targeted prompt into the input sequence
that directly instructs the LLM to disregard all prior updates
for a specific key. This prompt is placed at a fixed point in

the update stream—immediately before the chunk contain-
ing the majority of the target answer, after most interfering
updates have been presented. The directive reads: “Forget all
the previous updates to key,” with key dynamically replaced
by the relevant key for the current task.

The purpose of this intervention is to actively suppress the
influence of outdated or distracting information from earlier
in the sequence, thereby reducing proactive interference and
guiding the model to prioritize only the most recent updates
for retrieval. This approach tests whether an explicit natural
language cue can shift the model’s focus in a way that mim-
ics human executive control over memory. See Figure 17 for
examples of the ”Per-Key Forget” prompt.

For comparison, we also tested a ”Forward Focus”
prompt, which instructs the LLM to concentrate on the more
recent, relevant portion of the input. This allows us to evalu-
ate whether explicit natural language instructions—whether
aimed at forgetting or focusing—can meaningfully affect
model retrieval performance.

Natural Language Prompt Fails
The per-key forget prompt—designed to mimic human ex-
plicit forgetting—did not significantly improve retrieval ac-
curacy (blue line in Figure 18; ∆ < 10 percentage points
compared to the baseline at 100 updates, black line). Sim-
ilarly, alternative natural language instructions intended to
focus the model on the target retrieval section were also inef-
fective. Overall, natural language instructions—whether
to forget or focus—do not effectively reduce interference
in LLM retrieval tasks.

An analysis of the error distribution reveals a critical fail-
ure mode: rather than improving retrieval accuracy, the per-
key forgetting prompt consistently caused errors to cluster
around the position in the sequence where the instruction
was injected. As shown in Figure 19, models displayed a
pronounced tendency to select earlier values immediately
preceding the forget instruction, rather than the correct, final
update. This error pattern indicates that the prompt did not
enable the model to effectively disregard prior information.
Instead, it induced a concentration of retrieval errors near
the instructed forget position, reshaping interference rather
than mitigating it. In summary, rather than mitigating in-
terference, these prompts cause errors to cluster around
the location of the prompt, indicating that the model’s
anti-interference limitation cannot be overcome by sim-
ple natural language cues.

Hack method: Mock-QA-reset succeeds
Inspired by LLM “hacking” studies showing that models can
be coaxed to bypass earlier instructions (Kuo et al. 2025), we
devised a non-natural-language mock QA reset prompt (see
Figure 17) that mimics human directed-forgetting. Inserted
120 updates before the final query, this reset cue leads the
model to treat preceding input as belonging to an already
processed prior task, thereby partially mitigating interfer-
ence and improving retrieval accuracy. While this ad hoc
prompt intervention partially reduces interference, it high-
lights the need for more systematic methods to address in-
terference in LLMs’ retrieval task.
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...
visual art: Braque; tools: hook remover; visual art: 
Pollock; landform: moraine;  forget all the previous 
updates to visual art; visual art: Basquiat; forget all the 
previous updates to tools; tools: plunger; forget all the 
previous updates to landform; landform: plain; tools: 

...

...
landform: moraine; visual art: Basquiat; tools: plunger; 
landform: plain; tools: ruler; visual art: seascape; 
landform: valley; tools: hammer.

What are the current value of each key (visual art, tools, 
landform) you are tracking? End your response with: 
'The current value of <key> is <value>.' Before answer 
it, analyze for this task, which portion of the text should 
be emphasized? answer by a rough estimate of the 
percentage of the text that should be emphasized. 

...
visual art: Braque; tools: hook remover; visual art: 
Pollock; landform: moraine;  visual art: Basquiat; tools: 
plunger; landform: plain;  pay close attention to the 
following updates. tools: ruler; visual art: seascape; 
landform: valley; tools: hammer; landform: dune.

...

...
visual art: Braque; tools: hook remover; visual art: 
Pollock; landform: moraine; visual art: Basquiat; 

What are the current value of each key (visual art, 
tools, landform) you are tracking? End your 
response with: 'The current value of <key> is 
<value>.'”},
{“role”: “assistant”, “content”: “The current value 
of visual art is Basquiat. The current value of tools 
is hook remover. The current value of landform is 
plain.”},
{“role”: “user”, “content”:  As my secretary, I need 
you to carefully read a text stream where the values 
of multiple keys are being continuously updated. 
The 3 keys to track include visual art, tools, 
landform. I will ask you to identify the value of each 
key later. The text stream starts on the next line.
tools: ruler; visual art: seascape; landform: valley; 

...

...
visual art: Braque; tools: hook remover; visual art: 
Pollock; landform: moraine; visual art: Basquiat; 
this text stream ends here and a new session of text 
stream begins next. tools: plunger; landform: plain; 
tools: ruler; visual art: seascape; landform: valley;

...

INPUT | Per-key forget

INPUT | Mock QA reset

INPUT | Soft session reset

INPUT | Relevance meta-prompt

INPUT | Forward focus 

Figure 17: Example input illustrating intervention strategies designed to mitigate proactive interference. Each strategy inserts
explicit cues into the update stream, typically near the end (e.g., at the 120th-last update or one-third before the final update).
The five strategies are: Per-key forget (green): An instruction to disregard previous updates for a specific key before a new
one (e.g., ”forget all the previous updates to visual art”). Forward focus (magenta): An instruction to prioritize information
that follows (e.g., ”pay close attention to the following updates”). Relevance meta-prompt (green): A prompt for the model to
self-assess and estimate the proportion of text to prioritize before answering. Soft session reset (brown): A verbal cue marking
the start of a new input segment (e.g., ”this text stream ends here and a new session of text stream begins next”). Mock QA reset
(orange): A simulated dialogue turn including an initial update segment, a query, a mock assistant response, and remaining
updates in a new user turn. Inserted instructional cues are shown in colored text; role labels in the Mock QA reset are in bold.

The prompt has three parts:
• Simulated user query asking for the current value of all

tracked keys (e.g., “User: What is the current value of
key1, key2, . . . , key45?”), which frames prior updates as
a closed batch.

• Simulated assistant reply giving fabricated answers
(e.g., “Assistant: The current value of key1 is . . . , key2
is . . . ”), providing explicit closure.

• New user prompt signalling a fresh tracking task, fol-
lowed by the remaining updates (e.g., “User: I will now
provide 45 updated key–value pairs. Tell me the most
current value. The pairs begin:”), which marks a clear
task boundary and encourages the model to ignore ear-
lier content.

This artificial task boundary partially mitigates interference
by prompting the model to deprioritize earlier input and fo-
cus on newly updated information.

The hack prompt substantially improved retrieval ac-
curacy (As shown in Figure 18, orange line), reducing

the effects of interference across all tested LLMs. This
hack-based prompt consistently outperformed natural lan-
guage instructions designed to induce forgetting or refocus-
ing. For example, with the hack-reset, Gemini Flash 2.0’s
retrieval accuracy at 150 update count—under high inter-
ference—matched its baseline performance at only 30–45
update count, demonstrating a substantial reduction in inter-
ference effects.

The success of our hacking-based reset method demon-
strates that implementing a gating mechanism can effec-
tively reduce interference in LLMs, closely mirroring the ex-
ecutive gating functions of human working memory. This re-
sult suggests that implementing gating mechanisms in LLMs
could be an effective strategy for reducing interference, mir-
roring the executive functions of human working memory.

However, while our reset strategy shows that LLMs ben-
efit from artificially imposed context boundaries, this ap-
proach remains fundamentally limited. Specifically, our in-
tervention mitigates interference by diminishing the influ-
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Figure 18: Explicit forgetting and focusing prompts inserted
during the update stream (as shown in Figure 17 yielded
only marginal improvements in retrieval accuracy. The black
line indicates the baseline condition with no intervention
prompt. Solid lines represent several simple natural lan-
guage prompts designed to instruct the model to forget pre-
vious updates, focus on upcoming ones, or reset context.
For most models, these interventions had limited effect, es-
pecially at higher update counts, where the baseline perfor-
mance is low. The per-key forget even had a negative effect
on gpt-4.1-mini. The relevance meta-prompt (green dotted),
which asked the model to self-assess what to focus on, was
ineffective for all models and even harmful for gpt-4.1-mini.
Only the mock QA reset intervention (orange dashed line),
which simulates a user-model interaction, led to a substan-
tial improvement in retrieval accuracy. However, this strat-
egy was not immune to the overall trend: accuracy continues
to decline with increasing update count (log-spaced).

ence of all prior information—effectively discarding or by-
passing past associations. Although this provides short-term
relief, it is not a viable solution for real-world tasks, which
frequently require selective, context-dependent access to
historical data beyond just the most recent update.

This limitation is further highlighted by additional exper-
iments with natural-language prompts designed to instruct
LLMs to ignore or forget prior information—such as the
’soft session reset’ shown in Figure 17—which were largely
ineffective (see performance in Figure 18). These findings
indicate that current LLMs cannot be reliably controlled
through explicit natural-language user instructions alone;
precise, natural-language-based adjustments of memory and
attention remain an open challenge.
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Figure 19: A selective per-key forgetting prompt induces a
distinct pattern of Proactive Interference (PI): instead of en-
abling successful forgetting, the prompt causes retrieval er-
rors to cluster around the position in the update sequence
where the instruction was injected. The figure compares
keys that received a forgetting instruction with a control
group; only the instructed keys show this pronounced er-
ror concentration, indicating that the prompt anchored the
model’s retrieval errors to that part of the sequence rather
than erasing the information. Earthy yellow bars indicate the
correct value—the final update. Green bars represent ear-
lier (interfering) values, grouped by their relative position in
the update sequence. Light gray bars show “off values” not
present in the update history, and dark gray bars denote “off
keys,” where the model failed to return any value. The results
shown are from an experiment with 20 updates per key and
46 unique keys. For a comprehensive analysis across various
model architectures and a wider range of parameter settings,
see Figure 25 in the Appendix.

H Conclusion
Our systematic investigation of proactive interference (PI)
in Large Language Models (LLMs) across various scales
from 0.6B to over 600B, reveals a pervasive susceptibility to
interference effects during retrieval tasks. Critically, LLMs
demonstrate a continuous log-linear decline in retrieval ac-
curacy as interference increases, showing no evidence of
a plateau. Moreover, the continuous decline—characterized
by a similar log-linear pattern—emerges independently
along multiple dimensions of interference load: the number
of sequential updates to a key, the number of keys tracked
concurrently, and the token length of each updated value.
The convergence of these qualitatively similar decline pat-
terns, across orthogonal axes of load, implies that LLMs
possess a finite, resource-like representational capacity that
can be incrementally taxed by different, yet functionally in-
terchangeable, forms of cognitive load, independent of total



input size or the model’s maximum context length. Collec-
tively, these findings indicate that the anti-interference ca-
pacity observed in LLMs closely parallels the properties of
human working memory.

We also identify a critical dissociation between the ana-
lytical and execution capabilities of LLMs: even models ca-
pable of explicitly articulating effective retrieval strategies
fail to translate this analytical understanding into improved
retrieval performance, underscoring a lack of top-down ex-
ecutive control over retrieval tasks.

Our findings establish proactive interference as a perva-
sive failure mode in contemporary LLMs and introduce a
novel interpretation: a model’s resistance to proactive in-
terference directly reflects its underlying working-memory
capacity. Unlike traditional metrics that emphasize total in-
put length, our approach reveals interference resilience as
a distinct, cognitively-grounded dimension of model capa-
bility. Since interference is inherent to tasks ranging from
summarizing repeatedly updated information to conduct-
ing complex, long-horizon reasoning, enhancing LLMs’
working-memory robustness becomes critical for practical
performance. By providing a structured synthetic evalua-
tion framework explicitly designed to measure susceptibility
to interference, this study offers both a diagnostic tool and
a theoretical advance toward understanding and improving
LLM cognition. Our code and datasets are publicly released
to foster further investigation into the memory mechanisms
of large language models.

I Discussion
Methodological Contribution
From Cognitive Paradigms to LLM Diagnostic Tools
Our current work aligns squarely with this research thrust.
We do not merely suggest that Proactive Interference (PI) is
a problem for LLMs by analogy to humans; we adapt the
specific experimental logic of the A-B, A-C, A-D paired-
associate learning paradigm—a workhorse of human PI
research—to create a novel, synthetic diagnostic tool for
LLMs. This allows for controlled experimentation and the
systematic manipulation of variables, moving beyond cor-
relational observations from general benchmarks towards a
more causal understanding of LLM failure modes.

Crucially, the A-B, A-C (and, by extension, A-D, A-E. . . )
schema captures a vast class of real-world problems: stream-
ing sensor readouts, mutable legal ledgers, and long rea-
soning chains in which the same variable is updated and
queried repeatedly. By embedding this ubiquitous “value-
overwriting” structure into our testbed, we ensure that the
experiment speaks to both practical performance gaps and
deeper theoretical questions about how LLMs process inter-
fering information.

Theoretical explanations and implications
Our results suggest that current LLMs possess only an im-
plicit, resource-bounded form of memory selectivity. Self-
attention weights provide a quasi-executive filter that suf-
fices for low–interference conditions, but unlike human pre-
frontal gating, it cannot be strengthened or re-allocated on

demand. When the interference budget is exceeded, the
model’s retrieval accuracy degrades monotonically to near-
zero performance, revealing the absence of a true top-down
control system. Because adaptive executive control over
memory is widely held to be a core component of goal-
directed intelligence, these findings point to a critical gap
between contemporary LLMs and human cognition: trans-
formers can store vast contexts, but they cannot decide how
to use—or forget—them.

Connecting Behavioral Evidence with Mechanistic Inter-
pretability Our research also complements work on the
mechanistic interpretability of LLMs, such as the study of
induction heads (Olsson et al. 2022). While induction heads
offer a plausible mechanism for how in-context learning and
subsequent interference might occur (e.g., an induction cir-
cuit strongly encoding A-B might resist an A-C update), our
paper provides the experimental paradigm to test the behav-
ioral consequences of such mechanisms when they are con-
fronted with conflicting associative information. Our syn-
thetic setup is designed precisely to probe the conditions un-
der which these induction-like mechanisms are robust versus
when they are susceptible to PI.

Recent studies have applied human working-memory
(WM) tests, such as the N-back paradigm, to assess the pos-
sible WM capacity of LLMs (Gong, Wan, and Wang 2024).
While prior work has primarily focused on transplanting
classic cognitive tests from human studies to LLMs, our
approach integrates cognitive science methodologies with
tasks modeled on realistic LLM applications. This design
enables more ecologically valid assessments—reflecting
typical model usage—and allows for direct comparison of
LLM and human retrieval abilities on matched tasks. Uti-
lizing proactive interference as a framework, we identify
specific behavioral differences and practical limitations that
standard benchmarks often fail to reveal. These results un-
derscore the importance of integrating cognitive and applied
perspectives to advance research on LLM capabilities.

J Code and Data
All source code required to conduct and analyze our ex-
periments will be released upon publication at a perma-
nent repository under an open license. The repository URL
will appear in the camera-ready version. An anonymized,
runnable supplement is included with this submission for re-
viewer use.

K Detailed Graphs and Tables
This section presents detailed test figures that complement
the main results. We expand the analyses to additional mod-
els and variants beyond the main essay, providing per-model
summaries, rankings, and distributional diagnostics.

Model Versions
This section provides a comprehensive list of all language
models used in our evaluation. All experiments were con-
ducted up to May 5th, 2025. Models with explicit date
stamps in their identifiers (e.g., gpt-4o-2024-11-20)



Variable Coef. t P> |t| [0.025 0.975]
Intercept 0.1866 2.045 0.051 -0.001 0.374
Parameter Size 0.1030 3.016 0.006 0.033 0.173
Context Size -3.334e-09 -0.144 0.887 -5.08e-08 4.41e-08

Table 1: Linear Regression Results of Interference Endurance Score (IES) on model parameter size (ordinal class) and model
context window. This analysis aims to determine whether model performance is driven more by parameter size or by context
length. 30 models were grouped into four parameter size classes (XS, S, M, L)

Notes. (1) All experiments were conducted up to May 5, 2025. Models with explicit date stamps in their identifiers (e.g.,
gpt-4o-2024-11-20) represent fixed snapshots, while other identifiers represent the latest available API endpoints as of the cutoff date.
(2) The -thinking suffix indicates the model was evaluated with its native reasoning/Chain-of-Thought (CoT) mode enabled; the counterpart

without the suffix was evaluated with this mode disabled.

As my secretary, I need you to carefully read a text stream 
where the values of multiple keys are being continuously 
updated. The 3 keys to track include visual art, tools, landform. 
I will ask you to identify the current value of each key later. 
The text stream starts on the next line.
1*visual art: BraqueBasquiatPopart; 
1*tools: HookremoverNeedlePaintstic; 
2*visual art: PollockCityscapeCubism; 
1*landform: PingoMoraineCanyon;  
2*tools: PlungerJackstandGlasscutter; 
2*landform: PlainBlockfieldScoriacone; 
3*tools: RulerHammerScaffolding; 
3*visual art: SeascapeGraffitiCeramics; 
3*landform: DuneValleyHimalayas.

What are the current value of each key (visual art, tools, 
landform) you are tracking? End the response with: 'The 
current value of <key> is <value>.' Provide the exact current 
value string without modification or breaking it into pieces.

The current value of visual art is SeascapeGraffitiCeramics. 
The current value of tools is RulerHammerScaffolding. The 
current value of landform is DuneValleyHimalayas. 

INPUT

DESIRED ANSWER

Tracked Keys = 2; Updated Keys = 3 Value Length = 3 

Figure 20: Input example with manipulation of the updated
values’s length. In this example, three items from the same
category are space-removed, capitalized at the first letter,
and concatenated into a single updated value. Bold text in-
dicates the target key-value pairs the model is expected to
retrieve.
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Figure 21: Interference Endurance Score (IES) for all mod-
els shown in Figure 3, computed as the area under the
curve (AUC) of their accuracy–update-count functions in
Figure 9. Higher IES indicates greater robustness to inter-
ference across increasing update counts. Models are grouped
by family using the same color scheme as in Figure 3, and
within each family, sorted by parameter size from large (top)
to small (bottom). For a ranking of IES values by magnitude,
see Figure 22 in the Appendix
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Figure 22: Interference Endurance Scores (IES) from Fig-
ure 21, re-ordered by IES value in descending order.

represent fixed snapshots. For other models, we used the
versions detailed below. The -thinking suffix indicates the
model was evaluated with its native reasoning/Chain-of-
Thought (CoT) mode enabled; the counterpart without the
suffix was evaluated with this mode disabled.

1. Dataset Usage
1.1. Does this paper rely on one or more datasets? (yes/no)

yes

If yes, please address the following points:

1.2. A motivation is given for why the experiments
are conducted on the selected datasets (yes/par-
tial/no/NA) yes

1.3. All novel datasets introduced in this paper are in-
cluded in a data appendix (yes/partial/no/NA) partial

1.4. All novel datasets introduced in this paper will be
made publicly available upon publication of the pa-
per with a license that allows free usage for research
purposes (yes/partial/no/NA) yes

1.5. All datasets drawn from the existing literature (po-
tentially including authors’ own previously pub-
lished work) are accompanied by appropriate cita-
tions (yes/no/NA) NA

1.6. All datasets drawn from the existing literature
(potentially including authors’ own previously
published work) are publicly available (yes/par-
tial/no/NA) NA

1.7. All datasets that are not publicly available are de-
scribed in detail, with explanation why publicly
available alternatives are not scientifically satisficing
(yes/partial/no/NA) NA

2. Computational Experiments
2.1. Does this paper include computational experiments?

(yes/no) yes

If yes, please address the following points:

2.2. This paper states the number and range of values
tried per (hyper-) parameter during development of
the paper, along with the criterion used for selecting
the final parameter setting (yes/partial/no/NA) par-
tial

2.3. Any code required for pre-processing data is in-
cluded in the appendix (yes/partial/no) partial

2.4. All source code required for conducting and analyz-
ing the experiments is included in a code appendix
(yes/partial/no) partial

2.5. All source code required for conducting and ana-
lyzing the experiments will be made publicly avail-
able upon publication of the paper with a license
that allows free usage for research purposes (yes/-
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Figure 23: Explicit forgetting and focusing prompts inserted during the update stream (as shown in Figure 17 yielded only
marginal improvements in retrieval accuracy. The black line indicates the baseline condition with no intervention prompt. Solid
lines represent several simple natural language prompts designed to instruct the model to forget previous updates, focus on
upcoming ones, or reset context. For most models, these interventions had limited effect, especially at higher update counts,
where the baseline performance is low. The per-key forget(blue line) even had a negative effect on gpt-4.1-mini. The relevance
meta-prompt (green dotted), which asked the model to self-assess what to focus on, was ineffective for all models and even
harmful for gpt-4.1-mini. Only the mock QA reset intervention (orange dashed line), which simulates a user-model interaction,
led to a substantial improvement in retrieval accuracy. However, this strategy was not immune to the overall trend: accuracy
continues to decline with increasing update count (log-spaced).Experiments used 46 unique keys and a key-value pair length of
6.
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Figure 24: Distribution of model responses across update positions, showing increasing signs of PI as update count increases
(left to right). The y-axis lists 11 equal-width bins (Bin 1–Bin 11, green) covering the entire update sequence. The earthy yellow
bar indicates the single final update—the correct retrieval target. Light gray bars (“off values”) denote cases where the model
returns a value not present in the update history (i.e., hallucinations). Dark gray bars (“off keys”) indicate failures to return any
value for the queried key. As update count increases, errors shift from clustering near the final update to earlier bins, with rising
rates of off-values and off-keys.
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Figure 25: The selective per-key forgetting prompt amplifies proactive interference. Keys that received a forgetting instruction
prior to the final third of their updates exhibited concentrated errors around the forgetting point, compared to keys without such
a prompt. The x-axis indicates the position of the selected value within the update sequence, categorized for each key. Earthy
yellow bars indicate the correct value—the final update. Green bars represent earlier (interfering) values, grouped into 19 bins
based on their relative position in the update sequence. Light gray bars indicate “off values” not present in the update history.
Dark gray bars denote “off keys,” where the model failed to return any value.



Model Name Version/Snapshot
Google Gemini Models
gemini-2.5-flash-preview gemini-2.5-flash-preview-04-17
gemini-2.0-flash gemini-2.0-flash
gemini-1.5-flash-8b gemini-1.5-flash-8b
gemini-2.0-flash-thinking-exp2 gemini-2.0-flash-thinking-exp-01-21
OpenAI Models
gpt-4.1 gpt-4.1-2025-04-14
gpt-4.1-mini gpt-4.1-mini-2025-04-14
gpt-4.1-nano gpt-4.1-nano-2025-04-14
gpt-4o gpt-4o-2024-11-20
gpt-4o-mini gpt-4o-mini-2024-07-18
Anthropic Claude Models
claude-3-5-sonnet claude-3-5-sonnet-20241022
claude-3-5-haiku claude-3-5-haiku-20241022
Alibaba Qwen Models
qwen2.5-72b-instruct qwen2.5-72b-instruct1

qwen3-0.6b qwen3-0.6b1

qwen3-1.7b qwen3-1.7b1

qwen3-4b qwen3-4b1

qwen3-8b qwen3-8b1

qwen3-14b qwen3-14b1

qwen3-32b qwen3-32b1

qwen3-30b-a3b qwen3-30b-a3b1

qwen3-235b-a22b qwen3-235b-a22b1

qwen3-0.6b-thinking2 qwen3-0.6b-thinking1

qwen3-1.7b-thinking2 qwen3-1.7b-thinking1

qwen3-4b-thinking2 qwen3-4b-thinking1

qwen3-8b-thinking2 qwen3-8b-thinking1

qwen3-14b-thinking2 qwen3-14b-thinking1

qwen3-32b-thinking2 qwen3-32b-thinking1

qwen3-30b-a3b-thinking2 qwen3-30b-a3b-thinking1

qwen3-235b-a22b-thinking2 qwen3-235b-a22b-thinking1

Meta LLaMA Models
llama-4-maverick-17b-128e-instruct-maas llama-4-maverick-17b-128e-instruct-maas1

llama-4-scout-17b-16e-instruct-maas llama-4-scout-17b-16e-instruct-maas1

llama-3.1-405b-instruct-maas llama-3.1-405b-instruct-maas1

llama-3.2-90b-vision-instruct-maas llama-3.2-90b-vision-instruct-maas1

llama-3.1-70b-instruct-maas llama-3.1-70b-instruct-maas1

llama-3.1-8b-instruct-maas llama-3.1-8b-instruct-maas1

DeepSeek Models
deepseek-chat deepseek-chat1

deepseek-reasoner deepseek-reasoner1

xAI Grok Models
grok-3-beta grok-3-beta1

grok-3-mini-beta grok-3-mini-beta1

Mistral Models
mistral-small-2503 mistral-small-25031

NVIDIA Models
nvidia llama-3.1-nemotron-ultra-253b-v1 nvidia llama-3.1-nemotron-ultra-253b-v11

nvidia llama-3.3-nemotron-super-49b-v1 nvidia llama-3.3-nemotron-super-49b-v11

nvidia llama-3.1-nemotron-nano-8b-v1 nvidia llama-3.1-nemotron-nano-8b-v11

Table 2: Model versions used in our evaluation
Notes. (1) All experiments were conducted up to May 5, 2025. Models with explicit date stamps in their identifiers (e.g.,

gpt-4o-2024-11-20) represent fixed snapshots, while other identifiers represent the latest available API endpoints as of the cutoff date.
(2) The -thinking suffix indicates the model was evaluated with its native reasoning/Chain-of-Thought (CoT) mode enabled; the counterpart

without the suffix was evaluated with this mode disabled.



partial/no) yes

2.6. All source code implementing new methods have
comments detailing the implementation, with refer-
ences to the paper where each step comes from (yes/-
partial/no) no

2.7. If an algorithm depends on randomness, then the
method used for setting seeds is described in a way
sufficient to allow replication of results (yes/par-
tial/no/NA) partial

2.8. This paper specifies the computing infrastructure
used for running experiments (hardware and soft-
ware), including GPU/CPU models; amount of
memory; operating system; names and versions of
relevant software libraries and frameworks (yes/par-
tial/no) yes

2.9. This paper formally describes evaluation metrics
used and explains the motivation for choosing these
metrics (yes/partial/no) yes

2.10. This paper states the number of algorithm runs used
to compute each reported result (yes/no) yes

2.11. Analysis of experiments goes beyond single-
dimensional summaries of performance (e.g., aver-
age; median) to include measures of variation, con-
fidence, or other distributional information (yes/no)
yes

2.12. The significance of any improvement or decrease in
performance is judged using appropriate statistical
tests (e.g., Wilcoxon signed-rank) (yes/partial/no)
partial

2.13. This paper lists all final (hyper-)parameters used
for each model/algorithm in the paper’s experiments
(yes/partial/no/NA) partial


