
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

RE-IMAGINE: SYMBOLIC BENCHMARK SYNTHESIS
FOR REASONING EVALUATION

Xinnuo Xu ∗, Rachel Lawrence∗, Fabian Falck, Risa Ueno, Aditya V. Nori, & Javier Gonzalez
Microsoft Research Cambridge
{xinnuoxu, rachel.lawrence, fabian.falck,
risa.ueno, Aditya.Nori, Gonzalez.Javier}@microsoft.com

Kshitij Dubey∗, Atharva Pandey∗, Rahul Sharma, & Amit Sharma
Microsoft Research India
{t-ksdubey, t-atpandey, rahsha, amshar}@microsoft.com

ABSTRACT

Recent Large Language Models (LLMs) have reported high accuracy on reasoning
benchmarks. However, it is still unclear whether the observed results arise from
true “reasoning” or from statistical recall of the training set. Inspired by the ladder
of causation (Pearl, 2009) and its three levels, this paper introduces RE-IMAGINE:
a framework to characterize a hierarchy of reasoning ability in LLMs, alongside
an automated pipeline to generate problem variations across all the levels of the
hierarchy. We demonstrate RE-IMAGINE on four widely-used benchmarks, and
observe reductions in performance across several families of LLMs when models
are queried with problem variations. These assessments indicate a degree of
reliance on statistical recall for past performance, and open the door to further
research targeting skills across the reasoning hierarchy.

1 INTRODUCTION

Recent advancements in Artificial Intelligence (AI) have sparked increasing interest in the devel-
opment of reasoning systems. Central to this goal are Large Language Models (LLMs) – models
like OpenAI’s o1 (Jaech et al., 2024), o3 (OpenAI, 2024), or DeepSeek-R1 (Team, 2025) show
complex problem-solving abilities, and demonstrate unprecedented results on reasoning benchmarks,
e.g. FrontierMath (Glazer et al., 2024) and ARC-AGI (Chollet et al., 2024). With growing reliance
on LLMs across wide-ranging applications, it is increasingly important to clarify the strengths and
limitations of these apparent reasoning abilities.

Reasoning is a cognitive process. It involves using facts or premises to make inferences about
conclusions or judgments (Holyoak & Morrison, 2005). In the realm of LLMs and AI, reasoning is
understood to be the ability of a model to demonstrate logically correct systematic processes that
surpass mere statistical pattern recognition in the training set (González & Nori, 2024).

Traditionally, the evaluation of reasoning evaluation in LLMs has been focused on their performance
across fixed benchmarks in domains such as math (Cobbe et al., 2021), programming (Wu et al.,
2024; Gu et al., 2024), real-world logic (Jin et al., 2023a) and others (Wang et al., 2019; Hendrycks
et al., 2020; Srivastava et al., 2022). However, debate persists on whether the observed results occur
from genuine reasoning or from mere statistical recall of training data (Mitchell & Krakauer, 2023)
– particularly for training data which, in the case of published benchmarks, may have information
leakage from the test set (Zhou et al., 2023). Defining principled ways to make this distinction is
crucial for advancing AI and controlling potential hazards and risks (Weidinger et al., 2021).

Recently, several surveys have explored how to evaluate reasoning beyond memorization in LLMs
(Xu et al., 2025; Huang & Chang, 2023). In general, two main approaches have emerged. One aims to

∗Equal contribution

1



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Level Description Examples Evaluation metric(s) References

1. Observe Original problem.
Problems in GSM8K,
CLadder, CRUXEval

Loop
Task performance (original).

Cobbe et al. (2021)
Jin et al. (2023a)

Kamath et al. (2024)
Gu et al. (2024)

2. Mutate
Mutated problem by
replacing or adding

components.

Replacing numeric value,
changing variable name,

modifying operator,
irrelevant information

Task performance
(original and mutated).

Mirzadeh et al. (2024)
Srivastava et al. (2024)

Wu et al. (2023)
Lewis & Mitchell (2024)

3. Imagine

Original problem augmented
with an ‘imagine’ statement,

modifying the original statements
or assertions before it.

Extra logic involving revisions
or counterfactual statements.

Task performance
(original and augmented)

PN and PS
(only in counterfactuals).

González & Nori (2024)
Hüyük et al. (2024)

Table 1: Hierarchy of problem variations introduced in the RE-IMAGINE framework to evaluate
LLMs. Level-1 (observe) captures the accuracy of LLMs to solve problems in existing benchmarks.
These benchmarks may have been observed by the LLMs in current or similar form. Level-2 (mutate)
captures the ability to solve problem variations. Level-3 (imagine) captures the ability to correctly
incorporate new logic into existing problems, even when it contradicts the original components.

develop novel reasoning tasks such as mystery blocksworld (Webb et al., 2024), ARC-AGI (Chollet
et al., 2025), and others (Zhu et al., 2023). An alternative is to create novel variations of existing
benchmarks, e.g. for math (Mirzadeh et al., 2024; Srivastava et al., 2024), analogies (Lewis &
Mitchell, 2024), and diverse tasks across code, math, and logic (Wu et al., 2023; Zhang et al., 2024).
A common strategy for creating such variations involves leveraging symbolic representations of
problems such as functional templates (Mirzadeh et al., 2024; Srivastava et al., 2024), reasoning
or causal graphs (González & Nori, 2024; Hüyük et al., 2024; Yang et al., 2024), planning tasks
(Valmeekam et al., 2022) or code (Li et al., 2024).

Despite the introduction of various benchmark variations aimed at assessing LLMs’ reasoning abilities,
these variations have been developed in an ad hoc manner, lacking a systematic hierarchy. Moreover,
most existing approaches rely on significant manual effort and are designed for specific tasks, making
them difficult to scale across multiple benchmarks and tasks. For instance, in Mirzadeh et al. (2024);
Srivastava et al. (2024), functional templates for simple math problems in the GSM8K benchmark
(Cobbe et al., 2021) are manually created, restricting the analysis to only 100 new templates.

Inspired by Judea Pearl and his ladder of causation (Pearl, 2009) – “Only machines that can correctly
perform correlations, interventions and counterfactuals will have reasoning abilities comparable
to humans”, we present a new framework, RE-IMAGINE, to characterize a hierarchy of reasoning
abilities in LLMs, alongside an automated pipeline to guarantee scalable evaluations.

RE-IMAGINE generalizes, expands and scales up LLMs reasoning evaluation by means of an auto-
mated pipeline with three core components:

(i) A language-to-code model that converts each problem into a symbolic (code) representation.
(ii) A set of mutations of the symbolic representation that creates an ‘executable’ variation.

(iii) A code-to-language component that translates the generated variations to natural language.

The intermediate executable symbolic representation ensures that correct outcomes can be calculated
automatically from the mutations. This approach generates a diverse set of “unseen” variations of
existing, well-established benchmarks, providing novel challenges for LLMs.

RE-IMAGINE enables us to reinvent the standard approach to evaluating reasoning in LLMs. As our
experiments show, benchmarks across domains such as math, code, and logic can be systematically
transformed using the same principles, generating challenging new scenarios that are unlikely to
appear in the LLMs pre-training data. Our findings indicate that all tested LLMs exhibit some degree
of reliance on statistical recall, while problems at higher levels in the reasoning hierarchy remain a
yet-unsolved challenge.

Contributions. This paper presents three major contributions, corresponding to each of the follow-
ing sections: In Section 2, we propose a hierarchical framework to characterize existing and new
approaches for evaluating reasoning in LLMs. The proposed hierarchy has three levels of increas-
ingly difficulty that capture different levels of reasoning via variations of the problems of existing,
well-established benchmarks. In Section 3, we propose an end-to-end, automated pipeline that allows
the generation of an arbitrary number of new problems in each level of the hierarchy. This is crucial
to scale up current approaches that require the manual generation of new scenarios. In Sections

2



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

4-5, we use RE-IMAGINE to re-analyze the reasoning abilities of all models in the GPT (Brown
et al., 2020), Llama (Touvron et al., 2023), and Phi families (Kambhampati et al., 2024). We focus
on four reasoning benchmarks: GSM8K for math (Cobbe et al., 2021), CLadder for causality (Jin
et al., 2023a), and CRUXEval (Gu et al., 2024) and Loop (Kamath et al., 2024) for code. We show
consistent decline in LLM performance as reasoning complexity increases across the board.

Figure 1: Top: The benchmark transformation pipeline outlined with an example from GSM8K
(Cobbe et al., 2021). This pipeline leverages the symbolic representation of the question (a Python
snippet) to automatically transform a math QA problem (leftmost) into a similar format with additional
reasoning steps (rightmost). Bottom: To clearly define the mutations, we transform the symbolic
representation into a computational graph (leftmost). Nodes represent variables from the symbolic
representation, and edges illustrate dependencies between them. The remaining six graphs depict
different types of mutations (see Section 3.2). E, B, M, R, P, and S represent variables eggs,
breakfast eggs, muffin eggs, reminder, price, and sales, respectively. Yellow highlights indicate the
modifications made relative to the original versions. Red nodes represent binary values, while all
other nodes are numeric.

3



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Benchmark Type Input Output Required Steps
GSM8K Mathematics QA NL math question Numerical answer 1⃝ 2⃝ 3⃝ 4⃝
CLadder Causal QA NL causal query Y/N answer 1⃝ 2⃝ 3⃝ 4⃝
CRUXEval Code understanding Python function, input Execution output 2⃝ 4⃝
Loop Loop invariant inference C Code, assertion Y/N answer 2⃝ 4⃝

Table 2: A summary of the steps used in GSM8K (Cobbe et al., 2021), CLadder (Jin et al., 2023a),
CRUXEval (Gu et al., 2024), and Loop (Kamath et al., 2024). Since the inputs for both CRUXEval
and Loop are code snippets, steps 1⃝ and 3⃝ are not required.

2 RE-IMAGINE: THE Ladder OF REASONING

Inspired by the ladder of causation (Pearl, 2009), we define and label a three-layer hierarchy (‘observe’,
‘mutate’, ‘imagine’) that characterizes different levels of reasoning abilities in LLMs, in the same way
that the ladder of causation captures three different cognition skills. This allows us to characterize
and compare the goals of different evaluation experiments with precision, both new and existing. A
summary of the three levels is presented in Table 1.

• Level-1 (“Observe”) captures the accuracy (or other metric of interest) of LLMs on existing bench-
marks. It is called observe because it is expected that an LLM which has already seen training-set
problems similar to the ones in the benchmark should be able to produce high accuracy.

• Level-2 (“Mutate”) captures the ability of LLMs to solve problems that have been mutated by, for
example, adding irrelevant information, renaming values, or changing values. It tests the ability of
models to generalize beyond the existing benchmarks in cases where the core logical requirements of
the questions are preserved. Several works have proposed approaches that sit in this level (Mirzadeh
et al., 2024; Srivastava et al., 2024; Wu et al., 2023; Lewis & Mitchell, 2024), which are based
on manually created functional variations of the original problems. The results in such variations
highlight memorization and over-fitting issues. For a true reasoning model, the task performance
should be invariant with respect to the class of changes in this level.

• Level-3 (“Imagine”) is the topmost and most sophisticated level. It captures the models’ ability to
correctly incorporate new information and logic into existing problems. Given a problem defined by
a set of logical predicates or facts, this variation augments the original problem with an additional
predicate that changes some previously stated one. Correctly incorporating new logic requires an
accurate internal representation of the steps required to solve the problem, as well the ability to
contradict and revise prior knowledge. Counterfactual assessments (González & Nori, 2024) sit at this
level of the hierarchy. Task performance metrics and counterfactual related metrics like the probability
of necessity (PN) and sufficiency (PS) can be used in this level as in González & Nori (2024).
Next, we detail how to use the problems from benchmarks in Level-1 to create novel problems in
Level-2 and Level-3.

3 BENCHMARK SYNTHESIS PIPELINE

We present a unified benchmark synthesis pipeline that automatically generates variations of existing
benchmarks, preserving the core logic of the task while demanding stronger reasoning abilities.

We illustrate the pipeline with a real example from the GSM8K benchmark, presented in the top
row of Figure 1. Starting with a sample from the existing dataset, we first convert the question into
executable symbolic form, e.g. code, knowledge graph ( 1⃝ in Figure 1). In line with Toshniwal et al.
(2024), we represent the math question as a Python code snippet. Next, we apply a specific type of
mutation to the symbolic representation ( 2⃝). In this example, we overwrite the value of the variable
muffin eggs in the code. To maintain the core logic of the task – a natural language-based math
question-answering (QA) problem – we translate the change in the symbolic representation back into
natural language (NL) and incorporate it into the original question ( 3⃝). Due to the executable nature
of the Python code, the ground-truth answer for the mutated question can be obtained by running the
modified code snippet ( 4⃝).

4



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Note that although Figure 1 illustrates all the elements in the pipeline, not all of them will be necessary
for every benchmark of interest. A summary of the required steps for the benchmarks discussed in
this paper is provided in Table 2. Similarly, not all mutations are applicable to every problem, and
additional mutations beyond those listed in Figure 1 can also be considered.

3.1 NL-TO-SYMBOLIC ( 1⃝) & SYMBOLIC-TO-NL ( 3⃝)

Steps 1⃝ and 3⃝, corresponding to transformations from NL to Symbolic and Symbolic to NL
respectively, are non-trivial. Benchmarks that have original problems already in code form (e.g.
Loop and CRUXEval) do not require these steps. When they are required, they need some level of
adaptation to the nature of the benchmark. Details for these two steps are provided in Section 4.

3.2 SYMBOLIC MUTATIONS ( 2⃝)

We showcase six code mutations spanning the Level-2 and Level-3 reasoning levels to create bench-
mark variations. To thoroughly define the mutations in 2⃝, we first convert the symbolic representation
into a computational graph (leftmost column in the bottom row of Figure 1). Nodes represent variables
in the symbolic representation and edges capture their dependencies. The mutation applied to the
computational graph is then reflected in the symbolic representation and translated into NL. The
remaining six columns in Figure 1 illustrate mutation variations.

Level-2 mutations
• SampleValues assigns new values to all root nodes. When translating the mutation back to NL, only

the values in the question are replaced with the new ones, while the rest of the narration remains
unchanged. This mutation specifically aims to differentiate the model’s reasoning ability from
memorization caused by data contamination.

• UselessInfo adds a new node dependent on a randomly selected node from the original graph, with
the change described in NL between the context and the question. This introduces additional context,
but does not alter original statements or impact the correct answer. This assesses the model’s ability
to disregard irrelevant information.

Level-3 mutations
• AddDependence also introduces a new node into the graph. However, unlike UselessInfo, a randomly

selected node from the original graph is modified to depend on the new node for its calculation. This
is likely to influence the correct answer to the question. A natural way to encode this mutation in NL
is to append a statement to the end of the original question, amending the original statement context,
making this a Level-3 mutation.

• InsertConditional adds a new node that connects two non-adjacent nodes in the graph, with edges
linking the first node to the new node and the new node to the second node. In symbolic terms, this
mutation is represented as an if-else condition. Two variables are randomly chosen, and one variable’s
value is set to 0 depending on the value of the other. Describing this in NL as a change to the previous
method of calculating the variable, it also becomes a Level-3 mutation.

• CounterFactual randomly selects a node in the graph and overwrites its value. Unlike SampleValues,
this mutation does not directly replace the number in the question. Instead, it presents the change as
an assumption statement appended to the original question. Thus, it modifies an existing statement in
the context and adds an extra reasoning step to the original question — a Level-3 mutation.

• Bi-CounterFactual builds on CounterFactual to evaluate the model’s ability to connect the presence
or absence of a cause with its effect, an essential reasoning skill from the perspective of causation
(Neuberg, 2003; Halpern & Pearl, 2005). Previous work (González & Nori, 2024; Hüyük et al., 2024)
quantitatively evaluates this through necessity and sufficiency inconsistency rates (N-IR and S-IR), but
relies on manually crafted questions and their counterfactuals. In contrast, our automated pipeline
unlocks large-scale analysis. In Bi-CounterFactual, the computational graph is treated as a Structural
Causal Model (SCM), where the overwritten node acts as the cause and the final answer (leaf node)
serves as the effect. Specifically, Bi-CounterFactual requires binary cause and effect nodes, with the
overwritten value ensuring a change in the cause statement’s presence or absence.

5



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 2: GSM8K results summary: model accuracy on numerical answer predictions across test set
variations in different reasoning levels (see Section 3.2 and Figure 1). 2

In the next two sections, we apply our benchmark synthesis pipeline to the math reasoning benchmarks
GSM8K and CLadder (Section 4) and the code benchmarks CRUXEval and Loop (Section 5).

4 MATH BENCHMARKS: GSM8K AND CLADDER

This section first details the benchmark transformation process for GSM8K and evaluates its quality
(Section 4.1). We then analyze model accuracy on numerical math questions using the first five muta-
tions outlined in Section 3.2, excluding Bi-CounterFactual (Section 4.2). Since Bi-CounterFactual
involves binary questions and is primarily assessed with causation metrics, it is discussed separately
in Section 4.3. Section 4.4 demonstrates that the findings from GSM8K extend to CLadder, another
math reasoning benchmark focused on probabilities and causality.

4.1 TRANSFORMATION PIPELINE

Question to Symbolic Representation 1⃝ Toshniwal et al. (2024) introduced OpenMathInstruct,
whose validation set contains 970 GSM8K QA examples paired with Python solutions generated
by Mixtral-8x7B (Jiang et al., 2024). We construct our test set by filtering out examples where the
Python solution execution does not match the ground-truth answers. To ensure high-quality mutations,
we further filter the data to keep only those where all constant variables in the code (root nodes in the
computational graph) align with the numbers in the question and vice versa.3

Symbolic Representation to Mutation 2⃝ We incorporate all six types of mutation described in
Section 3.2. Since most GSM8K questions are framed within a story context, we ensure that newly
sampled values for existing variables align with the original value’s type (float/integer) and sign to
preserve the story’s coherence. Within this constraint, integers are sampled from a discrete uniform
distribution, while floats are drawn from a uniform distribution centered around the original value.
We also ensure that the final answer maintains the same type and sign as the original.

Mutated Symbolic to NL 3⃝ In the SampleValues mutation, only the values in the questions
are replaced with newly sampled ones, while the rest of the narrative stays the same, so no new
NL descriptions are required. For the other mutation types, we provide the original math question,
its Python solution, and the code modifications to a LLM (GPT-4o), leveraging its text generation
capabilities to describe the code changes in natural language. To guarantee the symbolic-to-NL
translation is correct, we prompt GPT-4o a second time to back-translate the mutated math problem
into Python by modifying the original question’s Python solution. The generated code must produce
an execution result that matches the ground truth answer of the mutated question. (Detailed prompts
are shown in Figure 14 and Figure 13 in Appendix B.)

2Due to potential noise from the automatic mutation process, we performed a human evaluation on the
mutated test set. We added the percentage of invalid examples in each mutation category to the top of each
accuracy bar as hashed blocks, assuming that if these QA pairs were correct, the models would answer them
correctly. This provides an upper bound on the model’s performance. We also present a box plot (see Figure 7 in
Appendix B) to illustrate the statistical accuracy across 10 sets of samples.

3We account for commonsense numerical facts, such as one year = 12 months, and one hour = 60 minutes.

6



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

To verify the accuracy of the mutated QA pairs, we manually reviewed 50 randomly selected examples
from each mutation type. Valid examples are the ones that contain a clearly defined question and
a correct ground-truth answer. The percentage of invalid QA pairs in SampleValues, UselessInfo,
CounterFactual, AddDependence, and InsertConditional were 3.33%, 0.00%, 6.67%, 5.00%, and
5.00%, respectively.

4.2 REASONING ON NUMERICAL MATH QA

In line with previous studies, during testing, all models are provided with 8 in-context examples
with Chain-of-Thought (CoT) to help them understand the task (prompt shown in Figure 15 in
Appendix B).4 We evaluate models from three popular families—Phi, Llama, and GPT (see Table 3
in Appendix A for details).

The answer accuracies are presented in Figure 2, with the percentage of invalid mutated examples in
each mutation category displayed as a hashed block above each bar. By assuming that models would
correctly answer these questions if the QA pairs were valid, this estimation serves as an upper bound
on the model performance.

Key findings are: (1) With 8-shot in-context examples, most of the models achieve high accuracy
(∼ 95%) on the Level-1 raw test set. (2) Among Level-2 mutations, UselessInfo is less challeng-
ing—especially for larger models—indicating their ability to ignore irrelevant details. However,
nearly all models experience around 10% accuracy drop on SampleValues, despite unchanged rea-
soning paths and only altered values. (3) Level-3 mutations pose a greater challenge, with models
showing significantly lower upper-bound performance than on Level-1 and 2 test sets.

We also conduct ablation experiments to study the impact of in-context examples (Appendix B.2) and
examine performance on test set variations containing multiple mutations (Appendix B.3). We found
that most models perform significantly better on the generated test set variations when provided with
both original and mutated examples, compared to using only original GSM8K examples or only
mutated examples as in-context examples. Composing mutations increases performance gap between
the mutated sets and the original set.

4.3 REASONING EVALUATION WITH BINARY COUNTERFACTUALS

Bi-CounterFactual as described in Section 3.2 creates two auxiliary nodes in the computation graph
with binary versions of a condition and an outcome. The reason for considering this problem transfor-
mation is that it allow us to compute metrics that are relevant to evaluate reasoning beyond accuracy.
As shown in González & Nori (2024); Hüyük et al. (2024), this scenario enables the computation of
the probabilities of necessity (PN) and sufficiency (PS) from the counterfactual literature (Pearl et al.,
2000). Intuitively, these measures capture the probability of activating/deactivating a binary outcome
in the presence/absence of a binary input. Although this restricts our analysis to the simplified
(binarized) version of the GSM8k introduced by the Binary Counterfactual mutations, we compute
these metrics due to their intrinsic value. The ground truth PN and PS vary across problems and
nodes. To give a benchmark-level measure of how well different models approximate them, we
use the necessity and sufficiency inconsistency rates (N-IR, S-IR) introduced in Hüyük et al. (2024),
which account for the errors in the approximation of these measures in a normalized way (an optimal
reasoning LLMs is one with N-IR = 0 and S-IR = 0).5

Figure 3 shows the average S-IR and N-IR for all models across 50 random examples. Consistent
with the numerical accuracy evaluation, GPT-o1 remains the best-performing model, while Llama 8B
models, GPT-3.5, and GPT-4 are at the other end of the spectrum. However, GPT-4o and Llama 70B
outperform phi3-small and phi3-mini in the causal reasoning evaluation.

4We follow this blog post to strengthen our prompt.
5Because obtaining N-IR and S-IR is computationally expensive, we used 50 questions from the validation

set of the benchmark, where the condition node was randomly sampled across the available leaf nodes. To obtain
these results, we follow the same experimental setup as in Hüyük et al. (2024).

7

https://andrewmayne.com/2024/10/18/can-you-dramatically-improve-results-on-the-latest-large-language-model-reasoning-benchmark-with-a-simple-prompt/


Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 3: Sufficiency/necessity inconsistency
rates (S-IR/N-IR) on GSM8K factual/coun-
terfactual test set. Models located near the
bottom-left corner are thought to predict the
causal relationship between the cause and ef-
fect, i.e. sufficient and necessary, in a way
that is consistent with the true causal relation-
ship, as defined by the ground truth.

Figure 4: Left: An example from CLadder test set
and its CounterFactual mutation. Right: CLadder
accuracy of the best-performing model in each
family on causal question answering across test set
variations at different reasoning levels. The full
results can be found in Figure 18 in Appendix C.
UnRelatedIrrelevantInfo and RelatedIrrelevantInfo
are categorized as UselessInfo per Figure 1.

4.4 SIMILAR FINDINGS ON CLADDER

To confirm that our findings in GSM8K generalize to other math reasoning benchmarks, we use the
transformation pipeline (Section 3) to automatically generate three test set variations for CLadder, a
causal reasoning benchmark. We examine three mutations UnRelatedIrrelevantInfo, RelatedIrrel-
evantInfo, and CounterFactual, with the first two classified under UselessInfo (see Figure 1 and
Section 3.2). Details on the benchmark, implementation, LLM prompts, and mutation specifics are
provided in Appendix C. The accuracy of the best-performing model in each family is shown in
Figure 4. Similar to our observations in GSM8K, Level-3 mutations present a greater challenge than
Level-2, causing models to exhibit an approximately 20% drop in accuracy relative to the original
test set. Models exhibit lower accuracy on test set variations composed of two types of mutations
(Figure 18 in Appendix C).

5 CODE BENCHMARKS: CRUXEVAL AND LOOP

We investigate two code understanding tasks: input/output prediction (CRUXEval) and automatic
inference of loop invariants (Loop).

The CRUXEval benchmark (Gu et al., 2024) consists of 800 short LLM-generated Python functions
alongside an input-output pair for each function (see Figure 5 for an example). The model’s task
is to predict the output of the function when evaluated on a given input parameter. Functions are
filtered to include only those with low computation and memory requirements, with no side-effects or
randomization, and excluded arithmetic calculation.

The Loop benchmark (Kamath et al., 2024) contains 408 inference tasks, each of which consists of a
program with a loop and an assertion (see Figure 6 for an example). The goal is to infer a predicate
that satisfies the following three conditions: it holds before the loop starts executing, holds for each
iteration of the loop, and implies the assertion when the loop exits.6 The model succeeds on the task
if Frama-C (Correnson et al.) verifies via SMT solvers (de Moura & Bjørner, 2008) that the LLM
output is a loop invariant, and fails otherwise (details in Appendix E).

Since both tasks are already programs, steps 1⃝ and 3⃝ of the pipeline are not required.

5.1 SYMBOLIC MUTATIONS TO CRUXEVAL 2⃝

6Although inferring such loop invariants is undecidable, in practice, checking whether a given candidate
invariant satisfies the three conditions can be done well by automated tools like Frama-C (Correnson et al.).

8



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 5: Left: An example from CRUXEval
dataset and the Level-2 and Level-3 versions
of its MutateValue mutation. Right: CRUXE-
val accuracy of the best-performing model in
each family. For full results, see Figure 20 of
Appendix D.

Each CRUXEval mutation can be applied either di-
rectly to the function code (Level-2), or presented as
a code diff in an “imagine” statement following the
original code (Level-3). The Level-2 versions, in par-
ticular, are designed to have minimal effect on code
length, execution time, and overall question difficulty.
Table 5 in Appendix D shows the different types of
mutations implemented for CRUXEval, summarized
below.

Replace Operator replaces an operator of type
ast.BinOp, ast.UnaryOp, ast.BoolOp, or
ast.AugAssign with its inverse or negation,
where applicable. Mutate String replaces a string
instance with a uniformly random, same-length char-
acter sequence. Mutate Value changes the value of
an instance of type bool, int, or float. Booleans
are replaced with their negations; integers and floats
are perturbed by a uniformly random nonzero inte-
ger or float (respectively) in [−10, 10]. Swap Con-
ditional selects a random conditional node for modification. If both an if and else branch are
present, the code body for each branch is swapped. If only an if branch is present, the condition of
the branch is negated. Redefine Function defines a wrapper for a random non-attribute function, and
replaces a call to the original function with a call to the wrapper.

A subsequent validation pass permits only code which terminates and returns a value within 5 seconds
without errors. Code transformations for CRUXEval are deterministic, since for any validated
program, the output of the code on the provided inputs is taken to be ground truth. See Appendix D
for additional implementation detail.

5.2 SYMBOLIC MUTATIONS TO LOOP 2⃝

Figure 6: Left: An example from Loop
dataset and its Read Original mutation. Right:
Loop concise results – accuracy of the best-
performing model in each family. Full results
can be found in Figure 22 of Appendix E.

Compared to earlier benchmarks, applying substan-
tial mutations to Loop tasks is more challenging. Af-
ter changing the values of the program variables, loop
invariants can cease to exist. Hence, we limit our-
selves to Level-2 mutations that add irrelevant in-
formation in the form of additional variables and
operations, leaving the values of variables from the
original program unaffected. Table 6 of Appendix E
describes these mutations, summarized below.

Junk Hint adds five new variables junk_0,
junk_1, etc., to the program (Si et al., 2018). Before
the loop, they are initialized with randomly generated
constants. Within the loop body, each new variable is
updated with arithmetic expressions over randomly
generated constants and the new variables. Junk No-
Hint assigns names to the new variables that resemble
those in the original program. This aims to prevent
LLMs from identifying variables with junk in their name as unnecessary. Read Original reads the
original variables of the code into the newly introduced ones. Original variables and operators are
randomly sampled and added to new variables. Write Original introduces superficial additional writes
to the original variables, i.e. they leave the values taken by these variables at runtime unaffected.
For a new variable y, existing variables are incremented by an identically zero polynomial f(y).
To further obscure the underlying identity, polynomial coefficients are decomposed and rearranged.
X-Original applies both Read and Write Original.

9



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Although mutated programs are syntactically larger, all mutations described above have the property
that the loop invariant of the original program is also a valid loop invariant for the mutated program.

5.3 MODEL PERFORMANCE

Zero-shot accuracy on CRUXEval tasks are summarized in Figure 5. 7 Overall, accuracy scores
decrease for both Level-2 and Level-3 mutations compared with factual problems, with Level-3
posing the greatest challenge. The drop in performance on Level-2 mutations is a particularly
strong indication of memorization effects from benchmark leakage, as these mutations intentionally
introduce minimal change to the execution complexity and corresponding code understanding skills.
Notably, the original CRUXEval benchmark is publicly available and LLM-generated, both of which
provide potential leakage pathways.

Evaluations on Loop tasks are summarized in Figure 6 (for evaluation with all models, see Figure 22 in
Appendix E). Smaller models show performance degradation on introducing junk named variables.
The performance decline from “Junk Hint” to “Junk No-Hint” shows that LLMs use variable names
as semantic cues. The “X-Original” mutation confuses all models and significantly degrades their
success rates compared to the original tasks.

6 DISCUSSION

This work presents a novel framework, RE-IMAGINE, designed to assess the reasoning capabilities
of LLMs through the systematic generation of challenging problem variations. Our findings reveal
a consistent decline in model performance as reasoning complexity increases across all evaluated
benchmarks. On our mutated GSM8K benchmark, we find that the overall performance of all LLMs
degrades with increasing ladder levels. The o1 model shows greater robustness on this benchmark
and achieves the best performance among all tested models on bi-counterfactuals. However, even the
most powerful models struggle with structured problem variations, particularly when these variations
are combined. Similar results were observed on our mutated CLadder benchmark.

Additionally, we successfully applied RE-IMAGINE to mutate code benchmarks Loop and CruxEval.
Despite the mutations being designed to have minimal effect on code length, execution time, and
overall question difficulty, a substantial decline in performance is again observed across models and
problem variations. This lends additional evidence that these models struggle with higher levels of
the reasoning hierarchy, suggesting that gaps in their capabilities may be hidden by effects such as
memorization and benchmark leakage.

RE-IMAGINE provides a systematic framework to assess and expose these weaknesses, highlighting
the need for more rigorous evaluation strategies. Expanding RE-IMAGINE to broader domains could
further enhance our understanding of reasoning capabilities and limitations of LLMs. Our hope is
for RE-IMAGINE to provide a foundational framework for a more nuanced evaluation of LLMs and
encourage the development of more robust reasoning models.

REFERENCES

Hichem Rami Ait El Hara, Guillaume Bury, and Steven de Oliveira. Alt-Ergo-Fuzz: A fuzzer for
the Alt-Ergo SMT solver. In Chantal Keller and Timothy Bourke (eds.), Journées Francophones
des Langages Applicatifs, pp. 235–244, Saint-Médard-d’Excideuil, France, June 2022. URL
https://inria.hal.science/hal-03626861.

Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim
King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer
(eds.), Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pp.

7Each mutation type applies only to a subset of the questions in CRUXEval, so we also evaluate performance
on each mutation with respect to the corresponding (factual) subset of problems (see Figure 21 in Appendix D).

10

https://inria.hal.science/hal-03626861


Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

171–177. Springer, 2011. doi: 10.1007/978-3-642-22110-1\ 14. URL https://doi.org/
10.1007/978-3-642-22110-1_14.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Francois Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical
report, 2025. URL https://arxiv.org/abs/2412.04604.

François Chollet, Mike Knoop, Gregory Kamradt, and Bryan Landers. Arc prize 2024: Technical
report. arXiv preprint arXiv:2412.04604, 2024.

Karl Cobbe, Vineet Kosaraju, Jacob Hilton, and John Schulman. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168, 2021.

Loı̈c Correnson, Pascal Cuoq, Florent Kirchner, André Maroneze, Virgile Prevosto, Armand Puccetti,
Julien Signoles, and Boris Yakobowski. Frama-C User Manual. URL http://frama-c.com/
download/frama-c-user-manual.pdf.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis of Systems, pp.
337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli Järviniemi,
Matthew Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla, Qiuyu Ren, Elizabeth Pratt, Lionel
Levine, Grant Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana Grechuk, Shreepranav Varma
Enugandla, and Mark Wildon. Frontiermath: A benchmark for evaluating advanced mathematical
reasoning in AI, 2024. URL https://arxiv.org/abs/2411.04872.

Javier González and Aditya V. Nori. Does reasoning emerge? examining the probabilities of causation
in large language models. In Advances in Neural Information Processing Systems (NeurIPS), 2024.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-model approach. Part I:
Causes. The British journal for the Philosophy of Science, 2005.

Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

Keith J. Holyoak and Robert G. Morrison (eds.). The Cambridge Handbook of Thinking and
Reasoning. Cambridge University Press, Cambridge, England, 2005. ISBN 9780521824170.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, pp. 1049–1065, Toronto, Canada, jul 2023. Association for
Computational Linguistics.

Alihan Hüyük, Xinnuo Xu, Jacqueline Maasch, Aditya V. Nori, and Javier González. Reasoning
elicitation in language models via counterfactual feedback, 2024. URL https://arxiv.org/
abs/2410.03767.

Aaron Jaech, Adam Kalai, Adam Lerer, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

11

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://arxiv.org/abs/2412.04604
http://frama-c.com/download/frama-c-user-manual.pdf
http://frama-c.com/download/frama-c-user-manual.pdf
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2410.03767
https://arxiv.org/abs/2410.03767


Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fernando
Gonzalez, Max Kleiman-Weiner, Mrinmaya Sachan, and Bernhard Schölkopf. CLadder: Assessing
causal reasoning in language models. In NeurIPS, 2023a. URL https://openreview.net/
forum?id=e2wtjx0Yqu.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng LYU, Kevin
Blin, Fernando Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, and Bernhard
Schölkopf. Cladder: Assessing causal reasoning in language models. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 31038–31065. Curran Associates, Inc.,
2023b. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/631bb9434d718ea309af82566347d607-Paper-Conference.pdf.

A. Kamath, N. Mohammed, A. Senthilnathan, S. Chakraborty, P. Deligiannis, S. K. Lahiri, A. Lal,
A. Rastogi, S. Roy, and R. Sharma. Leveraging llms for program verification. In FMCAD, 2024.
URL http://hdl.handle.net/20.500.12708/200783.

Ravi Sudhakar Kambhampati, Tansie Iwafuchi, and Sindhu Dasaka. Phi-3: A family of small open
models. Microsoft AI Research, 2024. Pre-release information.

Martha Lewis and Melanie Mitchell. Evaluating the robustness of analogical reasoning in large
language models. arXiv preprint arXiv:2411.14215, 2024.

Zenan Li, Zhi Zhou, Yuan Yao, Yu-Feng Li, Chun Cao, Fan Yang, Xian Zhang, and Xiaoxing Ma.
Neuro-symbolic data generation for math reasoning, 2024. URL https://arxiv.org/abs/
2412.04857.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Melanie Mitchell and David C. Krakauer. The debate over understanding in ai’s large language
models. Proceedings of the National Academy of Sciences, 120(13):1–15, 2023. doi: 10.1073/
pnas.2215907120.

Leland Gerson Neuberg. Causality: models, reasoning, and inference, by judea pearl, cambridge
university press, 2000. Econometric Theory, 19(4):675–685, 2003.

OpenAI. Early access for safety testing, December 2024. https://openai.com/index/
early-access-for-safety-testing/.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge,
England, 2nd edition, 2009. ISBN 9780521895606.

Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress, 19
(2):3, 2000.

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning loop invariants
for program verification. In NeurIPS 2018, 2018.

Abhinav Srivastava, Jason Wei, Heewoo Jun, et al. Beyond the imitation game: Quantifying and
extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615, 2022.

Saurabh Srivastava, Anto PV, Shashank Menon, Ajay Sukumar, Alan Philipose, Stevin Prince, Sooraj
Thomas, et al. Functional benchmarks for robust evaluation of reasoning performance, and the
reasoning gap. arXiv preprint arXiv:2402.19450, 2024.

DeepSeek AI Team. Deepseek-r1: A comprehensive reasoning model. DeepSeek AI Research, 2025.
URL https://github.com/deepseek-ai/DeepSeek-R1. Available on GitHub.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
Openmathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint arXiv: Arxiv-
2402.10176, 2024.

12

https://openreview.net/forum?id=e2wtjx0Yqu
https://openreview.net/forum?id=e2wtjx0Yqu
https://proceedings.neurips.cc/paper_files/paper/2023/file/631bb9434d718ea309af82566347d607-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/631bb9434d718ea309af82566347d607-Paper-Conference.pdf
http://hdl.handle.net/20.500.12708/200783
https://arxiv.org/abs/2412.04857
https://arxiv.org/abs/2412.04857
https://openai.com/index/early-access-for-safety-testing/
https://openai.com/index/early-access-for-safety-testing/
https://github.com/deepseek-ai/DeepSeek-R1


Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothee
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language
models still can’t plan (a benchmark for llms on planning and reasoning about change). In NeurIPS
2022 Foundation Models for Decision Making Workshop, 2022.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. arXiv preprint arXiv:1905.00537, 2019.

Taylor Webb, Shanka Subhra Mondal, and Ida Momennejad. Improving planning with large language
models: A modular agentic architecture. arXiv preprint arXiv:2310.00194, 2024.

Laura Weidinger, John Mellor, Maribeth Rauh, et al. Ethical and social risks of harm from language
models. arXiv preprint arXiv:2112.04359, 2021.

Haoze Wu, Clark W. Barrett, and Nina Narodytska. Lemur: Integrating large language models in
automated program verification. In ICLR, 2024.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations of
language models through counterfactual tasks. arXiv preprint arXiv:2307.02477, 2023.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey on
scaling llm reasoning capabilities. arXiv preprint arXiv:2501.09686, 2025.

Linying Yang, Vik Shirvaikar, Oscar Clivio, and Fabian Falck. A critical review of causal reasoning
benchmarks for large language models. In AAAI 2024 Workshop on”Are Large Language Models
Simply Causal Parrots?”, 2024.

Zhehao Zhang, Jiaao Chen, and Diyi Yang. Darg: Dynamic evaluation of large language models via
adaptive reasoning graph, 2024.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin,
Ji-Rong Wen, and Jiawei Han. Don’t make your llm an evaluation benchmark cheater. arXiv
preprint arXiv:2311.01964, 2023.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval:
Dynamic evaluation of large language models for reasoning tasks. In The Twelfth International
Conference on Learning Representations, 2023.

13



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A APPENDIX: LANGUAGE MODEL DETAILS

Models Details #Parameters Pre-train Size (tokens)

Phi-3 mini microsoft/Phi-3-mini-128k-instruct 3.8B 4.9T
Phi-3.5 mini microsoft/Phi-3.5-mini-instruct 3.8B 3.4T
Phi-3 small microsoft/Phi-3-small-128k-instruct 7B 4.8T
Phi-3 medium microsoft/Phi-3-medium-128k-instruct 14B 4.8T
Phi-4 microsoft/phi-4 14B 9.8T

Llama 2 meta-llama/Llama-2-7b-chat-hf 7B 2T
Llama 3 meta-llama/Meta-Llama-3-8B-Instruct 8B 15T
Llama 3.1 meta-llama/Meta-Llama-3.1-8B-Instruct 8B 15T
Llama 3.3 (70B) meta-llama/Meta-Llama-3.3-70B-Instruct 8B 15T
Llama 3 (70B) meta-llama/Meta-Llama-3-70B-Instruct 70B 15T

GPT-3.5 gpt-35-turbo 1106 175B –
GPT-4 gpt-4-32k 0613 – –
GPT-4o gpt-4o 2024-08-06 – –
GPT-o1 o1-preview 2024-09-12 – –

Table 3: Details of LLMs used in this work.

B APPENDIX: GSM8K DETAILS

B.1 STATISTICAL ACCURACY ON GSM8K AND ITS VARIATIONS

Figure 7: The statistical accuracy of models on GSM8K numerical answer predictions is evaluated
across different mutated test sets at varying reasoning levels (see Section 3.2 and Figure 1). To
generate this plot, we randomly select 150 examples from the pool of examples eligible for all
mutations, excluding Bi-CounterFactual. We then create 10 test variations for each mutation by
sampling with 10 different seeds. All models are independently tested on these 10 variations, and the
resulting accuracies are used to generate the bar plot. During testing, each model is prompted with 8
raw examples along with their Chain-of-Thought (CoT) process. Our observations are as follows: (1)
All models show significant accuracy variability when tested on mutated test sets, particularly on
variations with Level-3 mutations; (2) For all models, the average performance on the mutated sets is
notably lower than on the original GSM8K test set (as indicated by the dashed line). Moreover, for
most test set variations with Level-3 mutations, even the accuracy on the most beneficial sample set
falls below the accuracy of the original GSM8K test. This suggests that a single sentence mutation
altering the computational logic of the original math question may severely impact the models’
performance.

14



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

B.2 THE INFLUENCE OF IN-CONTEXT EXAMPLES

In this section, we examine the impact of in-context examples on the model’s reasoning ability.

First, we aim to investigate whether providing the model with only mutated examples can improve its
reasoning performance on the generated test set variations. During testing, all models are provided
with seven mutated examples with amended CoT process, each from a different type of mutation
(including two additional mutations beyond those discussed in Section 3.2 and Figure 1). Figure 16
shows one detailed prompt. Figure 8 presents the results, indicating that the models exhibit behavior
highly similar to when original GSM8K examples are used as in-context examples (see Figure 2).

Next, we investigate whether providing the model with both the original example and its mutated
variations can enhance its reasoning performance on the generated test set variations. During testing,
all models receive seven in-context examples. Each example consists of an original GSM8K question
and its answer, followed by a mutated version of the question along with the corresponding CoT
solution and answer. These examples cover different types of mutations, including two additional
mutations beyond those discussed in Section 3.2 and Figure 1. To maintain consistency with the
in-context example format, we also include the original question and its answer for the final mutated
question that the model is expected to answer. Figure 17 illustrates a detailed example of the prompt,
while Figure 9 presents the results. The findings indicate that most models perform significantly
better on the generated test set variations when provided with both original and mutated examples,
compared to using only original GSM8K examples (Figure 2) or only mutated examples (Figure 16)
as in-context examples.

To visualize the comparison, we summarize model performance across two dimensions: the average
accuracy across all six test sets, as in the left bar plot (x-axis), and the standard deviation in accuracy
on the five mutated test sets w.r.t. the raw test set (y-axis). The bottom-right corner reflects the
ideal balance of high performance on both raw and mutated sets. In this way, we consolidate model
performance across these three different in-context example scenarios in Figure 10 and illustrate how
to interpret the plot using the Llama3 model as an example.

Figure 8: GSM8K: Detailed accuracy for all models in the Phi, Llama, and GPT families. All models
are prompted with 7 mutated in-context examples. Check Figure 16 for the detailed prompt. Due
to potential noise from the automatic mutation process, we performed a human evaluation on the
mutated test set. We added the percentage of invalid examples in each mutation category to the top
of each accuracy bar, assuming that if these QA pairs were correct, the models would answer them
correctly. This provides an upper bound on the model’s performance.

B.3 COMPOSITION OF MUTATIONS

The defined Ladder of reasoning hierarchy (Section 2) and the automatic variation generation pipeline
(Section 3), open the possibility of combining multiple mutations to create challenging test set
variations. In this section, we combine the SampleValues mutation from Level-2 with the remaining
four mutations (excluding Bi-CounterFactual) to create four test set variations, each containing two
types of mutations. The models’ accuracy can be find in Figure 11.

To visualize the comparison, similar to Figure 10 in Appendix B.2, we summarize model performance
along two dimensions: the average accuracy across all test sets and the standard deviation in accuracy

15



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 9: GSM8K: Detailed accuracy for all models in the Phi, Llama, and GPT families. All models
are prompted with 7 paired raw and the corresponding mutated in-context examples. Check
Figure 17 for the detailed prompt. The missing Llama-2 experiments are due to its failure to follow
instructions and produce correctly formatted answers.

Figure 10: GSM8K: Visualization comparing model performance when prompted with different
types of in-context examples. We summarize model performance across two dimensions: the average
accuracy across all six test sets, as in the left bar plot (x-axis), and the standard deviation in accuracy
on the five mutated test sets w.r.t. the raw test set (y-axis). The bottom-right corner reflects the ideal
balance of high performance on both raw and mutated sets. In this plot, dots indicate models prompted
only with original examples, crosses represent models prompted only with mutated examples, and
triangles denote models prompted with both original and corresponding mutated examples. Model
structures are differentiated by color, with the same structure represented by the same color.

on the mutated test sets relative to the raw test set. We combine model performance on test set
variations with a single mutation and those with two mutations in Figure 12. As observed, all models
exhibit lower average accuracy on test variations containing two mutations compared to those with a
single mutation. The increased standard deviation of accuracy w.r.t. the original test set suggests that
composing mutations expands the performance gap between the mutated sets and the original set.

16



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 11: GSM8K: Detailed accuracy for all models in the Phi, Llama, and GPT families. All models
are prompted with 8 original in-context examples. However, with the exception of SampleValues, all
other mutations are combined with SampleValues to create even more challenging test set variations.

Figure 12: GSM8K: Visualization comparing model performance on test set variations with one or
two mutations. We summarize model performance across two dimensions: the average accuracy
across all six test sets, as in the left bar plot (x-axis), and the standard deviation in accuracy on the five
mutated test sets w.r.t. the raw test set (y-axis). The bottom-right corner reflects the ideal balance of
high performance on both raw and mutated sets. In this plot, dots represent models’ accuracy on test
sets with a single mutation, while crosses indicate their accuracy on sets containing two mutations.
Model structures are differentiated by color, with the same structure represented by the same color.

Figure 13: Prompts used in GSM8K quality control. We prompt the LLM to back-translate the
mutated math problem into Python by modifying the original question’s Python solution. The
generated code must produce an execution result that matches the ground truth answer of the mutated
question.

17



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 14: Prompts used in GSM8K mutated symbolic representation to natural language.

18



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 15: Prompts used in GSM8K testing. The prompt contains 8 raw in-context examples.

19



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 16: Prompts used in GSM8K testing. The prompt contains 7 in-context examples demonstrat-
ing different types of mutations.

20



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 17: Prompts used in GSM8K testing. The prompt contains 7 in-context examples. Each
example contains a raw question and answer, with the corresponding mutated question and chain-of-
thought fo the mutated question, with the final answer. The 7 examples are demonstrating different
types of mutations.

21



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

C APPENDIX: CLADDER DETAILS

C.1 BENCHMARK DETAILS

The CLadder dataset (Jin et al., 2023b) provides a systematic evaluation of causal reasoning abilities in
LLMs. It consists of 10,000 causal graphs of binary variables (i.e., Bernoulli conditional distributions)
that encompass common treatment-effect estimation scenarios, such as confounding, mediation, and
collisions. Each causal graph is associated with multiple queries, spanning the three levels of Pearl’s
ladder of causation: associational, interventional, and counterfactual. Each dataset example includes
(1) a causal graph, (2) a query, (3) a causal engine that computes over the casual graph and the query
to get a binary answer, and (4) a template-based formulation that translates the causal graph and
the query into a natural language question for the LLM to interface with. The benchmark evaluates
models’ causal reasoning abilities by requiring them to (1) extract causal concepts from natural
language and (2) apply causal inference (either implicitly or explicitly) over the causal concepts, such
as do-calculus, to calculate the final answer.

C.2 PIPELINE DETAILS

C.2.1 QUESTION TO SYMBOLIC REPRESENTATION 1⃝

Filtering: We begin with a filtering pass of the 10,000 examples in CLadder, removing all examples
corresponding to query types ‘backdoor adjustment’ and ‘collider bias’ (in total 1,747 examples).
The former was filtered due to the inherent complexity of the python it would require, and the latter
because it is only present for one type of causal graph structure. This leaves 8,365 examples from
CLadder after filtering.

Parser: Next, we develop a parser to automatically translate these examples into Python code
with the help of the causal engine provided by CLadder. The parser determines the query type
from the meta data in the CLadder examples, and extracts the relevant variables from the natural
language questions. For every query type, causal graph, and estimand, the parser generates a snippet
of executable Python code which computes the estimand.

Validation: To check that the NL to Python code parser is successful, after conversion of the
examples, we execute the Python code and compare the computed estimand value with its ground-
truth in CLadder. 60 examples showed a discrepancy, leaving us with 8,305 examples (99.34%
coverage of parsed examples).

C.2.2 SYMBOLIC MUTATIONS 2⃝ AND MUTATED SYMBOLIC REP TO NL 3⃝

To examine the robustness of LLMs in handling variations in question phrasing and irrelevant
information, we include two key mutations:

• UselessInfo: We add extraneous information at two levels. (i) RelatedIrrelevantInfo: With
Meta-Llama 70B Instruct, we generate two sentences for each question that are semantically
related but causally irrelevant. (ii) UnrelatedIrrelevantInfo: We prepend the natural language
description from a randomly selected CLadder example to the beginning of each question,
ensuring that the added sentences remain semantically irrelevant to prevent ambiguity. Both
RelatedIrrelevantInfo and UnrelatedIrrelevantInfo describe Level-2 mutations.

• CounterFactual: We modify the probability values in the original question by intro-
ducing a counterfactual assumption, such as: “Suppose the probability of <Event> is
<new-value> instead.”. To generate the ground-truth answer for the counterfactual ques-
tion, we update the corresponding probability of the conditional distribution in Python code
and execute it. CounterFactual is a Level-3 mutation.

22



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

In Table 4, we provide an example for each type of mutation. Additionally, we generate two more
test set variations by combining the CounterFactual mutation with each UselessInfo mutation. The
full results are shown in Figure 18.

Figure 18: CLadder: Detailed accuracy for models in the Phi, Llama, and GPT families.

23



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Mutation
type

Problem and Bayesian Network Probability distributions Code

Original For husbands that don’t set the alarm
and wives that don’t set the alarm,
the probability of ringing alarm is
8%. For husbands that don’t set
the alarm and wives that set the
alarm, the probability of ringing
alarm is 54%. For husbands that set
the alarm and wives that don’t set
the alarm, the probability of ring-
ing alarm is 41%. For husbands
that set the alarm and wives that set
the alarm, the probability of ring-
ing alarm is 86%. For husbands that
don’t set the alarm, the probability
of alarm set by wife is 74%. For hus-
bands that set the alarm, the proba-
bility of alarm set by wife is 24%.
If we disregard the mediation effect
through wife, would husband posi-
tively affect alarm clock?

H

W A

H (husband sets alarm)
W (wife sets alarm)
A (alarm rings)

P (A = 1|H = 0,W = 0) = .08
P (A = 1|H = 0,W = 1) = .54
P (A = 1|H = 1,W = 0) = .41
P (A = 1|H = 0,W = 0) = 86
P (W = 1|H = 0) = .74
P (W = 1|H = 1) = .24

Estimand:

E[YX=1,V 2=0 − YX=0,V 2=0]

=
∑

V 2=v

P (V 2 = v|X = 0)·

[P (Y = 1|X = 1, V 2 = v)

− P (Y = 1|X = 0, V 2 = v)]

# Probabilities
p_a_given_not_h_not_w = 0.08
p_not_a_given_not_h_not_w = 1 -

p_a_given_not_h_not_w
p_a_given_not_h_w = 0.54
p_not_a_given_not_h_w = 1 - p_a_given_not_h_w
p_a_given_h_not_w = 0.41
p_not_a_given_h_not_w = 1 - p_a_given_h_not_w
p_a_given_h_w = 0.86
p_not_a_given_h_w = 1 - p_a_given_h_w
p_w_given_not_h = 0.74
p_not_w_given_not_h = 1 - p_w_given_not_h
p_w_given_h = 0.24
p_not_w_given_h = 1 - p_w_given_h

# For W = 0
term_0 = p_not_w_given_not_h * (

p_a_given_h_not_w - p_a_given_not_h_not_w
)

# For W = 1
term_1 = p_w_given_not_h * (p_a_given_h_w -

p_a_given_not_h_w)

# Final sum
result = term_0 + term_1
if result > 0:

print("yes")
else:

print("no")

CounterFactual For husbands that don’t set the
alarm and wives that don’t set the
alarm [...] the probability of alarm
set by wife is 24%. Assume that
the probability of the alarm ringing,
if both the husband and the wife
don’t set the alarm, changes to
25%. If we disregard the mediation
effect through wife, would husband
positively affect alarm clock?

H

W A

P(A = 1|H = 0,W = 0) = .25
P (A = 1|H = 0,W = 1) = .54
P (A = 1|H = 1,W = 0) = .41
P (A = 1|H = 0,W = 0) = 86
P (W = 1|H = 0) = .74
P (W = 1|H = 1) = .24

# Probabilities
p a given not h not w = 0.25
p_not_a_given_not_h_not_w = 1 -

p_a_given_not_h_not_w
p_a_given_not_h_w = 0.54
p_not_a_given_not_h_w = 1 - p_a_given_not_h_w
p_a_given_h_not_w = 0.41
p_not_a_given_h_not_w = 1 - p_a_given_h_not_w
p_a_given_h_w = 0.86
p_not_a_given_h_w = 1 - p_a_given_h_w
p_w_given_not_h = 0.74
p_not_w_given_not_h = 1 - p_w_given_not_h
p_w_given_h = 0.24
p_not_w_given_h = 1 - p_w_given_h

# For W = 0
term_0 = p_not_w_given_not_h * (

p_a_given_h_not_w - p_a_given_not_h_not_w
)

# For W = 1
term_1 = p_w_given_not_h * (p_a_given_h_w -

p_a_given_not_h_w)

# Final sum
result = term_0 + term_1
if result > 0:

print("yes")
else:

print("no")

IrrelevantInfo For husbands that don’t set the
alarm and wives that don’t set the
alarm [...] the probability of alarm
set by wife is 24%. Assume that
the probability of the kids going
to school each day is 80%. If
we disregard the mediation effect
through wife, would husband
positively affect alarm clock?

H

W A

X

Y

Z

K (kids to school)

P (A = 1|H = 0,W = 0) = .25
P (A = 1|H = 0,W = 1) = .54
P (A = 1|H = 1,W = 0) = .41
P (A = 1|H = 0,W = 0) = 86
P (W = 1|H = 0) = .74
P (W = 1|H = 1) = .24

(identical to original)

Table 4: Mutations in RE-IMAGINE for the CLadder dataset.

24



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

In Table 4, in the Bayesian network, gray nodes indicate a variable whose probability mass function
(conditional on variables from incoming edges) has been intervened on or added as part of the
mutation. The probability distributions for the irrelevant graph in IrrelevantInfo are not stated. Note
that the probability of the positive event specifies the full conditional distribution since all distributions
are Bernoulli (e.g. P (A = 1|H = 0,W = 0) = 0.08 =⇒ P (A = 0|H = 0,W = 0) = 0.92).

C.3 PROMPTS FOR MUTATED QUESTIONS

Below are illustration of NL prompts for our mutations on CLadder. We highlight parts of the original
question in red, and the mutated natural language in blue. The prompt consists of the System prompt
(stated first below), followed by a mutation-specific prompt (stated thereafter).

System Prompt We use the following system prompt throughout the evaluation.

You are an expert at causal inference and reasoning. You will be given a question and
you must answer with "yes" or "no" only.

Related UselessInfo

Imagine a self-contained, hypothetical world with only the following conditions, and
without any unmentioned factors or causal relationships: The probability of the
husband being awake when the wife sets the alarm is 85%. If the husband sets the
alarm, the probability of the wife being in a good mood is 73%. Husband has a direct
effect on wife and alarm clock. Wife has a direct effect on alarm clock.
For husbands that don’t set the alarm and wives that don’t set the alarm, the
probability of ringing alarm is 11%. For husbands that don’t set the alarm and wives
that set the alarm, the probability of ringing alarm is 60%. For husbands that set the
alarm and wives that don’t set the alarm, the probability of ringing alarm is 46%. For
husbands that set the alarm and wives that set the alarm, the probability of ringing
alarm is 92%. For husbands that don’t set the alarm, the probability of alarm set by
wife is 61%. For husbands that set the alarm, the probability of alarm set by wife is
1%.
Does husband positively affect alarm clock through wife?

Unrelated UselessInfo

Imagine a self-contained, hypothetical world with only the following conditions, and
without any unmentioned factors or causal relationships: The man in the room has a
direct effect on room. The candle has a direct effect on room.The overall probability
of blowing out the candle is 68%. The probability of not blowing out the candle and
dark room is 12%. The probability of blowing out the candle and dark room is 51%.
Imagine a self-contained, hypothetical world with only the following conditions, and
without any unmentioned factors or causal relationships: Husband has a direct effect
on wife and alarm clock. Wife has a direct effect on alarm clock.
For husbands that don’t set the alarm and wives that don’t set the alarm, the
probability of ringing alarm is 8%. For husbands that don’t set the alarm and wives
that set the alarm, the probability of ringing alarm is 54%. For husbands that set the
alarm and wives that don’t set the alarm, the probability of ringing alarm is 41%. For
husbands that set the alarm and wives that set the alarm, the probability of ringing
alarm is 86%. For husbands that don’t set the alarm, the probability of alarm set by
wife is 74%. For husbands that set the alarm, the probability of alarm set by wife is
24%.
If we disregard the mediation effect through wife, would husband positively affect
alarm clock?"

CounterFactual

Imagine a self-contained, hypothetical world with only the following conditions, and
without any unmentioned factors or causal relationships: Husband has a direct effect
on wife and alarm clock. Wife has a direct effect on alarm clock.
For husbands that don’t set the alarm and wives that don’t set the alarm, the
probability of ringing alarm is 11%. For husbands that don’t set the alarm and wives
that set the alarm, the probability of ringing alarm is 60%. For husbands that set the
alarm and wives that don’t set the alarm, the probability of ringing alarm is 46%. For
husbands that set the alarm and wives that set the alarm, the probability of ringing
alarm is 92%. For husbands that don’t set the alarm, the probability of alarm set by
wife is 61%. For husbands that set the alarm, the probability of alarm set by wife is
1%.

25



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Suppose Probability of ringing alarm, given that alarm did not set by husband alarm set
by wife is 0.46.
Does husband positively affect alarm clock through wife?

Unrelated UselessInfo x CounterFactual

Imagine a self-contained, hypothetical world with only the following conditions, and
without any unmentioned factors or causal relationships: The man in the room has a
direct effect on room. The candle has a direct effect on room.The overall probability
of blowing out the candle is 68%. The probability of not blowing out the candle and
dark room is 12%. The probability of blowing out the candle and dark room is 51%.
Imagine a self-contained, hypothetical world with only the following conditions, and
without any unmentioned factors or causal relationships: Husband has a direct effect
on wife and alarm clock. Wife has a direct effect on alarm clock.
For husbands that don’t set the alarm and wives that don’t set the alarm, the
probability of ringing alarm is 11%. For husbands that don’t set the alarm and wives
that set the alarm, the probability of ringing alarm is 60%. For husbands that set the
alarm and wives that don’t set the alarm, the probability of ringing alarm is 46%. For
husbands that set the alarm and wives that set the alarm, the probability of ringing
alarm is 92%. For husbands that don’t set the alarm, the probability of alarm set by
wife is 61%. For husbands that set the alarm, the probability of alarm set by wife is
1%.
Suppose Probability of ringing alarm, given that alarm did not set by husband alarm set
by wife is 0.46.
Does husband positively affect alarm clock through wife?

Related UselessInfo x CounterFactual

Imagine a self-contained, hypothetical world with only the following conditions, and
without any unmentioned factors or causal relationships: The probability of the
husband being awake when the wife sets the alarm is 85%. If the husband sets the
alarm, the probability of the wife being in a good mood is 73%. Husband has a direct
effect on wife and alarm clock. Wife has a direct effect on alarm clock.
For husbands that don’t set the alarm and wives that don’t set the alarm, the
probability of ringing alarm is 11%. For husbands that don’t set the alarm and wives
that set the alarm, the probability of ringing alarm is 60%. For husbands that set the
alarm and wives that don’t set the alarm, the probability of ringing alarm is 46%. For
husbands that set the alarm and wives that set the alarm, the probability of ringing
alarm is 92%. For husbands that don’t set the alarm, the probability of alarm set by
wife is 61%. For husbands that set the alarm, the probability of alarm set by wife is
1%.
Suppose Probability of ringing alarm, given that alarm did not set by husband alarm set
by wife is 0.46.
Does husband positively affect alarm clock through wife?

C.4 PROMPTS FOR GENERATING IRRELEVANTINFO MUTATIONS

To generate the NL question for the IrrelevantInfo mutations, we use the following auxiliary
prompt. The template <question> refers to the part highlighted in red in the prompts stated
in Appendix C.3.

System Prompt to Generate Irrelevant Information

You are tasked with generating irrelevant probability statements to enhance causal
reasoning questions. These statements will be added to the beginning of the question,
right after the phrase: "Imagine a self-contained, hypothetical world with only the
following conditions, and without any unmentioned factors or causal relationships:"
The irrelevant probability statements must adhere to the following guidelines: They
should describe probabilities or conditional probabilities related to entities, actions,
or settings described in the question. The probabilities should be realistic and
plausible but should have no impact on the causal reasoning task or relationships
in the question. They must blend seamlessly into the hypothetical context without
introducing new causal relationships. They should add complexity to the question
but not distract from solving the core problem. Structure of Irrelevant Probability
Statements: Use probabilities or percentages (e.g., "The probability of X is
Y%"). Include conditional probabilities where appropriate (e.g., "If A occurs, the
probability of B is C%"). Ensure the statements align with the general tone of
hypothetical worlds while remaining inconsequential to the reasoning process. Your
Task: Generate two irrelevant probability statement for a given question. Ensure they
are consistent with the context, plausible, and add complexity without affecting the

26



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

causal reasoning. Focus on adhering to the structure and requirements outlined above.
You must ONLY give the two statements as output and nothing else. DO NOT start with
phrases like "Here are two irrelevant probability statements for the given question:"
<question>

27



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

D APPENDIX: CRUXEVAL DETAILS

D.1 MUTATIONS

We summarize the mutation types implemented for CRUXEval in Table 5. Note that each of the five
code mutations can be implemented as both a Type-2 and a Type-3 mutation, depending on how the
resulting question is posed; the corresponding two prompt templates are presented in Appendix D.2.

Mutation
type

Description Original Code Mutated Code

Replace
Operator

Selects a random opera-
tor of type ast.BinOp,
ast.UnaryOp,
ast.BoolOp, or
ast.AugAssign for re-
placement. Replaces basic
arithmetic operators with their
inverses (e.g. addition with
subtraction). Flips boolean
operators and unary operators
(e.g. “and” with “or”). Re-
places comparison operators
with their negations (eg. “in”
with “not in” and “ ≤” with
“>”).

def f(text, lower, upper):
count = 0
new_text = list()
for char in text:

char = lower if
char.isdecimal() else
upper

↪→
↪→
if char in ['p', 'C']:

count += 1
new_text.append(char)
return count,

''.join(new_text)↪→

def f(text, lower, upper):
count = 0
new_text = list()
for char in text:
char = lower if

char.isdecimal() else
upper

↪→
↪→
if char not in ['p', 'C']:

count += 1
new_text.append(char)
return count,

''.join(new_text)↪→

Mutate
String

Selects a random string in-
stance for replacement. Re-
places the string with a random
sequence of the same length.

def f(text, lower, upper):
count = 0
new_text = list()
for char in text:

char = lower if
char.isdecimal() else
upper

↪→
↪→
if char in ['p', 'C']:

count += 1
new_text.append(char)
return count,

''.join(new_text)↪→

def f(text, lower, upper):
count = 0
new_text = list()
for char in text:
char = lower if

char.isdecimal() else
upper

↪→
↪→
if char in ['E', 'C']:

count += 1
new_text.append(char)
return count,

''.join(new_text)↪→

Mutate
Value

Selects a random instance of
type bool, int, or float
for replacement. Boolean val-
ues are replaced with their
negations; integers are per-
turbed by a uniformly random
nonzero integer between -10
and 10; floats are perturbed by
a uniformly random nonzero
float between -10 and 10.

def f(nums):
output = []
for n in nums:
output.append((nums.count(n), n))

output.sort(reverse=True)
return output

def f(nums):
output = []
for n in nums:
output.append((nums.count(n), n))

output.sort(reverse=False)
return output

Swap
Conditional

Selects a random conditional
node for replacement.
If both an if and else branch
are present, the code body for
each branch is swapped.
If only an if branch is present,
the condition of the branch is
negated (if X becomes if
not X).

def f(t):
for c in t:

if not c.isnumeric():
return False

else:
return True

def f(t):
for c in t:
if not c.isnumeric():

return True
else:

return False

Redefine
Function

Selects a random function call
for replacement (attribute func-
tion calls are not included). De-
fines a new wrapper function
which calls the original func-
tion, and replaces the original
function call with a call to the
new function.

def f(dic):
for k,v in sorted(dic.items(),

key=lambda x:
len(str(x)))[:-1]:

↪→
↪→

dic.pop(k)
return list(dic.items())

def xxxz(arg0):
return list(arg0)

def f(dic):
for k, v in

sorted(dic.items(),
key=lambda x:
len(str(x)))[:-1]:

↪→
↪→
↪→

dic.pop(k)
return xxxz(dic.items())

Table 5: Mutations in RE-IMAGINE for the CruxEval dataset.

28



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

D.2 PROMPTS

Below we list the prompts used in testing CRUXEval. All models are tested using zero-shot prompting,
only.

Prompt for Level-2 mutations:

Consider the following code with a missing value represented by ’??’: {f question}

Based on the given Python code, which may contain errors, complete the assert statement
with the output when executing the code on the given test case. Print only the exact
text to replace "??" in the assert statement, to make the assert statement true. Do
NOT output any extra information, even if the function is incorrect or incomplete.

Prompt for Level-3 mutations:

Consider the following code with a missing value represented by ’??’: {f question}

Suppose a change is now made to the code, as described by the following diff: {diff}

Based on the given Python code, which may contain errors, complete the assert statement
with the output when executing the code on the given test case. Print only the exact
text to replace "??" in the assert statement, to make the assert statement true. Do
NOT output any extra information, even if the function is incorrect or incomplete.

D.3 COVERAGE

Not all transformations are applicable to all problems; we report coverage statistics below. Mutations
are performed on 800 total factual examples, with 88.9% of factual examples covered by at least one
mutation.

Mutate
String

Mutate
Value

Redefine
Function

Replace
Operator

Swap
Conditional

30.3% 56.6% 54.1% 50.6% 42.5%

Figure 19: Mutation Coverage Statistics (as a percentage of total CRUXEval data)

D.4 EVALUATION AND MATCHED FACTUAL ACCURACY

We plot the accuracy on the factual and mutated CRUXEval benchmark for ten language models in
Figure 18.

Figure 20: CRUXEval: Detailed accuracy for models in the Phi, Llama, and GPT families.

Because the coverage statistics for each mutation fall well below 100%, each mutation is tested on
only a subset of the total CRUXEval benchmark problems. We therefore consider the possibility that
there may be a correlation between which mutations apply to a given problem and the difficulty of
that problem for the models we evaluate. In order to account for this fact, we also compute matched

29



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 21: CRUXEval: Detailed accuracy and matched factual accuracy for models in the Phi, Llama,
and GPT families.

factual accuracy scores for each mutation. These scores report the factual accuracy rate of the model
when tested on only the same subset of problems to which the mutation applies. For example, in
Figure 21, the green bars represent accuracy scores on the factual, Level-2, and Level-3 variants of the
56.6% of CRUXEval problems which admit a Mutate Value mutation. Note for ease of reading that
the palest bar of each color in Figure 21 represents the matched factual score for the corresponding
mutation.

We observe that the overall trend of decreasing accuracy with Level-2 and Level-3 mutations is still
evident with respect to matched accuracy scores. Nonetheless, we note that matched factual accuracy
is consistently lower than raw accuracy on certain mutations; most drastically for Mutate String. This
indicates that problems which contain mutable strings tend to be more difficult for LLMs than other
CRUXEval problems, underscoring the importance of viewing matched scores for the fullest picture
of model performance. The further decrease between matched factual scores and the corresponding
Level-2 and Level-3 mutation scores indicates that the difficulty-level correlation cannot account for
the remaining loss in accuracy post-mutation.

30



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

E APPENDIX: LOOP DETAILS

In software verification, automatic inference of loop invariants is a classic problem Si et al. (2018).
Since this problem is undecidable in general, many heuristics have been proposed, including those
based on machine learning. Recently, LLMs have been demonstrated to perform well on loop
invariant inference of integer programs Wu et al. (2024); Kamath et al. (2024). In this paper, we
mutate such tasks and evaluate the efficacy of LLMs on the mutated tasks.

Each task has a program with a loop and an assertion. The goal is to infer a predicate that satisfies the
following three conditions: it holds before the loop starts executing, holds for each iteration of the
loop, and implies the assertion when the loop exits. Finding such predicates can be tricky even for
small programs. Consider the task in Figure 6; the predicate x ≥ y satisfies the first and the third
condition but fails to satisfy the second. As another example, consider the simpler program

x=0; while (x< 100) x++; assert x==100

Given this program, the goal is for an LLM to produce the loop invariant x ≤ 100. It is easy to see
that x ≤ 100 satisfies all the three conditions specified above. Note that there are infinitely many
predicates that are variations of x ≤ 100, e.g., x ≤ 99 ∨ x = 100, that are valid loop invariants and
the model succeeds if it infers any of them. Although inferring such loop invariants is undecidable, in
practice, checking whether a given candidate invariant satisfies the three conditions can be done well
by automated software verification tools like Frama-C Correnson et al..

To evaluate a model on an original or a mutated task, the LLM output is checked by Frama-C that
internally uses SMT solvers such as Z3de Moura & Bjørner (2008), alt-ergoAit El Hara et al. (2022)
and CVC4Barrett et al. (2011). The model succeeds on the task if Frama-C succeeds to verify the
LLM output as a loop invariant, and fails otherwise. Hence, a model can fail on a task for two reasons:
either Frama-C declares the candidate as invalid, or the candidate invariant is valid but Frama-C could
not prove its validity within the provided time bound.

Unlike GSM8K, applying Level-3 mutations to these tasks is difficult. Once we change the values
of the program variables, loop invariants can cease to exist. For example, if we mutate the example
above then we can get the mutated program

x=101; while (x< 100) x++; assert x==100

with a new initialization. There is no loop invariant which discharges the assertion as the assertion will
get violated when the program is run. Hence, we limit ourselves to a category of Level-2 mutations
that add useless information to the tasks in the form of additional variables and operations that leave
the values of the variables in the original program unaffected.

Table 6 shows how various mutations operate on the program in Figure 6. Figure 22 shows the results
of all the models we consider. We use the following prompt from Kamath et al. (2024), reproduced
here for completeness.

You are a helpful AI software assistant that reasons about how code behaves. Given a
program, you can find loop invariants, which can then be used to verify some property
in the program.
Frama-C is a software verification tool for C programs. The input to Frama-C is a C
program file with ACSL (ANSI/ISO C Specification Language) annotations.
For the given program, find the necessary loop invariants of the while loop to help
Frama-C verify the post-condition.

Instructions:
- Make a note of the pre-conditions or variable assignments in the program.
- Analyze the loop body and make a note of the loop condition.
- Output loop invariants that are true
(i) before the loop execution,
(ii) in every iteration of the loop and
(iii) after the loop termination,
such that the loop invariants imply the post condition.
- If a loop invariant is a conjunction, split it into its parts.
- Output all the loop invariants in one code block. For example:

31



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

‘‘‘
/*@
loop invariant i1;
loop invariant i2;

*/
‘‘‘
Rules:
- **Do not use variables or functions that are not declared in the program.**
- **Do not make any assumptions about functions whose definitions are not given.**
- **All undefined variables contain garbage values. Do not use variables that have
garbage values.**
- **Do not use keywords that are not supported in ACSL annotations for loops.**
- **Variables that are not explicitly initialized, could have garbage values. Do not
make any assumptions about such values.**
- **Do not use the
at(x, Pre) notation for any variable x.**
- **Do not use non-deterministic function calls.**
Consider the following C program:
‘‘‘
code
‘‘‘
You are allowed to use implication to take care of the conditional nature of the code.
Use implication (⇒) instead of using if-then.

For all variables, add conjunctions that bound the maximum and minimum values that
they can take, if such bounds exist.

If a variable is always equal to or smaller or larger than another variable, add a
conjunction for their relation.

If the assertion is guarded by a condition, use the guard condition in an implication.

If certain variables are non-deterministic at the beginning or end of the loop, use
an implication to make the invariant trivially true at that location.

Output the loop invariants for the loop in the program above. Let’s think step by
step.

Figure 22: Evaluation of various models on the Loop dataset and its mutated versions.

32



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Mutation Description Code Intervention Categories

Vanilla Base Snippet with a loop and
assertion.

int x = 1, y = 0;
while (y < 100000) {x+=y; y++;}
//@ assert(x >= y);

None

Junk Hint Adding 2 junk variables that
are disjoint from original
variables and are named as
junk_0 and junk_1.

int x = 1, y = 0;
int junk_0 = 1, junk_1 = 3;
while (y < 100000) {x+=y; y++;
junk_0 = 178; junk_1 = junk_0 - 687;

}//@ assert(x >= y);

Add irrelevant Info

Junk
No-Hint

Adding 2 new variables that are
disjoint from original variables
and are named unremarkably
(g0 and g1). Create new state-
ments using randomly sam-
pling of new variables and con-
stants.

int x = 1, y = 0;
int g0 = 1, g1 = 3;
while (y < 100000) { x+=y; y++;

g0 = 178; g1 = g0 - 687;
}//@ assert(x >= y);

Add irrelevant Info and rename
nodes

Read
Original

Read the original variables of
the code into the newly intro-
duced ones. Randomly sam-
ple original variables and oper-
ators and add them to new vari-
ables. The arithmetic expres-
sions in updates to new vari-
ables can use the original pro-
gram variables along with the
new variables and random con-
stants. This mutation intro-
duces more reads of the orig-
inal program variables but no
writes to them.

int x = 1, y = 0;
int g0 = 1, g1 = 3;
while (y < 100000) { x+=y; y++;
g0 = 178 + x - y; g1 = g0 - 687 + y - x;

}//@ assert(x >= y);

Add irrelevant Info and rename
nodes, dummy relationship be-
tween nodes

Write
Original

Increment the original vari-
ables by algebraic identities of
new variables that equate to
0. Randomly sample new vari-
ables for the identity. Split con-
stants to increase complexity.

int x = 1, y = 0;
int g0 = 1, g1 = 3;
while (y < 100000) {
x = x + y + (((g0 + g1)*(g0 + g1)) -1*g0*g1 -2*g0*g1)

- ((g0*g0 + g1*g1) - 1*g0*g1);
y = y + 1 + ((g1*g1 + g0*g0) -1*g1*g0) - (((g1 + g0)*(

g1 + g0)) -1*g1*g0 -2*g1*g0);
g0 = 178; g1 = g0 - 687;
}//@ assert(x >= y);

Add irrelevant Info and rename
nodes, dummy relationship be-
tween nodes

X
Original

Increment the original vari-
ables by algebraic identities of
new variables that equate to 0
and read original variables into
the new variables

int x = 1, y = 0;
int g0 = 1, g1 = 3;
while (y < 100000) {
x = x + y + (((g0 + g1)*(g0 + g1)) -1*g0*g1 -2*g0*g1)

- ((g0*g0 + g1*g1) - 1*g0*g1);
y = y + 1 + ((g1*g1 + g0*g0) -1*g1*g0) - (((g1 + g0)*(

g1 + g0)) -1*g1*g0 -2*g1*g0);
g0 = 178 + x - y;; g1 = g0 - 687 + y - x;
}//@ assert(x >= y);

Add irrelevant Info and rename
nodes, dummy relationship be-
tween nodes

Table 6: Mutations for the Loop dataset on an example. For all the programs, (x = 1∧ y = 0)∨x ≥
y ≥ 1 is a valid loop invariant.

33


	Introduction
	Re-Imagine: The Ladder of Reasoning
	Benchmark Synthesis Pipeline
	NL-to-Symbolic (1⃝) & Symbolic-to-NL (3⃝)
	Symbolic Mutations ( 2⃝)

	Math Benchmarks: GSM8K and CLadder
	Transformation Pipeline
	Reasoning on Numerical Math QA
	Reasoning Evaluation with Binary Counterfactuals
	Similar Findings on CLadder

	Code Benchmarks: CRUXEval and Loop
	Symbolic Mutations to CRUXEval 2⃝
	Symbolic Mutations to Loop 2⃝
	Model Performance

	Discussion
	Appendix: Language Model Details
	Appendix: GSM8K Details
	Statistical Accuracy on GSM8K and its variations
	The Influence of In-context Examples
	Composition of Mutations

	Appendix: CLadder Details
	Benchmark Details
	Pipeline Details
	Question to Symbolic Representation 1⃝
	Symbolic Mutations 2⃝ and Mutated Symbolic Rep to NL 3⃝

	Prompts for mutated questions
	Prompts for generating IrrelevantInfo mutations

	Appendix: CRUXEval Details
	Mutations
	Prompts
	Coverage
	Evaluation and Matched Factual Accuracy

	Appendix: Loop Details

