
Polyhedral Complex Derivation from
Piecewise Trilinear Networks

Jin-Hwa Kim
NAVER AI Lab & SNU AIIS

Republic of Korea
j1nhwa.kim@navercorp.com

Abstract

Recent advancements in visualizing deep neural networks provide insights into
their structures and mesh extraction from Continuous Piecewise Affine (CPWA)
functions. Meanwhile, developments in neural surface representation learning
incorporate non-linear positional encoding, addressing issues like spectral bias;
however, this poses challenges in applying mesh extraction techniques based on
CPWA functions. Focusing on trilinear interpolating methods as positional encod-
ing, we present theoretical insights and an analytical mesh extraction, showing
the transformation of hypersurfaces to flat planes within the trilinear region un-
der the eikonal constraint. Moreover, we introduce a method for approximating
intersecting points among three hypersurfaces contributing to broader applica-
tions. We empirically validate correctness and parsimony through chamfer distance
and efficiency, and angular distance, while examining the correlation between
the eikonal loss and the planarity of the hypersurfaces. The code is available at
https://github.com/naver-ai/tropical-nerf.pytorch.

1 Introduction

Recent advancements in visualizing deep neural networks [1–4] significantly contribute to under-
standing their intricate structures. This progress provides valuable insights into the expressivity,
robustness, training methodologies, and distinctive geometry of neural networks. By leveraging the
inherent piecewise linearity in the Continuous Piecewise Affine (CPWA) functions, e.g., ReLU neural
networks, each region of the input space is represented as a convex polyhedron. The assembly of these
sets constructs a polyhedral complex that delineates the decision boundaries of neural networks [5].

Building upon these breakthroughs, we explore the exciting prospect of analytically extracting a mesh
representation from neural implicit surface networks [6–8]. The extraction of a mesh not only offers
a precise visualization and characterization of the network’s geometry but also does so efficiently
through the utilization of vertices and faces, in contrast to sampling-based methods [9, 10]. The
sampling-based methods are limited by their black-box nature, which can obscure the underlying
structure and lead to inefficiencies in capturing fine geometric details.

These networks typically learn a signed distance function (SDF) by utilizing ReLU neural networks.
However, recent approaches incorporate non-linear positional encoding techniques, such as trigono-
metric functions [11] or trilinear interpolations using hashing [12] or tensor factorization [13], to
mitigate issues like spectral bias [14], ensuring fast convergence, and maintaining high-fidelity.
Consequently, applying mesh extraction techniques based on CPWA functions becomes challenging.

Focusing on the successful and widely-adopted trilinear interpolating methods, we present novel
theoretical insights and a practical methodology for precise mesh extraction. Following a novel review

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/naver-ai/tropical-nerf.pytorch

(1) Vertices and
edges from the grid

marks (Sec. 5)

(3) Skeletonize with
the zero level-set of

an sdf (Sec. 4.3)

(4) Extract faces by
sorting vertices

(Sec. 4.3)

(2b) Bilinear
subdivision on
the grid plane

(2a) Linear
subdivision on
the grid edge

(2c) Trilinear
subdivision inside
the grid (Thm. 4.7)

Trilinear
cubic region

Hypersurface
represented
by a neuron

(2) Curved edge subdivision over neurons (Alg. 2)

1

Figure 1: The mesh is analytically extracted from piecewise trilinear networks, comprising both
HashGrid [12] and ReLU neural networks, that have been trained to learn a signed distance function
with the eikonal loss. We start with initial vertices and edges defined using the grid marks (1), and its
linear subdivision (2a); however, intersecting polygons (ref. Section 3.2) need bilinear subdivision
(2b) and consequentially trilinear subdivision (2c). Note that the linear and bilinear subdivisions are
specific instances of trilinear subdivisions with straightforward solutions.

of the edge subdivision method [4], an efficient mesh extraction technique for CPWA functions,
within the framework of tropical geometry (Section 3), we demonstrate that ReLU neural networks
incorporating the trilinear module are piecewise trilinear networks (Definition 4.1). Then, we establish
that the hypersurface within the trilinear region becomes a plane under the eikonal [15] constraint
(Theorem 4.5), a common practice during the training of SDF.

Building upon this observation, we propose a method for approximating the determination of
intersecting points among three hypersurfaces. Given the inherent curvature of these surfaces,
achieving an exact solution is infeasible. In our approach, we utilize two hypersurfaces and a diagonal
plane for a more feasible and precise approximation (Theorem 4.7). Additionally, we introduce a
methodology for arranging vertices composed of faces to implicitly represent normal vectors. We
experimentally confirm accuracy and simplicity using chamfer distance, efficiency, and angular
distance, simultaneously exploring the relationship between the eikonal loss and the planarity of the
hypersurface. In Figure 1, we present the analytically generated skeleton and normal map produced
by our method using piecewise trilinear networks composed of HashGrid and ReLU neural networks.
For a more detailed view, please refer to Figure 10 in Appendix.

Our contributions are summarized as follows:

1. We present novel theoretical insights and a practical methodology for precise mesh extraction,
from the piecewise trilinear networks using the HashGrid.

2. We provide a theoretical analysis of the piecewise trilinear networks under the eikonal constraint
revealing that, within a trilinear region, a hypersurface transforms into a plane.

3. We validate its correctness and parsimony through chamfer distance and efficiency, and angular
distance, showing the correlation between the eikonal loss and hypersurface planarity.

2 Related work

Mesh extraction in deep neural networks. A conventional black-box approach is to assess a
given function at sampled points to derive the complex of the function, commonly through marching
cubes [9] or marching tetrahedra [10, 16]. Despite the inclusion of mesh optimization techniques [17]
in modern mesh packages, this exhaustive method often generates redundant complexities due to dis-
cretization, increasing the computational load by using unnecessary mesh elements (e.g., fragmented
planars). Aiming for exact extraction, initial efforts focused on identifying linear regions [18] and
employing Analytical Marching [2] to exactly reconstruct the zero-level isosurface. Contemporary ap-
proaches involve region subdivision, wherein the regions of the complex are progressively subdivided
from neuron to neuron and layer to layer, allowing for the efficient calculation of the exponentially
increasing linear regions [4, 19–21]. Nevertheless, many previous studies have explored CPWA
functions consisting of fully connected layers and ReLU activation, primarily owing to the mathemat-
ical simplicity of hyperplanes defining linear regions. However, this restricts their applications in
emerging domains of deep implicit surface learning that diverge from CPWA functions.

2

Positional encoding. The spectral bias of a multi-layer perceptron (MLP) hinders effectively
learning high frequencies, both theoretically and empirically [14]. To address this limitation, Fourier
feature mapping, employing trigonometric projections similar to those used in the Transformer
architecture [22], proves successful in representing complex 3D objects and scenes. Furthermore,
to address its slow convergence and enhance rendering quality, novel positional encoding methods
using trilinear interpolations, e.g., HashGrid [12] or TensoRF [13], are introduced. Both techniques
generate positional features through trilinear interpolation among the eight nearest corner features
derived from pre-defined 3D grids. These features are obtained by hashing from multi-resolution
hash tables or factorized representations of a feature space, respectively. However, these approaches
cause the function represented by neural networks to deviate from CPWA functions, as trilinear
interpolation is not an affine transformation. Consequently, the complex regions are divided by
intricate hypersurfaces.

Eikonal equation and SDF. An eikonal 1 equation is a non-linear first-order partial differential
equation governing the propagation of wavefronts. Notably, this finds application in the regularization
of a signed distance function (SDF) in the context of neural surface modeling [6, 8, 23]. If Ω
represents a subset of the space X equipped with the metric d, the SDF f(x) is defined as follows:

f(x) =

{
−d(x, ∂Ω) if x ∈ Ω

d(x, ∂Ω) if x ∈ Ω∁ (1)

where ∂Ω denotes the boundary of Ω. The metric d is defined (with a slight notational abuse) as:

d(x, ∂Ω) := inf
y∈∂Ω

d(x,y) (2)

where d represents the shortest distance from x to ∂Ω in the Euclidean space of X . In the Euclidean
space with a piecewise smooth boundary, the SDF exhibits differentiability almost everywhere, and its
gradient adheres to the eikonal equation. Specifically, for points x on the boundary,∇f(x) = N(x)
where the Jacobian of f represents the outward normal vector, or equivalently, |∇f(x)| = 1.

3 Preliminaries

We present an overview of tropical geometry (Section 3.1) to provide a formal definition of the tropical
hypersurface and the tropical algebra of neural networks. Then, we discuss the edge subdivision
algorithm [4] for extracting the tropical hypersurface (Section 3.2). We supplement Appendix A.1 for
less familiar readers. Later, we extend this idea to include considerations for trilinear interpolation in
Section 4. You may choose to skip these sections if you are already acquainted with these concepts.

3.1 Tropical geometry

Tropical 2 geometry [25, 26] describes polynomials and their geometric characteristics. As a skele-
tonized version of algebraic geometry, tropical geometry represents piecewise linear meshes using
tropical semiring and tropical polynomial (ref. Appendix A.1). The set of points where a tropical
polynomial f is non-differentiable, due to tropical sum ⊕ := max(·), is called tropical hypersurface:
Definition 3.1 (Tropical hypersurface). The tropical hypersurface of a tropical polynomial f(x) =
c1x

α1 ⊕ · · · ⊕ crxαr is defined as:

V (f) = {x ∈ Rd : cix
αi = cjx

αj = f(x) for some αi ̸= αj}

where the tropical monomial cixαi with d-variate x is defined as ci ⊙ x
ai,1

1 ⊙ · · · ⊙ x
ai,d

d with
d-variate αi = (ai,1, . . . , ai,d) and tropical product ⊙ := +.
Definition 3.2 (ReLU neural networks). Assuming input and output dimensions are consistent,
L-layer neural networks with ReLU activation are a composition of functions defined as:

ν(L) = ρ(L) ◦ σ(L−1) ◦ ρ(L−1) · · ·σ(1) ◦ ρ(1) (3)

where σ(x) = max(x, 0) and ρ(i)(x) = W (i)x+ b(i).

1The eikonal is derived from the Greek, meaning image or icon.
2The tropical is named in honor of Hungarian-born Brazilian computer scientist Imre Simon [24].

3

Although the neural networks ν is generally non-convex, it is known that the difference of two
tropical signomials (allowing a real-valued α in a tropical polynomial) can represent ν [27] (ref.
Appendix A.3). Given this observation, we proceed to examine the following proposition:

Proposition 3.3 (Decision boundary of neural networks). The decision boundary for L-layer neural
networks with ReLU activation ν(L)(x) = 0 is a subset of or equals with the region where two
tropical monomials, or two arguments of max, equal (Definition 3.1), as follows:

B ⊆
{
x : ν

(i)
j (x) = 0, i ∈ (1, . . . , L), j ∈ (1, . . . ,H) if i ̸= L else (1)

}
where the subscript j denotes the j-th neuron, assuming the hidden size of neural networks is H ,
while the final L-th layer has a single output for rather discussions as an SDF (Definition 4.3).
Remind that tropical operations satisfy the usual laws of arithmetic for recursive consideration.

The piecewise hyperplanes corresponding to ν(i)j are the candidates shaping the decision boundary.
It enables for-loop iterations over the neurons across layers, as in Algorithm 2, not visiting every
exponentially growing linear region [18, 27]. The equality in Proposition 3.3 generally does not hold,
but we can filter them by checking if ν(L)

1 (x) = 0. For more details, please refer to Berzins [4]. We
note that our formal explanation through tropical geometry is unprecedented in the previous work [4].

3.2 Edge subdivision for tropical geometry

Polyhedral 3 complex derivation from a multitude of linear regions is inefficient and may be infeasible
in some cases. Rather, Berzins [4] argue that tracking vertices and edges of the decision boundary
sequentially considering the polynomial number of hyperplanes is particularly efficient, even enabling
parallel tensor computations for edge subdivisions.

Initially, we start with a unit cube of eight vertices and a dozen edges, denoted by V and E , respectively.
For each piecewise linear, or folded in their term, hyperplane, we find the intersection points of each
one of the edges and the hyperplane (if any) to add to V . The divided edges by the intersection
are also added to E . Note that we also find new edges of polygons, the intersections of convex
polyhedra representing corresponding linear regions [5], and the folded hyperplane. Repeating these
for all folded hyperplanes, before selecting all vertices x⋆ where ν(x⋆) = 0. Then, the valid edges
connecting those vertices would represent the decision boundary.

To elaborate with details, the order of subdividing is invariant as stated in Proposition 3.3; however,
we must perform the subdivision with all hyperplanes in the previous layers in advance if we want to
keep the current set of edges not crossing linear regions. One critical advantage of this principle is
that we can find the intersection point by evaluating the output ratio of the two vertices of an edge,
ν(x0) and ν(x1), which are proportional to the distances to the hyperplane by Thales’s theorem [28].
The intersection point would simply be x̂0,1 = (1 − w)x0 + wx1 where w = |d0|/|d0 − d1| and
dk = ν

(l)
j (xk), upon the fact that d0 · d1 < 0 if the hyperplane divides the edge.

Updating edges needs two steps: dividing the edge into two new edges and adding new edges of
intersectional polygons by a hyperplane for convex polyhedra representing linear regions. The latter
is a tricky part that we need to find every pair of two vertices among {x̂·,·}, both within the same
linear region and on the two common hyperplanes, obviously including the current hyperplane. They
argue that the sign-vectors for the preactivations provide an efficient way to find them.

Definition 3.4 (Sign-vectors). For the current hyperplane specified by the i∗-th layer and its j∗-th
preactivation, we define the sign-vectors with a small positive constant ϵ:

γ(xk)ϕ(i,j) =

+1 if ν(i)j (xk) > +ϵ

0 if |ν(i)j (xk)| ≤ +ϵ

−1 if ν(i)j (xk) < −ϵ
(4)

for all i and j where ϕ(i, j) ≤ ϕ(i∗, j∗), and ϕ(i, j) ∈ {0} ∪ N is an ascending indexing function
from lower layers, handling arbitrary hidden sizes of networks to vectorize a signed matrix.

3In geometry, a polyhedron is a three-dimensional shape with polygonal faces, having straight edges and
sharp vertices.

4

Notice that a hyperplane divides a space into two half-spaces, two linear regions. Collectively, if the
sign-vectors for the i-th layer and its j-th preactivation of two vertices have the same values except for
zeros, which are wild cards for matching, we can say that the two vertices are within the same linear
region in the current step (i∗, j∗). For the second, the sign-vector has at least three zeros specifying a
point by at least three hyperplanes. If two zeros are at the same indices in the two sign-vectors, the
two vertices are on the same two hyperplanes, forming an edge. Notice that our principle asserts
edges should be within linear regions.

Berzins [4] argue that the edge subdivision provides the optimal time and memory complexities of
O(|V|), linear in the number of vertices, while it can be efficiently computed in parallel. According
to Hanin and Rolnick [20], the number of linear regions is known for o(NL/L!) where N is the total
number of neurons, or ϕ(L, 1) in our notation.

4 Method

4.1 Piecewise trilinear networks

Definition 4.1 (Trilinear interpolation). Let a unit cube be in the D-dimensional space, where its
corners are represented by H ∈ R2D×F where F is a corner-feature dimension. Given weights
w ∈ [0, 1]D, the trilinear interpolation function ψ is defined as:

ψ(w;H) =

2D−1∑
i=0

ω(i,w) ·Hi ∈ RF (5)

where the interpolating weight ω(i,w) ∈ R is defined using a left-aligned and zero-trailing binariza-
tion function B ∈ {0, 1}D (ref. Appendix B.1) as follows:

ω(i,w) =

D∏
j=1

(1− B(i)j)(1−wj) + B(i)jwj (6)

which is the volume of the opposite subsection of the hypercube divided by the weight point w. For a
general hypercube, scaling the weight for a unit hypercube gets the same result. Going forward, we
assume D=3 for trilinear interpolation without explicitly stating it otherwise.

Lemma 4.2 (Nested trilinear interpolation). Let a nested cube be inside of a unit cube, where its
positions of the eight corners deviate −aj or +bj , such that aj , bj ≥ 0, from wj for each dimension
j, using the notations of Definition 4.1. The eight corners of the nested cube are the trilinear
interpolations of the eight corners of the unit cube. Then, the trilinear interpolation with the unit
cube and the nested cube for w is identical.

Proof. Notice that trilinear interpolation is linear for each dimension to prove it. The detailed proof
can be found in Lemma D.1.

Definition 4.3 (Piecewise trilinear networks). Let a positional encoding module be τ : RD → RF

using the trilinear interpolation of spatially nearby learnable vectors on a three-dimensional grid, e.g.,
HashGrid [12] or TensoRF [13], where τ is an instance of ψ in Definition 4.1. Usually, they transform
the input coordinate x to w as a relative position inside a unit grid in a corresponding resolution.
H is a learnable parameter specified in the corresponding method. Then, we define trilinear neural
networks ν̃, by prepending τ to the neural networks ν from Definition 3.2. Here, the input and output
dimensions of ν(L) are F and 1 (an SDF distance), respectively.

ν̃(L) = ν(L) ◦ τ (7)

Note that τ is gridwise trilinear. Using Lemma 4.2, ν̃ is trilinear within the composite intersections of
linear regions of ν and trilinear regions of τ . (We discuss how to access virtual cubic corner features
where trilinear regions are not cubic in Section 5.) So, we regard ν̃ as piecewise trilinear.

5

4.2 Curved edge subdivision in a trilinear space

In a trilinear space, τ projects a line to a curve except the lines on the grid. Notably, the diagonal line
t = (t, t, t)⊺ where t ∈ [0, 1] is projected to a cubic Bézier curve (ref. Proposition D.2). We aim to
generalize for the curved edge subdivision for hypersurfaces.

Lemma 4.4 (Curved edge of two hypersurfaces). In a piecewise trilinear region, let an edge (x0,x7)
be the intersection of two hypersurfaces ν̃i(x) = ν̃j(x) = 0, while x0 and x7 are on the two
hypersurfaces. Then, the edge is defined as:

{x : τ(x) = (1− t)τ(x0) + tτ(x7) where x ∈ RD and t ∈ R}.

Proof. The detailed proof using the piecewise linearity of ν is provided in Lemma D.4.

Notice that it does not decrease the number of variables to find a line solution since the trilinear
interpolation τ still forms hypersurfaces making complex cases. Yet, we theoretically demonstrate
that the eikonal constraints on ν̃ render them hyperplanes with linear solutions.

Theorem 4.5 (Hypersurface and eikonal constraint). A hypersurface τ(x) = 0 intersects two points
τ(x0) = τ(x7) = 0 while τ(x1...6) ̸= 0 for the remaining six points. These points form a cube, with
x0 and x7 positioned on the diagonal of the cube. The hypersurface satisfies the eikonal constraint
∥∇τ(x)∥22 = 1 for all x ∈ [0, 1]3. Then, the hypersurface of τ(x) = 0 is a plane.

Corollary 4.6 (Affine-transformed hypersurface and eikonal constraint). Let ν0(x) and ν1(x) be
two affine transformations defined by W ⊺

i x+ bi, i ∈ {0, 1}. A hypersurface ν0
(
τ(x)

)
= 0 passing

two points ν0
(
τ(x0)

)
= ν0

(
τ(x7)

)
= 0 while ν0

(
τ(x1...6)

)
̸= 0 satisfies the eikonal constraint

∥∇ν1
(
τ(x)

)
∥22 = 1 for all x ∈ [0, 1]3. Then, the hypersurface of ν0

(
τ(x)

)
= 0 is a plane.

The proofs using its partial derivatives can be found in Theorem D.5 and Corollary D.6.

Since we aim for a practical polyhedral complex derivation that piecewise trilinear networks represent,
we replace one of the hypersurfaces forming the curved edge with a diagonal plane in a piecewise
trilinear region. We choose this option not only for its mathematical simplicity but also due to
the characteristics of trilinear hypersurfaces, as illustrated in Figure 9, Appendix G. Thus, the new
vertices lie on at least two hypersurfaces, and the new edges exist on the same hypersurface, while
the eikonal constraint minimizes any associated error from this approximation. This error is tolerated
by the hyperparameter ϵ =1e-4 as specified in Definition 3.4 and Section 6. More discussions on this
matter can be found in Appendix C.1.

Theorem 4.7 (Intersection of two hypersurfaces and a diagonal plane). Let ν̃0(x) = 0 and ν̃1(x) = 0
be two hypersurfaces passing two points x0 and x7 such that ν̃0(x0) = ν̃1(x0) = 0 and ν̃0(x7) =
ν̃1(x7) = 0, Pi := ν̃0(xi) and Qi := ν̃1(xi), Pα =

[
P0; P1; P4; P5

]
, Pβ =

[
P2; P3; P6; P7

]
,

and X = [(1− x)2; x(1− x); (1− x)x; x2]. Then, x ∈ [0, 1] of the intersection point of the two
hypersurfaces and a diagonal plane of x = z is the solution of the following quartic equation:

X⊺
(
PαQ

⊺
β − PβQ

⊺
α

)
X = 0, while y =

X⊺Pα

X⊺(Pα − Pβ)
(Pα ̸= Pβ). (8)

Proof. Please refer to Theorem D.7 for the detailed proof, which uses linear algebra to rearrange two
trilinear equations with two variables to get a solution.

Note that finding roots of a polynomial is the eigenvalue decomposition of a companion matrix [29],
which can be parallelized (ref. Lemma D.8). Given that the companion matrix remains small for
a quartic equation in R4×4, the overall complexity remains O(|V|). For the detailed complexity
analysis on the proposed method, please refer to Appendix E.

4.3 Skeletonization, faces, and normals

Skeletonization selects the vertices such that: V⋆ = {x | |ν̃(x)| ≤ ϵ,x ∈ V}, and the edges E⋆
such that their two vertices are among V⋆. Recall that because a decision boundary is a subset of the
tropical hypersurface (Definition 3.1 and Proposition 3.3), this step ensures accurate mesh extraction.

6

(a) (b) (c) (d) (e)

Figure 2: Trilinear regions in the xy-plane at z = 0.04, identified by the sign-vectors (Definition 3.4),
are represented with random colors. (a) Grids described in Section 5 and Algorithm 4. (b) The
neurons of the first layer representing folded hypersurfaces (blue arrow). (c) All neurons representing
every nonlinear boundary. (d) Select all zero-set vertices and edges. (e) Skeletonized as in Section 4.3.

Faces are formed by edges lying on the same plane and sharing a common region. This is identified
by evaluating the sign-vectors (ref. Definition 3.4 and Section 5). Note that faces are not inherently
triangular; however, if needed, they can be triangulated via triangularization for further analysis.

Normals are conventionally described by the order of the vertices as each face has ambiguity with
two opposite directions. Let x0,1,2 be the vertices forming a triangular face. The normal is defined
using cross-product as n = (x1 − x0)× (x2 − x0) where the normal is orthogonal to both vectors,
with a direction given by the right-hand rule. Please refer to Appendix B.2 for the details.

5 Implementation

We employ the HashGrid [12] for τ , while our discussion on its generalizability is provided in
Appendix C.2. We illustrate our method in Algorithm 1, 2, and Figure 2, inspired by Hanin and
Rolnick [30] for its visualization of linear regions. We describe the implemental details of the
algorithms in the following sections and the corresponding caption of Figure 6.

Initialization. While the original edge subdivision algorithm [4] starts with a unit cube of eight
vertices and a dozen edges, we know that the unit cube is subdivided by orthogonal planes consisting
of the grid. Let an input coordinate be x ∈ [0, 1]3, and there is a unit cube such that one of its corners
is at the origin. Taking into account multi-resolution grids, we obtain the marks mi, such that the
grid planes are x = mi, y = mi, and z = mi, following Algorithm 4 in Appendix. Notice that
we carefully consider the offset s/2, which prevents the zero derivatives from aligning across all
resolution levels (ref. Appendix A of Müller et al. [12]). Leveraging the obtained marks, we derive
the associated grid vertices and edges, which serve as the initial sets for V and E , respectively. Please
refer to Figure 2a where its multi-resolution grids are visualized using randomized colors.

Optimizing sign-vectors. The number of orthogonal planes may significantly surpass the number
of neurons, making it impractical to allocate elements for the sign-vectors (Definition 3.4). To address
this, leveraging the orthogonality of the grid planes, we store a plane index along with an indicator of
whether the input is on the plane (γ = 0) or not (γ = 1).

Piecewise trilinear region. In Theorem 4.7, we need the outputs of corners P and Q in a common
piecewise trilinear region; however, some corners may be outside of the region. For this, we replace
all ReLU activations using the mask m that: m(i)

j = (ν̃
(i)
j (x0) > ϵ) | (ν̃(i)j (x7) > ϵ), where x0 and

x7 are the vertices of an edge of interest, for the calculated cubic corners x0...7. This implies that ν
exhibits linearity, except for instances where two vertices simultaneously deviate from linearity. For
P and Q, we select the last two pairs of i and j such that γϕ(i,j)(x0) = γϕ(i,j)(x7) = 0, indicating
two common hypersurfaces passing two points x0 and x7.

6 Experiment

Objective. For a given trilinear neural network with the eikonal constraint, our goal is to get a
boundary mesh of the zero-set of the SDF. (Note that NeuS [6] showed how to convert the density

7

Algorithm 1 Polyhedral Complex Derivation

Input: Sets of vertices V and edges E
(from Section 5), # of layer L, hidden size
H , trilinear networks ν̃
for i = 0 to L− 1 do

for j = 0 to H − 1 do
V, E = CESub(V, E , ν̃, i, j)

▷ Algorithm 2
end for

end for
V, E = CESub(V, E , ν̃, L, 0)
V⋆, E⋆ = Skeletonize(V, E , ν̃, ϵ)

▷ Section 4.3
F⋆ = ExtractFaces(V⋆, E⋆)

▷ Section 4.3
return V⋆, E⋆,F⋆

Algorithm 2 Curved Edge Subdivision (CESub)

Input: Vertices V , Edges E , trilinear networks
ν̃, layer index i, neuron index j
d = ν̃(V; i, j), Vnew = ∅
for e in E do

if de0 · de1 < 0 then
P ,Q = Corners(e) ▷ Section 5
xnew = Intersect(P ,Q, e) ▷ Theorem 4.7
Vnew ← Vnew + {xnew}
e← [e0, Index(xnew)]
E ← E + {[e1, Index(xnew)]}

end if
end for
V ← V + Vnew
E ← E+ FindPolygons(Vnew) ▷ Section 3.2
return V , E

networks of NeRFs to an SDF in the frameworks of volume rendering.) To evaluate this, we utilize
marching cubes with excessive sampling to get a pseudo-ground truth mesh to remove Bayes error
caused by underfitting. We explicitly specify the samplings in the results.

Hyperparameters. We used the number of layers L of 3 and hidden size H of 16 for the networks,
and ϵ of 1e-4 for the sign-vectors (ref. Definition 3.4). The weight for the eikonal loss is 1e-2. For
HashGrid, the resolution levels of 4, feature size of 2, base resolution Nmin of 2, and max resolution
Nmax of 32 by default. Nmin and Nmax are doubled (x2) or quadrupled (x4) for Medium or Large
settings in Figure 4. We use the official Python package of tinycudnn 4 for the HashGrid module.

Chamfer distance and efficiency. The chamfer distance is a metric used to evaluate the similarity
between two sets of sampled points from two meshes. Let S0 and S1 be the two sets of points.
Specifically, the bidirectional chamfer distance (CD) is defined as follows:

CD(S0,S1) =
1

2

(−→
CD(S0,S1) +

−→
CD(S1,S0)

)
,
−→
CD(S0,S1) =

1

|S0|
∑
x∈S0

min
y∈S1

∥x− y∥22. (9)

We randomly select 100K points on the faces through ray-marching from the origin, directing toward
a randomly chosen point on a unit sphere.

Number of the vertices

0K 60K 120K 180K 240K 300K 360K

2.76E-03
3.99E-03

5.20E-03
7.48E-03

4.67E-04

8.61E-04
1.21E-03

1.90E-03

1.86E-041.82E-04
2.21E-04

2.99E-04

6.32E-04

1.51E-04

Ours
MC
MT
NDC

Chamfer distance
1e-2

1e-3

1e-4

Figure D. Chamfer distance (CD)
for the Bunny with the Large
model. Our method achieved the
lowest chamfer distance and the
most efficiency method with
respect to the number of vertices.

Number of the vertices

0K 30K 60K 90K 120K 150K 180K

MC+QEM
Ours+QEM

1e-3

1e-4

Chamfer distance

Figure E. CD for the Bunny
with the Large model applying
QEM (mesh simplification).
Both benefit from QEM while
our method efficiently retains
better chamfer distances.

Figure 3: Chamfer distance for the
bunny with the Large model com-
paring with MC, MT, and NDC.

Table 1 and Figure 4 show the results for the Standford 3D
Scanning repository [31]. Varying the number of samples in
marching cubes [9], we plot the baseline with respect to the
number of generated vertices. Given that our method extracts
vertices from the intersection points of hypersurfaces, it en-
ables parsimonious representations using the lower number of
vertices having better CD, summarized by chamfer efficiency
(CE) 5 in Table 1, and ours are located in the lower-left region
compared with the baselines in Figure 4. In particular, we
observe a strong CE in a simple object, e.g., Drill Bit, which
achieved a CE of 47.8 versus 19.2 (MC).

Our method inherently holds an advantage over MC in captur-
ing optimal vertices and faces, especially in cases where the
target surfaces exhibit planar characteristics. When dealing
with curved surfaces, the smaller grid size of the Large model
in Figure 4 views a curved surface in a smaller interval, and
it tends to approach the plane. From the plotting of Small to

4https://github.com/NVlabs/tiny-cuda-nn
5CE is defined as 100/(

√
|V| × CD), reflecting the trade-off between the number of vertices and the CD.

8

https://github.com/NVlabs/tiny-cuda-nn

Table 1: Chamfer distance (CD) and chamfer efficiency (CE) for the Stanford 3D Scanning repos-
itory [31]. The CD (×1e-6) is evaluated using the marching cubes (MC) with 2563 grid samples
as the reference ground truth for all measurements. Please refer to Table 2 and Table 3 for the full
results, and Table 4 for standard deviation and time spent in Appendix (Ours took 0.97 ± 0.21 while
MC also took within 1 sec for the bunny.)

Bunny Dragon Happy Buddha Armadillo Drill Lucy

MC # |V| ↓ CD ↓ CE ↑ |V| ↓ CD ↓ CE ↑ |V| ↓ CD ↓ CE ↑ CE ↑ CE ↑ CE ↑
32 1283 4106 19.0 1416 6330 11.2 1032 6951 13.9 11.2 7.5 24.9
64 5367 1371 13.6 6090 1936 8.5 4362 2465 9.3 8.3 19.2 16.0

128 21825 393 11.6 25236 542 7.3 18219 722 7.6 6.6 17.4 10.7
196 49569 141 14.3 57341 203 8.6 41351 276 8.8 7.5 15.3 11.7

Ours 4341 900 25.6 5104 1243 15.8 3710 1738 15.5 13.9 47.8 23.6

Fl
at

ne
ss

 e
rr

or

0.02

0.04

0.06

0.08

Iteration

5 10 15 20 25 30 35 40 45 50

0.000
0.001
0.01
0.1

C
ha

m
fe

r
di

st
an

ce
 (l

og
)

1E-04

1E-03

1E-02

Number of the vertices

20K 40K 60K 80K 100K

MC-small
MC-medium
MC-large
Ours-small
Ours-medium
Ours-large

1

Figure 4: Chamfer distances for the Stanford
dragon varying the number of vertices and the
model sizes, showing consistent efficiency.

Fl
at

ne
ss

 e
rr

or

0.02

0.04

0.06

0.08

Iteration

5 10 15 20 25 30 35 40 45 50

0.000
0.001
0.01
0.1

C
ha

m
fe

r
di

st
an

ce
 (l

og
)

1E-04

1E-03

1E-02

Number of Vertices

20K 40K 60K 80K 100K

MC-small
MC-medium
MC-large
Ours-small
Ours-medium
Ours-large

1

Figure 5: Effect of the weight of eikonal loss on
the flatness error in Equation (11). For the plot,
we conduct experiments using the unit sphere.

Large, our CDs (colored crosses) are decreasing to zero, consistently with better CEs, confirming this
speculation. The complete results of the Large models and its visualization can be found in Tables 6
to 8 in Appendix F.1 and the right side of Figure 10 in Appendix, respectively. We also compare ours
with Marching Tetrahedra (MT) [10, 16] and Neural Dual Contour (NDC) [32] in Figure 3, where
our method achieved the lowest chamfer distance and the most efficiency method with respect to the
number of vertices. For the rationale behind our selection, please refer to Appendix F.3.

Angular distance. The angular distance measures how much the normal vectors deviate from
the ground truths. Analogous to the chamfer distance, we sample 100K points on the surface and
calculate the normal vectors as described in Section 4.3. The angular distance is defined as follows:

AD(N0,N1) = Ei

[180
π
· cos−1

(
⟨N (i)

0 ,N (i)
1 ⟩

)]
(10)

In Table 5 in Appendix, the angular distances for the Stanford bunny are shown. As we expected, our
approach efficiently estimates the faces using a parsimonious number of vertices compared to the
sampling-based method. We confirm this trend is consistent across other objects.

Eikonal constraint for planarity. To assess the efficacy of the eikonal constraint, which enforces
the planarity of hypersurfaces as outlined in Theorem 4.5, we quantify the flatness error associated
with the planarity constraints presented in the proof of Theorem D.5. Let x0 and x7 be two vertices
consisting of a diagonal edge, while x1...6 are its remaining cubic corners. We obtain ν̃(x1...6) in a
piecewise trilinear region as described in Section 5. This evaluation is conducted as follows:

∆flat =EE

[1
4

(
∥Σi∈{1,2,4}ν̃(xi)∥1 + ∥Σi∈{3,5,6}ν̃(xi)∥1

)
+

1

6

(3∑
i=1

∥Σj∈{i,7−i}ν̃(xj)∥1
)]
. (11)

In Figure 5, we empirically validate that the eikonal loss enforces planarity in the hypersurfaces
within piecewise trilinear regions, as described in Theorem 4.5. The absence of the eikonal loss
results in elevated planarity errors, leading to the construction of an inaccurate mesh.

9

MC 256
(92K Vertices)

MC 64
(5.6K Vertices)

Ours
(4.5K Vertices)

MT 32
(4.7K Vertices)

NDC 64
(5.6K Vertices)

Figure 6: This figure provides a detailed visualization of Figure 10 in the Appendix and its competitors.
MC 64, MT 32 (Marching Tetrahedra), and NDC (Neural Dual Contour [32]) suffer over-smoothing
or inaccuracy of the actual surface in the Small networks within the nose, whereas our method
reflects these details (see the boundaries of a nose) with consistent normals (in colors). MT efficiently
demands SDF values by utilizing six tetrahedra within grids to get intermediate vertices. However,
it is inefficient in terms of the number of vertices extracted. NDC faces a generalization issue for a
zero-shot setting for the given networks, producing unsmooth surfaces.

Visualization. We provide the qualitative analyses in Figure 6 comparing with MT [10, 16] and
NDC [32], along with MC. While the competitors exhibit over-smoothing or inaccuracies, particularly
in the nose region, our method preserves surface details with consistent normals and outperforms
in both accuracy and generalization. In addition, we present Figures 10 to 13 in Appendix G
encompassing the comparison between the Small and Large models (Figure 10), visualizing the
marching cubes varying the number of samples (Figure 11), detailed comparisons (Figure 12), and
the gallery of the Stanford 3D Scanning meshes from the Large models (Figure 13).

Limitations. Although we implement the algorithm using pre-defined parallel tensor operations
in PyTorch [33], achieving time and memory complexity of O(|V|) as detailed in Appendix E,
our method inherently requires forward passing the intermediate vertices during edge subdivisions
iterating over neurons, which depends on previous steps (Algorithm 1). For the Stanford bunny using
the Small model, the intermediate counts for vertices and edges exceed 11K and 19K, respectively,
although they are eventually reduced to 4.3K vertices for face extraction. This overhead is negligible
for the Small models, taking 0.97 seconds; however, for the Large models, the process takes 4.15±0.61
seconds for 140.3±5.6K vertices with our optimized algorithm, compared to 1.31 and 11.88 seconds
for marching cubes with 256 and 512 samples per axis, respectively. We note that parallelizing over
multiple GPUs would be a reliable option to improve latency. For the discussions on satisfying
the eikonal equation in practice and the generalization to other positional encodings using trilinear
interpolation, please refer to Appendix C.1 and Appendix C.2, respectively.

7 Conclusions

In conclusion, our exploration of novel techniques in visualizing trilinear neural networks unveils its
intricate structures and extends mesh extraction applications beyond CPWA functions. Focused on
trilinear interpolating methods, our study yields novel theoretical insights and a practical methodology
for precise mesh extraction. Notably, Theorem 4.5 shows the transformation of hypersurfaces to planes
within the trilinear region under the eikonal constraint. Empirical validation using chamfer distance
and efficiency, and angular distance affirms the correctness and parsimony of our methodology. The
correlation analysis between eikonal loss and hypersurface planarity confirms the theoretical findings.
Our proposed method for approximating intersecting points among three hypersurfaces, coupled
with a vertex arrangement methodology, broadens the applications of our techniques. This work
establishes a foundation for future research and practical applications in the evolving landscape of
deep neural network analysis and toward real-time rendering mesh extraction.

10

Acknowledgments

I would like to express my sincere appreciation to my brilliant colleagues, Sangdoo Yun, Dongyoon
Han, and Injae Kim, for their contributions to this work. Their constructive feedback and guidance
have been instrumental in shaping the work. I also express my sincere thanks to the anonymous
reviewers for their help in improving the manuscript. The NAVER Smart Machine Learning (NSML)
platform [34] had been used for experiments.

References
[1] Zheyan Zhang, Yongxing Wang, Peter K Jimack, and He Wang. Meshingnet: A new mesh

generation method based on deep learning. In International Conference on Computational
Science, pages 186–198. Springer, 2020.

[2] Jiabao Lei and Kui Jia. Analytic marching: An analytic meshing solution from deep implicit
surface networks. In International Conference on Machine Learning, pages 5789–5798. PMLR,
2020.

[3] Jiabao Lei, Kui Jia, and Yi Ma. Learning and meshing from deep implicit surface networks
using an efficient implementation of analytic marching. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(12):10068–10086, 2021.

[4] Arturs Berzins. Polyhedral complex extraction from relu networks using edge subdivision. In
International Conference on Machine Learning. PMLR, 2023.

[5] J Elisenda Grigsby and Kathryn Lindsey. On transversality of bent hyperplane arrangements
and the topological expressiveness of relu neural networks. SIAM Journal on Applied Algebra
and Geometry, 6(2):216–242, 2022.

[6] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang.
Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction.
arXiv preprint arXiv:2106.10689, 2021.

[7] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P Srinivasan, Richard Szeliski,
Jonathan T Barron, and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-time view
synthesis. arXiv preprint arXiv:2302.14859, 2023.

[8] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath, Ming-Yu Liu,
and Chen-Hsuan Lin. Neuralangelo: High-fidelity neural surface reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8456–8465,
2023.

[9] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface
construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4):163–169, 1987.

[10] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching
tetrahedra: a hybrid representation for high-resolution 3d shape synthesis. Advances in Neural
Information Processing Systems, 34:6087–6101, 2021.

[11] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106, 2021.

[12] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):
1–15, 2022.

[13] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. TensoRF: Tensorial radiance
fields. In European Conference on Computer Vision, pages 333–350. Springer, 2022.

[14] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. Advances in Neural
Information Processing Systems, 33:7537–7547, 2020.

11

[15] Heinrich Bruns. Das eikonal, volume 21. S. Hirzel, 1895.

[16] Akio Doi and Akio Koide. An efficient method of triangulating equi-valued surfaces by using
tetrahedral cells. IEICE TRANSACTIONS on Information and Systems, 74(1):214–224, 1991.

[17] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Mesh op-
timization. In Proceedings of the 20th annual conference on Computer graphics and interactive
techniques, pages 19–26, 1993.

[18] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting
linear regions of deep neural networks. In International Conference on Machine Learning,
pages 4558–4566. PMLR, 2018.

[19] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In international conference on machine learning,
pages 2847–2854. PMLR, 2017.

[20] Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In International
Conference on Machine Learning, pages 2596–2604. PMLR, 2019.

[21] Ahmed Imtiaz Humayun, Randall Balestriero, Guha Balakrishnan, and Richard G Baraniuk.
Splinecam: Exact visualization and characterization of deep network geometry and decision
boundaries. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3789–3798, 2023.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[23] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric
regularization for learning shapes. arXiv preprint arXiv:2002.10099, 2020.

[24] Eric Katz. What is... tropical geometry. Notices of the AMS, 64(4), 2017.

[25] Ilia Itenberg, Grigory Mikhalkin, and Eugenii I Shustin. Tropical algebraic geometry, volume 35.
Springer Science & Business Media, 2009.

[26] Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry, volume 161. American
Mathematical Society, 2021.

[27] Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks.
In International Conference on Machine Learning, pages 5824–5832. PMLR, 2018.

[28] Thomas Friedrich et al. Elementary geometry, volume 43. American Mathematical Soc., 2008.

[29] Alan Edelman and Hiroshi Murakami. Polynomial roots from companion matrix eigenvalues.
Mathematics of Computation, 64(210):763–776, 1995.

[30] Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 2019.

[31] Brian Curless and Marc Levoy. A volumetric method for building complex models from range
images. In Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques, pages 303–312, 1996.

[32] Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and Hao Zhang. Neural dual contouring.
ACM Transactions on Graphics (TOG), 41(4):1–13, 2022.

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

12

[34] Hanjoo Kim, Minkyu Kim, Dongjoo Seo, Jinwoong Kim, Heungseok Park, Soeun Park,
Hyunwoo Jo, KyungHyun Kim, Youngil Yang, Youngkwan Kim, Nako Sung, and Jung-
Woo Ha. NSML: Meet the MLAAS platform with a real-world case study. arXiv preprint
arXiv:1810.09957, 2018.

[35] Michael Garland and Paul S Heckbert. Surface simplification using quadric error metrics. In
Proceedings of the 24th annual conference on Computer graphics and interactive techniques,
pages 209–216, 1997.

[36] Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoit Guillard, Timur Bagautdinov,
Pierre Baque, and Pascal Fua. MeshSDF: Differentiable iso-surface extraction. Advances in
Neural Information Processing Systems, 33:22468–22478, 2020.

[37] Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen,
Zan Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. Flexible isosurface extraction for
gradient-based mesh optimization. ACM Trans. Graph., 42(4):37–1, 2023.

13

Appendix

Table of contents
A Tropical geometry and tropical algebra of neural networks 14

A.1 Tropical geometry . 14
A.2 Tropical hypersurface . 15
A.3 Tropical algebra of neural networks . 15

B Implementation details 16
B.1 Zero-trailing binarization function . 16
B.2 Sorting polygon vertices and HashGrid marks 16

C Further discussions 17
C.1 Satisfying the eikonal equation and approximation 17
C.2 Generalization to other positional encodings using trilinear interpolation 17

D Theoretical proofs 17

E Complexity analysis 23

F Supplementary experiments 24
F.1 Complete results . 24
F.2 Mesh simplification using QEM . 26
F.3 Comparison with alternate approaches . 26
F.4 Error of the learned SDF . 27
F.5 Effect of model sizes . 27

G Visualizations 28

A Tropical geometry and tropical algebra of neural networks

In this section, we present an overview of tropical geometry (Appendix A.1) to provide a formal
definition of the tropical hypersurface (Appendix A.2). This hypersurface is significant as it serves
as the decision boundary for ReLU neural networks optimizing an SDF, resulting in the formation
of a polyhedral complex. For this, we delve into the examination of the tropical algebra of neural
networks (Appendix A.3). Furthermore, we discuss the edge subdivision algorithm [4] for extracting
the tropical hypersurface (Section 3.2), and we extend this discussion to include considerations
for trilinear interpolation in Section 4. Given that Appendix A.1 to A.3 offer insights into tropical
geometry, illustrating how each neuron contributes to forming the polyhedral complex, you may
choose to skip these subsections if you are already acquainted with these concepts.

A.1 Tropical geometry

Tropical geometry [25, 26] describes polynomials and their geometric characteristics. As a skele-
tonized version of algebraic geometry, tropical geometry represents piecewise linear meshes using
tropical semiring and tropical polynomial.

The tropical semiring is an algebraic structure that extends real numbers and −∞ with the two
operations of tropical sum ⊕ and tropical product ⊙. Tropical sum and product are conveniently
replaced with max(·) and +, respectively. Notice that −∞ is the tropical sum identity, zero is
the tropical product identity, and these satisfy associativity, commutativity, and distributivity. For
example, a classical polynomial x3 + 2xy + y4 would represent max(3x, x + y + 2, 4y). The

14

classical polynomial is rewritten for a tropical polynomial by naively replacing + with⊕ and · with⊙,
respectively. After this, we rewrite by the definitions of tropical operations as max(3x, x+y+2, 4y).
Roughly speaking, this is the tropicalization of the polynomial, denoted tropical polynomial or simply
f . Note that this example (ours with max notation) comes from the Wikipedia 6.

Additionally, we present a graphical diagram in Figure 7 illustrating how the tropical polynomial
divides the 2D space for clearer understanding. Please see the caption for further details.

1+2x

1+2y 2+x+y

2+x

2+y

2

Figure B. A classical polynomial
x2 + y2 + 2xy + 2x + 2y + 2 turns
into a tropical polynomial as
max(1+2x, 1+2y, 2+x+y, 2+x,
2+y, 2), taking into account the
implicit coefficient of 1, from
Zhang et al. (2018). Each color
indicates a region where each
tropical monomial has maximum.

Figure 7: A classical polynomial x2 + y2 + 2xy + 2x+ 2y + 2 turns into a tropical polynomial as
max(1+ 2x, 1+ 2y, 2+ x+ y, 2+ x, 2+ y, 2), taking into account the implicit coefficient of 1. We
redraw Figure 1 of the tropical curve from Zhang et al. [27] as a region map. Each color indicates a
region where each tropical monomial has maximum.

A.2 Tropical hypersurface

The set of points where a tropical polynomial f is non-differentiable, mainly due to tropical sum,
max(·), is called tropical hypersurface, denoted V (f). Note that V is an analogy to the vanishing set
of a polynomial.

Definition A.1 (Tropical hypersurface, restated). The tropical hypersurface of a tropical polynomial
f(x) = c1x

α1 ⊕ · · · ⊕ crxαr is defined as:

V (f) = {x ∈ Rd : cix
αi = cjx

αj = f(x) for some αi ̸= αj}

where the tropical monomial cixαi with d-variate x is defined as ci ⊙ x
ai,1

1 ⊙ · · · ⊙ x
ai,d

d with
d-variate αi = (ai,1, . . . , ai,d) and tropical product ⊙ := +. In other words, this is the set of points
where f(x) equals two or more monomials in f .

A.3 Tropical algebra of neural networks

Definition A.2 (ReLU neural networks, restated). Assuming input and output dimensions are
consistent, L-layer neural networks with ReLU activation are a composition of functions defined as:

ν(L) = ρ(L) ◦ σ(L−1) ◦ ρ(L−1) · · ·σ(1) ◦ ρ(1) (12)

where σ(x) = max(x, 0) and ρ(i)(x) = W (i)x+ b(i).

Although the neural networks ν is generally non-convex, it is known that the difference of two tropical
signomials can represent ν [27]. A tropical signomial takes the same form as a tropical polynomial
(ref. Definition 3.1), but it additionally allows the exponentials α to be real values rather than integers.
With tropical signomials F , G, and H ,

ν(l)(x) = H(l)(x)−G(l)(x) (13)

σ(l) ◦ ν(l)(x) = F (l)(x)−G(l)(x) (14)

6https://en.wikipedia.org/wiki/Tropical_geometry

15

https://en.wikipedia.org/wiki/Tropical_geometry

where F (l), G(l), and H(l) are as follows:

F (l)(x) = max
(
H(l)(x), G(l)(x)

)
(15)

G(l)(x) = W
(l)
+ G(l−1)(x) +W

(l)
− F (l−1)(x) (16)

H(l)(x) = W
(l)
+ F (l−1)(x) +W

(l)
− G(l−1)(x) + b(l) (17)

while W (l) = W
(l)
+ −W

(l)
− where W

(l)
+ and W

(l)
− ∈ R+.

Proposition A.3 (Decision boundary of neural networks, restated). The decision boundary for L-
layer neural networks with ReLU activation ν(L)(x) = 0 is where two tropical monomials, or two
arguments of max, equal (Definition 3.1), as follows:

B ⊆
{
x : ν

(i)
j (x) = H

(i)
j (x)−G(i)

j (x) = 0, i ∈ (1, . . . , L), j ∈ (1, . . . ,H) if i ̸= L else (1)
}

where the subscript j denotes the j-th neuron, assuming the hidden size of neural networks is H ,
while the L-th layer has a single output for rather discussions as an SDF. Remind that tropical
operations satisfy the usual laws of arithmetic for recursive consideration.

This implies that piecewise hyperplanes corresponding to the preactivations {ν(i)j } are the candidates
shaping the decision boundary. Each linear region has the same pattern of zero masking by ReLU(·),
effectively making it linear as an equation of a plane Ax+ b = 0 for some A and b. In turn, if the
masking pattern changes as an input is continually changed, it moves to another linear region. From a
geometric point of view, this is why the number of linear regions grows polynomially with the hidden
size H and exponentially with the number of layers L [18, 27].

B Implementation details

B.1 Zero-trailing binarization function

B is zero-trailing binarization function, consisting of D = 3 bits. The zero-trailing means the number
in bits is increasing left-aligned. For example, the number one is “100”, while the numbers two
and four are “010” and “001”, respectively. The number three is “110”. From the left, each bit
indicates x, y, and z axis in our notation. This convention seems to be widely used in the CUDA
implementation in C language. Notice that we use the j subscript of Bj to select the axis. Naturally,
i = 0 and i = 7 indicate the opposite two corner points.

B.2 Sorting polygon vertices and HashGrid marks

Algorithm 3 describes the algorithm in Section 4.3, which are sorting polygon vertices implicitly
representing the direction of faces. If the viewing direction aligns opposite to the normal, the order of
vertices follows a counter-clockwise arrangement. We determine the vertex order based on the normal
derived from the Jacobian of the mean of vertices. We identify the counter-clockwise arrangement
of vertices using dot product to compute relative angles θ ∈ [−π, π] and cross product for getting
direction. Algorithm 4 describes the algorithm in Section 5, calculating the HashGrid marks from the
hyperparameters of a HashGrid.

Algorithm 3 Sorting Polygon Vertices

Input: vertices xi, normal n, N = |{xi}|
µ =

∑
i xi/N

for i = 0 to N − 1 do
vi = (xi − µ)/∥xi − µ∥2
ci = ⟨vi, v0⟩, di = ⟨vi × v0, n⟩
θi = ci(2 · 1di≥0 − 1) + 2 · 1di<0

end for
return ArgSort({−θi})

Algorithm 4 HashGrid Marks

Input: Resolution levels L, base resolution
Nmin, max resolution Nmax
m = {0, 1}
b = log2(Nmax/Nmin)/(L− 1)
for l = 0 to L− 1 do
s = 1/

(
Nmin · exp2(l · b)− 1

)
m← m+ Max

(
Arange(−s/2, 1, s), 0

)
end for
return Sort

(
Unique(m)

)
16

C Further discussions

C.1 Satisfying the eikonal equation and approximation

Theorem 4.7 handles where the eikonal equation does not make perfect hyperplanes. First, we
observed the characteristics of trilinear hypersurfaces as illustrated in Figure 9 in Appendix. Among
64 edge scenarios within a trilinear region, a diagonal plane intersects with the hypersurface in nearly
all cases. Moreover, we can take advantage of it since we can eliminate one variable by assuming
the curved edge lies on the x = z plane. In this light, Theorem 4.7 used linear algebra to rearrange
two trilinear equations to get Equations (71) and (74). As we mentioned in the manuscript, the new
vertices lie on at least two hypersurfaces, and the new edges exist on the same hypersurface, while
the eikonal constraint minimizes any associated error. This error is tolerated by the hyperparameter
ϵ=1e-4 (Section 6) as specified in Definition 3.4.

Figure 5 also suggests empirical evidence. Empirically, the flatness error, derived from the proof of
Theorem D.5, is effectively controlled by the learning rate of the eikonal loss. In the experiments, we
used 0.01 to give our results, while many other neural implicit surface learning methods were used
to exploit a higher learning rate of 0.1 (e.g., Yariv et al. [7]). Note that, in practice, the eikonal loss
is only applied to near-surface using clamps (if the target position is obviously far from a surface,
ignore it; it is wise since we are concerned with the surfaces, not wanting exact SDFs for all space)
for effective learning, which is sufficient to our extraction method.

Moreover, the smaller grid size of the Large model (ref. Section 6) in Figure 4 views a curved surface
in a smaller interval, and it tends to regard it as a plane. From the plotting of Small to Large, our CD
(colored crosses) is decreasing to zero, consistently with better CE, confirming this speculation.

C.2 Generalization to other positional encodings using trilinear interpolation

We can say that any encoding using trilinear interpolation (that) we defined can be applied in our
method. Here, the definition is implicitly referred to Definition 4.1 (Trilinear interpolation), where the
cubic corners are represented by H ∈ RD×F . Since we do not rely on a specific mapping function
f : x → (H0,H1 . . .H7), we may apply our extraction method to any encoding using trilinear
interpolation that we defined. Specifically, InstantNGP [12] used a hashing function to map a corner
point to the arbitrary entry of hash tables, allowing gracious collisions with online adaptivity (refer to
their Sec. 3), while TensoRF [13] can be interpreted that it used a mapping function to the summation
of the multiplications of two vectors from the vector-matrix factorization. Therefore, if we have the
full ranks for R1, R2, R3, in Eqn. 3 in Chen et al. [13], among the VM factorization, which can be
equivalently represented by the HashGrid with a sufficient number of hash table sizes.

Then, the discussion should be directed toward their encoding characteristics, which impact our
extraction method due to their online adaptivity (HashGrid) or low-rank factorization (TensoRF).
When we train an SDF, the optimization to global minima is generally difficult to achieve. Instead,
previous works on neural implicit surface learning methods resort to optimizing the SDF on near-
surface since we are interested in modeling the zero-set surfaces, allowing some errors for the
points that are far from the surfaces. Practically, this is done by defining a loss function using
clamps and ignoring far-surface points. For this reason, the online adaptivity of HashGrid or low-rank
factorization of TensoRF can exploit this nature: focused learning of the surfaces adaptively allocating
their learnable parameters to the near-surface, which means there might be enough room for the
regularization by the eikonal equation. The investigation of the efficiency of representing the implicit
neural surfaces using various positional encodings is seemingly out of the scope of this work since
our main interest lies in the theoretical exposition of the mesh extraction from it and setting up a
feasible bridge between theory and practice.

D Theoretical proofs

Lemma D.1. (Nested trilinear interpolation, restated) Let a nested cube be inside of a unit cube,
where its positions of the eight corners deviate −aj or +bj , such that aj , bj ≥ 0, from wj for each
dimension j, using the notations of Definition 4.1. The eight corners of the nested cube are the
trilinear interpolations of the eight corners of the unit cube. Then, the trilinear interpolation with the
unit cube and the nested cube for w is identical.

17

Proof. Let a left-aligned and zero-trailing binarization function be B(·) ∈ {0, 1}D and D = 3. The
partial derivative of the trilinear interpolation with the nested cube Ĥ with respect to H7 and H0

would be:

∂ϕ(w; Ĥ)

∂H7
=

2D−1∑
i=0

D∏
j=1

(1− B(i)j)bj(wj − aj) + B(i)jaj(wj + bj)

aj + bj
(18)

=

2D−1−1∑
i=0

bD(wD − aD) + aD(wD + bD)

aD + bD
·

D−1∏
j=1

(1− B(i)j)bj(wj − aj) + B(i)jaj(wj + bj)

aj + bj
(19)

= wD

2D−1−1∑
i=0

D−1∏
j=1

(1− B(i)j)bj(wj − aj) + B(i)jaj(wj + bj)

aj + bj
(20)

=

D∏
j=1

wj =
∂ϕ(w;H)

∂H7
(21)

and

∂ϕ(w; Ĥ)

∂H0
=

2D−1∑
i=0

D∏
j=1

(1− B(i)j)bj(1−wj + aj) + B(i)jaj(1−wj − bj)

aj + bj
(22)

= (1−wD)

2D−1−1∑
i=0

D−1∏
j=1

(1− B(i)j)bj(1−wj + aj) + B(i)jaj(1−wj − bj)

aj + bj

(23)

=

D∏
j=1

(1−wj) =
∂ϕ(w;H)

∂H0
, (24)

respectively. In a similar way, we can describe the other cases H1 to H6 of the nested trilinear
weights since there are two cases for each dimension inside the product.

Proposition D.2 (Cubic Bézier curve). Trilinear interpolation from Definition 4.1 with the weights
on the diagonal line t = (t, t, t)⊺ where t ∈ [0, 1] is a cubic Bézier curve.

Proof. We rewrite the trilinear interpolation from Definition 4.1 with the weight t as follows:

ψ(t;H) =

23−1∑
i=0

ω(i, t) ·Hi (25)

=

23−1∑
i=0

3∏
j=1

[
(1− B(i)j)(1− t) + B(i)jt

]
·Hi (26)

= (1− t)3H0 + (1− t)2t(H1 +H2 +H4) + (1− t)t2(H3 +H5 +H6) + t3H7

(27)

= (1− t)3H0 + 3(1− t)2t(H1 +H2 +H4

3
) + 3(1− t)t2(H3 +H5 +H6

3
) + t3H7

(28)

= (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3 (29)

Four points P0 := H0, P1 := H1+H2+H4

3 , P2 := H3+H5+H6

3 , and P3 := H7 define the cubic
Bézier curve.

18

As t is changed from zero to one, the curve starts at P0 going toward P1 and turns in the direction of
P2 before arriving at P3. Usually, the curve does not pass P1 nor P2; but these give the directional
guide for the curve.

Lemma D.3 (Hypersurfaces in a trilinear space). In a piecewise trilinear region where x lies,
hypersurfaces of the piecewise trilinear networks are defined as follows, following the notation of
Definition 4.1:

0 = ν̃(x) =

2D−1∑
i=0

ω(i,w) · ν̃(xi) (30)

where w ∈ [0, 1]D is the relative position in a grid cell and {xi} and {Hi} are the corresponding
corner positions and representations, respectively, in a trilinear space.

Proof. In a piecewise trilinear region, we can use the linearity of ν as follows:

ν̃(x) =
(
ν ◦ τ

)
(x) = ν

(2D−1∑
i=0

ω(i,w) ·Hi

)
(31)

=

2D−1∑
i=0

ω(i,w) · ν
(
Hi

)
(32)

=

2D−1∑
i=0

ω(i,w) · ν̃
(
xi

)
(33)

which concludes the proof.

Lemma D.4 (Curved edge of two hypersurfaces, restated). In a piecewise trilinear region, let an
edge (x0,x7) be the intersection of two hypersurfaces ν̃i(x) = ν̃j(x) = 0, while x0 and x7 are on
the two hypersurfaces. Then, the edge is defined as:

{x : τ(x) = (1− t)τ(x0) + tτ(x7) where x ∈ RD and t ∈ [0, 1]}. (34)

Proof. By Definition 4.3,

ν̃i(x0) = ν̃i(x7) ⇔ νi
(
τ(x0)

)
= νi

(
τ(x7)

)
, (35)

while νi is linear in a piecewise trilinear region. Since it similarly goes for νj , the intersection line of
two hyperplanes νi and νj is (1− t)τ(x0) + tτ(x7) where t ∈ R. In other words, the edge is on the
hypersurface νi

(
(1− t)τ(x0) + tτ(x7)

)
= 0 where t ∈ R. The edge is defined as follows:

{x : τ(x) = (1− t)τ(x0) + tτ(x7) where x ∈ RD and t ∈ R} (36)

which concludes the proof.

Notice that when τ(x)1 + τ(x)2 + τ(x)4 = τ(x)3 + τ(x)5 + τ(x)6 = 0, at least one connecting
edge can be identified. This occurs along the diagonal line x = t · 1, where t ∈ [0, 1]. Along this
line, τ(x) represents a cubic Bézier curve, as shown in Proposition D.2 with the control points of P1

and P2 set to zeros, which is the line.

Theorem D.5 (Hypersurface and eikonal constraint, restated). A hypersurface τ(x) = 0 intersects
two points τ(x0) = τ(x7) = 0 while τ(x1...6) ̸= 0 for the remaining six points. These points form a
cube, with x0 and x7 positioned on the diagonal of the cube. The hypersurface satisfies the eikonal
constraint ∥∇τ(x)∥22 = 1 for all x ∈ [0, 1]3. Then, the hypersurface of τ(x) = 0 is a plane.

19

Proof. By the definitions of τ in Definition 4.3 and the eikonal constraint,

∥∇τ(x)∥22 =
(∂τ(x)

∂x

)2

+
(∂τ(x)

∂y

)2

+
(∂τ(x)

∂z

)2

= 1 (37)

∂∥∇τ(x)∥22
∂x

= 2
(∂τ(x)

∂y

)(∂2τ(x)
∂y∂x

)
+ 2

(∂τ(x)
∂z

)(∂2τ(x)
∂z∂x

)
= 0 (38)

∂∥∇τ(y)∥22
∂y

= 2
(∂τ(x)

∂x

)(∂2τ(x)
∂x∂y

)
+ 2

(∂τ(x)
∂z

)(∂2τ(x)
∂z∂y

)
= 0 (39)

∂∥∇τ(z)∥22
∂z

= 2
(∂τ(x)

∂x

)(∂2τ(x)
∂x∂z

)
+ 2

(∂τ(x)
∂y

)(∂2τ(x)
∂y∂z

)
= 0 (40)

where

∂τ(x)

∂y
= (1− x)

(
(1− z)

(
τ(x2)− τ(x0)

)
+ z

(
τ(x6)− τ(x4)

))
+ x

(
(1− z)

(
τ(x3)− τ(x1)

)
+ z

(
τ(x7)− τ(x5)

))
. (41)

However, since τ(x0) = τ(x7) = 0 while τ(x2) ̸= 0 and τ(x5) ̸= 0, there is no solution τ(x1...6)

of ∂τ(x)
∂y = 0 for all x. Likewise, the same goes for ∂τ(x)

∂x and ∂τ(x)
∂z . Additionally, the three partial

derivatives can be rewritten as follows:

bC + cB = aC + cA = aB + bA = 0 (42)

where a ̸= 0, b ̸= 0, and c ̸= 0. By substituting B = −bC/c and A = −aC/c, we can show that
−abC/c− abC/c = 0⇔ C = 0, which makes A = B = C = 0. Therefore, we rewrite A, B, and
C as follows:

∂2τ(x)

∂y∂z
= (1− x)

(
− τ(x2)− τ(x4) + τ(x6)

)
+ x

(
+ τ(x1)− τ(x3)− τ(x5)

)
(43)

∂2τ(x)

∂z∂x
= (1− y)

(
− τ(x1)− τ(x4) + τ(x5)

)
+ y

(
+ τ(x2)− τ(x3)− τ(x6)

)
(44)

∂2τ(x)

∂x∂y
= (1− z)

(
− τ(x1)− τ(x2) + τ(x3)

)
+ z

(
+ τ(x4)− τ(x5)− τ(x6)

)
, (45)

respectively. The following conditions would satisfy the eikonal constraint:

−τ(x2)− τ(x4) + τ(x6) = 0 (46)
τ(x1)− τ(x3)− τ(x5) = 0 (47)
−τ(x1)− τ(x4) + τ(x5) = 0 (48)
+τ(x2)− τ(x3)− τ(x6) = 0 (49)
−τ(x1)− τ(x2) + τ(x3) = 0 (50)
+τ(x4)− τ(x5)− τ(x6) = 0 (51)

From Equation (48) and Equation (51),

τ(x1) = −τ(x6) (52)

From Equation (47) and Equation (50),

τ(x2) = −τ(x5) (53)

From Equation (47) and Equation (48),

τ(x4) = −τ(x3) (54)

From Equation (50), Equation (51), and Equation (54),

τ(x1) + τ(x2) + τ(x4) = 0 (55)
τ(x3) + τ(x5) + τ(x6) = 0 (56)

20

Using Equation (52), Equation (53), Equation (54), Equation (55), and Equation (56),
τ(x) =

(
x(1− y)(1− z)− (1− x)yz

)
τ(x1)

+
(
(1− x)y(1− z)− x(1− y)z

)
τ(x2)

+
(
(1− x)(1− y)z − xy(1− z)

)
τ(x4) (57)

= (x+ α)τ(x1) + (y + α)τ(x2) + (z + α)τ(x4) (58)

= xτ(x1) + yτ(x2) + zτ(x4) + α
(
τ(x1) + τ(x2) + τ(x4)

)
(59)

= xτ(x1) + yτ(x2) + zτ(x4) = 0 (60)
where α = 2xyz − xy − yz − zx.

This is an equation of a plane where its normal vector is
(
τ(x1), τ(x2), τ(x4)

)
. Again, to satisfy the

eikonal constraint,
τ(x1)

2 + τ(x2)
2 + τ(x4)

2 = 1 (61)

τ(x3)
2 + τ(x5)

2 + τ(x6)
2 = 1, (62)

which concludes the proof.

Corollary D.6 (Affine-transformed hypersurface and eikonal constraint, restated). Let ν0(x) and
ν1(x) be two affine transformations defined by W ⊺

i x+ bi, i ∈ {0, 1}. A hypersurface ν0
(
τ(x)

)
= 0

passing two points ν0
(
τ(x0)

)
= ν0

(
τ(x7)

)
= 0 while ν0

(
τ(x1...6)

)
̸= 0 satisfies the eikonal

constraint ∥∇ν1
(
τ(x)

)
∥22 = 1 for all x ∈ [0, 1]3. Then, the hypersurface is a plane.

Proof. Similarly to Theorem D.5, we investigate the Jacobian of the eikonal constraint to be zero as
follows:

∥∇ν1
(
τ(x)

)
∥2 =

(∂ν1
∂τ

∂τ(x)

∂x

)2

+
(∂ν1
∂τ

∂τ(x)

∂y

)2

+
(∂ν1
∂τ

∂τ(x)

∂z

)2

= 1 (63)

∂∥∇ν1
(
τ(x)

)
∥2

∂x
= 2

(∂ν1
∂τ

∂τ(x)

∂y

)(∂ν1
∂τ

∂2τ(x)

∂y∂x

)
+ 2

(∂ν1
∂τ

∂τ(x)

∂z

)(∂ν1
∂τ

∂2τ(x)

∂z∂x

)
= 0. (64)

Since ∂ν1/∂τ is a constant, using Lemma D.3 and replacing ν1 and τ with ν1 ◦ ν−1
0 and ν0 ◦ τ ,

respectively, give us the same constaints for ν0
(
τ(x1...6)

)
regardless of ν1.

Theorem D.7 (Intersection of two hypersurfaces and a diagonal plane, restated). Let ν̃0(x) = 0 and
ν̃1(x) = 0 be two hypersurfaces passing two points x0 and x7 such that ν̃0(x0) = ν̃1(x0) = 0 and
ν̃0(x7) = ν̃1(x7) = 0, Pi := ν̃0(xi) and Qi := ν̃1(xi),

Pα =
[
P0; P1; P4; P5

]
, Pβ =

[
P2; P3; P6; P7

]
, (65)

and

X =

(1− x)
2

x(1− x)
(1− x)x

x2

 . (66)

Then, x ∈ [0, 1] of the intersection point of the two hypersurfaces and a diagonal plane of x = z is
the solution of the following quartic equation:

X⊺
(
PαQ

⊺
β − PβQ

⊺
α

)
X = 0 (67)

while

y =
X⊺Pα

X⊺(Pα − Pβ)
(Pα ̸= Pβ). (68)

Proof. We rearrange ν̃0(x) using x = z as follows:

ν̃0(x) = (1− y) ·X⊺
[
P0; P1; P4; P5

]
+ y ·X⊺

[
P2; P3; P6; P7

]
(69)

= (1− y)X⊺Pα + yX⊺Pβ = 0 (70)

⇔ y =
X⊺Pα

X⊺(Pα − Pβ)
(Pα ̸= Pβ). (71)

21

In a similar way, we rewrite ν̃1(x) as follows:

X⊺(Pα − Pβ)ν̃1(x) = X⊺Pα ·X⊺Qβ −X⊺Pβ ·X⊺Qα (72)

= X⊺PαQ
⊺
βX −X⊺PβQ

⊺
αX (73)

= X⊺
(
PαQ

⊺
β − PβQ

⊺
α

)
X. (74)

Notice that this is a quartic equation of x. To find the coefficients of the general form of quadratic
equation, we consider a mapping C from the interpolation coefficients τi to polynomial coefficients
ci: [

c0
c1
c2

]
= C

τ0τ1τ2
τ3

 =

[
1 0 0 0
−2 1 1 0
1 −1 −1 1

]τ0τ1τ2
τ3

 (75)

where τ0(1− x)2 + τ1x(1− x) + τ2(1− x)x+ τ3x
2 = c0 + c1x+ c2x

2. Then, the coefficients of
the quartic equation of Equation (74) are as follows:[

c00 c01 c02
c10 c11 c12
c20 c21 c22

]
= C

(
PαQ

⊺
β − PβQ

⊺
α

)
C⊺ (76)

where the anti-diagonal sum of the result is the quartic coefficients, i.e.,

c00 + (c10 + c01)x+ (c20 + c11 + c02)x
2 + (c21 + c12)x

3 + c22x
4. (77)

The solutions of the quartic equation such that x ∈ [0, 1] are the valid intersection points, and we
choose one of them x if there are more than one solution. Note that we can compute a batch of quartic
equations using the parallel computing of the eigenvalue decomposition with Lemma D.8.

We determine y by Equation (71) using x, and z = x.

We reproduce the method to find polynomial roots from companion matrix eigenvalues [29].
Lemma D.8 (Polynomial roots from companion matrix eigenvalues, reproduced). The companion
matrix of the monic polynomial 7

p(x) = c0 + c1x+ · · ·+ cn−1x
n−1 + xn (78)

is defined as:

C(p) =

0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1

 . (79)

The roots of the characteristic polynomial p(x) are the eigenvalues of C(p).

7The nonzero coefficient of the highest degree is one. If you are dealing with the equation, you can make it
by dividing the nonzero coefficient of the highest degree for both sides.

22

E Complexity analysis

We provide a detailed exposition of the complexity analysis in Section 3.2 to ensure the comprehen-
siveness of our work. Notice that our complexity analysis closely aligns with the approach outlined
in Berzins [4], as in their Appendix A.

Algorithm 2 operates on the vertices and edges, V and E , respectively. Therefore, our initial focus
is on the complexity associated with these inputs. Let |V|, |E|, and |Ê | (Ê ⊂ E) be the number of
vertices, edges, and splitting edges consisting of polygons (Section 3.2), at the iteration of i and j.

1. During the initialization step (refer to Section 5), we determine |V| and |E| to construct a
grid in RD. In the case of having M HashGrid marks, the quantities are defined as MD

and D(M − 1)MD−1, respectively. In case of the large M , we consider vertex and edge
pruning for efficient computations inspired by a pruning strategy proposed in Berzins [4]. If,
for every future neuron, denoted as ϕ(i, j) > ϕ(i∗, j∗), the two vertices of an edge exhibit
identical signs, the edge can be safely pruned as it will not undergo splitting. We make
the assumption of that MD < |V| to avoid an excessively dense grid, with a complexity of
O(|V|).

2. Evaluate ν̃(V; i, j) with a complexity of O(|V|), assuming negligible inference costs as
constants. The intermediate results from the inference can be used for the sign-vectors
(Definition 3.4).

3. Identify splitting edges Ê by comparing two signs per edge, with a complexity of O(|E|).
4. Obtain P and Q for Theorem 4.7 with a complexity of O(|Ê |) in a similar way.
5. Inference for Theorem 4.7 involves matrix-vector multiplications and the eigenvalue decom-

position of a companion matrix for each edge, with a complexity of O(|Ê |). Considering
the maximum size of 4 for a quartic equation, this operation is regarded as linear.

6. Find intersecting polygons by pairing two sign-vectors with two common zeros in a shared
region of the new vertices resulting from splitting, with a complexity of O(|Ê |).

In the study by Berzins [4], a linear relationship between |V| and |E| for a mesh is empirically
observed (see Figure 8a in Berzins [4]). It is worth to note that the number of splitting edges can
be effectively upper-bounded as |Ê | < |E|D/ϕ(i, j) using Theorem 5 in [20]. Consequently, all the
steps outlined in Algorithm 2 demonstrate a linear dependency on the number of vertices, denoted as
O(|V|).
To obtain faces, we sort the vertices within each region based on the Jacobian with respect to the
mean of the vertices (see Algorithm 3). Considering triangularization, where each face has three
vertices, the complexity remains O(|V|), assuming the negligible cost of calculating the Jacobian,
especially when performed in parallel.

23

F Supplementary experiments

F.1 Complete results

Table 2 and Table 3 are extended from the Stanford 3D Scanning dataset in Table 1. Table 4 extended
from the Stanford bunny of Table 1, including standard deviations, and pseudo-ground truth results,
obtained through marching cubes with 256 samples. Notice that we used the more excessive 512
samples for the Medium and Large models in Figure 4. We found that 256 samples were not enough
for those. Table 5 shows the angular distance results. Tables 2 to 5 use the Small model, while Table 8
uses the Large model (ref. Section 6). We conducted all experiments with an NVIDIA V100 32GB.

Table 2: Chamfer distance (CD) and chamfer efficiency (CE) for the Part A of the Stanford 3D
Scanning repository [31] using the Small model as the default setting (ref. Section 6). The chamfer
distance (×1e-6) is evaluated using the marching cubes (MC) with 2563 grid samples as the reference
ground truth for all measurements. The chamfer efficiency is defined as 100/(

√
|V| × CD), providing

a concise representation of the trade-off between the number of vertices and the chamfer distance.
The results are averaged over three random seeds.

Bunny Dragon Happy Buddha

MC # |V| ↓ CD ↓ CE ↑ |V| ↓ CD ↓ CE ↑ |V| ↓ CD ↓ CE ↑
32 1283 4106 19.0 1416 6330 11.2 1032 6951 13.9
64 5367 1371 13.6 6090 1936 8.5 4362 2465 9.3

128 21825 393 11.6 25236 542 7.3 18219 722 7.6
192 49569 141 14.3 57341 203 8.6 41351 276 8.8

Ours 4341 900 25.6 5104 1243 15.8 3710 1738 15.5

Table 3: Chamfer distance (CD) and chamfer efficiency (CE) for the Part B of the Stanford 3D
Scanning dataset [31].

Armadillo Drill Bit Lucy

MC # |V| ↓ CD ↓ CE ↑ |V| ↓ CD ↓ CE ↑ |V| ↓ CD ↓ CE ↑
32 1438 6212 11.2 144 91959 7.5 594 6753 24.9
64 6151 1960 8.3 873 5949 19.2 2701 2310 16.0

128 25164 605 6.6 3718 1542 17.4 11255 830 10.7
192 57306 231 7.5 8382 782 15.3 25589 335 11.7

Ours 4783 1499 13.9 694 3013 47.8 2406 1763 23.6

Table 4: Chamfer distance (CD) and chamfer efficiency (CE) for the Stanford bunny are evaluated
using the marching cubes with 2563 grid samples (⋆) as the reference ground truth. The standard
deviations are provided after the ± notation, based on results obtained from three random seeds,
which are used in training. Similar outcomes are observed for the remaining cases.

Method Sample Vertices ↓ CD (×1e-6) ↓ CE ↑ Time ↓

Marching Cubes

32 1283 ± 89 4106 ± 202 19.0 0.00 ± 0.00
48 2967 ± 177 2178 ± 94 15.5 0.01 ± 0.06
56 4057 ± 245 1539 ± 100 16.0 0.01 ± 0.00
64 5367 ± 342 1371 ± 93 13.6 0.02 ± 0.00

128 21825 ± 1336 393 ± 19 11.6 0.10 ± 0.00
192 49569 ± 3043 141 ± 4 14.3 0.44 ± 0.10
224 67601 ± 4146 114 ± 6 12.9 0.60 ± 0.03

Marching Cubes⋆ 256 88492 ± 5404 - - 0.88 ± 0.05

Ours - 4341 ± 253 900 ± 171 25.6 0.97 ± 0.21

24

Table 5: Angular distance (AD) for the Stanford bunny. Similarly to the chamfer distance, the angular
distance (◦) is also evaluated using the marching cubes with 2563 grid samples (⋆) as the reference
ground truth for all measurements. The standard deviations are provided after the ± notation, based
on results obtained from three random seeds, which is used in training.

Method Sample Vertices ↓ AD (◦) ↓

Marching Cubes

32 1283 ± 89 6.97 ± 0.45
48 2967 ± 177 5.07 ± 0.15
56 4057 ± 245 4.23 ± 0.25
64 5367 ± 342 4.10 ± 0.17

128 21825 ± 1336 2.47 ± 0.12
192 49569 ± 3043 1.63 ± 0.06
224 67601 ± 4146 1.53 ± 0.06

Marching Cubes⋆ 256 88492 ± 253 -

Ours - 4490 ± 91 3.57 ± 0.38

Table 6: Chamfer distance (CD) and chamfer efficiency (CE) for the Part A of the Stanford 3D
Scanning repository [31] using the Large model having 4x-resolution of HashGrid compared to the
default setting (ref. Section 6). The chamfer distance (×1e-6) is evaluated using the marching cubes
(MC) with 5123 grid samples as the reference ground truth for all measurements. The results are
averaged over three random seeds.

Bunny Dragon Happy Buddha

MC # |V| ↓ CD ↓ CE ↑ |V| ↓ CD ↓ CE ↑ |V| ↓ CD ↓ CE ↑
128 38395 632 4.12 25986 759 5.07 18621 1110 4.84
192 87245 299 3.83 58855 335 5.08 42793 533 4.38
224 119000 221 3.80 80470 268 4.64 58357 395 4.34
256 155484 182 3.53 105235 226 4.21 76183 322 4.07

Ours 135691 151 4.87 91147 157 6.99 67562 229 6.46

Table 7: Chamfer distance (CD) and chamfer efficiency (CE) for the Part B of the Stanford 3D
Scanning dataset [31] using the Large model as the default setting (ref. Section 6).

Armadillo Drill Bit Lucy

MC # |V| ↓ CD ↓ CE ↑ |V| ↓ CD ↓ CE ↑ |V| ↓ CD ↓ CE ↑
128 25309 887 4.45 3590 1342 20.8 12224 1304 6.28
192 57751 399 4.34 8092 625 19.8 27863 687 5.23
224 78703 315 4.04 11000 588 15.5 38337 524 4.97
256 103085 267 3.63 14339 496 14.1 49838 435 4.61

Ours 90567 186 5.94 10275 342 28.5 43631 358 6.40

Table 8: Chamfer distance (CD) and chamfer efficiency (CE) for the Stanford dragon using the Large
model having 4x-resolution of HashGrid compared to the default setting (ref. Section 6) are evaluated
using the marching cubes with 5123 grid samples (⋆) as the reference ground truth.

Method Sample Vertices ↓ CD (×1e-6) ↓ CE ↑ Time ↓

Marching Cubes
128 25986 ± 121 759 ± 64 5.07 0.29 ± 0.01
192 58855 ± 181 335 ± 21 5.08 0.60 ± 0.06
256 105235 ± 452 226 ± 17 4.21 1.16 ± 0.04

Marching Cubes⋆ 512 424311 ± 1262 - - 9.19 ± 0.39

Ours - 91147 ± 203 157 ± 18 6.99 14.9 ± 1.66

25

Number of the vertices

0K 60K 120K 180K 240K 300K 360K

2.76E-03
3.99E-03

5.20E-03
7.48E-03

4.67E-04

8.61E-04
1.21E-03

1.90E-03

1.86E-041.82E-04
2.21E-04

2.99E-04

6.32E-04

1.51E-04

Ours
MC
MT
NDC

Chamfer distance
1e-2

1e-3

1e-4

Figure D. Chamfer distance (CD)
for the Bunny with the Large
model. Our method achieved the
lowest chamfer distance and the
most efficiency method with
respect to the number of vertices.

C
ha

m
fe

r
di

st
an

ce

1E-04

1E-03

Number of the vertices

0K 30K 60K 90K 120K 150K 180K

3.66E-04

2.08E-04

1.47E-04
1.21E-04 1.13E-04

3.58E-04

2.37E-04

1.87E-04
1.64E-04 1.52E-04

MC+QEM
Ours+QEM

Figure E. CD for the Bunny
with the Large model applying
QEM (mesh simplification).
Both benefit from QEM while
our method efficiently retains
better chamfer distances.

Figure 8: Chamfer distance for the Bunny with the Large model applying QEM (a mesh simplifica-
tion). Both benefit from QEM while our method efficiently retains better chamfer distances.

F.2 Mesh simplification using QEM

In Figure 8, Quadric Error Metrics (QEM) [35] is a popular mesh simplification algorithm, it could
potentially improve both MC and our method for efficiency. Overall, as shown, the mesh simplification
favors our method. Notice that QEM entails a higher computational cost, at least O(n log n) where n
is the number of vertices. Additionally, these methods can cause shape deformation or holes, sensitive
to hyperparameters. Therefore, QEM may be applied with caution for further mesh simplification,
acknowledging the potential for unpredictable side effects. We used MeshLab’s Quadric Edge
Collapse Decimation with the default settings to halve the number of vertices for each step.

F.3 Comparison with alternate approaches

Marching Cubes (MC) remains the de facto sampling-based method. In contrast, our method is a
white-box method grounded in the theoretical understanding of trilinear interpolation and polyhedral
complex derivation. Here is our rationale for this evaluation:

1. Analytical approaches for CPWA functions are limited by their inability to effectively
manage spectral bias and their exponential computational cost, which struggles with expo-
nentially growing linear regions (infeasible to run our benchmarks.) For example, the time
complexity of Analytic Marching [2] is O((n/2)2(L−1)|VP |n4L2), which grows exponen-
tially with the number of layers L and the width n of the networks, where |VP | represents the
number of vertices per face (Section 4.1 from Lei and Jia [2]). In contrast, our method has a
linear time complexity with respect to the number of vertices, as discussed in Appendix E,
allowing it to avoid visiting every linear region exponentially growing.

2. We also exclude optimization-based methods as they typically rely on MC or its variants
initialization in their pipelines (our method can also be integrated into them), such as
MeshSDF [36], Deep Marching Tetrahedra [10], and FlexiCubes [37]. Additionally, these
methods result in prolonged computational costs.

We provided both rigorous quantitative Figure 3 and qualitative Figure 6 analyses on Marching Tetra-
hedra (MT) [9, 10] and Neural Dual Contour (NDC) [32], which serve as alternative representative
approaches. MT is a popular variant of MC that utilizes six tetrahedra within each grid to identify
intermediate vertices. NDC is a data-driven approach (a pretrained model) that uses Dual Contour.
In short, MT efficiently requires SDF values but is less efficient regarding the number of vertices
extracted. (MT is better than MC in the same resolution, producing more vertices, though.) NDC
faces a generalization issue for a zero-shot setting, producing unsmooth surfaces. We used the code
from Deep Marching Tetrahedra [10] for MT and the official code of NDC. And PyMCubes for our
modernized MC library.

26

F.4 Error of the learned SDF

In Equation (11) and Figure 5, we confirmed our hypothesis that the eikonal loss induces piecewise
linearity in trilinear networks. To further support this, we also present the error analysis of the learned
SDF. Although the Chamfer distance virtually evaluates the SDF values based on sampling, concerns
may arise regarding noise in the pseudo-ground truth. For this reason, one might wish to verify
whether the predicted SDFs converge toward near-zero.

We randomly sampled 100K points on the surface of pretrained networks (the Stanford bunny Large
model) and calculated the average of squares for predicted SDF (model’s outputs) on the surface.
As we expected, the predicted SDFs on the reconstructed surface converge to zero as the weight of
the eikonal loss increases, and the number is close to zero ≈ 3e-8 as shown in Table 9. Note that,
for a Large model, fine-grained trilinear regions from the dense grid marks (from the more dense
multi-resolution grids) allow relatively small errors of 97 × 1e-9 without the eikonal loss, although
the eikonal loss of 1e-2 further decreases to 31 × 1e-9. Note that the stronger eikonal loss of 1e-1
proved ineffective due to over-regularization.

Table 9: Error of the learned SDF. Weight stands for the weight of the eikonal loss and SE stands for
the squared error of predicted SDFs.

Method Weight SE (1e-9) ↓
MC64 1e-2 2308
MC256 1e-2 66

Ours

0 97
1e-4 91
1e-3 68
1e-2 31

F.5 Effect of model sizes

In Table 10, we explore the ablation study to determine whether model size impacts model fitting,
which in turn affects the GT mesh (we used MC256 for the pseudo-ground truth of the Small models).
With a smaller model size, the learned mesh becomes simpler due to underfitting. As our evaluation
focuses on how accurately the extraction methods capture the underlying zero level-set decision
boundary of the networks, the change in CD remains small.

Table 10: Ablation study varying the number of layers and the width of networks for the Stanford
bunny Small models. And, Note indicates the architecture of the decoding networks.

Layers Width Vertices CD (1e-6) ↓ Time (sec) ↓ Note

2 4 4565 738 0.11
2 8 4863 768 0.13
2 16 4566 734 0.12
2 32 4577 754 0.22
2 64 4611 739 0.50 InstantNGP [12]

3 4 4547 666 0.12
3 8 4661 750 0.19
3 16 4628 724 0.65 Ours
3 32 4567 754 0.57
3 64 5588 759 2.86

Notice that the model with the number of layers of 3 and the width of 64 has the longest runtime
of 2.80, primarily because the number of intermediate vertices exceeds 80K. The time complexity
is more sensitive to the number of vertices than to the number of layers or the width, which are
only indirect factors. Note that the model capacity of the decoding networks is comparable to
InstantNGP [12], where the representational efficiency is driven by the HashGrid.

27

G Visualizations

For Figure 6 in the main paper (closer looks at bunny’s nose), we want to leave a note about the small
facets along the left-side of the nose line in the highlighted region. We assume these narrow facets
are embedded in the facets of MC256 (pseudo-ground truth), while MC64 fails to capture the left
and right edge of the nose and represents this with more facets cutting these two sides of edges – not
aligned with nose lines and rather assign more facets in here.

In Figure 9, we explain the rationale behind adopting the diagonal plane assumption in Theorem 4.7
and Section 4.2. We illustrated 64 edge scenarios within a trilinear region, omitting isomorphic cases.

In Figure 10, we showcase the analytical generation of a normal map from piecewise trilinear
networks, utilizing HashGrid [12] and ReLU neural networks. Our approach dynamically assigns
vertices based on the learned decision boundary. Notably, the configuration of hash grids influences
vertex selection, and each grid can be subdivided into multiple polyhedra for accurate representation
of smooth curves.

In Figure 11, we present comparative visualizations of normal maps for marching cubes, demon-
strating variations in the number of samplings alongside our method, with the respective vertex
counts indicated in parentheses. This analysis highlights the trade-off between detail preservation and
computational efficiency, showcasing the optimality of our analytically extracted mesh from decision
boundary apex points.

In Figure 12, we compare marching cubes (MC) with 256 and 64 samplings to our method. MC 64
shows limitations in representing pointy areas, while our approach excels with analytical extraction
from decision boundary apex points. Adaptive sampling leads to some vertices being in close
proximity (10.1% within 1e-3), prompting potential mesh optimization for improved efficiency.

In Figure 13, the gallery of the six Stanford 3D Scanning meshes from the Large models is shown.

28

0

0+
+

+
+

+
+

0

0+
+

+
+

+
−

+
−

−0

0+
+

+

+
−

−0

0+
+

−

No edge (6)No edge (1)

XY, YZ-plane (2)

XY, YZ, XZ (6)

+
−

+0

0+
+

−

No edge (12)

−
+

+0

0−
+

+

XY, YZ-plane (2)

+
+

−0

0+
+

−

YZ, XZ-plane (2)

+
+

+0

0−
−

+

YZ, XZ-plane (2)

+
−

+0

0+
−

+ −
+

+0

0+
+

−

XY, XZ-plane (2) XY, XZ-plane (2) No edge (6)

+
+

+0

0+
−

−

+
−

+0

0+
−

− +
−

+0

0−
+

−

No edge (2)XY, YZ, XZ (6)

−
−

+0

0+
+

−

XY, YZ, XZ (6)

0

0−
−

−
−

−
+

No edge (6)

0

0−
−

−
−

−
−

No edge (1)

1

Figure 9: We depict the 64 scenarios of the edge within a trilinear region, excluding isomorph cases
specifying the count within parentheses. No edge indicates where two diagonal zero corners are
not connected. The labels XY, YZ, and XZ refer to x = y, y = z, and z = x diagonal planes,
respectively, form the shared edge, connecting the two diagonal zero corners, with the hypersurface
in the schematic figure. In nearly all cases, a diagonal plane intersects with the hypersurface, except,
at most, four cases, depending on the curvature determined by corner values.

29

Figure 10: The normal map is analytically generated from piecewise trilinear networks, comprising
both HashGrid [12] and ReLU neural networks, that have been trained to learn an SDF with the
eikonal loss for the Stanford bunny [31]. Our approach dynamically assigns vertices based on the
learned decision boundary. One notable observation is that the hash grids influence the selection of
vertices. Additionally, each grid can be subdivided into multiple polyhedra to accurately represent
smooth curves. The Small (left) and Large (right) models (ref. Section 6) are used to learn the SDF.

MC 256
(92K Vertices)

MC 128
(23K Vertices)

MC 64
(5.6K Vertices)

MC 32
(1.3K Vertices)

MC 16
(303 Vertices)

Ours
(4.5K Vertices)

MC 256
(103K Vertices)

MC 128
(25K Vertices)

MC 64
(6.1K Vertices)

MC 32
(1.4K Vertices)

MC 16
(289 Vertices)

Ours
(5.1K Vertices)

1

Figure 11: Visualizing normal maps for marching cubes varying the number of samplings, and ours,
with the number of vertices denoted in parentheses. Low sampling has a risk of omitting sharp object
details, while dense sampling results in redundant vertices and faces. As our mesh is analytically
extracted from the decision boundary apex points of networks, it represents an optimal choice in
balancing detail preservation and efficiency.

30

MC 256
(92K Vertices)

MC 64
(5.6K Vertices)

Ours
(4.5K Vertices)

1

Figure 12: In a face-to-face comparison, we examine marching cubes with 256 and 64 samplings,
denoted as MC 256 and MC 64, respectively, and our method. Notably, MC 64 struggles to accurately
represent pointy areas of meshes due to its coarse sampling. In contrast, our approach has an
advantage in this aspect, as we analytically extract the mesh from the decision boundary apex points
of networks. However, it is worth noting that our adaptive sampling introduces a disadvantage where
some vertices are in close proximity; specifically, we observed that 10.1% of vertices are within 1e-3
proximity to others. We believe that optimizing the mesh can significantly improve the parsimony of
the vertex count compared with marching cubes.

Figure 13: The extract mesh visualizations of the six from the Stanford 3D Scanning repository using
the Large models. From left, Bunny, Dragon, Happy Buddha, Armadillo, Dril Bit, and Lucy.

31

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims made in the abstract and introduction are accurately reflected
in theoretical and experimental expositions. Theorem 4.5 and Figure 5 provide the theoretical
and experimental supports of the planarity constraint of the eikonal equation, Theorem 4.7
provides a plausible approximation for the curved edge subdivision, and Table 1 shows
the consistent chamfer efficiency across multiple meshes from the Stanford 3D Scanning
repository, while Figure 4 shows that the higher resolution of HashGrid is favorable to the
planarity constraint, achieving lower chamfer distances.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

32

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Every Lemma and Theorem has its proof in the Appendix, noting the assump-
tions that we used, while they are properly referenced by numbering.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 6 provides the hyperparameters we used, Algorithms are provided
in the main and the Appendix, while reproducible code can be found in the supplemental
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

33

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The reproducible code can be found in the supplemental material. The Stanford
3D Scanining repository can be freely download via http://graphics.stanford.edu/
data/3Dscanrep/.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 6 provides the hyperparameters we used, and the reproducible code
can be found in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Table 4 and Tables 5 and 8 in Appendix F.1 provides the standard deviations
using three random seeds where learned SDFs may slightly differ. Notice that our algorithm
is deterministic for given SDF networks.

34

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix F.1 provides the information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

35

https://neurips.cc/public/EthicsGuidelines

Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The Stanford 3D Scanning repository (MIT License) is used with a proper
citation [31], along with HashGrid [12] for our trilinear module.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

36

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not involved in crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not involved in crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

37

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

38

	
	Introduction
	Related work
	Preliminaries
	Tropical geometry
	Edge subdivision for tropical geometry

	Method
	Piecewise trilinear networks
	Curved edge subdivision in a trilinear space
	Skeletonization, faces, and normals

	Implementation
	Experiment
	Conclusions
	Appendix

	 Appendix
	Tropical geometry and tropical algebra of neural networks
	Tropical geometry
	Tropical hypersurface
	Tropical algebra of neural networks

	Implementation details
	Zero-trailing binarization function
	Sorting polygon vertices and HashGrid marks

	Further discussions
	Satisfying the eikonal equation and approximation
	Generalization to other positional encodings using trilinear interpolation

	Theoretical proofs
	Complexity analysis
	Supplementary experiments
	Complete results
	Mesh simplification using QEM
	Comparison with alternate approaches
	Error of the learned SDF
	Effect of model sizes

	Visualizations

