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Figure 1. Visual Prompting models like MAE-VQGAN (Bar et al., 2022) require input-output example(s) to describe the desired task in
their forward pass. We analyze the model activations and find Task Vectors, activations that encode task information that can be reused to
control the task the model performs (see Figure 1a). Specifically, we tap into activations of individual attention heads and replace their
outputs with Task Vectors to guide the model to the desired task (see Figure 1b). Surprisingly, the resulting models perform better than the
original model while removing the need for input-output examples. This confirms that Task Vectors exist in the network activation space
and they can guide the model to perform the desired task.

Abstract
Visual Prompting is a technique for teaching mod-
els to perform a visual task via in-context exam-
ples, without any additional training. In this work,
we analyze the activations of MAE-VQGAN, a
recent Visual Prompting model (Bar et al., 2022),
and find Task Vectors, activations that encode task-
specific information. We then demonstrate that
it is possible to identify the Task Vectors and use
them to guide the network towards performing
different tasks without having to provide any in-
context input-output examples. To find Task Vec-
tors, we compute the mean activations of the atten-
tion heads in the model per task and use the RE-
INFORCE (Williams, 1992) algorithm to patch
into a subset of them with a new query image.
The resulting Task Vectors guide the model with
better performance than the original model.1

1UC Berkeley 2Tel Aviv University 3Google Research. Corre-
spondence to: Alberto Hojel <ahojel@berkeley.edu>.

1For code and models see www.github.com/alhojel/
visual_task_vectors

1. Introduction
In-context learning (ICL) is an emergent capability of large
neural networks, first discovered in GPT-3 (Brown et al.,
2020). ICL allows models to adapt to novel downstream
tasks specified in the user’s prompt. In computer vision,
Visual ICL (known as Visual Prompting) is still at its in-
fancy but it is increasingly becoming more popular (Bar
et al., 2022; Bahng et al., 2022; Bai et al., 2023; Zhang
et al., 2024b), mainly due to the appeal of using a single
model to perform various downstream tasks without specific
finetuning or change in the model weights.

In this work, we ask how does in-context learning work
in computer vision. While this question is yet to be ex-
plored, there has been a significant body of research in
Natural Language Processing (NLP) trying to explain this
phenomenon (Akyürek et al., 2022; Dai et al., 2022; Garg
et al., 2022; Hahn & Goyal, 2023; Han et al., 2023). Most
recently, Hendel et al.(Hendel et al., 2023) suggested that
LLMs encode Task Vectors, these are vectors that can be
patched into the network activation space and replace the
ICL examples while resulting in a similar functionality. Con-
currently, Todd et al. (Todd et al., 2023) discovered Function
Vectors, activations of transformer attention heads that carry
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task representations. Our work is inspired by these observa-
tions and aims to study how ICL works in computer vision.
We provide a more extended overview of the related works
in the Suppl. Section 7.

We hypothesize that Visual ICL models create task vectors
too, and aim to identify them. However, finding visual task
vectors by relying on previous approaches is challenging.
For example, both (Hendel et al., 2023; Todd et al., 2023)
restricted their search space to the output activations of the
last token in the prompt sequence. However, with images
(see Figure 1, “Visual Prompting” input image), it is not
obvious what token activations hold task information, and
architectures like MAE-VQGAN (Bar et al., 2022) do not
process image tokens sequentially. This alone increases the
search space significantly because multiple tokens might
hold task vectors.

To build intuition regarding the existence of visual task
vectors, we visualize intermediate activations ranked by
their "taskness", expecting task vectors to remain invari-
ant within a task but vary across different tasks. Then,
we propose an approach to find the subset of task vectors
using REINFORCE, within the mean task activations of
self-attention heads. Patching these identified task vectors
leads to competitive performance with the original model
across various tasks, confirming them as true task vectors.
Our contributions include a method to select visual task
vectors and demonstrating that these vectors enhance model
performance while reducing the number of FLOPS by 22.5

2. Methods
Our goal is to understand in-context learning for computer
vision and how existing models can be adapted to different
downstream tasks at inference time. We focus on the MAE-
VQGAN model (Bar et al., 2022), a variant of MAE (He
et al., 2021) with a Vision Transformer (Dosovitskiy et al.,
2021) encoder-decoder architecture. Given an input-output
example (xs, ys) and a new query xq , to succeed in an ICL
task, the model F must implicitly apply the transformation
from xs to ys over xq to produce yq:

yq = F (xs, ys, xq) (1)

Based on observations from NLP (Hendel et al., 2023; Todd
et al., 2023), we hypothesize that computer vision models
also encode latent Task Vectors in their activation space
during the forward pass. This requires the model to implic-
itly map the ICL example into a set of latent Task Vectors
z = {zi}ki=1 which we derive from the attention head out-
puts for different tokens across the model’s layers (the in-
ternal representations). The original function F can then be
decomposed into extracting the Task Vectors by a function
G and applying F on the query while fixing the computed

task activations z ∈ Rd, where d is the hidden dimension of
the model.

z = G(xs, ys) yq = F (xq|z) (2)

We now describe how Task Vectors can be derived from the
internal representations of a model.

2.1. Computing Mean Activations

Let i = (l,m, k) denote the position in the model, where
l, m, and k are the attention block, head, and token indices
respectively. Define Hi : (xs, ys, xq) → Rd as the function
that outputs the activation at position i for a given demon-
stration and query triplet. Let (xs, ys, xq) ∼ Dtaskj

be
a triplet of input-output example and a query from task j.
We compute the intermediate activation hi

taskj
via Hi and

denote its mean activation as µi,j :

hi
taskj

= Hi(xs, ys, xq) µi,j = E[hi
taskj

] (3)

2.2. Scoring Activations

Intuitively, every task vector is an activation that changes
across different tasks but remains relatively invariant to
changes within a specific task. We define the data dis-
tribution (x′

s, y
′
s, x

′
q) ∼ Dall_tasks as the union of all

task-specific distributions, and the intermediate activations
hi
all = Hi(x

′
s, y

′
s, x

′
q). The scoring function ρtoken(i) is

defined as the ratio of inter-task to intra-task variance as
ρtoken(i) where Var(·) denotes the variance, h[e] is the e-th
element of vector h, and n is the number of tasks.

ρtoken(i) =

∑d
e=1 Var(hi

all[e])
1
n

∑n
j=1

∑d
e=1 Var(hi

taskj
[e])

(4)

Computing these is efficient, requiring only forward passes
across batches of data. This scoring function identifies "task-
ness" in activations (see Figure 2, and Table 2), but may
also highlight other task-variant activations (e.g., color his-
tograms varying across tasks but consistent within tasks like
binary segmentation maps versus colored images). We use
these scores mainly to build intuition, analyze task clusters
in the activation space (Section 9), and develop a simple
baseline (“Greedy Random Search”, see Suppl. 13.1). How-
ever, we employ a more robust general approach to identi-
fying high-order Visual Task Vectors, as described in the
following section.

2.3. Finding Visual Task Vectors via REINFORCE

How can Task Vectors be identified? An exhaustive search
over all subsets of activations is intractable. For example,
MAE-VQGAN (Bar et al., 2022) which we utilize here has
32 attention blocks, each with 16 heads, therefore, if we
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Figure 2. Activation Scoring Analysis. Individual scores
(ρtoken(i)) aggregated per Attention Head (left). Individual token
scores of specific heads are further visualized in their correspond-
ing spatial arrangements, along with the t-SNE(van der Maaten
& Hinton, 2008) clustering of head activations of different tasks
(right).

consider these to be the potential set of activations then we
need to search over 2512 options, evaluating each option
over a held-out validation set.

For every task j we can apply the following procedure to
find the Task Vectors. Recall that {µi,j} denotes the mean
activations and F (·) is a pretrained visual prompting model.
Denote αi,j ∼ Bernoulli(σ(θij)) as random variables that
signify whether the mean task activation µi,j is a task vector
of task j placed in activation position i and θij is a learned
weight followed by the sigmoid function to ensure it is in
[0, 1].

Denote zj as the set of Task Vectors for task j: zj =
{µi,j |αi,j = 1}. Given pairs of input-output task demon-
strations xq, yq ∼ Dtaskj

,2 we want to find the set of Task
Vectors that minimizes the loss function:

L(θ) = Ezj∼pθ
L(yq, F (xq|zj)) (5)

Where pθ denotes the sampling distribution of zj and L
denotes the loss function that suits the particular task j.
Note that differently than in Equation 1, if we find a good
set of Task Vectors zj , then we no longer need to condition
F over additional input-output examples.

To find a set of Task Vectors, we need to estimate the pa-
rameters θ. Since the sampling distribution pθ depends on
θ, it is natural to use the REINFORCE algorithm (Williams,
1992). The key idea in REINFORCE is the observation that:

∇L(θ) = Ezj∼pθ
L(yq, F (xq|zj))∇ log pθ(zj)

Thus, we can approximate ∇L(θ) by sampling zj and aver-
aging the above equation. After iteratively optimizing with
gradient descent, we select the final task vector positions by
sampling a set of zj .

Instead of learning Task Vectors placements αij for each
individual task, we can revise the procedure above to
learn a single placement by defining random variables
αi ∼ Bernoulli(σ(θi)) that accommodate all tasks. In
this setting, training requires drawing examples across tasks
with their respective task-wise mean activations and task
specific loss function. We refer to this setting as multi-task
patching. Furthermore, the search can be applied at different
granularities, such as patching token groups from the same
quadrant, all tokens in an attention head, or entire layers.
We discuss these design choices in the next section.

3. Experiments
We evaluate our Task Vector patching approach on four
standard image-to-image tasks: Foreground Segmentation,
Low Light Enhancement, In-painting, and Colorization. Us-
ing the Pascal-5i dataset (Shaban et al., 2017), we sample
1000 prompt-query pairs per split from the validation set for
evaluation.

Our experiments utilize the pretrained MAE-VQGAN
model from (Bar et al., 2022) as the base architecture. To
find Task Vectors, we embed only the query image in the
bottom left quadrant of a 2x2 grid, with the model recon-
structing the output in the bottom right quadrant. We in-
tervene on attention head outputs by replacing them with
mean activations at positions identified using REINFORCE
(Williams, 1992).

2We overload the definition of Dtaskj to avoid notation clutter.
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The REINFORCE algorithm is implemented as follows: We
initialize Bernoulli parameters θij = −1 for each patching
position. In each iteration, we sample 32 times from the
Bernoulli distribution for each of 10 images, patching po-
sitions where the sampled value is 1. This results in 320
executions of task vector conditioned MAE-VQGAN per
iteration. We optimize Bernoulli parameters using Adam
(Kingma & Ba, 2017) with a learning rate of 0.1 for 600
steps, selecting the best checkpoint every 50 steps based on
evaluation on a held-out test set.

We compare our Task Vector patching approach to sev-
eral baselines: the original MAE-VQGAN one-shot per-
formance (Bar et al., 2022), Causal Mediation Analysis
(CMA) (Todd et al., 2023), Greedy Random Search (GRS),
and random patching baselines. We evaluate two variants
of our method: task-specific, which finds and patches Task
Vectors for each task independently, and multi-task, which
jointly finds Task Vectors across all tasks (patching into the
same positions but using task-specific mean activations).

For evaluation, we report mean Intersection over Union
(mIoU) for Segmentation and Mean Squared Error (MSE)
for the other tasks, averaged across four dataset splits. To
provide deeper insights into our method, we conduct ab-
lation studies on the location of Task Vectors within the
encoder and decoder, as well as the granularity of patching
(individual tokens, quadrants, or attention heads).

To build intuition about the existence of Task Vectors, we
analyze the clustering of activations based on our proposed
scoring function ρtoken(i). We compute this score for each
attention head and visualize it as a heatmap (Figure 2, left).
For selected heads, we visualize the activation clustering
using t-SNE (van der Maaten & Hinton, 2008) and display
the individual Activation Score per token (Figure 2, right).
This qualitative analysis aims to provide visual evidence for
the existence of Task Vectors and inform our Task Vector
identification method.

4. Results
Our experiments demonstrate that Task Vector interventions
can effectively replace in-context examples while main-
taining or improving performance compared to the origi-
nal MAE-VQGAN model across multiple tasks. Table 3
presents the mean and standard deviation of performance
metrics across four dataset splits for various models and
baselines. For a comprehensive breakdown of results across
all splits and additional baselines, refer to Table 6 in the
Supplementary Materials.

Our task-specific models consistently outperform the origi-
nal MAE-VQGAN one-shot prompting across all evaluated
tasks, despite not using input-output examples. The multi-
task variant of our method also shows competitive results,

Figure 3. Qualitative Examples. We compare our task-specific
and multitask methods to MAE-VQGAN

outperforming or matching MAE-VQGAN in all tasks ex-
cept Segmentation, where it achieves comparable perfor-
mance. This demonstrates the robustness of our approach in
identifying task-agnostic Visual Task Vector positions that
can guide the model without in-context examples.

Comparing our method to other baselines, we observe that
while Causal Mediation Analysis (CMA) improves upon
random baselines, it falls short of our approach in both task-
specific and multi-task settings. The performance of random
patching strategies (Random Quadrants and Top Quadrants)
is significantly worse than other methods, highlighting the
importance of our Task Vector identification process.

The qualitative analysis of attention head activations (Figure
2) provides insights into the existence and distribution of
Task Vectors. Highly-ranked heads, such as (26,3), show
clear task-based clustering in the t-SNE visualization, while
low-ranked heads like (27,5) exhibit mixed clusters across
tasks. This supports our hypothesis that certain attention
heads capture task-specific information more effectively
than others.

The heatmap of individual token scores within attention
heads reveals interesting patterns. We observe consis-
tency within quadrants, supporting our quadrant-based token
patching strategy. The CLS token and specific quadrants
show higher scores, indicating their importance in capturing
task-relevant information.

Figure 3 provides qualitative examples comparing our
task-specific and multi-task methods to the original MAE-
VQGAN model. These visual results corroborate the quan-
titative improvements, showcasing how Task Vectors can
guide the model to perform various tasks without relying on
input-output examples.
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Table 1. Quantitative Analysis. Results comparison across different tasks and splits, indicating the effectiveness of our task specific
model. For full results across splits including more baselines, see Suppl. Table 6.

Segmentation ↑ Lowlight Enhance ↓ Colorization ↓ In-painting ↓
Model (Mean ± STD) (Mean ± STD) (Mean ± STD) (Mean ± STD)

Original MAE-VQGAN 0.338± 0.033 0.685± 0.032 0.618± 0.027 0.550± 0.042

Random Quadrants 0.170± 0.061 3.000± 0.967 3.025± 1.190 2.350± 0.955
Top Quadrants 0.150± 0.023 4.875± 0.228 4.250± 0.269 3.900± 0.141
CMA (Task-specific) 0.230± 0.012 0.825± 0.043 0.895± 0.063 1.750± 0.112
CMA (Multitask) 0.150± 0.017 1.400± 0.122 1.130± 0.075 1.225± 0.083

Ours (Multitask) 0.325± 0.026 0.492± 0.025 0.502± 0.036 0.558± 0.022
Ours (Task-specific) 0.353 ± 0.028 0.458 ± 0.032 0.453 ± 0.036 0.480 ± 0.022

For a more detailed analysis of our results, including ab-
lation studies on the importance of layer ranking and the
impact of different patching strategies, please refer to Sec-
tion 6 in the Supplementary Materials.

5. Limitations
While we focused on Task Vectors, other important vector-
types might exist, for example, vectors capturing image
structure and ordering. We evaluated performance using
MSE (except mIoU for Segmentation) after decoding VQ-
GAN tokens. Future work could explore direct evaluation in
VQGAN token space using cross entropy loss for potentially
more accurate results.

6. Conclusion
In this work we explore the internal mechanisms of visual
in-context learning and devise an algorithm to identify Task
Vectors, activations present in transformers that can replace
the in-context examples to guide the model into perform-
ing a specific task. We confirm our approach by adapting
MAE-VQGAN to perform tasks without including the ICL
demonstration in the prompt by patching the Task Vectors
identified. We find that different than in NLP, in computer
vision Task Vectors are distributed throughout the network’s
encoder and decoder.
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Supplementary Material

7. Related Work
7.1. Visual Prompting

Visual Prompting (Bar et al., 2022; Bahng et al., 2022; Jia et al., 2022; Xu et al., 2023; Zhang et al., 2024b; Bai et al., 2023)
is a class of approaches to adapt computer vision models to downstream tasks, inspired by the success of prompting in
NLP (Brown et al., 2020). Approaches like (Bahng et al., 2022; Jia et al., 2022) seek to improve task-specific performance
by adding trainable prompt vectors to the model. Other Visual Prompting approaches allow a model to handle various vision
tasks (Bar et al., 2022; Xu et al., 2023; Bai et al., 2023; Zhang et al., 2024b) by introducing visual examples or text at the
time of inference. Such prompting is related to the way in-context learning (Xie et al., 2021; Wei et al., 2022; Liu et al.,
2021; Lu et al., 2021) operates in language models (Radford et al., 2019; Brown et al., 2020; Wang & Komatsuzaki, 2021).
In fact, trainable prompts and in-context learning can be viewed as two complementary approaches for “describing” a task to
a model (Li & Liang, 2021). Our goal here is to better understand the underlying mechanism of Visual ICL, and we analyze
the MAE-VQGAN model presented in (Bar et al., 2022).

7.2. Explainability

Causal Interventions (Bau et al., 2018; Park et al., 2023; Pearl, 2022; Meng et al., 2022) and Activation Patching (Zhang
& Nanda, 2023) are valuable tools for understanding complex neural networks’ internal mechanisms, enhancing model
interpretability (Zhang et al., 2021; Moraffah et al., 2020; Singh et al., 2024). These methods enable systematic examination
of how models encode information and represent high-level concepts (Zhang et al., 2024a; Wu & Varshney, 2024; Lu et al.,
2023). By manipulating internal states or inputs and observing output changes, they reveal causal structures and effects
driving model predictions (Gandelsman et al., 2023). In this work, we employ Activation Patching (Zhang & Nanda, 2023)
to improve Visual Prompting models’ guidance for various computer vision tasks through targeted interventions.

7.3. Task Vectors

In (Hendel et al., 2023; Todd et al., 2023; Ferry et al., 2023), Task Vectors or Function Vectors are sets of latent activations
derived from particular positions inside a transformer (Vaswani et al., 2017) model which serve as internal representations
of a task implicitly described by an ICL prompt with input-output demonstrations. These latent activations at particular
positions can consequently be used in a new forward pass in the absence of the ICL prompt (or with a corrupted prompt) while
still managing to guide the model to perform the desired task. The investigation of Task Vectors aligns with broader efforts
in the field to make neural networks more adaptable and tailored to specific tasks (Liu et al., 2023; Luo & Specia, 2024) as
well as boosting the performance (Palit et al., 2023; Xu et al., 2024; Jin et al., 2024) by gaining a deeper understanding of
how different attention heads within a model contribute to its overall function. Our work is the first to explore Task Vectors
in computer vision.

8. Experiments
Our experiments explore if activation patching of Task Vectors can make a model perform the desired visual task as well as
or better than its original one-shot performance. We describe the implementation of MAE-VQGAN, prompting schemes,
baselines for comparison, visual tasks, and conducted experiments.

8.1. Implementation Details

MAE-VQGAN (Bar et al., 2022). An MAE (He et al., 2021) with a ViT-L (Dosovitskiy et al., 2021) backbone. The
decoder predicts a distribution over a VQGAN (Esser et al., 2021) codebook to output images with better visual quality. We
used the pretrained checkpoint from (Bar et al., 2022) where it was trained over the Computer Vision Figures (Bar et al.,
2022) dataset and ImageNet (Russakovsky et al., 2015).

Finding Task Vectors. Similar to one-shot (Section 8.4), we use a 2x2 image grid with the prompt. For task vectors, we
embed only the query in the bottom left quadrant. The model reconstructs only the output part (bottom right). We patchify
the query image at 112x112 resolution, apply bottom left quadrant positional encodings, feed patches into the encoder, and
process them with the decoder alongside bottom right quadrant mask tokens to obtain the result.
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We intervene on attention head outputs by replacing them with mean activations at positions identified using REIN-
FORCE (Williams, 1992). Initially, we set θij = −1. To reduce the search space, we group patching positions into three
categories: CLS (1 token), bottom left quadrant (49 query image patch tokens), and bottom right quadrant (49 MASK
tokens). In each iteration, we sample 32 times from the Bernoulli distribution for each of 10 images, patching positions
where the sampled value is 1. This results in 320 executions of task vector conditioned MAE-VQGAN per iteration. We
optimize Bernoulli parameters as outlined in Section 2.3 using Adam (Kingma & Ba, 2017) with a learning rate of 0.1. The
algorithm runs for 600 steps, selecting the best checkpoint every 50 steps based on evaluation on a held-out test set.

8.2. Activation Scoring Analysis

Here our goal is to evaluate the Activation Scoring step (outlined in Section 2.2), specifically whether high scoring activations
indeed correspond to Task Vectors.

Collecting Activations. To compute activation scores, we first run the model’s forward pass in a one-shot setting across
different tasks (Section 2.1). We use 100 prompts and queries from Pascal 5i (Shaban et al., 2017) training set, ensuring
reasonable one-shot performance. We save the activations for each task j and position i = (l,m, k), where l, m, and k are
the attention block, head, and token indices respectively. We then compute the mean activation µi,j and score ρtoken(i).

Evaluation via Clustering. Next, we wish to analyze if ρtoken(i) indeed captures “taskness”. Intuitively, we expect
layers that capture task information to succeed in clustering activations by task. To assess this, we analyze the clustering
performance of vectors with high-ranking activations versus those marked with low scores. We measure the clustering
performance using common clustering metrics like the Silhouette Score (Rousseeuw, 1987) and the Davies-Bouldin
Score (Davies & Bouldin, 1979). Finally, we also perform a qualitative analysis by visualizing the representations on a
t-SNE (van der Maaten & Hinton, 2008) plot, coloring each data point by it’s task label.

8.3. Downstream Tasks

We evaluate the performance on standard image-to-image tasks like Foreground Segmentation, Low Light Enhancement,
In-painting, and Colorization.

Dataset. We utilize Pascal-5i (Shaban et al., 2017), consisting of 4 image splits (346-725 images each) with segmentation
masks. For evaluation, We sample 1000 prompt-query pairs per split from the validation set. For Activation Scoring and
methods to find Task Vectors, we use only training set examples.

Foreground Segmentation. We use Pascal-5i (Shaban et al., 2017) segmentation masks and report mean IOU (mIOU)
across four splits.

Low Light Enhancement. We multiply Pascal-5i image color channels by 0.5 for input, using the original as output. We
report Mean Squared Error (MSE).

Inpainting. We mask a random 25% square region (1/8 area) of each image for input. We report MSE using the original
image as output.

Colorization. To obtain input-output pairs, we convert an image to grayscale and denote it as the input, and have the output
be the original image. For evaluation, we report the MSE metric.

8.4. Baselines

One-shot Prompting. We follow the basic one-shot setup in (Bar et al., 2022). Specifically, we construct a grid-like image
structure with an input-output demonstration, a query, and a masked output region which are embedded into a 2x2 grid. We
feed this grid image to the model to obtain the output prediction which we use for evaluation purposes.

Causal Mediation Analysis. We compare our methodology with the Causal Mediation Analysis methodology as presented
in (Todd et al., 2023) as a baseline. We select the top 25% of activations with the highest causal score across 10 images.

Greedy Random Search. We compare our methodology to an iterative greedy random search algorithm (GRS) used to
select Task Vectors based on the activation scoring metric proposed in Section 2.2. This serves as a baseline and is outlined
in the Supplementary Materials (Section 13.1).
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8.5. Ablations

In this section, we describe the set of experiments conducted to validate our implementation choices of our REIN-
FORCE (Williams, 1992) method.

Task Vectors Location in Encoder vs. Decoder. We hypothesize that task implementation spans both encoder and decoder.
To test this, we apply interventions to the encoder only, decoder only, and the whole network. We report mIoU on four
Segmentation task splits to assess the necessity of interventions in both parts for effective task implementation.

Patching Granularity. We explore intervention granularities by grouping token positions to reduce dimensionality and
optimization search space. Positions i = (l,m, k) are grouped into spatial quadrants or attention heads. To balance precision
and search space, we use three granularity levels: individual tokens, quadrants, and attention heads, and report performance
across four tasks.

8.6. Task Vector Patching

We investigate whether patching Task Vectors into a model’s forward pass, without ICL demonstrations, can achieve
performance comparable to one-shot prompting. Our experiments include:

Task-specific. For each of the four tasks we execute our task-specific method, and the baselines of Causal Mediation
Analysis (CMA) and Greedy Random Search (GRS) with 10 images and report the results on corresponding tasks.

Multi-task. We apply our method in a multi-task scenario, selecting two images per task and evaluating alongside CMA
and GRS baselines. We jointly assess loss across all tasks, normalizing per task to ensure equal weighting and prevent
single-task dominance. We include an identity-copy task to maintain a consistent batch size of 10 for fair comparisons.

We also provide the following baselines to benchmark the performance of the three algorithms, and to validate the necessity
of top k score ranking the layers and performing the iterative search for the GRS method:

MAE-VQGAN. We compare to the original model’s one-shot performance.

Random Quadrants. We patch into randomly sampled positions across the whole network (same total amount of patches
as task-specific and multi-task)

GRS across Random K Layers. We execute the search algorithm on a random set of k layers, instead of score-ranked
layers, to validate the necessity of our proposed scoring method.

Patching into Top Quadrants. We patch into the top quadrants based on their scoring (same total amount of patches as
task-specific and multi-task). That is, we directly patch into areas with high scores naively without the iterative refining
steps of the GRS, to validate its utility.

We report results across four splits for all four tasks, comparing our variants to the original MAE-VQGAN model and
random baselines. Supplementary Materials (Section 8) include initial explorations of REINFORCE-powered Language
Task Vectors with Llama7B, vector addition to create composable tasks, and others.

9. Results
9.1. Activation Scoring Analysis

We compute and display ρtoken(i) per head on a heatmap, with layers on the y-axis and head indices on the x-axis (Figure 2).
This highlights heads that potentially hold Task Vectors. We select top heads—(26, 3) and (11, 3)—and a lower-ranked
head (27, 5). For each, we visualize activation clustering and individual Activation Score per token.

Clustering Visualization. Highly-ranked heads (e.g., (26,3)) show clear task-based clustering, while low-ranked heads like
(27,5) show many small clusters with different tasks, likely based on input semantics. The activations are projected onto 2D
using t-SNE (van der Maaten & Hinton, 2008) with colors indicating tasks.

Score-per-token Heatmap. We display ρtoken(i) values for each token, reflecting spatial positioning in a 2x2 grid. For
heads of interest, these values are shown on a heatmap. The CLS token is in the top left, followed by values for quadrants
(xs, ys, xq, yq). The encoder lacks yq tokens (bottom right), marked as X. Token values within a head vary widely but show
consistency within quadrants, supporting quadrant-based token patching.
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Figure 4. Qualitative Examples. We qualitatively compare the task-specific variants of our methodology’s results with the original model
and the CMA and GRS baselines. Our patching methodology performs better than the original MAE-VQGAN model.
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Table 2. Task Clustering Quality. Clustering Scores of Different Attention Heads, ranked by our Activation Score (see Section 2). This
indicates that higher Activation Scores indeed correlate with better clustering by tasks.

(Layer, Head) Our Score Silhouette Score Davies-Bouldin Score
↑ ↑ ↓

High 1 (26, 3) 2.1663 0.3583 1.2744
High 2 (11, 3) 1.0827 0.2692 1.5567
Random 1 (4, 3) 0.2329 0.0708 4.1062
Random 2 (18, 16) 0.1259 0.0369 4.3256
Low 1 (2, 16) 0.0221 -0.0518 21.8265
Low 2 (2, 12) 0.0264 -0.0334 13.5982

Table 3. Quantitative Analysis. Results comparison across different tasks and splits, indicating the effectiveness of our task-specific
model.

Segmentation ↑ Lowlight Enhance ↓ Colorization ↓ In-painting ↓
Model (Mean ± STD) (Mean ± STD) (Mean ± STD) (Mean ± STD)

Original MAE-VQGAN 0.338± 0.033 0.685± 0.032 0.618± 0.027 0.550± 0.042

Random Quadrants 0.170± 0.061 3.000± 0.967 3.025± 1.190 2.350± 0.955
Random K Layers 0.090± 0.007 1.825± 0.043 0.568± 0.022 0.875± 0.100
Top Quadrants 0.150± 0.023 4.875± 0.228 4.250± 0.269 3.900± 0.141
CMA (Task-specific) 0.230± 0.012 0.825± 0.043 0.895± 0.063 1.750± 0.112
CMA (Multi-task) 0.150± 0.017 1.400± 0.122 1.130± 0.075 1.225± 0.083
GRS (Task-specific) 0.320± 0.021 0.600± 0.025 0.555± 0.025 0.580± 0.047
GRS (Multi-task) 0.323± 0.019 0.515± 0.032 0.568± 0.029 0.605± 0.036

Ours (Multi-task) 0.325± 0.026 0.492± 0.025 0.502± 0.036 0.558± 0.022
Ours (Task-specific) 0.353 ± 0.028 0.458 ± 0.032 0.453 ± 0.036 0.480 ± 0.022

Quantitative Clustering Analysis. To validate our scoring-based clustering quality observations, we report Silhouette and
Davies-Bouldin scores for the two highest-ranked heads, two randomly sampled heads, and the two lowest-ranked heads
(Table 2). Heads scored highly by our method show high-quality clustering scores, while low-scored heads show poor
clustering. Randomly selected heads received intermediate scores, further supporting our methodology.

9.2. Task Vector Patching

We present the performance of our task-specific and multi-task methods compared to the original model and baselines. Task
Vector interventions improve visual ICL task performance over the original model. Table 3 shows mean and variance across
4 splits (full results in Table 6, Supplementary Materials). Our task-specific models outperform MAE-VQGAN in all tasks,
with GRS models surpassing it in some. Our multi-task models excel in all tasks except Segmentation, where they match
MAE-VQGAN. GRS multi-task matches the original model, while CMA improves upon random baselines but falls short of
our method and GRS.

We validate the importance of ranking layers by ρlayer(l) (Section 13.1) and selecting top-k for greedy random search
performance. Random K layers generally underperform, except in colorization. Simply patching top quadrants without
GRS also yields poor results. Qualitative results for Segmentation, Lowlight Enhancement, and In-painting are presented.
We compare task-specific models of our method with original MAE-VQGAN, CMA, and GRS baselines (Figure 4), and
visualize task-specific and multi-task variants against CMA and GRS (Figure 5).

9.3. Ablations

Task Vectors Location in Encoder vs. Decoder. We compare interventions isolated to the encoder, decoder, and throughout
the whole network. Results show that in-context task learning utilizes both components, with the decoder playing a more
crucial role. Intervening in both components is essential for task implementation, supporting our hypothesis of distributed
computation with cascading effects throughout the network (see Table 5).

Patching Granularity. Inspired by quadrant patterns in per-token scoring, we explore optimal token grouping to reduce
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Table 4. Optimal Patching Granularity. Patching into Tokens (T), Quadrants (Q), or Heads (H)

Segmentation ↑ Lowlight Enhance ↓ Colorization ↓ In-painting ↓
Model (Mean ± STD) (Mean ± STD) (Mean ± STD) (Mean ± STD)

Ours T (Task-specific) 0.350 ± 0.025 0.495± 0.036 0.453 ± 0.036 0.485± 0.018
Ours Q (Task-specific) 0.338± 0.023 0.458 ± 0.032 0.465± 0.036 0.480 ± 0.022
Ours H (Task-specific) 0.245± 0.015 0.942± 0.070 0.857± 0.069 0.885± 0.067

Ours T (Multi-task) 0.318± 0.023 0.510± 0.028 0.510± 0.039 0.565± 0.025
Ours Q (Multi-task) 0.325 ± 0.026 0.492 ± 0.025 0.502 ± 0.036 0.558 ± 0.022
Ours H (Multi-task) 0.253± 0.013 1.105± 0.064 0.998± 0.069 0.980± 0.082

Table 5. Isolating Task Locations. Patching into Encoder only, Decoder only, and both.

Segmentation ↑
Model Split 0 Split 1 Split 2 Split 3

Encoder (Task-specific) 0.09 0.14 0.14 0.13
Decoder (Task-specific) 0.32 0.34 0.29 0.29
Both (Task-specific) 0.35 0.35 0.31 0.29

search space dimensionality. Quadrant grouping improves performance for Segmentation and Colorization, while token-level
granularity is better for Lowlight Enhancement and In-painting (see Table 4 for mean and variance across 4 splits, and
Table 7 in Supplementary Materials for individual split evaluations).

10. Full Results
As supplementary material, we provide the tables displaying the full evaluations across the 4 splits of our method alongside
the baselines, and the different patching granularities.

11. Additional Explorations
We include a handful of additional experiments that serve as potential future avenues for research.

Finding Task Vectors in Other Architectures. We evaluate our method to find Task Vectors on Llama2 7B, an autore-
gressive decoder-only architecture on NLP tasks and compare the Top-1 accuracy to previous reported results by Todd et
al. (Todd et al., 2023). Our method performs better than previous approaches, beating 10-shot in 2 tasks while reducing
FLOPs by 92.5% (Table 8).

Out of Domain Evaluation. We evaluate the performance of in-painting and low-light enhancement task-specific models
on x-ray images. The qualitative results (Figure 6) show proper task implementation. The resulting x-ray images are slightly
more blurry, which is due to a limitation in the underlying VQGAN tokenizer, previously reported in Bar et al. (Bar et al.,
2022).

Task Vector Arithmetic. We explore whether vector arithmetic can be performed on the task representations to create
new tasks by composition. By utilizing the multitask patching positions, we can compose the tasks of in-painting and
segmentation by combining their individual Task Vectors as follows: combined = inpaint+segment− identity similarly
to Todd et al. (Todd et al., 2023), where identity is the identity mapping task described in the paper. We compute these new
mean activations and patch them into the previously determined multitask positions, and evaluate using as input a masked
image and its corresponding segmentation. Figure 7 shows that the tasks are indeed composable, where combined performs
qualitatively better than segment which suffers from holes.

One-shot Task Vectors. We investigate whether 1-shot performance can be improved with Task Vectors. Table 9 shows that
additional in-context examples (or shots) are not necessary when using Task Vectors. Intuitively, Task Vectors already lead
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Figure 5. Qualitative Examples. We qualitatively compare the task-specific and multi-task variants of our methodology with the CMA
and GRS baselines. Our patching methodology performs better than the original MAE-VQGAN model.
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Table 6. Quantitative Analysis. Results comparison across different tasks and splits, indicating the effectiveness of our task-specific
model.

Segmentation ↑ Lowlight Enhancement ↓
Model Split 0 Split 1 Split 2 Split 3 Split 0 Split 1 Split 2 Split 3

Original MAE-VQGAN 0.35 0.38 0.33 0.29 0.70 0.66 0.73 0.65

Random Quadrants 0.08 0.25 0.16 0.19 4.30 2.40 3.50 1.80
Random K Layers 0.09 0.10 0.09 0.08 1.80 1.80 1.90 1.80
Top Quadrants 0.11 0.17 0.16 0.16 4.50 5.00 5.10 4.90
CMA (Task-specific) 0.23 0.25 0.22 0.22 0.76 0.83 0.88 0.83
CMA (Multi-task) 0.18 0.14 0.14 0.14 1.2 1.5 1.5 1.4
GRS (Task-specific) 0.33 0.35 0.30 0.30 0.56 0.61 0.63 0.60
GRS (Multi-task) 0.33 0.35 0.31 0.30 0.47 0.52 0.56 0.51

Ours (Multi-task) 0.35 0.35 0.31 0.29 0.46 0.49 0.53 0.49
Ours (Task-specific) 0.38 0.38 0.33 0.32 0.41 0.46 0.50 0.46

Colorization ↓ In-painting ↓
Model Split 0 Split 1 Split 2 Split 3 Split 0 Split 1 Split 2 Split 3

Original MAE-VQGAN 0.59 0.62 0.66 0.60 0.49 0.55 0.61 0.55

Random Quadrants 2.10 4.10 4.30 1.60 3.80 1.20 1.90 2.50
Random K Layers 0.54 0.57 0.60 0.56 0.72 0.89 1.00 0.89
Top Quadrants 3.80 4.40 4.30 4.50 3.70 3.90 4.10 3.90
CMA (Task-specific) 0.79 0.92 0.96 0.91 1.6 1.8 1.9 1.7
CMA (Multi-task) 1.02 1.2 1.2 1.1 1.1 1.3 1.3 1.2
GRS (Task-specific) 0.52 0.56 0.59 0.55 0.52 0.56 0.65 0.59
GRS (Multi-task) 0.53 0.57 0.61 0.56 0.55 0.61 0.65 0.61

Ours (Multi-task) 0.45 0.51 0.55 0.50 0.53 0.56 0.59 0.55
Ours (Task-specific) 0.40 0.46 0.50 0.45 0.45 0.49 0.51 0.47

Table 7. Optimal Patching Granularity. Patching into Tokens (T), Quadrants (Q), or Heads (H)
Segmentation ↑ Lowlight Enhancement ↓

Model Split 0 Split 1 Split 2 Split 3 Split 0 Split 1 Split 2 Split 3

T (Task-specific) 0.38 0.37 0.33 0.32 0.44 0.50 0.54 0.50
Q (Task-specific) 0.36 0.36 0.32 0.31 0.41 0.46 0.50 0.46
H (Task-specific) 0.24 0.27 0.23 0.24 0.83 0.97 1.02 0.95

T (Multi-task) 0.34 0.34 0.30 0.29 0.47 0.51 0.55 0.51
Q (Multi-task) 0.35 0.35 0.31 0.29 0.46 0.49 0.53 0.49
H (Multi-task) 0.26 0.27 0.24 0.24 1.01 1.12 1.19 1.10

Colorization ↓ In-painting ↓
Model Split 0 Split 1 Split 2 Split 3 Split 0 Split 1 Split 2 Split 3
T (Task-specific) 0.40 0.46 0.50 0.45 0.46 0.49 0.51 0.48
Q (Task-specific) 0.41 0.47 0.51 0.47 0.45 0.49 0.51 0.47
H (Task-specific) 0.75 0.88 0.94 0.86 0.78 0.92 0.96 0.88

T (Multi-task) 0.45 0.51 0.56 0.52 0.53 0.57 0.60 0.56
Q (Multi-task) 0.45 0.51 0.55 0.50 0.53 0.56 0.59 0.55
H (Multi-task) 0.89 1.02 1.08 1.0 0.85 1.02 1.07 0.98

to improved performance and additional in-context learning examples do not add more information.

12. More Qualitative Examples
We provide a wider selection of examples comparing our task vector patching methodology in comparison to 1) the original
one-shot MAE-VQGAN, CMA, and GRS, and 2) our ablations. Alongside each figure, we accompany it with an
according analysis.
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Table 8. Comparison of Task Vector methods on Llama2 7B for various NLP tasks
Method Landmark to Country Present to Past Country to Capital
0-shot 0.0 0.084 0.047
2-shot 0.868 0.95 0.92
10-shot 0.88 0.967 0.951
0-shot + CMA 0.691 0.88 0.825
0-shot+ Ours 0.8629 0.983 0.9524

Figure 6. Out of domain evaluation on x-ray images.

First, we visualize the task-specific models of our methodology alongside the original MAE-VQGAN, and the CMA and
GRS baselines (see Figure 8). Secondly, we visualize the task-specific and multi-task variants of our methodology in
comparison to CMA (see Figure 9).

Qualitative Analysis for Segmentation. In Figure 10, we compare our methodology and GRS task-specific and multi-task
methods to the original one-shot MAE-VQGAN performance on the task of Segmentation. It appears that our method is
good at segmenting the coarse and fine details of the object of focus. In many cases, the segmentations generated by the
original MAE-VQGAN suffer from holes or incomplete masks. In contrast, our method outputs consistent and coherent
masks. On the other hand, the GRS method suffers with particular details especially observable when attempting to segment
an animal’s ear or leg. However, in many such cases it performs better than MAE-VQGAN at getting the general shape of
objects.

Qualitative Analysis for Lowlight Enhancement. In Figure 11, we compare our methodology and GRS task-specific and
multi-task methods to the original one-shot MAE-VQGAN performance on the task of Lowlight Enhancement. It appears
that the GRS method suffers in maintaining the visual qualities of the query image. However there are many cases where
MAE-VQGAN assigns bright colors which is likely due to the particular prompt in use and the inherent ambiguities of the
task. On the other hand, our method–particularly the multi-task variant–ouputs consistently better results with accurate
visual qualities. In some cases our method produces somewhat muted or blurry results which may be a consequence of
using MSE in the pixel space as supervision, but nonetheless reports better quantitative performance.

Qualitative Analysis for In-painting. In Figure 12, we compare our methodology and GRS task-specific and multi-task
methods to the original one-shot MAE-VQGAN performance on the task of In-painting. We observe that our method
consistently outperforms the original model. However, it appears that the GRS task-vector patching method–once again–
suffers in maintaining the higher frequency components of the query image; it appears to reduce the contrast of the image
and reduce saturation. However, there are many such cases where the original MAE-VQGAN one-shot technique fails to
appropriately implement the task while our method succeeds. The original model’s performance depends heavily on the
specific prompt used which may be the root cause of failures while task-vector patching succeeds.

Qualitative Analysis of Ablations. Finally, we present the qualitative analysis of the different ablations for the Segmentation
task in Figure 13. The benefits of observing the visual features of the different ablations in addition to quantitative analysis
becomes clear when comparing the Decoder Only and Encoder Only columns. Here it is clear that patching into decoder is
of utmost importance in relation to patching into the encoder; the distinction is clear when observing qualitative features. In
the end, it is both parts in synchrony which allow for the implementation of in-context learning.

13. Greedy Random Search baseline
13.1. Selecting Task Vectors via Greedy Random Search

For every task j we apply the following algorithm to obtain a task-specific model.
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Figure 7. Task vector arithmetic results.

Table 9. Comparison of no ICL demonstration and one-shot performance with Task Vectors (TV)
Method Segm LowLight Inpaint Colorize

mIoU MSE MSE MSE
Original one-shot 0.338 0.6 0.55 0.618
No ICL + TV 0.353 0.458 0.480 0.453
One-shot + TV 0.346 0.496 0.454 0.490

Input. The mean activations {µi,j}, pretrained visual prompting model F (·), an evaluation set, and the aggregated per-layer
score defined as ρlayer(l):

ρlayer(l) =
∑
m,k

ρtoken(i = (l,m, k)) (6)

Initialization. Initialize a set of binary indicators {αi,j} for all i, where αi,j ∈ {0, 1} signifies whether the mean task
activation µi,j is a task vector. Next we describe the algorithm to choose the values of αi,j .

For every activation i = (l,m, k) in the top k scoring layers w.r.t ρlayer(l), randomly choose the value of αi by sampling
from a Bernoulli random variable with parameter value p. Set the activation vectors to be zj = {µi,j |∀ij if αi,j = 1}.
Evaluate the now task-specific model F (·|zj) on a held-out validation set. Run for T trials and for every i, j set the values
of αi,j to be the values from the most successful trial.

Greedy Search. Iterate over l in the top k scoring layers sorted by ρlayer(l) from high to low, pick activation i = (l,m, k),
flip the value αi,j and evaluate the validation score for F (·|zj). After having evaluated each flip of the αi,j on the particular
layer l we keep the αi,j which performed best (based on a certain evaluation function) or continue to the next layer if the
performance did not improve.

Termination. When one search loop across the k layers results in no changes - or after 10k iterations, the search has thus
converged and we return the single-task model F (·|zj).

This procedure is outlined for every token, attention head, and layer. However, it is possible to apply it in different levels of
granularity. For example, by patching group of tokens from the same quadrant, patching all the tokens in an attention head,
or patching the entire layer. We discuss these design choices in the next section.

13.2. Greedy Random Search Implementation Experiments

In this section we describe the set of experiments conducted to ascertain the particular implementation details of the greedy
random search, validating the design choices.

Implementation Details We search through the top k = 17 layers ranked by Activation Scoring. During the initialization
phase we sample αi,j ∈ {0, 1} from a Bernoulli distribution with a parameter of p = 0.3 (probability of selecting 1) and
evaluate performance. We repeat this for T = 100 trials and continue with the best performing αi,j .

Furthermore, we perform a grouping of token positions i in each individual attention head into 3 groups: the CLS token,
bottom left quadrant, and bottom right quadrant. This serves to further reduce the search space. We use a set of 10 training
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Figure 8. Qualitative Examples. We qualitatively compare our the task-specific variants of our methodology with the original model and
the CMA and GRS baselines.

images to supervise the search. These design decisions are further validated through ablation experiments. Selecting
Initialization Parameters. For the initialization of the Greedy Random Search there are two parameters, k which dictates
how many layers to search across and the Bernoulli random variable parameter p which dictates the probability at which we
set αi,j to be 1 during the initialization phase. The question is, which k value is best at narrowing down the search space
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Figure 9. Qualitative Examples. We qualitatively compare the task-specific and multi-task variants of our methodology with the CMA
and GRS baselines.

without restricting our ability to induce task implementation, and what is the best according p value? We ascertain this by
searching for the optimal configuration to initialize the Greedy Random Search. We perform a grid search for k values from
14 to 20, and p values from 0.1 to 0.6 and report the evaluation metric for the Segmentation task on the batch of 10 images.

19



Finding Visual Task Vectors

Figure 10. Our Results on Segmentation Task

Our goal is to find the (k, p) pair with highest performing random initialization.

Task Vectors Location in Encoder vs. Decoder. Similar to the ablation conducted for our main methodology (via
REINFORCE (Williams, 1992)) implementation, we execute the Greedy Random Search for the Segmentation task by
restricting interventions to the encoder only, the decoder only, and allowing for interventions throughout the whole network.
It is key to note that in order to restrict interventions to the decoder only, which has 8 layers, the k value must be set to
8, whereas for isolating the encoder we can keep the original k = 17 value. We report the mIoU on the four splits for the
Segmentation task seeking to find if interventions in both parts of the model are required for appropriate task implementation.

Patching Granularity. We execute our Greedy Random Search with three granularity levels, grouping by Quadrants,
grouping by Heads, and grouping by Layers, and report the mIoU performance on the four splits for the Segmentation task.

13.3. GRS Implementation Experiments Results

Selecting K. We explore the optimal parameters for a random initialization. We find the best setup to be to constrain the
search across the top k = 17 layers, sampling quadrants to patch with a probability of p = 0.3 (see Figure 14).

Task Vectors Location in Encoder vs. Decoder. We report the results on isolating the set of possible interventions to
the encoder only, decoder only, in contrast to allowing interventions throughout the whole network. We can observe that
in-context task learning builds upon both model components. The decoder, however, is more important. It is clear that
intervening in both components is crucial for task implementation as we hypothesize that it is computed in a distributed
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Figure 11. Our Results on Lowlight Enhancement Task

Figure 12. Our Results on In-painting Task
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Figure 13. REINFORCE Ablations for Segmentation Task

fashion with cascading higher-order effects through the network where early interventions have strong downstream effects
(see Table 10).

Patching Granularity. We explore the optimal granularity at which to group the tokens to reduce the dimensionality
of the search space. Motivated by the emergence of quadrants in the per-token scoring visualization, and validated by
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Figure 14. Selecting Initialization Parameters. We evaluate Foreground Segmentation mIoU on Pascal 5i using 10 images for different
random initialization parameterized by K and p.

Table 10. Isolating Task Locations. Patching into Encoder only,
Decoder only, and Both

Segmentation ↑
Model Split 0 Split 1 Split 2 Split 3

GRS Both (Task-specific) 0.33 0.35 0.30 0.30
GRS Encoder (Task-specific) 0.13 0.22 0.20 0.20
GRS Decoder (Task-specific) 0.26 0.28 0.25 0.25

Table 11. Optimal Patching Granularity. Patching into Full Lay-
ers, Full Heads, or Quadrants only

Segmentation ↑
Model Split 0 Split 1 Split 2 Split 3

GRS Quadrants (Task-specific) 0.33 0.35 0.30 0.30
GRS Heads (Task-specific) 0.15 0.15 0.14 0.13
GRS Layers (Task-specific) 0.28 0.31 0.26 0.27
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attempting to group by whole attention heads (patching into all the tokens in the attention head) and group by whole layers
(patching into all the attention heads of a layer), it is clear that quadrants provide the best trade-off between reducing the
dimensionality of the search space and performance (see Table 11). It is interesting to note that patching into full layers
reduces the search space to a size of 232 whereas attention heads is 2512 and quadrants is 2768 for the encoder and 2384 in the
decoder (disregarding top-k layer selection).

13.4. GRS Baseline Qualitative Comparisons

We provide a wider selection of examples comparing our GRS task vector patching methodology in comparison to 1) a
selection of baselines, and 2) our ablations. Alongside each figure, we accompany it with an according analysis.

Figure 15. GRS Baseline Comparison for Segmentation

In the Figures 15, 16, and 17 we compare our GRS task-specific method with a handful of baselines defined in section 8.6.
We have abbreviated Top Quadrants as Top Q, Random K Layers as Random Layers, and Random Quadrants as Random
Q. It is clear that Top Quadrants struggles to output coherent completions. We believe this to be because of the need of
patching into positions of different purposes other than task implementation such as positions that encode the input-output
structure that a one-shot prompt provides. Further opportunities for exploration could include other scoring terms that take
into account structural information provided by different prompt orientations. Random K Layers performs surprisingly well
due to the efficiency of the Greedy Random Search but nonetheless does not reach the performance of using our scoring
mechanism to select the top K layers. Finally Random Quadrants struggles to complete coherent results.

Finally, we present the qualitative analysis of the different ablations for the Segmentation task in Figure 18. Similarly to our
main method (via REINFORCE (Williams, 1992)), it is clear that patching into decoder is more important than patching into
the encoder but in the end, it is both parts in synchrony which report the best performance. Furthermore, it is clear that the
optimal granularity for patching is at a quadrant level. We find it counterintuitive that layer-level patching performs better
than head-level patching–as one would assume that a finer granularity provides better accuracies. However, we believe
that by grouping per-layer we significantly reduce the search space (by a factor of 16) which reduces the probability of
falling into a local optimum; whereas grouping by head, we suffer from a reduced precision but do not gain the benefits of a
reduced search space magnitude (factor of 2 for encoder and factor of 3 for decoder when grouping by head instead of 16
when grouping by layer). Further exploration in this direction is of interest.
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Figure 16. GRS Baseline Comparison for Low light Enhancement

25



Finding Visual Task Vectors

Figure 17. GRS Baseline Comparison for In-painting
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Figure 18. GRS Ablation for Segmentation Task27


