
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Finding Visual Task Vectors

Anonymous Authors1

Figure 1. Visual Prompting models like MAE-VQGAN (Bar et al., 2022) require an input-output example to describe the desired task in
their forward pass. We analyze the model activations and find task vectors, activations that encode task information that can be reused to
control the task the model performs (see Figure a). Specifically, we tap into activations of individual attention heads and replace their
outputs with task vectors to guide the model to the desired task (see Figure b). Surprisingly, the resulting models perform better than the
original model while reducing the need for input-output examples. This confirms that task vectors exist in the network activation space
and they can guide the model to perform the desired task.

Abstract

Visual Prompting is a technique for teaching mod-
els to perform a visual task via in-context ex-
amples, and without any additional training. In
this work, we analyze the activations of MAE-
VQGAN, a recent Visual Prompting model (Bar
et al., 2022), and find task vectors, activations
that encode task specific information. Equipped
with this insight, we demonstrate that it is possi-
ble to identify the task vectors and use them to
guide the network towards performing different
tasks without providing any input-output exam-
ples. To find task vectors, we compute the average
intermediate activations per task and use the RE-
INFORCE (Williams, 1992) algorithm to search
for the subset of task vectors. The resulting task
vectors can guide the model towards performing a
task competitively with the original model while

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

reducing the need for input-output examples.

1. Introduction
In-context learning (ICL) is an emergent capability of large
neural networks, first discovered in GPT-3 (Brown et al.,
2020). ICL allows models to adapt to novel downstream
tasks specified in the user’s prompt. In computer vision,
Visual ICL (known as Visual Prompting) is still at its in-
fancy but it is increasingly becoming more popular (Bar
et al., 2022; Bahng et al., 2022; Bai et al., 2023; Zhang
et al., 2024b), mainly due to the appeal of using a single
model to perform various downstream tasks without specific
finetuning or change in the model weights.

In this work, we ask how does in-context learning work
in computer vision. While this question is yet to be ex-
plored, there has been a significant body of research in
Natural Language Processing (NLP) trying to explain this
phenomenon (Akyürek et al., 2022; Dai et al., 2022; Garg
et al., 2022; Hahn & Goyal, 2023; Han et al., 2023). Most
recently, Hendel et al.(Hendel et al., 2023) suggested that
LLMs encode Task Vectors, these are vectors that can be
patched into the network activation space and replace the

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Finding Visual Task Vectors

ICL examples while resulting in a similar functionality. Con-
currently, Todd et al. (Todd et al., 2023) discovered Function

Vectors, activations of transformer attention heads that carry
task representations. Our work is inspired by these observa-
tions and aims to study how ICL works in computer vision.
We provide a more extended overview of the related works
in the Suppl. Section 6.

We hypothesize that Visual ICL models create task vectors
too, and aim to identify them. However, finding visual task
vectors by relying on previous approaches is challenging.
For example, both (Hendel et al., 2023; Todd et al., 2023)
restricted their search space to the output activations of the
last token in the prompt sequence. However, with images
(see Figure 1, “Visual Prompting” input image), it is not
obvious what token activations hold task information, and
architectures like MAE-VQGAN (Bar et al., 2022) do not
process image tokens sequentially. This alone increases the
search space significantly because multiple tokens might
hold task vectors.

To build intuition regarding the existence of visual task
vectors, we visualize intermediate activations ranked by
their "taskness", expecting task vectors to remain invari-
ant within a task but vary across different tasks. Then,
we propose an approach to find the subset of task vectors
using REINFORCE, within the mean task activations of
self-attention heads. Patching these identified task vectors
leads to competitive performance with the original model
across various tasks, confirming them as true task vectors.
Our contributions include a method to select visual task
vectors and demonstrating that these vectors enhance model
performance while reducing the number of FLOPS by 22.5

2. Methods
Our goal is to understand in-context learning for computer
vision, and how can existing models adapt to different down-
stream task in inference time. Specifically, we focus on
the MAE-VQGAN (Bar et al., 2022) model, a variant of
MAE (He et al., 2021) with a Vision Transformer (Dosovit-
skiy et al., 2021) encoder-decoder architecture.

The idea behind ICL is that given a an input-output example
(xs, ys) and a new query xq, to succeed in this task, the
model F has to implicitly apply the transformation from xs

to ys over xq to produce yq:

yq = F (xs, ys, xq) (1)

Based on past observations from NLP (Hendel et al., 2023;
Todd et al., 2023), we hypothesize that computer vision
models encode latent task vectors in their activation space
during the forward pass as well. This requires the model
to implicitly map the input example into a set of latent task
vectors z = {zi}ki=1. Then the original function F can be

decomposed into extracting the task vectors by a function
G then applying F on the query while fixing the computed
task activations z:

z = G(xs, ys) yq = F (xq|z) (2)

2.1. Scoring Activations

Intuitively, every task vector is an activation that changes
across different tasks but remains invariant to changes within
a specific task. Specifically, denote i = (l,m, k) as the lth

attention block, mth attention head, and kth token and de-
note it by Fi the function that outputs the corresponding
activation in the attention block residual stream. We sample
input-output example and a query triplet from individual
tasks as well as across tasks and compute the latent activa-
tions corresponding to i:

(xs, ys, xq) ⇠ Dall_tasks (x0
s, y

0
s, x

0
q) ⇠ Dtask_j

ziall = Fi(xs, ys, xq) zitaskj
= Fi(x

0
s, y

0
s, x

0
q)

Then, we define the score and the mean activations for
position i and task j, where ⇢token(i) is a scalar and µi,j

has a dimensionality equal to the residual stream:

⇢token(i) =
var(ziall)

1
n

Pn
j=1 var(z

i
taskj

)
µi,j = E[zitaskj

] (3)

Note that since our end goal is to operate in a “zero-shot”
setting (e.g, no input-output examples), we only consider
the score and task vectors that corresponds to the CLS token,
the input query, and the output (present in the decoder only).
Also, computing the token score and mean activations is
very efficient as it simply requires applying the forward pass
of a neural network across a batch without any access to a
held out validation set.

Finally, we compute the aggregated per layer score, by
summing the individual scores for each attention head and
token position corrseponding to that particular layer:

⇢layer(l) =
X

i2I:layer(i)=l

⇢token(i) (4)

We use this scoring mechanism mainly to build intuition
about the existence of task vectors, and find that some ac-
tivations capture “taskness” (see Figure 2) and cluster the
data well with respect to tasks (see Table 2). We further
elaborate on this analysis in Section 3 and Section 4. To find
visual task vectors, we leverage a more general approach
outlined in the following section.

2.2. Finding Visual Task Vectors via REINFORCE

How can task vectors be identified? An exhaustive search
over all subsets of activations is intractable. For example,

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Finding Visual Task Vectors

Figure 2. Activation Scoring Analysis. Individual scores
(⇢token(i)) aggregated per Attention Head (left). Individual token
scores of specific heads are further visualized in their correspond-
ing spatial arrangements, along with the t-SNE(van der Maaten
& Hinton, 2008) clustering of head activations of different tasks
(right).

MAE-VQGAN (Bar et al., 2022) which we utilize here has
32 attention blocks, each with 16 heads, therefore, if we
consider these to be the potential set of activations then we
need to search over 2512 options, evaluating each option
over a held out validation set.

For every task j we can apply the following procedure to
find the task vectors. Recall that {µi,j} denote the mean
activations and F (·) is a pretrained visual prompting model.
Denote ↵i,j ⇠ Bernouli(✓ij) as random variables that
signify whether the mean task activation µi,j is a task vector.

Denote zj as the set of task vectors for task j: zj =
{µi,j |↵i,j = 1}. Given pairs of input-output task demon-
strations xq, yq ⇠ Dtask_j, we want to find the set of task
vectors that minimizes the loss function:

L(✓) = Ezj⇠q(✓)L(yq, F (xq|zj)) (5)

Where q(✓) denotes the sampling distribution of zj and L
denotes the loss function that suits the particular task j. Note
that differently than in Equation 1, if we find a good set of
task vectors z, then we no longer need to condition F over
additional input-output examples.

To find a set of task vectors, we need to estimate the param-
eters ✓. Since the sampling distribution q depends on ✓, it is
natural to use the REINFORCE algorithm (Williams, 1992)
to find the optimal ✓. The key idea in REINFORCE is the
observation that:

rL(✓) = Ezj⇠q(✓)L(yq, F (xq|zj))rlogP✓(zj)

Thus, we can approximate rL(✓) by sampling zj and aver-
aging the above equation. After iteratively optimizing with
gradient descent, we select the final task vector positions
by sampling once more from the ↵i,j ⇠ Bernouli(✓ij)
distribution.

This procedure is outlined for finding the task vectors place-
ments for individual tasks, however it is possible to find
placements that generalize for multiple tasks by optimizing
over examples across datasets and we refer this as “multi-
task” placements. Additionally, while above we search for
all token activations, it is possible to apply the search in
different levels of granularity. For example, by patching
groups of tokens from the same quadrant, patching all the
tokens in an attention head, or patching the entire layer. We
discuss these design choices in the next section.

3. Experiments
The goal of our experiments is to explore whether activation
patching of task vectors can guide the model to execute
the desired task. In this section, we detail the prompting
schemes used, the baselines, tasks of interest, and the exper-
iments conducted. For the full implementation details and
experiments, please refer to Suppl. Section 7.

3.1. Downstream Tasks

We evaluate the performance on standard image-to-image
tasks like Foreground Segmentation, Low Light Enhance-
ment, In-painting, and Colorization. We use the Pascal-5i
(Shaban et al., 2017) dataset and follow a similar evaluation
setting as in (Bar et al., 2022).

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Finding Visual Task Vectors

Table 1. Quantitative Analysis. Results comparison across different tasks and splits, indicating the effectiveness of our task specific
model. For full results across splits including more baselines, see Suppl. Table 4.

Segmentation " Lowlight Enhance # Colorization # In-painting #
Model (Mean ± STD) (Mean ± STD) (Mean ± STD) (Mean ± STD)

Original MAE-VQGAN 0.338± 0.033 0.685± 0.032 0.618± 0.027 0.550± 0.042

Random Quadrants 0.170± 0.061 3.000± 0.967 3.025± 1.190 2.350± 0.955
Top Quadrants 0.150± 0.023 4.875± 0.228 4.250± 0.269 3.900± 0.141
CMA (Task-specific) 0.230± 0.012 0.825± 0.043 0.895± 0.063 1.750± 0.112
CMA (Multitask) 0.150± 0.017 1.400± 0.122 1.130± 0.075 1.225± 0.083

Ours (Multitask) 0.325± 0.026 0.492± 0.025 0.502± 0.036 0.558± 0.022
Ours (Task-specific) 0.353 ± 0.028 0.458 ± 0.032 0.453 ± 0.036 0.480 ± 0.022

3.2. Zero-shot Task Vector Patching

We seek to explore whether it is possible to implement tasks
via zero-shot task vector patching. We investigate this in the
following experiments:

Task Specific. For each of the four tasks we execute our
task-specific method with 10 images and report the results
on corresponding tasks.

Multi-task. We follow the same procedure but in a multi-
task scenario where we select two images and perform our
method, evaluating the loss across all tasks jointly. We nor-
malize the loss per task in order to account for task-specific
differences to ensure no single task dominates the search,
and all tasks are weighted equally. Finally, we introduce the
identity-copy task to keep the batch size at 10 for equivalent
comparisons.

Baselines. We also provide the following baselines to bench-
mark the performance of our method. First, we compare to
MAE-VQGAN (Bar et al., 2022), the original model’s one-
shot performance. We consider other baselines for finding
task vectors like CMA (Causal Mediation Analysis (Pearl,
2022)), previously considered by Todd et al. (2023). We
propose additional simple baselines like using Random
Quadrants, where we patch into randomly sampled po-
sitions across the whole network. Additionally, we test
patching into Top Quadrants, based on their scoring de-
fined in Section 2. In both Random Quadrants and Top
Quadrants we patch the same total amount of patches as
task-specific and multitask.

4. Results
4.1. Zero-shot Task Vector Patching

We now share the performance of our method in comparison
to the original model and the baselines. Surprisingly, by
performing these interventions with task vectors we are able
to implement visual ICL tasks with similar or better perfor-
mance than the original model (see examples in Figure 3).

Figure 3. Qualitative Examples. We compare our task-specific
and multitask methods to MAE-VQGAN

Our task-specific models beat the original MAE-VQGAN
in all splits on all tasks. The multitask models are at least
as good or better than the original MAE-VQGAN. Further-
more, we provide validation that ranking layers by their
⇢layer(l) and selecting the top-k is instrumental to support-
ing the performance to randomly selecting k layers, which
generally does not perform well.

5. Conclusion
In this work we explore the internal mechanisms of visual
in-context learning and devise an algorithm to identify Task
Vectors, activations present in transformers that can replace
the in-context examples to guide the model into performing
a specific task. We confirm our approach by adapting MAE-
VQGAN to perform specific tasks in a zero-shot fashion by
patching the Task Vector identified. We find that different
than in NLP, in computer vision Task Vectors are distributed
throughout the network’s encoder and decoder.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Finding Visual Task Vectors

References
Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and

Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. arXiv preprint

arXiv:2211.15661, 2022.

Bahng, H., Jahanian, A., Sankaranarayanan, S., and Isola, P.
Exploring visual prompts for adapting large-scale models.
arXiv preprint arXiv:2203.17274, 2022.

Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell,
T., Malik, J., and Efros, A. A. Sequential modeling
enables scalable learning for large vision models. arXiv

preprint arXiv:2312.00785, 2023.

Bar, A., Gandelsman, Y., Darrell, T., Globerson, A., and
Efros, A. Visual prompting via image inpainting. Ad-

vances in Neural Information Processing Systems, 35:
25005–25017, 2022.

Bau, D., Zhu, J.-Y., Strobelt, H., Zhou, B., Tenenbaum, J. B.,
Freeman, W. T., and Torralba, A. Gan dissection: Visual-
izing and understanding generative adversarial networks.
arXiv preprint arXiv:1811.10597, 2018.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Dai, D., Sun, Y., Dong, L., Hao, Y., Sui, Z., and Wei, F. Why
can gpt learn in-context? language models secretly per-
form gradient descent as meta optimizers. arXiv preprint

arXiv:2212.10559, 2022.

Davies, D. and Bouldin, D. A cluster separation mea-
sure. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, PAMI-1:224 – 227, 05 1979. doi:
10.1109/TPAMI.1979.4766909.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

Esser, P., Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 12873–12883, June 2021.

Ferry, Q. R., Ching, J., and Kawai, T. Emergence and
function of abstract representations in self-supervised
transformers. arXiv preprint arXiv:2312.05361, 2023.

Gandelsman, Y., Efros, A. A., and Steinhardt, J. Interpreting
clip’s image representation via text-based decomposition.
arXiv preprint arXiv:2310.05916, 2023.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information

Processing Systems, 35:30583–30598, 2022.

Hahn, M. and Goyal, N. A theory of emergent in-context
learning as implicit structure induction. arXiv preprint

arXiv:2303.07971, 2023.

Han, C., Wang, Z., Zhao, H., and Ji, H. In-context learning
of large language models explained as kernel regression.
arXiv preprint arXiv:2305.12766, 2023.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. B. Masked autoencoders are scalable vision learners.
CoRR, abs/2111.06377, 2021. URL https://arxiv.
org/abs/2111.06377.

Hendel, R., Geva, M., and Globerson, A. In-context learning
creates task vectors. arXiv preprint arXiv:2310.15916,
2023.

Jia, M., Tang, L., Chen, B.-C., Cardie, C., Belongie, S.,
Hariharan, B., and Lim, S.-N. Visual prompt tuning. In
European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Jin, Z., Cao, P., Yuan, H., Chen, Y., Xu, J., Li, H., Jiang,
X., Liu, K., and Zhao, J. Cutting off the head ends the
conflict: A mechanism for interpreting and mitigating
knowledge conflicts in language models. arXiv preprint

arXiv:2402.18154, 2024.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190,
2021.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

Liu, S., Xing, L., and Zou, J. In-context vectors: Making in
context learning more effective and controllable through
latent space steering. arXiv preprint arXiv:2311.06668,
2023.

Lu, S., Schuff, H., and Gurevych, I. How are prompts
different in terms of sensitivity? arXiv preprint

arXiv:2311.07230, 2023.

5

https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Finding Visual Task Vectors

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp,
P. Fantastically ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity. arXiv

preprint arXiv:2104.08786, 2021.

Luo, H. and Specia, L. From understanding to utilization: A
survey on explainability for large language models. arXiv

preprint arXiv:2401.12874, 2024.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in gpt. Advances in Neu-

ral Information Processing Systems, 35:17359–17372,
2022.

Moraffah, R., Karami, M., Guo, R., Raglin, A., and Liu,
H. Causal interpretability for machine learning-problems,
methods and evaluation. ACM SIGKDD Explorations

Newsletter, 22(1):18–33, 2020.

Palit, V., Pandey, R., Arora, A., and Liang, P. P. Towards
vision-language mechanistic interpretability: A causal
tracing tool for blip. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pp. 2856–
2861, 2023.

Park, K., Choe, Y. J., and Veitch, V. The linear represen-
tation hypothesis and the geometry of large language
models. arXiv preprint arXiv:2311.03658, 2023.

Pearl, J. Direct and indirect effects. In Probabilistic and

causal inference: the works of Judea Pearl, pp. 373–392.
2022.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rousseeuw, P. J. Silhouettes: A graphical aid to
the interpretation and validation of cluster anal-
ysis. Journal of Computational and Applied

Mathematics, 20:53–65, 1987. ISSN 0377-0427.
doi: https://doi.org/10.1016/0377-0427(87)90125-7.
URL https://www.sciencedirect.com/
science/article/pii/0377042787901257.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. Imagenet large scale
visual recognition challenge, 2015.

Shaban, A., Bansal, S., Liu, Z., Essa, I., and Boots, B. One-
shot learning for semantic segmentation. arXiv preprint

arXiv:1709.03410, 2017.

Singh, C., Inala, J. P., Galley, M., Caruana, R., and Gao, J.
Rethinking interpretability in the era of large language
models. arXiv preprint arXiv:2402.01761, 2024.

Todd, E., Li, M. L., Sharma, A. S., Mueller, A., Wallace,
B. C., and Bau, D. Function vectors in large language
models. arXiv preprint arXiv:2310.15213, 2023.

van der Maaten, L. and Hinton, G. Visualizing data using t-
sne. Journal of Machine Learning Research, 9(86):2579–
2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Wang, B. and Komatsuzaki, A. Gpt-j-6b: A 6 billion param-
eter autoregressive language model, 2021.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine

learning, 8:229–256, 1992.

Wu, X. and Varshney, L. R. Transformer-based causal
language models perform clustering. arXiv preprint

arXiv:2402.12151, 2024.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

Xu, J., Gandelsman, Y., Bar, A., Yang, J., Gao, J., Darrell,
T., and Wang, X. Improv: Inpainting-based multimodal
prompting for computer vision tasks. arXiv preprint

arXiv:2312.01771, 2023.

Xu, S., Dong, W., Guo, Z., Wu, X., and Xiong, D. Ex-
ploring multilingual human value concepts in large lan-
guage models: Is value alignment consistent, transfer-
able and controllable across languages? arXiv preprint

arXiv:2402.18120, 2024.

Zhang, F. and Nanda, N. Towards best practices of activation
patching in language models: Metrics and methods. arXiv

preprint arXiv:2309.16042, 2023.

Zhang, K., Lv, A., Chen, Y., Ha, H., Xu, T., and Yan,
R. Batch-icl: Effective, efficient, and order-agnostic
in-context learning. arXiv preprint arXiv:2401.06469,
2024a.

Zhang, Y., Tiňo, P., Leonardis, A., and Tang, K. A survey
on neural network interpretability. IEEE Transactions

on Emerging Topics in Computational Intelligence, 5(5):
726–742, 2021.

6

https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1706.03762


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Finding Visual Task Vectors

Zhang, Y., Zhou, K., and Liu, Z. What makes good exam-
ples for visual in-context learning? Advances in Neural

Information Processing Systems, 36, 2024b.

7


