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ABSTRACT

Knowledge distillation (KD) is an effective technique to compress a large model
(teacher) to a compact one (student) by knowledge transfer. The ideal case is that
the teacher is compressed to the small student without any performance dropping.
However, even for the state-of-the-art (SOTA) distillation approaches, there is still
an obvious performance gap between the student and the teacher. The existing liter-
ature usually attributes this to model capacity differences between them. However,
model capacity differences are unavoidable in model compression. In this work,
we systematically study this question. By designing exploratory experiments, we
find that model capacity differences are not necessarily the root reason, and the
distillation data matters when the student capacity is greater than a threshold. In
light of this, we propose to go beyond in-distribution distillation and accordingly
develop KD+. KD+ is superior to the original KD as it outperforms KD and the
other SOTA approaches substantially and is more compatible with the existing
approaches to further improve their performances significantly 1.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable performances in various domains, but
they require large amounts of computation and memory. This seriously limits their deployment
with limited resources or a strict latency requirement. One solution to this problem is knowledge
distillation which transfers the knowledge from a large network (teacher) to a small one (student).

Hinton et al. (2015) proposed the original knowledge distillation 2 (KD) which uses softened logits
of a teacher as supervision to train a student. To make the student better capture the knowledge from
the teacher, the existing studies focus on aligning their representations by using different criteria.
However, there is still a significant performance gap between the teacher and the student. Figuring
out the reason for this gap is essential for further improving the student performance.

Mirzadeh et al. (2020) argue that the model capacity difference causes the failure for transferring the
knowledge from a large teacher to a small student, thus leading to a large performance gap. Similarly,
Cho & Hariharan (2019) point out that as the teacher grows in capacity and accuracy, it is difficult for
the student to emulate the teacher. In this paper, we systematically study why students underperform
teachers and how students can match or outperform teachers. We find that in most experimental
settings of the existing literature, the root reason for the performance gap is not necessarily the
capacity differenc as the student is powerful enough to memorize the teacher’s outputs. The reason
lies in the distillation dataset on which the knowledge is transferred.

As an old proverb says, indigo comes from blue, but it is bluer than blue. In reality, it is not rare for
human students to do better than their teachers. These excellent human students not only well capture
the knowledge from their teachers but also learn more related knowledge on their own. This gives an
insight for students in KD to match or outperform their teachers. We find that currently the students
in KD have not well captured the knowledge in their teachers as they only mimic the behavior of
the teachers on sparse training data points. In light of this, we propose KD+ which goes beyond
in-distribution distillation to substantially reduce the performance gap between students and teachers.

Our main contributions are summarized as follows:
1The code will be released online.
2In this paper, we use KD to denote the original knowledge distillation algorithm Hinton et al. (2015).

1



Under review as a conference paper at ICLR 2021

• Different from the common belief that model capacity differences result in the performance
gap between students and teachers, we find that capacity differences are not necessarily the
root reason and instead the distillation data matters when students’ capacities are greater
than a threshold. To our best knowledge, this is the first work that systematically explores
why small students underperform teachers and how students can outperform large teachers.

• By designing exploratory experiments, we find the following: (1) only fitting teachers’
outputs at sparse training data points cannot make students well capture the local, in-
distribution shapes of the teacher functions; (2) different from the case on standard supervised
learning, out-of-distribution data (but not all) can be beneficial to knowledge distillation.

• Different from the existing work focusing on using different criteria to align representations
or logits between teachers and students, we address knowledge distillation from a novel
(data) perspective by going beyond in-distribution distillation and accordingly develop KD+.

• Extensive experiments demonstrate that KD+ largely reduces the performance gap between
students and teachers, and even enables students to match or outperform their teachers. KD+
is superior to KD as it outperforms KD and more than 10 SOTA methods substantially and
shows a better compatibility with the existing methods and superiority in few-shot scenario.

2 RELATED WORK

The objective function of knowledge distillation can be simply expressed as a combination of the
regular cross-entropy objective and a distillation objective. According to the distillation objective, the
existing literature can be divided into logit-based approaches (Hinton et al., 2015) and representation-
based approaches (Romero et al., 2015). Logit-based approaches construct the distillation objective
based on output logits. Hinton et al. (2015) propose KD which penalizes the softened logit differences
between a teacher and a student. Park et al. (2019) propose to transfer data sample relations from a
teacher to a student by aligning their logit-based structures. On the other hand, representation-based
approaches design the distillation objective based on feature maps. FitNet (Romero et al., 2015)
aligns the features of a teacher and a student through regressions. AT (Zagoruyko & Komodakis,
2017) distills feature attention from a teacher into a student. CRD (Tian et al., 2020) maximizes
the mutual information between student and teacher representations. Other representation-based
methods (Yim et al., 2017; Huang & Wang, 2017; Kim et al., 2018; Liu et al., 2019; Srinivas &
Fleuret, 2018; Wang et al., 2018; Heo et al., 2019a; Cho & Hariharan, 2019; Ahn et al., 2019;
Koratana et al., 2019; Aguilar et al., 2019; Shen & Savvides, 2020) use different criteria to align
feature representations. SSKD (Xu et al., 2020) introduces extra self-supervision tasks to assist KD.
Online knowledge distillation (Zhang et al., 2018b; Chen et al., 2020; Anil et al., 2018; Chung et al.,
2020; Zhu et al., 2018) trains multiple students simultaneously. Self-distillation (Furlanello et al.,
2018; Yuan et al., 2020) approaches train a DNN by using itself as the teacher. It is observed that the
existing studies focus on designing different criteria to align teacher-student representations or logits
on in-distribution data. In this work, we address knowledge distillation from a data perspective by
embedding out-of-distribution distillation into a regularizer.

Mirzadeh et al. (2020) observe that the model capacity gap results in the failure for transferring
knowledge from a large teacher to a small student, thus causing a performance gap. To reduce this
gap, they propose a multi-step knowledge distillation framework by using several intermediate-size
networks (teacher assistants). However, the students still underperform the teachers substantially.
Cho & Hariharan (2019) argue that as the teacher grows in capacity and accuracy, it is difficult for
the student to emulate the teacher. To reduce the influence of the large capacity gap, they regularize
both the teacher and the knowledge distillation by early stopping. We find that capacity differences
are not necessarily the root reason when student capacities are greater than a threshold.

On the other hand, KD+ goes beyond in-distribution distillation by exploring the knowledge between
two training samples. Similar techniques have been used in many applications with different goals
and mechanisms. Mixup (Zhang et al., 2018a) enforces local linearity of a DNN by linearly interpo-
lating a random pair of training samples and their one-hot labels simultaneously. However, simply
interpolating two labels may not match the generated sample as pointed out in (Guo et al., 2019). KD+
does not have the above issue as it teaches a student to mimic the local shape of a powerful teacher.
MixMatch (Berthelot et al., 2019b) linearly interpolates labeled and unlabeled data to improve the
semi-supervised learning performances. ReMixMatch (Berthelot et al., 2019a) improves MixMatch
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by introducing distribution alignment and augmentation anchoring. DivideMix (Li et al., 2020) aims
to learn with noisy labels by modifying MixMatch with label co-refinement and label co-guessing on
labeled and unlabeled samples, respectively. AugMix (Hendrycks et al., 2019) linearly interpolates
original training samples and augmented training samples to improves the robustness and uncertainty
estimates of DNNs.

3 REFORMULATING KD

Hinton et al. (2015) propose KD which minimizes the softened logit differences between a student
and a teacher over training data Dt = (Xt, Yt) where Xt and Yt are the training samples and the
ground truth, respectively. The complete objective is:

LKD =
∑

(xt,yt)∈(Xt,Yt)

[αLCE(fS , xt, yt) + βLKL(fS , fT , xt)] (1)

where α and β are balancing weights and LCE is the regular cross-entropy objective:

LCE(fS , xt, yt) = H(yt, σ(fS(xt))) (2)

where H(.) is the cross-entropy and σ is softmax. LKL in (1) is the distillation objective:

LKL (fS , fT , xt) = τ2KL

(
σ

(
fT (xt)

τ

)
, σ

(
fS (xt)

τ

))
(3)

where τ is a temperature to generate soft labels and KL represents KL-divergence. KD can be
considered as using one function (fS) to fit the outputs of another function (fT ).

We notice that in (1), LCE requires both data samples Xt and the corresponding ground truth Yt
while LKL only needs data samples Xt for distilling the teacher knowledge. In light of the difference,
we consider KD from semi-supervised perspective and reformulate (1) in a more general form:

L =
∑

(xt,yt)∈(Xt,Yt)

αLCE(fS , xt, yt) +
∑

xd∈(Xd)

βLKL(fS , fT , xd) (4)

where we introduce a new concept: distillation dataset Xd is a set of samples on which the
knowledge is transferred from a teacher to a student. The first term in the right hand side of (4) is
supervised while the second term is unsupervised. It is obvious that the widely used objective (1) is a
special case of (4) when Xd is set to Xt.

4 WHY SMALL STUDENTS UNDERPERFORM LARGE TEACHERS?

In this part, we systematically analyze the reason for the performance gap between students and
teachers in KD based model compression. We first introduce several definitions.

Definition 4.1 Memorization Error (ME): For a given task with data distribution P (X,Y ), ME
measures the degree of a student fS fitting the outputs of a teacher fT over the data distribution:

E(fS , fT , P ) = E
x∼P (X)

M(fT (x) , fS (x)) (5)

where M denotes a distance metric such as KL-divergence or mean square error. When ME is 0, it
means that the student can completely memorize the outputs of the teacher over the data distribution.
In this paper, we take KL-divergence as M .

Definition 4.2 Capable Students (CSTs) and Incapable Students (ISTs): network fS with parameters
ΘS is a CST of teacher fT if there exists ΘS such that E(fS , fT , P )=0, otherwise, it is an IST.

Obviously, a CST is able to fully fit the teacher outputs over data distribution P (X,Y ). In contrast,
an IST does not have the capacity to fit the teacher. For ISTs, the common belief holds that the
student-teacher capacity gap causes the performance gap. For example, we cannot expect a two-layer
neural network with 1000 parameters to fit the outputs of ResNet-101 with 1.7M parameters on
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Table 1: ME of different networks on CIFAR-10, CIFAR-100, and Tiny ImageNet

Teacher WRN-40-2 VGG-13 ResNet32×4 ResNet-110 ResNet32×4 VGG-13 VGG-13
Student WRN-16-2 VGG-8 ResNet8×4 VGG-8 ShuffleNetV2 SN2 SN3

CIFAR-10 0.0 0.0 0.0 0.0 0.0 1.7 0.1

CIFAR-100 0.0 0.0 0.0 0.0 0.0 2.4 0.3

Tiny ImageNet 0.0 0.0 0.0 0.0 0.0 4.2 1.9

Table 2: Simulation results on CIFAR-100 in terms of test accuracy (%)

Teacher ResNet32×4 WRN-40-2 VGG-13 ResNet32×4 VGG-13 VGG-13
Student ResNet8×4 WRN-16-2 VGG-8 ShuffleNetV2 SN2 SN3

Teacher 79.52 75.81 74.97 79.52 74.97 74.97
Vanilla Student 72.50 73.26 70.36 71.82 26.29 55.31

Student Type CST CST CST CST IST IST

KD 73.33 74.92 72.98 72.14 26.04 55.32
Simulation KD 79.91 78.46 77.99 81.64 25.58 57.50

CIFAR-100. However, in the current SOTA approaches and applications, the commonly used students
are modern neural network architectures, such as ResNet-20, ResNet-8×4, VGG-8, and WRN-40-1.
We empirically show that these models are CSTs on commonly used benchmark datasets.

To check whether student fS is a CST of teacher fT on a task, we minimize ME to check whether
E(fS , fT , P ) can achieve 0. However, in practice, it is impossible to calculate E(fS , fT , P ) as the
data distribution P is typically unknown. Fortunately, we have the access to a set of training data
(Xt, Yt). With the training data, we approximate ME E(fS , fT , P ) with the empirical error:

Eem(fS , fT , Xt) =
1

|Xt|
∑
xt∈Xt

M(fT (xt) , fS (xt)) (6)

For comparison, we also evaluate two small neural networks which are expected to be ISTs, i.e., SN-2
and SN-3 with two and three layers, respectively. We report the ME in Table 1 3, where we adopt
the students and the teachers that share the same architectures (e.g., WRN-40-2 and WRN-16-2) or
use different architectures (e.g., ResNet-110 and VGG-8). As expected, the widely used students
achieve ME 0.0 on these benckmark datasets, i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet while
the small networks (i.e., SN2 and SN3) have large ME (e.g., 2.4 and 4.2), which demonstrates that
the widely used students are CSTs. However, as observed in the existing literature, these CSTs
underperform the teachers by a significant margin on the test data. This suggests that these students
have well captured the knowledge on sparse training data points but have not well captured the local
shapes of the teachers within the data distribution.

Corollary 4.1 In KD, for CSTs, only fitting the outputs of teachers on sparse training data points
cannot enable them to well capture the local, in-distribution shapes of the teachers, thus leading to a
performance gap. For ISTs, capacity differences cause the performance gap.

Proof: We empirically show this by comparing the student performances in the following two settings:
(a) setting the distillation dataset to training data points; (b) setting the distillation dataset to real data
distribution P (X). As P (X) is typically unknown in practice, we conduct a simulation experiment
on CIFAR-100. We suppose that the union of the training dataset and the test dataset in CIFAR-100
can accurately represent the real data distribution for this task. Then we randomly draw data samples
from the vicinity around the training data and the test data as the distillation dataset, i.e., Xd in (4).
Consequently, the distillation dataset can sufficiently represent the real data sample distribution. Note
that in the experiments, we never spy the ground truth of the test samples, since the distillation dataset
does not use ground truth as shown in (4). This means that the students are trained without any
additional supervision compared with the teachers as training datset (Xt, Yt) in (4) does not change.
As CSTs are able to fully memorize the outputs of the teachers, we expect them to achieve the same

3The ME values in Table 1 are accurate to 1 decimal place.
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Figure 1: KD with training data Figure 2: KD with augmentation Figure 3: KD+

accuracies as or higher accuracies than those of the teachers. In contrast, we expect ISTs to achieve
lower accuracies than those of the teachers. Table 2 shows the simulation results. As expected, all
the CSTs outperform the teachers in the simulation experiments (i.e., Simulation KD). This is due
to the following facts: first, by using the simulated distillation dataset, the distillation objective in
(4) makes the CSTs fully capture the knowledge of the teachers within the data distribution; second,
the cross-entropy objective in (4) enables the CSTs to learn their own knowledge. Consequently,
CSTs contain both the teacher knowledge and the knowledge learned on their own, which results in
better performances than those of the teachers. SN2 and SN3 still underperform the teachers in the
simulation experiments due to their limited capacities. These results empirically prove Corollary 4.1.

The simulation experiments also suggest a way for CSTs to outperform teachers. That is to sufficiently
distill the knowledge in the teachers with a well representative distillation dataset. Unfortunately, it is
impossible to have such a distillation datset as the real data sample distribution P (X) is typically
unknown in practice. Motivated by this, we propose to go beyond in-distribution distillation.

5 GOING BEYOND IN-DISTRIBUTION DISTILLATION

5.1 DIFFERENCES BETWEEN SUPERVISED LEARNING AND KNOWLEDGE DISTILLATION

As analyzed above, the reason for the performance gap lies in distillation datasets. Distillation
datasets are different from training datsets. As shown in (4), training datsets contain both samples and
their ground truth, which are used for standard supervised learning. In contrast, distillation datsets
only contain samples without ground truth, which are used for knowledge distillation. Knowledge
distillation and standard supervised learning differ substantially. Standard supervised learning is
to learn a function f (e.g., a DNN) for mapping x to y where (x, y) follows real data distribution
P (X,Y ). The quality of f is constrained by the training data (Xt, Yt) that we have. In contrast,
knowledge distillation is to learn a function (i.e., a student fS) for mapping x to z where (x, z)

follows a teacher-defined distribution Q(X,Z) and Z = σ( fT (X)
τ ). Q(X,Z) is different from

P (X,Y ) unless teacher fT is perfect. The advantage of knowledge distillation is that Q(X,Z) is
more tractable than P (X,Y ), since for given any sample x, fT can always give output fT (x), and
(x, σ( fT (x)

τ )) follows Q(X,Z). Even for out-of-distribution samples, fT can still output soft labels
although these soft labels are semantically meaningless. However, the existing literature ignores this
advantage as they only distill the knowledge on sparse training data points.

5.2 IMPROVING KD BY FURTHER EXPLORING TEACHER-DEFINED DISTRIBUTION

The simulation experiments demonstrate that only fitting sparse individual data points cannot neces-
sarily enable students to well capture the local shapes of the teacher functions. As shown in Figure 1
where the yellow regions denote real data sample distribution P (X), even if student fS perfectly fits
teacher fT at each training data point, i.e., x1, x2, and x3, their local shapes near these samples can
still be highly different. To mitigate this issue, the typically used strategy is data augmentation Simard
et al. (1998) formalized by the Vicinal Risk Minimization (VRM) Chapelle et al. (2001) principle. In
VRM, human knowledge is necessary to define a vicinity or neighborhood around each training data
point. Then, additional new data points can be drawn from the vicinity distribution of the training
data. For example, in image classification, it is common to define the vicinity of an image as the set
of its random crops after mildly padding and flipping. Nevertheless, data augmentation has its own
limitation that a newly generated data point is very close to the original training data point, since
they contain almost the identical objective only with different backgrounds caused by padding or
cropping. Due to this limitation, as shown in Figure 2, even if the student fS fits the teacher fT at
all the training data points (i.e., x1, x2, and x3) and the augmented data points (i.e., xaug1 , xaug2 , and
xaug3 ), their local shapes can still differ substantially.
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Table 3: Ablation study on CIFAR-100 in terms of test accuracy (%)
Teacher: WRN-40-2, Student: WRN-40-1 Teacher: ResNet32×4, Student: ShuffleNetV2

KD 73.54±0.20 74.45±0.27

p=2 p=3 p=5 p=10 p=2 p=3 p=5 p=10

r=2:1 75.10±0.13 74.79±0.17 74.72±0.19 74.68±0.24 75.72±0.32 76.03±0.15 75.77±0.12 76.03±0.17
r=1:1 75.21±0.14 75.35±0.16 75.13±0.17 74.72±0.31 76.80±0.08 77.22±0.21 76.42±0.27 76.44±0.29
r=1:2 75.00±0.11 75.25±0.12 74.76±0.32 74.76±0.41 76.50±0.07 77.21±0.14 76.57±0.17 76.01±0.38
r=1:5 74.40±0.18 75.15±0.14 74.16±0.42 74.25±0.34 75.35±0.34 76.02±0.37 75.17±0.35 75.50±0.32

To address the above issue, we propose KD+ that regularizes KD by enforcing students to mimic
the behavior of teachers on the region between two training (or augmented) samples. As shown in
Figure 3, KD+ first defines p− 1 points (i.e., p1, p2, ..., pp−1) that evenly divide the region between
two training samples (i.e., x1 and x2) into p pieces. We denote the set of p1, p2, ..., and pp−1 by
P. P contains in-distribution points and out-of-distribution points. KD+ enforces the students to
mimic the behavior of the teachers on P, which serves as a data-driven regularizer. KD+ goes beyond
in-distribution distillation as it also uses out-of-distribution points in the regulaizer. As seen from
Figure 3, the regularizer can make the student better explore and capture the local shape of the teacher.
Consequently, the complete objective of KD+ is written as:

LKD+ = LKD + λ
∑
pi∈P

LKL(fS , fT , pi) (7)

where λ is a balancing weight and simply setting λ to 1 works pretty well. KD+ is a very concise ap-
proach without requiring complex hyperparameter tuning and can sufficiently explore the knowledge
in the teacher by using freely obtained in-distribution and out-of-distribution points as a regularizer.

6 EXPERIMENTS FOR EVALUATING KD+

In this section, We first conduct ablation study. Then we show that KD+ is superior to KD by (1)
comparing KD+ with KD and other SOTA approaches, (2) showing that KD+ is more compatible
with these approaches, (3) showing the superiority of KD+ under few-shot setting.

6.1 DATASETS, ARCHITECTURES, COMPETITORS, AND HYPER-PARAMETERS

Experiments are conducted on three benchmark datasets. CIFAR-100 (Krizhevsky & Hinton, 2009)
has 100 classes with 50k training images and 10k test images. Tiny ImageNet 4 has 200 classes with
100k training images and 10k test images. ImageNet (Deng et al., 2009) has 1000 classes with 1.28M
training images and 50k validation images. We use the standard data augmentation strategy for each
dataset. We adopt various modern architectures, i.e., ResNet (He et al., 2016), WRN (Zagoruyko
& Komodakis, 2016), VGG (Simonyan & Zisserman, 2015), MobileNet (Sandler et al., 2018), and
ShuffleNet (Ma et al., 2018). We compare KD+ with KD and several SOTA methods, i.e., FitNet
(Romero et al., 2015), AT (Zagoruyko & Komodakis, 2017), SP (Tung & Mori, 2019), FT (Kim et al.,
2018), NST (Huang & Wang, 2017), CC (Peng et al., 2019), FSP (Yim et al., 2017), PKT (Passalis &
Tefas, 2018), AB (Heo et al., 2019b), VID (Ahn et al., 2019), RKD (Park et al., 2019), CRD (Tian
et al., 2020), and SSKD (Xu et al., 2020). For these SOTA approaches, we report the author-reported
results, or use author-provided codes and the optimal hyper-parameters if they are publicly available.
Otherwise, we use the implementation of Tian et al. (2020).

We follow KD and set α, β, λ and τ to 0.1, 0.9, 1, and 4, respectively, on all the datasets except
on ImageNet where we follow the existing literature to set α = 1 and τ = 3. We have trained all
the networks for 240, 100, and 120 epochs with SGD with momentum 0.9 on CIFAR-100, Tiny
ImageNet, and ImageNet, respectively. We set the initial learning rate to 0.05 for for ResNet, WRN,
and VGG, and 0.01 for MobileNet and ShuffleNet. On CIFAR, the learning rate is divided by 10
every 30 epochs after the first 150 epochs. On Tiny ImageNet, the learning rate is divided by 5 every
30 epochs. On ImageNet, the learning rate is initilized to 0.1 and is divided by 10 every 30 epochs.
More implementation details are reported in Appendix A.

4https://tiny-imagenet.herokuapp.com
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Table 4: Test accuracy on CIFAR-100. Underline denotes that students match or outperform teachers.

Teacher VGG-13 ResNet32×4 WRN-40-2 ResNet-110 WRN-40-2 ResNet32×4
Student VGG-8 ResNet8×4 WRN-40-1 ResNet-32 VGG-8 ShuffleNetV2

Teacher 74.64 79.42 75.61 74.31 75.61 79.42
Vanilla Student 70.36 72.50 71.98 71.14 70.36 71.86

KD 72.98±0.19 73.33±0.25 73.54±0.20 73.08±0.18 73.51±0.17 74.45±0.27
KD+ 75.05±0.24 76.19±0.19 75.35±0.16 74.22±0.21 75.47±0.13 77.22±0.21
FitNet 71.02±0.31 73.50±0.28 72.24±0.24 71.06±0.13 71.14±0.17 73.54±0.22
AT 71.43±0.09 73.44±0.19 72.77±0.10 72.31±0.08 70.30±0.21 72.73±0.09
SP 72.68±0.19 72.94±0.23 72.43±0.27 72.69±0.41 73.12±0.18 74.56±0.22
CC 70.71±0.24 72.97±0.17 72.21±0.25 71.48±0.21 70.64±0.20 71.29±0.38
VID 71.23±0.06 73.09±0.21 73.30±0.13 72.61±0.28 71.86±0.23 73.40±0.17
RKD 71.48±0.05 71.90±0.11 72.22±0.20 71.82±0.34 71.00±0.19 73.21±0.28
PKT 72.88±0.09 73.64±0.18 73.45±0.19 72.61±0.17 72.74±0.42 74.69±0.34
AB 70.94±0.18 73.17±0.31 72.38±0.31 70.98±0.39 72.21±0.41 74.31±0.11
FT 70.58±0.08 72.86±0.12 71.59±0.15 72.37±0.31 68.33±0.22 72.50±0.15
CRD 73.94±0.22 75.51±0.18 74.14±0.22 73.48±0.13 74.08±0.20 75.65±0.10
NST 71.53±0.13 73.30±0.25 72.24±0.22 71.96±0.07 69.56±0.24 74.68±0.26

Table 5: Test accuracies (%) on Tiny ImageNet.
Teacher Student KD KD+ FitNet AT CC SP VID RKD CRD PKT AB

VGG-13
(61.62)

VGG-8
(55.46)

60.21
±0.19

62.20
±0.11

55.26
±0.20

56.82
±0.46

54.14
±0.19

56.99
±0.42

54.57
±0.26

56.60
±0.13

59.95
±0.23

56.36
±0.17

55.41
±0.36

WRN-40-2
(61.84)

WRN-40-1
(55.39)

56.25
±0.15

57.65
±0.25

55.41
±0.31

55.84
±0.41

55.10
±0.43

54.09
±0.26

56.07
±0.23

55.37
±0.29

56.75
±0.33

56.31
±0.22

55.76
±0.26

Table 6: Comparison results on ImageNet

Teacher Student KD KD+ AT CRD SP CC

TOP-1 73.31 69.75 70.66 71.81 70.70 71.17 70.22 69.96
TOP-5 91.42 89.07 89.88 90.72 90.00 90.13 89.80 89.17

6.2 ABLATION STUDY AND OUT-OF-DISTRIBUTION DISTILLATION

We investigate how the performance varies with the values of p. We also check how the performance
varies with the number of points used in the regularizer of KD+ as P contains much more samples
than the training dataset. We use r to denote the ratio of the number of training samples to the
number of samples used in the regularizer. Table 3 reports the results of KD+ with different p and r.
The value of p determines what points are included in the regularzier of KD+. When p=2, it means
that we only use the middle points between two training (or augmented) samples in the regularizer.
These middle points have a high probability of being out-of-distribution as they do not belong to
any predefined classes. As seen from Table 3, by distilling on these middle points (i.e., p=2) as a
regularizer, KD+ outperforms KD significantly (e.g., from 73.54 to 75.21 on WRN-40-1), which
demonstrates that the out-of-distribution samples can be beneficial to knowledge distillation. Note
that not all out-of-distribution samples are useful(e.g., randomly generated samples from normal
distribution are harmful as shown in Appendix D). The reason for the usefulness of these middle
points may be that these points are not far from the real data distribution as they share some statistics
with the training data (e.g., the mean, the variance, and the relation among data dimensions). We also
notice that the performance of KD+ is not sensitive to the values of r and p. The best performance is
achieved when r=1:1 and p=3. Thus, we simply set r=1:1 and p=3 in the rest of the experiments.

6.3 COMPARISON WITH KD AND SOTA APPROACHES

Table 4 summarizes the comparison results on CIFAR-100. We have the following observations.
First, there is an obvious performance gap between the students and the teachers for the existing
approaches (e.g., KD, FitNet, and AT). Second, with a simple regularizer, KD+ substantially reduces
the performance gap on all the six teacher-student pairs, and even matches or outperforms the teachers
on four pairs (that are denoted by underline). On the other two teacher-student pairs, although the
students still underperform the teachers, the performance gap is largely reduced by KD+. Note that
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Table 7: Compatibility performances on CIFAR-100

Teacher ResNet32×4 VGG-13 ResNet-50 ResNet32×4 ResNet-110 WRN-40-2
Student ResNet8×4 VGG-8 VGG-8 ShuffleNetV2 ResNet-20 WRN-16-2

FitNet+KD 74.66±0.26 73.22±0.21 73.24±0.27 75.15±0.19 70.67±0.21 75.12±0.33
FitNet+KD+ 76.22±0.23 74.68±0.16 75.48±0.22 77.90±0.28 71.27±0.26 75.89±0.15
AT+KD 74.53±0.18 73.48±0.19 74.01±0.25 75.39±0.29 70.97±0.17 75.32±0.15
AT+KD+ 75.41±0.17 74.08±0.25 74.93±0.13 75.97±0.31 71.23±0.23 75.87±0.18
SP+KD 74.02±0.24 73.49±0.19 73.52±0.25 74.88±0.16 71.02±0.22 74.98±0.28
SP+KD+ 75.34±0.28 74.77±0.16 75.22±0.23 76.24±0.18 71.21±0.24 75.23±0.18
CC+KD 74.21±0.26 73.04±0.15 73.48±0.29 74.71±0.21 70.88±0.20 75.09±0.23
CC+KD+ 76.28±0.23 74.45±0.22 75.33±0.27 77.35±0.19 71.32±0.27 75.88±0.26
VID+KD 74.56±0.10 73.19±0.20 73.46±0.25 74.85±0.28 71.10±0.18 75.14±0.15
VID+KD+ 76.07±0.19 75.08±0.24 75.63±0.17 77.00±0.29 71.48±0.16 75.70±0.23
RKD+KD 73.79±0.18 72.97±0.08 73.51±0.33 74.55±0.23 70.77±0.16 74.89±0.20
RKD+KD+ 75.81±0.28 74.49±0.12 75.58±0.31 76.47±0.16 71.32±0.17 75.20±0.22
PKT+KD 74.23±0.13 73.25±0.21 73.61±0.28 74.66±0.30 70.72±0.24 75.33±0.18
PKT+KD+ 76.12±0.22 74.80±0.19 75.70±0.15 76.63±0.12 71.36±0.20 75.65±0.29
CRD+KD 75.46±0.25 74.29±0.12 74.58±0.27 76.05±0.09 71.56±0.16 75.64±0.21
CRD+KD+ 76.84±0.19 74.74±0.21 75.82±0.17 76.89±0.12 72.00±0.23 76.08±0.20
AB+KD 74.40±0.27 73.35±0.20 73.65±0.41 74.99±0.35 70.97±0.19 70.27±0.17
AB+KD+ 75.95±0.33 74.92±0.21 76.11±0.18 77.85±0.16 71.75±0.27 71.35±0.29
NST+KD 74.28±0.22 73.33±0.15 71.74±0.29 75.24±0.40 71.01±0.24 74.67±0.26
NST+KD+ 75.60±0.19 74.53±0.23 73.85±0.17 77.67±0.27 71.13±0.29 75.68±0.32
SSKD 76.20±0.36 75.33±0.27 75.76±0.40 78.61±0.33 71.38±0.26 76.04±0.21
SSKD+ 76.59±0.11 75.60±0.21 76.01±0.25 78.75±0.18 71.54±0.20 76.34±0.27

there is no guarantee for KD+ to make students match or outperform teachers as the regularizer in
KD+ cannot fully compensate for the unknown data sample distribution. Third, KD+ consistently
outperforms KD and the other SOTA approaches by a large margin across different architectures,
which demonstrates the superiority of KD+. Fourth, on the pair of WRN-40-2 and VGG-8, almost all
the representation-based approaches (e.g., FitNet and AT) fail to transfer knowledge from the teacher
to the student, even underperform the vanilla student. The reason is that WRN-40-2 and VGG-8
have extremely different architectures. Aligning their feature maps hurts the student performance. In
contrast, KD+ shows its robustness and superiority in this case, and even enables student VGG-8 to
match the performance of teacher WRN-40-2.

Table 5 reports the comparison results on Tiny ImageNet. KD+ beats KD and the other approaches
significantly, and even outperforms teacher VGG-13, which demonstrates the effectiveness of KD+.

We further evaluate KD+ on large scale dataset ImageNet. Limited by computation resources, we
only adopt one teacher-student pair on ImageNet. We follow CRD and use ResNet-34 and ResNet-18
as the teacher and the student, respectively. As shown in Table 6, KD+ improves the accuracy over
KD and the other approaches significantly, which demonstrates the applicability and usefulness of
KD+ on large scale datasets. We also notice that there is still an obvious performance gap between
the teacher and the student on ImageNet. The reason can be the model capacity difference as we find
that ResNet-18 is an IST of ResNet-34 on the large and complex dataset ImageNet.

6.4 COMPATIBILITY WITH SOTA APPROACHES

The existing SOTA approaches can be combined with KD to obtain further performance gain. We
show that these approaches combined with KD+ are able to obtain more performance gain. As shown
in Table 7, the existing approaches when combined with KD+ consistently achieve much better
performances than when combined with KD in all the settings where the teachers and the students
use similar or different architectures. This demonstrates that KD+ has a better compatibility than KD
and the regularizer of going beyond in-distribution distillation also benefits the existing approaches.
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Table 8: Test accuracies on CIFAR-100 under few-shot scenario

60% Training Data 40% Training Data 20% Training Data 10% Training Data

Teacher ResNet32×4 VGG-13 ResNet32×4 VGG-13 ResNet32×4 VGG-13 ResNet32×4 VGG-13
Student ResNet8×4 VGG-8 ResNet8×4 VGG-8 ResNet8×4 VGG-8 ResNet8×4 VGG-8

Teacher 79.42 74.64 79.42 74.64 79.42 74.64 79.42 74.64
Vanilla Student 68.54 65.57 64.35 61.45 54.70 52.50 42.76 39.30

KD 69.12 69.90 66.44 66.89 58.23 59.14 47.95 49.00
KD+ 73.65 72.10 70.75 70.53 65.68 64.94 57.00 56.50
FitNet 69.61 66.60 66.97 62.06 60.18 53.57 51.46 39.89
AT 69.35 67.36 66.19 65.12 57.72 58.16 44.70 47.16
SP 69.62 69.76 65.82 66.40 59.00 58.57 45.44 40.27
CC 68.37 65.37 64.26 60.60 54.68 51.27 42.74 39.16
VID 69.12 67.29 65.87 62.58 57.31 54.86 44.41 41.07
RKD 67.71 66.18 63.51 62.32 52.29 52.13 39.19 39.70
PKT 70.48 69.21 66.41 65.97 59.06 58.08 43.50 41.15
CRD 71.29 70.46 68.15 66.27 59.38 57.57 48.23 46.33
AB 69.25 65.98 65.30 63.07 58.48 56.55 48.61 48.27
FT 67.05 64.88 63.38 60.37 53.85 50.42 39.55 38.10
NST 69.87 67.12 66.24 63.56 60.27 56.63 51.91 47.44

6.5 FEW-SHOT SCENARIO

In reality, it can happen that a powerful model is released, but only a few data samples are publicly
accessible due to the privacy or confidentiality issues. We evaluate KD+ under few-shot scenario
where knowledge is transferred from a powerful teacher to a student with limited data. Table 8
presents the comparison results. We observe that KD+ outperforms KD and the other approaches by
a large margin in all the cases with 60%, 40%, 20%, and 10% training data available. The superiority
of KD+ becomes more obvious under few-shot scenario, e.g., 9.05% accuracy improvement over KD
on ResNet8×4 with 10% training data. The reason is that under few-shot scenario, the training data
becomes extremely sparse. Corollary 4.1 holds strongly that only fitting sparse data points cannot
enable the students to well capture the local shapes of the teachers. KD+ substantially mitigates this
issue by using a regularizer to go beyond the sparse in-distribution distillation.

7 CONCLUSION

In this paper, we systematically study why students underperform teachers and how students can
outperform teachers under KD based model compression. Through designing exploratory experiments,
we find that model capacity differences are not necessarily the root reason and the distillation data
matters when the student capacity is greater than a threshold. Inspired by this, we propose KD+ which
goes beyond in-distribution distillation. Extensive experiments demonstrate that KD+ is superior to
KD as it outperforms KD and the other SOTA approaches substantially, is more compatible with the
existing approaches, and shows obvious superiority in few-shot scenario.
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A MORE IMPLEMENTATION DETAILS

The code for this work will be released online. Besides the hyper-parameters reported in the paper,
below we report more implementation details.

We adopt the standard preprocessing and data augmentation strategies for each dataset. Each image
is preprocessed by subtracting the mean of the whole training set and dividing it by the standard
deviation. We use the standard data augmentation strategy, i.e., randomly flipping horizontally,
padding 4 pixels for CIFAR (8 pixels for Tiny ImageNet), and then cropping to 32×32 for CIFAR
(64×64 for Tiny ImageNet). On ImageNet, we use the widely used scale and aspect ratio augmentation
strategy.

On exploratory experiments, the architectures of SN2 and SN3 are Conv(128)-BN-AvgPooling(32)-
FC and Conv(128)-BN-ReLU-Covn(256)-BN-ReLU-AvgPooling(16)-FC, respectively.

Following KD, we set α, β, λ and τ to 0.1, 0.9, 1, and 4, respectively. On CIFAR-100, we have
trained all the networks for 240 epochs with SGD with momentum 0.9 and batch size 64. On Tiny
ImageNet, all the networks are trained with SGD with momentum 0.9 for 100 epochs with batch size
64. On ImageNet, we have the network for 120 epochs with SGD with momentum 0.9 and batch size
256.

For the SOTA approaches, their objective is a combination of the regular cross-entropy loss and a
distillation loss:

L = LCE + cLdistill (8)

where c is a weight for balancing the two terms. We report the author-reported results, or use
author-provided codes and the optimal hyper-parameters from the original papers if they are publicly
available. Otherwise, we use the implementation of Tian et al. (2020). Specifically, the hyper-
parameters for each method are: (1) FitNet: c = 100; (2) AT: c = 1000; (3) SP: c = 3000; (4)
CC: c = 0.02; (5) VID: c = 1; (6) RKD: c1 = 25 for the distance metric and c2 = 50 for the
angle metric; both terms are combined following the original paper; (7) PKT: c = 30000; (8) AB:
c = 0; distillation happens in the pre-training stage where only distillation objective is used; (9) FT:
c = 500; (10) CRD: c = 0.8; (11) FSP: c = 0; distillation happens in the pre-training stage where
only distillation objective is used; (12) NST: c = 50; (13) the KD objective is (1); α, β and τ is set to
0.1, 0.9, and 4, respectively.

For compatibility experiments, KD+ is combined with the existing SOTA approaches. The objective
is written as:

LCompKD+ = LKD+ + cLdistill (9)

The values of c have been reported above.
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When the state-of-the-art approaches are combined with KD, the objective is:

LCompKD = LKD + cLdistill (10)

For all the experiments, we report the last epoch test accuracy over 3 runs.

B TEACHER-STUDENT SHAPE DIFFERENCES

As stated in Corollary 4.1, only fitting the teacher outputs at sparse data points cannot enable students
to well capture the local, in-distribution shapes of teachers. In this part, we show that the students
trained with KD+ can better capture the local shapes of the teachers than those trained with KD. The

Table 9: S-T DIFs (Shape differences) on CIFAR-100

Teacher ResNet32×4 WRN-40-2 WRN-40-2 VGG-13
Student ResNet8×4 WRN-16-2 WRN-40-1 VGG-8

KD 2.81 2.74 2.94 1.77
KD+ 1.45 2.02 2.10 1.11

local shape of a function can be repre-
sented by a set of pairs (x, y) where
x is the input and y is the output
of the function. To measure the
shape difference, we report the av-
erage mean square student-teacher
output logit differences (S-T DIFs)
by using test data as inputs. As
shown in Table 9, S-T DIFs of KD+ are consistently smaller than those of KD, which demonstrates
that the student shapes of KD+ are closer to the teacher shapes and indicates that the regularizer
benefits the students in capturing the local shpaes of the teachers.

C COMPARISON WITH THE REGULARIZER OF INJECTING NOISE TO INPUTS

KD+ goes beyond in-distribution distillation by using a data-driven regularizer. We compare the
regularizer in KD+ with the regularizer of injecting small noise to inputs. Intuitively, distilling
on noise-injected samples can also explore more knowledge in the teacher. We call this method
NoiseKD. We compare KD+ with NoiseKD. We grid search the best hyperparameter for NoiseKD by
using different levels of Gaussian noise, i.e., N (0, 0.1), N (0, 0.05), N (0, 0.01), and N (0, 0.005).
Table ?? reports the comparison results. It is observed that when the noise in NoiseKD is large
(e.g., N (0, 0.1) and N (0, 0.05)), NoiseKD even underperforms KD, which indicates that large noise
is harmful for knowledge distillation. When noise is relatively small (e.g., N (0, 0.01)), NoiseKD
slightly improves the performances over KD, which indicates that small noise is useful for knowledge
distillation. We also see that KD+ consistently outperforms NoiseKD with different levels of noise as
regularzers, which demonstrates the superiority of the proposed regularizer.

D NOT ALL OUT-OF-DISTRIBUTION SAMPLES ARE USEFUL

In KD+, when p = 2, the regularizer almost only uses out-of-distribution samples as the middle points
of two samples do not belong to any predefined class. The experimental results in Table 3 have shown
that by distillation on these out-of-distribution samples as a regularizer, the student performance
is improved substantially. Here, we show that not all out-of-distribution samples are useful for
knowledge distillation. We randomly draw image-size noise from a normal distribution. And then we
distill on these randomly generated noisy samples as a regularizer for KD (we denote this method by
NoiseRegKD). The results are reported in Table 10. It is not surprising that the performances drop
significantly, e.g., from 72.98 to 6.59 on VGG-8. This indicates that the out-of-distribution samples
far from the real data distribution are harmful for knowledge distillation.

E LEARNING DATA DISTRIBUTION WITH GENERATIVE MODELS

As stated in Corollary 4.1, only fitting the teacher outputs at sparse data points cannot enable students
to well capture the local, in-distribution shapes of teachers. One natural idea is to use generative
adversarial networks (GAN) Goodfellow et al. (2014); Arjovsky et al. (2017); Liu et al. (2018) to
learn the data distribution and then use the generator to generate fake data for knowledge distillation.
However, there are two issues: first, training GAN is computationally expensive especially for large
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Table 10: Out-of-distribution distillation as regularizes on CIFAR-100
Teacher VGG-13 WRN-40-2 ResNet32×4 ResNet32×4
Student VGG-8 WRN-16-2 ShuffleNetV2 ResNet8×4

Teacher 74.64 75.61 75.61 79.42
Vanilla Student 70.36 73.26 71.98 72.50

KD 72.98 74.92 73.54 73.33
NoiseRegKD 6.59 6.32 16.35 3.26

Table 11: KD with GAN as a regularize on CIFAR-10
Teacher WRN-40-2 VGG-13
Student WRN-16-1 MobileNetV2

Teacher 94.80 93.65
Vanilla Student 91.32 89.19

KD 91.77 89.21
KD-GAN 92.23 89.25
KD+ 93.15 90.51

Table 12: Compatibility performances on CIFAR-100 under few-shot scenario

60% Training Data 40% Training Data 10% Training Data

Teacher ResNet32×4 VGG-13 ResNet32×4 VGG-13 ResNet32×4 VGG-13
Student ResNet8×4 VGG-8 ResNet8×4 VGG-8 ResNet8×4 VGG-8

Teacher 79.42 74.64 79.42 74.64 79.42 74.64
Vanilla Student 68.54 65.57 64.35 61.45 42.76 39.30

FitNet+KD 72.09 69.21 69.64 65.94 54.72 46.30
FitNet+KD+ 74.57 72.23 72.34 69.94 62.43 56.43
AT+KD 71.54 70.61 68.01 68.22 50.22 53.91
AT+KD+ 73.15 71.88 70.47 69.58 56.20 57.08
SP+KD 70.45 69.70 67.22 66.73 49.94 45.62
SP+KD+ 72.42 72.03 70.42 70.28 55.82 54.42
CC+KD 70.67 69.38 66.81 66.27 48.54 48.37
CC+KD+ 73.71 72.70 70.72 70.53 57.00 57.32
VID+KD 70.00 69.54 67.65 66.42 47.84 46.81
VID+KD+ 73.86 72.59 71.25 70.76 57.38 56.98
RKD+KD 70.33 69.74 66.63 66.15 46.43 48.20
RKD+KD+ 72.85 72.49 70.47 69.79 55.58 56.12
PKT+KD 70.98 70.18 67.43 66.13 48.78 47.88
PKT+KD+ 73.21 72.19 70.83 70.56 56.20 55.63
CRD+KD 71.97 70.74 68.83 66.84 48.58 47.94
CRD+KD+ 73.65 72.51 70.29 69.14 54.89 55.84
AB+KD 70.04 69.95 67.75 67.47 53.76 60.69
AB+KD+ 73.76 73.67 71.48 71.77 60.36 65.09
NST+KD 71.15 69.36 67.92 66.87 55.05 52.49
NST+KD+ 72.57 72.20 71.37 71.00 60.28 59.12

datasets (e.g., ImageNet) while KD+ can use freely obtained in-distribution and out-of-distribution
points; second, the diversity and quality of the generated fake data from GAN are highly limited by
sparse training data, which means that it cannot accurately learn the real data sample distribution,
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Table 13: Training time of KD and KD+
Teacher VGG-13 ResNet32×4 WRN-40-2
Student VGG-8 ResNet8×4 WRN-40-1

KD 7.32s/epoch 17.21s/epoch 15.62s/epoch
KD+ 13.32s/epoch 32.18s/epoch 28.40s/epoch

Table 14: Comparison between baselines and baselines+
Teacher VGG-13 WRN-40-2
Student VGG-8 WRN-16-2

FitNet 71.02 72.24
FitNet+ 74.15 75.09
AT 71.43 72.77
AT+ 73.55 74.81
SP 72.68 72.43
SP+ 73.81 74.59
CC 70.71 72.21
CC+ 74.21 74.99
PKT 72.88 73.45
PKT+ 74.39 75.01

just like we cannot obtain 100% test accuracy by training a deep neural network on the training data
samples and their ground truth of CIFAR-100.

We conduct an exploratory experiment by using GAN to learn the data sample distribution on CIFAR-
10 Krizhevsky & Hinton (2009) as GAN can easily converge on CIFAR-10. And then we distill on
the generated fake data as a regularizer for KD. The Results are reported in Table 11. It is obsrved
that the GAN regularizer (i.e., KD-GAN) improves the performances over KD, but it underperforms
KD+ substantially. This indicates that GAN can generate some useful fake samples for knowledge
distillation, but the diversity and usefulness of these samples are highly constrained by the training
data. As it is almost impossible to learn the real data sample distribution from sparse training data
points, KD+ compensates this by going beyond in-distribution distillation and thus beats KD and the
other approaches by a large margin.

F COMPATIBILITY WITH SOTA APPROACHES UNDER FEW-SHOT SCENARIO

In this part, we report the compatibility of KD+ with the existing approaches under few-shot scenario
as this case can happen in reality where only a few samples are available due to the privacy or
confidentiality issues. The comparison results are reported in Table 12. It is observed that the existing
approaches when combined with KD+ obtain much better performances than when combined with
KD. Moreover, the overall accuracy improvement becomes larger when less training data samples are
available. The reason is that when the training data become extremely sparse, Corollary 4.1 holds
strongly that only fitting sparse data points cannot enable the students to well capture the local shapes
of the teachers. KD+ substantially mitigates this issue by using a regularizer to go beyond the sparse
in-distribution distillation.

G TRAINING TIME OF KD AND KD+

As KD+ explores more knowledge in the teacher by going beyond in-distribution distillation, it is
more computationally expensive than KD. We report the training data on CIFAR-100 with GPU RTX
2080Ti. Both KD and KD+ are trained for 240 epochs. The training time is reported in Table 13.
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H COMPARISON RESULTS BETWEEN BASELINES AND BASELINES+

To further explore the performances of the proposed approaches on different distillation methods,
we compare baselines with baselines+. Baselines+ are obtained by using the P points to assist the
baselines (note that the KD+ objective is not included). The comparison results are reported in Table
14. We observe that the beselines+ consistently outperform the baselines by a large margin (e.g.,
3.13% accuracy improvement from FitNet to FitNet+), which demonstrates the generalization and
effectiveness of the proposed strategy across different distillation approaches.
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