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Abstract

Large-scale pretrained language models are001
surprisingly good at recalling factual knowl-002
edge presented in the training corpus (Petroni003
et al., 2019; Jiang et al., 2020b). In this pa-004
per, we present preliminary studies on how fac-005
tual knowledge is stored in pretrained Trans-006
formers by introducing the concept of knowl-007
edge neurons. Specifically, we examine the008
fill-in-the-blank cloze task for BERT. Given009
a relational fact, we propose a knowledge at-010
tribution method to identify the neurons that011
express the fact. We find that the activation012
of such knowledge neurons is positively corre-013
lated to the expression of their corresponding014
facts. In our case studies, we attempt to lever-015
age knowledge neurons to edit (such as update,016
and erase) specific factual knowledge without017
fine-tuning. Our results shed light on under-018
standing the storage of knowledge within pre-019
trained Transformers. The code is available at020
http://anonymous.url.021

1 Introduction022

Large-scale pretrained Transformers (Devlin et al.,023

2019; Liu et al., 2019; Dong et al., 2019; Clark024

et al., 2020; Bao et al., 2020) are usually learned025

with a language modeling objective on large-scale026

corpora, such as Wikipedia, where exists oceans027

of factual knowledge. Pretrained language models028

naturally play as a free-text knowledge base by pre-029

dicting texts (Bosselut et al., 2019). Petroni et al.030

(2019) and Jiang et al. (2020b) probe factual knowl-031

edge stored in pretrained language models by fill-032

in-the-blank cloze queries. The evaluation shows033

that pretrained Transformers have a strong ability034

to recall factual knowledge without any fine-tuning.035

Roberts et al. (2020) use closed-book question an-036

swering to show that the larger a model is, the more037

knowledge it can store. However, most previous038

work focuses on evaluating the overall accuracy of039

text-form knowledge prediction. In this paper, we040
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Figure 1: Through knowledge attribution, we identify
knowledge neurons that express a relational fact.

attempt to look deeper into pretrained Transformers 041

and investigate how factual knowledge is stored. 042

As shown in Figure 1, we propose a knowl- 043

edge attribution method to identify the neurons 044

that express a relational fact, where such neurons 045

are named knowledge neurons. Specifically, we 046

view feed-forward network (i.e., two-layer percep- 047

tron) modules in Transformer as key-value memo- 048

ries (Geva et al., 2020). For the example in Figure 1, 049

the hidden state is fed into the first linear layer 050

and activates knowledge neurons; then, the second 051

linear layer integrates the corresponding memory 052

vectors. The key-value-memory nature (Geva et al., 053

2020) inspires us to propose the knowledge attribu- 054

tion method, which identifies knowledge neurons 055

in feed-forward networks by computing the contri- 056

bution of each neuron to the knowledge prediction. 057

Extensive analysis shows that the activation of 058

the identified knowledge neurons is positively cor- 059

related to the knowledge expression, which shows 060

the effectiveness of the proposed knowledge at- 061
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Figure 2: Illustration of how an FFN module in a Transformer block works as a key-value memory. The first linear
layer FFN(key) computes intermediate neurons through inner product. Taking the activation of these neurons as
weights, the second linear layer FFN(val) integrates value vectors through weighted sum. We hypothesize that
knowledge neurons in the FFN module are responsible for expressing factual knowledge.

tribution method. First, suppressing and ampli-062

fying knowledge neurons notably affects the ex-063

pression of the corresponding knowledge. Second,064

we find that knowledge neurons of a fact tend to065

be activated more by corresponding knowledge-066

expressing prompts. Third, given the knowledge067

neurons of a fact, the top activating prompts re-068

trieved from open-domain texts usually express069

the corresponding fact, while the bottom activating070

prompts do not express the correct relation.071

In our case studies, we try to leverage knowl-072

edge neurons to explicitly edit factual knowledge073

in pretrained Transformers without any fine-tuning.074

We present two preliminary studies: updating facts,075

and erasing relations. After identifying the knowl-076

edge neurons, we perform a knowledge surgery077

for pretrained Transformers by directly modify-078

ing the corresponding parameters in feed-forward079

networks. Such surgery shows promising results,080

keeping a moderate influence on other knowledge.081

Our contributions are summarized as follows:082

• We introduce the concept of knowledge neu-083

rons and propose a knowledge attribution084

method to identify the knowledge neurons that085

express specific factual knowledge in the fill-086

in-the-blank cloze task.087

• We conduct both qualitative and quantitative088

analysis to show that knowledge neurons are089

positively correlated to knowledge expression.090

• We present preliminary studies of leveraging091

knowledge neurons to edit factual knowledge092

in Transformers, even without any fine-tuning.093

2 Background: Transformer 094

Transformer (Vaswani et al., 2017) is one of the 095

most popular and effective NLP architectures. A 096

Transformer encoder is stacked with L identical 097

blocks. Each Transformer block mainly contains 098

two modules: a self-attention module, and a feed- 099

forward network (abbreviated as FFN) module. Let 100

X ∈ Rn×d denote the input matrix, two modules 101

can be formulated as follows: 102

Qh = XWQ
h ,Kh = XWK

h , Vh = XW V
h , (1) 103

Self-Atth(X) = softmax
(
QhK

T
h

)
Vh, (2) 104

FFN(H) = gelu (HW1)W2, (3) 105

where WQ
h ,W

K
h ,W

V
h ,W1,W2 are parameter ma- 106

trices; Self-Atth(X) computes a single attention 107

head; H , the hidden state, is given by projecting 108

the concatenation of all heads; gelu denotes the 109

GELU activation function (Hendrycks and Gimpel, 110

2016). For simplicity, we omit the scaling factor in 111

self-attention and the bias terms. 112

Connections Between Self-Attention and FFN 113

Comparing Equation (2) and Equation (3), we no- 114

tice that the formula of FFN(·) is quite similar to 115

Self-Att(·), except the activation function gelu in 116

FFN and softmax in self-attention. Thus, similar 117

to the query-key-value mechanism in self-attention, 118

it is reasonable to regard the input of the FFN as a 119

query vector, and two linear layers of the FFN as 120

keys and values, respectively. Similar observations 121

are also described in (Geva et al., 2020). 122
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3 Identifying Knowledge Neurons123

Similar to (Geva et al., 2020), we view FFNs in124

Transformer as key-value memories as illustrated125

in Figure 2. We hypothesize that factual knowl-126

edge is stored in FFN memories and expressed by127

knowledge neurons. In this section, we propose a128

knowledge attribution method and a refining strat-129

egy to identify these knowledge neurons.130

3.1 Knowledge Assessing Task131

We employ the fill-in-the-blank cloze task to assess132

whether a pretrained model knows a fact. Follow-133

ing Petroni et al. (2019), each relational fact is in134

the form of a triplet 〈h, r, t〉, where h is the head en-135

tity, t is the tail entity, and r is the relation between136

them. Given a fact, pretrained models answer the137

cloze query x that expresses the fact but leaves138

the tail entity as a blank. For example, given the139

fact 〈Ireland, capital, Dublin〉, a pos-140

sible query is “The capital of Ireland is ”. We141

also call the query a knowledge-expressing prompt.142

Petroni et al. (2019) describe that a model knows143

a fact if it can predict the correct answer. In this144

paper, rather than just examining the model out-145

puts, we identify the specific knowledge neurons146

that express factual knowledge.147

3.2 Knowledge Attribution148

Inspired by Hao et al. (2021), we propose a knowl-149

edge attribution method based on integrated gradi-150

ents (Sundararajan et al., 2017). Our method can151

evaluate the contribution of each neuron to knowl-152

edge predictions. In this paper, we examine FFN153

intermediate neurons for the masked token, where154

the answer is predicted.155

Given an input prompt x, we first define the156

model output Px(ŵ
(l)
i ) as the probability of the157

correct answer predicted by a pretrained model:158

Px(ŵ
(l)
i ) = p(y∗|x,w(l)

i = ŵ
(l)
i ), (4)159

where y∗ denotes the correct answer; w(l)
i denotes160

the i-th intermediate neuron in the l-th FFN; ŵ(l)
i161

is a given constant that w(l)
i is assigned to.162

In order to calculate the attribution score of a neu-163

ron Attr(w
(l)
i ), we gradually change w(l)

i from 0 to164

its original value w(l)
i calculated by the pretrained165

model, and meanwhile integrate the gradients:166

Attr(w
(l)
i ) = w

(l)
i

∫ 1

α=0

∂ Px(αw
(l)
i )

∂w
(l)
i

dα, (5)167

where ∂ Px(αw
(l)
i )

∂w
(l)
i

calculates the gradient of the 168

model output with regard to w(l)
i . Intuitively, as 169

α changes from 0 to 1, by integrating the gradi- 170

ents, Attr(w
(l)
i ) accumulates the output probability 171

change caused by the change of w(l)
i . If the neuron 172

has a great influence on the expression of a fact, 173

the gradient will be salient, which in turn has large 174

integration values. Therefore, the attribution score 175

can measure the contribution of the neuron w(l)
i to 176

the factual expressions. 177

Directly calculating continuous integrals is in- 178

tractable. We instead use Riemman approxima- 179

tion ˜Attr(w
(l)
i ) =

w
(l)
i
m

∑m
k=1

∂ Px(
k
m
w

(l)
i )

∂w
(l)
i

, where 180

m = 20 is the number of approximation steps. 181

With the attribution algorithm, we can identify a 182

coarse set of knowledge neurons whose attribution 183

scores are greater than a threshold t. 184

3.3 Knowledge Neuron Refining 185

In order to identify knowledge neurons more accu- 186

rately, we further propose a refining strategy. Be- 187

sides “true-positive” knowledge neurons that ex- 188

press factual knowledge, the coarse set of knowl- 189

edge neurons may contain “false-positive” knowl- 190

edge neurons that express other information (e.g., 191

syntactic or lexical information). The refining strat- 192

egy aims to filter out these “false-positive” neurons. 193

For different prompts corresponding to the same 194

fact, we hypothesize that they share the same set 195

of “true-positive” knowledge neurons, since they 196

express the same factual knowledge. Meanwhile, 197

we hypothesize that they do not share the “false- 198

positive” knowledge neurons as long as the prompts 199

are diverse enough. Therefore, given multiple 200

diverse prompts, we can refine the coarse set of 201

knowledge neurons by retaining only neurons that 202

are widely shared among these prompts. 203

Specifically, given a relational fact, the complete 204

process to identify its knowledge neurons is de- 205

scribed as follows: (1) produce n diverse prompts; 206

(2) for each prompt, calculate the knowledge at- 207

tribution scores of neurons; (3) for each prompt, 208

retain the neurons with attribution scores greater 209

than the attribution threshold t, obtaining the coarse 210

set of knowledge neurons; (4) considering all the 211

coarse sets together, retain the knowledge neurons 212

shared by more than p% prompts. 213
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Relations Template #1 Template #2 Template #3

P176 (manufacturer) [X] is produced by [Y] [X] is a product of [Y] [Y] and its product [X]
P463 (member_of) [X] is a member of [Y] [X] belongs to the organization of [Y] [X] is affiliated with [Y]
P407 (language_of_work) [X] was written in [Y] The language of [X] is [Y] [X] was a [Y]-language work

Table 1: Example prompt templates of three relations in PARAREL. [X] and [Y] are the placeholders for the head
and tail entities, respectively. Owing to the page width, we show only three templates for each relation. Prompt
templates in PARAREL produce 253,448 knowledge-expressing prompts in total for 27,738 relational facts.

4 Experiments214

4.1 Experimental Settings215

We conduct experiments for BERT-base-cased (De-216

vlin et al., 2019), one of the most widely-used pre-217

trained models. It contains 12 Transformer blocks,218

where the hidden size is 768 and the FFN inner219

hidden size is 3,072. Notice that our method is220

not limited to BERT and can be easily general-221

ized to other pretrained models. For each prompt,222

we set the attribution threshold t to 0.2 times the223

maximum attribution score. For each relation, we224

initialize the refining threshold p% (Section 3.3)225

as 0.7. Then, we increase or decrease it by 0.05226

at a time until the average number of knowledge227

neurons lies in [2, 5]. We run our experiments on228

NVIDIA Tesla V100 GPUs. On average, it costs229

13.3 seconds to identify knowledge neurons for a230

relational fact with 9 prompts.231

4.2 Dataset232

We examine knowledge neurons through the fill-233

in-the-blank cloze task based on the PARAREL234

dataset (Elazar et al., 2021). PARAREL is curated235

by experts, containing various prompt templates236

for 38 relations from the T-REx dataset (ElSahar237

et al., 2018). We show some example templates238

in Table 1. For each relational fact, we fill in the239

head entity in prompt templates and leave the tail240

entity as a blank to predict. In order to guarantee241

the template diversity, we filter out relations with242

fewer than 4 prompt templates and finally keep243

34 relations, where each relation has 8.63 differ-244

ent prompt templates on average. These prompt245

templates produce 253,448 knowledge-expressing246

prompts in total for 27,738 relational facts.247

4.3 Attribution Baseline248

Our baseline method takes the neuron activation249

value as the attribution score, i.e., Attrbase(w
(l)
i ) =250

w
(l)
i , which measures how sensitive a neuron is251

to the input. After computing attribution scores,252

we follow the same pipeline to obtain the refined253
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Figure 3: Percentage of knowledge neurons identified
by our method in each Transformer layer.

Type of Neurons Ours Baseline

Knowledge neurons 4.13 3.96⋂
of intra-rel. fact pairs 1.23 2.85⋂
of inter-rel. fact pairs 0.09 1.92

Table 2: Statistics of knowledge neurons.
⋂

denotes
the intersection of knowledge neurons of fact pairs.
“rel.” is the shorthand of relation. Our method iden-
tifies more exclusive knowledge neurons.

knowledge neurons. For a fair comparison, we 254

employ the same method to choose the hyper- 255

parameters t and p% for the baseline to ensure 256

the average number of knowledge neurons for each 257

relation lies in [2, 5]. 258

The method based on neuron activation is a rea- 259

sonable baseline. It is motivated by FFNs’s analogy 260

with the self-attention mechanism (as described in 261

Section 2), because self-attention scores are usu- 262

ally used as a strong attribution baseline (Kovaleva 263

et al., 2019; Voita et al., 2019; Hao et al., 2021). 264

4.4 Statistics of Knowledge Neurons 265

Figure 3 presents the layer distribution of knowl- 266

edge neurons identified by our knowledge attri- 267

bution method. We notice that most fact-related 268

neurons are distributed in the topmost layers of pre- 269

trained Transformers. The finding also agrees with 270

Tenney et al. (2019) and Geva et al. (2020). 271

Table 2 shows statistics of knowledge neurons. 272

On average, we identify 4.13 knowledge neurons 273

for each relational fact using our knowledge attri- 274

bution method, and 3.96 using the baseline method. 275
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Figure 4: Results of suppressing knowledge neurons for various relations. Suppressing knowledge neurons de-
creases the correct probability by 29.03% on average. For the baseline, the decreasing ratio is 1.47% on average.
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Figure 5: Results of amplifying knowledge neurons for various relations. Amplifying knowledge neurons increases
the correct probability by 31.17% on average. For the baseline, the correct probability even decreases by 1.27%.

Their same order of magnitude guarantees the fair-276

ness of the subsequent comparisons in the paper.277

We also compute the knowledge neuron inter-278

section of different relational facts. Table 2 shows279

the average number of pair-wise knowledge neu-280

ron intersections. For our proposed method, (1)281

fact pairs with the same relation (intra-relation fact282

pairs) share 1.23 knowledge neurons on average;283

(2) fact pairs with different relations (inter-relation284

fact pairs) share almost no knowledge neurons. In285

contrast, for the baseline, (3) most identified neu-286

rons are shared by intra-relation fact pairs; (4) even287

a substantial portion of neurons are common for288

inter-relation fact pairs. The difference in knowl-289

edge neuron intersections suggests that our method290

can identify more exclusive knowledge neurons.291

4.5 Knowledge Neurons Affect Knowledge292

Expression293

We investigate how much knowledge neurons can294

affect knowledge expression in Figure 4 and Fig-295

ure 5. Given a relational fact, we manipulate its296

knowledge neurons in two ways: (1) suppressing297

knowledge neurons by setting their activations to298

0; (2) amplifying knowledge neurons by doubling299

their activations. Then, for each relation, we plot300

the average change ratio of the probability for the301

correct answer, corresponding to the manipulation.302

For comparison, we also plot the results of manipu- 303

lating baseline-identified knowledge neurons. 304

Figure 4 shows that suppressing knowledge 305

neurons identified by our knowledge attribution 306

method leads to a consistent decrease (29.03% on 307

average) in the correct probability. By contrast, for 308

baseline-identified neurons, the suppressing oper- 309

ation has a negligible influence (1.47% decrease 310

on average) on the correct probability. Notably, for 311

the relation P178 (developer), the correct prob- 312

ability abnormally increases by using the baseline. 313

As shown in Figure 5, we have similar observa- 314

tions for amplifying the knowledge neurons iden- 315

tified by our knowledge attribution. We see a con- 316

sistent increase (31.17% on average) in the cor- 317

rect probability. By contrast, the baseline even de- 318

creases the average correct probability by 1.27%. 319

In summary, the knowledge neurons identified 320

by our knowledge attribution method tend to no- 321

tably affect knowledge expression. Notice that the 322

above assessment is affected by the distribution of 323

knowledge neurons. For example, if the knowledge 324

neurons for a relation are distributed more widely, 325

we need to manipulate more top-k neurons for bet- 326

ter control. We use the above experiments as a 327

proof of concept while leaving precise control for 328

future work. 329
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Relational Facts Neurons Top-2 and Bottom-2 Activating Prompts (Average Activation)

〈 Ireland,
capital,
Dublin 〉

w
(9)
2141, w

(10)
1122

Top Our trip ... in Dublin, the capital and largest city of Ireland ... (6.36)
Dublin is the capital and largest city of Ireland. (5.77)

Bottom Dublin just might be the most iconic destination in all of Ireland. (1.27)
... in Ireland’s famed city, you can enjoy ... Dublin experience ... (-0.30)

〈 Cao_Yunding,
place_of_birth,
Shanghai 〉

w
(10)
739 , w

(10)
1885,

w
(11)
2876

Top Cao Yunding was born in Shanghai in November 1989. (3.58)
Full name: Cao Yunding ... Place of birth: Shanghai, China ... (2.73)

Bottom ... Cao Yunding (Shanghai Shenhua) is shown the red card ... (-0.30)
Shanghai Shenhua midfielder Cao Yunding ... (-0.31)

〈 Kuwait,
continent,
Asia 〉

w
(6)
147, w

(9)
866,

w
(9)
1461, w

(10)
1169

Top Kuwait is thus one of the smallest countries in Asia ... (6.63)
Kuwait is a country in Western Asia ... (6.27)

Bottom This page displays all Asia Society content on Kuwait ... (-0.48)
Noor Asia is ... distribution companies in Kuwait ... (-0.59)

Table 3: Example relational facts along with their knowledge neurons, their top-2 and bottom-2 activating prompts,
and the corresponding neuron activation. w(l)

i denotes the i-th intermediate neuron at the l-th FFN. We fill the
blank in each prompt with the correct answer for better readability. Owing to the page width, we show only key
parts for overlong prompts. The top-2 activating prompts express exactly the relation, but the bottom-2 do not.

Prompt Types Ours Baseline

Containing head and tail (T1) 0.485 2.472
Containing only head (T2) 0.019 2.312
Randomly sampled (T3) -0.018 2.244

Table 4: Average activation of knowledge neurons for
three types of prompts. The activation of neurons iden-
tified by our method can distinguish the knowledge-
expressing prompts (T1) clearly.

4.6 Knowledge Neurons are Activated by330

Knowledge-Expressing Prompts331

In order to study what prompts can activate knowl-332

edge neurons, we compare the average activation of333

knowledge neurons for different types of prompts.334

BINGREL Dataset We build a new dataset BIN-335

GREL by crawling the Bing search engine to collect336

new prompts, for a more extensive comparison be-337

yond the PARAREL dataset. For each of the 27,738338

facts in PARAREL, we crawl two types of texts: (1)339

up to ten texts containing both the head and the tail340

entities (210,217 texts crawled in total); (2) up to341

ten texts containing only the head entity without342

restricting tail entities (266,020 texts crawled in343

total). Following the distant supervision assump-344

tion (Mintz et al., 2009), the first type of texts tends345

to express the whole relational fact, while the sec-346

ond type does not. We mask tail entities for the347

first type of texts to obtain knowledge-expressing348

prompts (T1). In order to conduct a controlled ex-349

periment, we mask random words for the second350

type of texts, forming a control group (T2). More- 351

over, we employ randomly sampled prompts as 352

another control group (T3). 353

Results As shown in Table 4, for our method, 354

the identified knowledge neurons are more signifi- 355

cantly activated by knowledge-expressing prompts 356

(T1 = 0.485), compared with the control groups 357

(T2 = 0.019 and T3 = −0.018). By contrast, for 358

the baseline, the activation of identified neurons 359

cannot distinguish three types of prompts. In ad- 360

dition, since our comparison is based on the web- 361

crawled BINGREL dataset, we validate the general- 362

ization of knowledge neurons to open-domain texts 363

that are unseen in PARAREL. 364

Example Prompts In Table 3, we present exam- 365

ple prompts that activate knowledge neurons the 366

most and the least, respectively. Given a fact, we 367

first identify its knowledge neurons with our knowl- 368

edge attribution method. Then, we calculate the 369

average activation of knowledge neurons for each 370

crawled prompt that contains both the head and the 371

tail entities in BINGREL. Finally, we demonstrate 372

two prompts with the highest average activation 373

values and two with the lowest (denoted as top-2 374

and bottom-2 activating prompts, respectively). 375

As shown in Table 3, the top-2 activating 376

prompts express exactly the corresponding rela- 377

tional fact. In contrast, despite containing the 378

same head and tail entities, the bottom-2 activating 379

prompts do not express the correct relation. For 380

example, although the bottom-2 activating prompts 381

for 〈Ireland, capital, Dublin〉 express 382
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Erased Relations Perplexity (Erased Relation) Perplexity (Other Relations)

Before Erasing After Erasing Before Erasing After Erasing

P19 (place_of_birth) 1450.0 2996.0 (+106.6%) 120.3 121.6 (+1.1%)
P27 (country_of_citizenship) 28.0 38.3 (+36.7%) 143.6 149.5 (+4.2%)
P106 (occupation) 2279.0 5202.0 (+128.2%) 120.1 125.3 (+4.3%)
P937 (work_location) 58.0 140.0 (+141.2%) 138.0 151.9 (+10.1%)

Table 5: Case studies of erasing relations. The influence on knowledge expression is measured by the perplexity
change. The knowledge erasing operation significantly affects the erased relation, and has just a moderate influence
on the expression of other knowledge.

Metric Knowledge Neurons Random Neurons

Change rate↑ 48.5% 4.7%
Success rate↑ 34.4% 0.0%

∆Intra-rel. PPL↓ 8.4 10.1
∆Inter-rel. PPL↓ 7.2 4.3

Table 6: Case studies of updating facts. ↑ means the
higher the better, and ↓ means the lower the better.
“rel.” is the shorthand of relation. Keeping a moder-
ate influence on other knowledge, the surgery of knowl-
edge neurons achieves a nontrivial success rate.

information like “Dublin is a city in Ireland”, they383

do not reflect the capital relation. The examples384

support again that knowledge neurons are activated385

by corresponding knowledge-expressing prompts.386

5 Case Studies387

We present two preliminary studies to demonstrate388

the potential applications of knowledge neurons.389

We use the case studies as a proof of concept while390

leaving precise fact editing for future work.391

5.1 Updating Facts392

By leveraging knowledge neurons in pretrained393

models, we try to update a learned relational fact394

from 〈h, r, t〉 to 〈h, r, t′〉.395

Methods First, we identify the knowledge neu-396

rons of 〈h, r, t〉. Then, we retain the knowledge397

neurons that are shared by less than 10% of intra-398

relation facts, to reduce the influence on other399

facts with the same relation. Finally, we directly400

modify the corresponding value slots in FFN(val)401

(i.e., the second linear layer of FFNs; see Fig-402

ure 2): FFN
(val)
i = FFN

(val)
i −λ1t + λ2t

′, where403

FFN
(val)
i denotes the value slot corresponding to404

the i-th knowledge neuron; t and t′ are the word405

embeddings of t and t′, respectively; λ1 and λ2 are406

set to 1 and 8 in our experiments.407

Setup We conduct experiments on PARAREL. 408

For each relation, we randomly sample ten facts 409

learned by the pretrained model. For each fact 410

〈h, r, t〉, we randomly choose a different entity t′ 411

with the same type as t (e.g., both t and t′ belong 412

to city), and then update t′ as the target entity. 413

We only manipulate about four top knowledge neu- 414

rons as in Section 4.4. For reference purposes, we 415

also perform the same update process on the same 416

number of random neurons. 417

Evaluation Metrics We report two metrics to 418

evaluate the fact updating: (1) change rate, the 419

ratio that the original prediction t is modified to 420

another; (2) success rate, the ratio that t′ becomes 421

the top prediction. In addition, we measure the 422

influence on other knowledge by the following two 423

metrics: (1) ∆intra-relation PPL, the increase of 424

perplexity on the prompts with the same relation r; 425

(2) ∆inter-relation PPL, the increase of perplexity 426

on the prompts with different relations. 427

Results As shown in Table 6, the surgery of 428

knowledge neurons achieves a nontrivial success 429

rate for updating facts, while random neurons are 430

insufficient. Moreover, we find that such manipu- 431

lation has little negative influence on other knowl- 432

edge predictions. It is promising that we can 433

change very few (i.e., about four in the above exper- 434

iments) neurons to affect certain facts in pretrained 435

Transformers. We can further improve the success 436

rate by including more top knowledge neurons in 437

the update process. 438

5.2 Erasing Relations 439

We explore how to leverage knowledge neurons 440

to erase specific relations in pretrained Trans- 441

formers. Specifically, we take four relations in 442

PARAREL as examples, i.e., place_of_birth, 443

country_of_citizenship, occupation, 444

work_location, that typically express sensi- 445

tive personal information. 446
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Methods Given a relation r, we first identify447

knowledge neurons for all relational facts with r.448

Then, we retain 20 knowledge neurons that appear449

most frequently among these facts. Finally, we450

set the value slots in FFN(val) (see Figure 2) cor-451

responding to these knowledge neurons to 0, i.e.,452

zero vectors.453

Results As shown in Table 5, we report model454

perplexity before and after knowledge erasing.455

With the erasing operation, the perplexity of the re-456

moved knowledge increases as expected. Moreover,457

the model perplexity of other relations remains sim-458

ilar. We argue that knowledge neurons provide a459

promising way to erase undesired knowledge with460

minimal efforts.461

6 Related Work462

Probing Knowledge in Pretrained Models463

Many pieces of previous work aim to measure464

knowledge stored in pretrained models. Petroni465

et al. (2019) propose to retrieve knowledge in pre-466

trained models (such as BERT) using cloze queries.467

Their experiments show that BERT has a strong468

ability to recall factual knowledge without any fine-469

tuning. Jiang et al. (2020b) improve the cloze470

queries with mining-based and paraphrasing-based471

methods. Roberts et al. (2020) propose the closed-472

book question answering to measure how much473

knowledge a pretrained model has stored in its pa-474

rameters. Elazar et al. (2021) measure and improve475

the consistency of pretrained models with respect476

to factual knowledge prediction. Rather than exam-477

ining only the model outputs, we provide an open-478

the-black-box analysis for the knowledge neurons479

in pretrained Transformers.480

Attribution Methods In order to open the black481

boxes of deep learning models, attribution meth-482

ods aim to attribute the model output to input fea-483

tures using different measures. The product of484

the gradients (of the output with respect to input485

features) and feature values is a reasonable base-486

line (Baehrens et al., 2010; Simonyan et al., 2014).487

Besides, a set of attribution methods (Shrikumar488

et al., 2017; Binder et al., 2016; Zeiler and Fergus,489

2014; Springenberg et al., 2015) back-propagate490

the final output to input features. However, as491

stated by Sundararajan et al. (2017), none of these492

methods can simultaneously satisfy sensitivity and493

implementation invariance, two fundamental ax-494

ioms. Taking the axioms as guidance, Sundarara-495

jan et al. (2017) propose the integrated gradient 496

method. Our knowledge attribution method is built 497

upon integrated gradients. 498

Analysis of Transformer As one of the most 499

popular and effective NLP architectures, Trans- 500

former (Vaswani et al., 2017) has attracted ex- 501

tensive studies. Most previous work focuses on 502

the self-attention module (Voita et al., 2019; Clark 503

et al., 2019; Vig and Belinkov, 2019; Hao et al., 504

2021). Recently, Wu et al. (2019) and Dong et al. 505

(2021) have pointed out that the feed-forward net- 506

work module also matters to Transformer. Geva 507

et al. (2020) attempt to connect feed-forward net- 508

works with key-value memories by qualitative anal- 509

ysis. In this paper, we identify and analyze knowl- 510

edge neurons in feed-forward networks for given 511

factual knowledge. Moreover, we present how to 512

leverage knowledge neurons to explicitly edit fac- 513

tual knowledge stored in pretrained Transformers. 514

7 Conclusion and Future Directions 515

We propose an attribution method to identify knowl- 516

edge neurons that express factual knowledge in pre- 517

trained Transformers. We find that suppressing or 518

amplifying the activation of knowledge neurons 519

can accordingly affect the strength of knowledge 520

expression. Moreover, quantitative and qualitative 521

analysis on open-domain texts shows that knowl- 522

edge neurons tend to be activated by the corre- 523

sponding knowledge-expressing prompts. In addi- 524

tion, we present two preliminary case studies that 525

attempt to utilize knowledge neurons to update or 526

erase knowledge in pretrained Transformers. 527

Despite the effectiveness of identifying knowl- 528

edge neurons, our current studies still have limita- 529

tions. First, we examine knowledge neurons based 530

on the fill-in-the-blank cloze task, while knowl- 531

edge can be expressed in a more implicit way. It is 532

an open question whether Transformer can utilize 533

stored knowledge in a generalized way, such as for 534

reasoning. The interactions between knowledge 535

neurons also remain under explored. Second, we 536

focus on factual knowledge for ease of evaluation, 537

even though our method is also applicable for other 538

types of knowledge. Third, we use the single-word 539

blank in cloze queries for simplicity, which requires 540

multi-word extensions (Jiang et al., 2020a). Be- 541

sides, an interesting future direction is to figure out 542

how knowledge neurons work in multilingual pre- 543

trained Transformers (Conneau and Lample, 2019; 544

Conneau et al., 2020; Chi et al., 2021). 545
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