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ABSTRACT

Pre-trained large language models exhibit significant po-
tential in speech and language processing. Fine-tuning all
parameters becomes impractical when confronted with nu-
merous downstream tasks. To address this challenge, var-
ious low-rank adaptation techniques have been introduced
for parameter-efficient fine-tuning, which freeze the over-
parametrized models and learn incremental parameter updates
within smaller subspaces. However, our observation reveals
that most directions of the learned subspace play a minor
role in the incremental updates. Consequently, fine-tuned
models may not achieve optimal performance. To bridge
this gap, we introduce NNM-LoRA, which strives to harness
more meaningful singular directions. Through Nuclear Norm
Maximization (NNM), we can better regulate the allocation
of singular values. Accordingly, we propose a parameter-free
plug-and-play regularizer for low-rank updates. This innova-
tive approach allows us to utilize as many singular directions
of the subspace as possible during the training of low-rank
updates. To validate the effectiveness of NNM-LoRA, we
conduct extensive experiments involving different pre-trained
models on various natural language understanding tasks.
Results demonstrate that NNM-LoRA exhibits significant
improvements compared to baseline methods.

Index Terms— language understanding, low-rank adap-
tation, subspace, nuclear-norm

1. INTRODUCTION

Fine-tuning foundation models [1] on downstream tasks has
proven highly effective and has now become the dominant ap-
proach in natural language and audio processing [2, 3]. How-
ever, performing full fine-tuning, which involves adjusting all
model parameters, can be exceedingly resource-intensive in
terms of both memory and computation, particularly as mod-
els increase in size and regularly adapt to a large number of
tasks [4]. To alleviate this issue, researchers have introduced a
series of Parameter-Efficient Fine-Tuning (PEFT) methods [5,
6, 7, 8] aiming to enhance training efficiency and reduce hard-
ware requirements. These approaches have demonstrated the
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ability to achieve comparable performance to full fine-tuning
while employing significantly fewer trainable parameters, of-
ten less than 1% of the original model size. Among these
methods, LoRA [8] has emerged as one of the most popular
choices for PEFT.

The key idea behind LoRA is to factorize the adapta-
tion matrices into low-rank components, each consisting of
a down-projection matrix A and an up-projection matrix
B. This low-rank approximation learns efficient updates for
over-parametrized models in smaller subspaces. Previous
studies have demonstrated that increasing the LoRA dim r
does not cover more meaningful subspaces; instead, most
subspaces tend to accumulate random noise [8, 9]. Therefore,
the LoRA dim r, which can be seen as the number of singular
directions of the learned subspaces, is usually set quite small
in practice. To illustrate this point, we provide a concrete
example in Fig. 1(b). We observe that LoRA primarily am-
plifies the length (or magnitude) of a few specific singular
directions, which suggests that the learned subspaces remain
underutilized, often leading to suboptimal performance.

To address this challenge, we introduce NNM-LoRA, de-
signed to take full advantage of learned subspaces by increas-
ing the rank of adaptive matrices. Specifically, we maximize
the nuclear norm, which is a convex surrogate for rank, of
LoRA matrix A to compute regularization loss, as depicted in
Fig. 1(a). Furthermore, we incorporate weighting of the reg-
ularization loss based on the Frobenius norm. NNM-LoRA
achieves a more even distribution of singular values within
the adaptation matrices BA, thereby significantly amplifying
additional feature directions (see Fig. 1(c)). In brief, our main
contribution is threefold:

• We theoretically show that the subspaces utilization of
low-rank adaptation is reflected in the distribution of
singular values within adaptation matrices.

• We introduce NNM-LoRA, a parameter-free regular-
izer that maximizes the nuclear norm of low-rank adap-
tation matrices to facilitate high-rank updates.

• Empirical results show that NNM-LoRA effectively
harnesses more valuable singular directions of the
learned subspace during training, resulting in notable
performance enhancements.
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(a) Schematics of NNM-LoRA. (b) Lengths in singular directions of pre-trained
parameters and adaption with LoRA.

(c) Lengths in singular directions of pre-trained
parameters and adaption with NNM-LoRA.

Fig. 1. Illustration of NNM-LoRA. We fine-tune BERT-base [10] on MNLI [11] using LoRA (Fig. 1(b)) and our proposed
NNM-LoRA (Fig. 1(c)). We set the LoRA dim r to 64 and compare the subspace length of LoRA (hatched with “/”) and
pre-trained parameters (hatched with “-”).

2. BACKGROUND

2.1. Parameter-Efficient Fine-Tuning

Most foundation models consist of L stacked transformer
blocks [12], each block containing two sub-modules: a multi-
head attention (MHA) and a fully connected network. Given
the input sequence X ∈ Rn×d, h attention heads are com-
puted by MHA parallelly:

MHA (X) = Concat(head1, ..., headh)Wo,

headi = Softmax
(
XWqi(XWki)

⊤/
√
dh

)
XWvi ,

(1)

where Wo ∈ Rd×d is an output projection, and Wqi ,Wki ,Wvi

∈ Rd×dh are query, key and value projections of head i. Typ-
ically, dh is set to d/h.

PEFT offers a lightweight alternative to full fine-tuning
transfer learning for foundation models. Adapter-tuning [5]
inserts trainable adapters between transformer layers. These
adapters typically consist of a down-projection matrix, a
nonlinear activation function, and an up-projection matrix.
Prefix-tuning [6] prepends trainable prefix task-specific vec-
tors to the keys and values of the MHA. Training focuses
exclusively on these prefix vectors. Prompt-tuning [7] sim-
plifies prefix-tuning by appending learnable parameters only
to the input word embedding layer. LoRA [8] introduces
bypass modules for updating pre-trained models via up-down
projection, which consists of down-projection matrices de-
noted as A and up-projection matrices denoted as B. During
fine-tuning, the model starts with fixed pre-trained weights
W (0) and updated to W = W (0) + ∆W . The forward pass
can be expressed as:

y = Wx = W (0)x+∆Wx = W (0)x+BAx, (2)

where W,W (0),∆W ∈ Rd×d, A ∈ Rr×d and B ∈ Rd×r

with r ≪ d. At the outset of training, random Gaussian ini-
tialization is applied to A, while B is initialized to zero.

2.2. Rank Adjustment for LoRA

Recent works focus on enhancing LoRA’s performance by
adjusting the rank of low-rank adaptation matrices. Drawing
from the observation that the significance of weight matri-
ces varies significantly across modules during fine-tuning,
AdaLoRA [13] dynamically adjusts the rank of parameter
matrices during training by masking the singular value di-
agonal matrix. Concurrent with our work, ReLoRA [14]
merges multiple low-rank updates back into the original pa-
rameters through re-training to train high-rank networks. We
also advocate for training high-rank networks, but from the
perspective of harnessing the acquired subspaces. In contrast
to prior work, which often involves complex hyper-parameter
settings and implementations, our approach, NNM-LoRA,
directly regulates the adaptation matrices, introducing just
one hyper-parameter.

3. METHODOLOGY

In this section, we first provide a relation between singular
values and subspaces, followed by introducing a method by
regularizing low-rank adaptation matrices through nuclear
norm maximization.

3.1. Model subspace utilization

Consider a neural network with the weight matrix W ∈ Rd×d.
We carry out singular value decomposition (SVD) of W :

W = UΣV =
[
u1,u2, . . . ,ud

]

σ1

σ2

. . .
σd



v1

T

v2
T

...
vd

T

 ,

(3)

where ui,vi ∈ Rd and σi ∈ R (i = 1, 2 . . . , d). For any
matrix, when operating on a set of orthogonal right singular



vectors, its singular values correspond to the lengths of or-
thogonal left singular vectors. This implies that:

Wvi = σiui, where i = 1, 2, . . . , d. (4)

For an input x ∈ Rd, based on a set of bases of vector vi,
we can approximate x as:

x =

d∑
i=1

civi, where ci is a constant. (5)

When x passes through layer W , combined with (4), we
obtain:

Wx = W

d∑
i=1

civi =

d∑
i=1

ciσiui. (6)

Equation (5) and (6) demonstrate that the matrix W oper-
ates as a projector, transforming the input x from the subspace
formed by V to the subspace formed by U. In addition, when
the majority of singular values σi are close to zero, the cor-
responding basis vectors ui are underutilized. Therefore, to
fully exploit as many singular directions of the subspace as
possible, i.e., ensuring that all ui contribute to the outputs, it
is imperative for all singular values to be sufficiently large and
uniformly distributed. This implies that the matrix W should
possess a high rank. Moreover, if only a few values are large
while others approach zero, it implies that the neural network
heavily relies on just a few singular directions.

3.2. Nuclear-Norm Maximization for LoRA

During the fine-tuning of pre-trained models using LoRA, we
freeze pre-trained weights W (0), while training ∆W for up-
dates. Our objective, in this context, is to enhance the uti-
lization of a broader range of singular directions within the
acquired subspace. To achieve this goal, we strive to increase
the rank of LoRA’s parameter matrix (∆W = BA).

We denote the down-projection matrix as A ∈ Rr×d.
Since we have r < d, so the singular values of A are σi(i =
1, 2, · · · , r). The nuclear norm of A can be denoted as:

∥A∥∗ =

r∑
i=1

σi, (7)

which is also known as trace norm, and is the convex relax-
ation of rank [15].

Besides, the Frobenius norm (F-norm) of matrix A can be
described as:

∥A∥F =

√√√√ r∑
i=1

d∑
j=1

a2ij ,=

√√√√ r∑
i=1

σ2
i , (8)

where aij represents the elements in row i and column j of
the matrix.

We introduce nuclear-norm maximization for low-rank
adaptations within the framework of LoRA Given that the
up-projection matrices B of the low-rank adaptation are ini-
tialized with zero, we exclusively apply the NNM regularizer
to the down-projection matrices A, which is enough to regu-
late the singular values of ∆W . Denote ω as a set of trainable
parameters of down-projection matrices A in LoRA. The
NNM regularization loss can be computed as follows:

LR(ω) = −
L∑

l=1

(∥Al∥∗/∥Al∥F ), where Al ∈ ω, (9)

where L is the number of transformer layers. Overall, we
update the model parameter ω by minimizing the following
overall loss function:

L(ω) = Loriginal(ω) + λLR(ω), (10)

where Loriginal(ω) is the original loss function for fine-
tuning, and λ > 0 is a hyper-parameter to control the regular-
ization weights of NNM-LoRA.

In Equation 9, it’s important to note that ∥Al∥F does
not directly affect the differentiation process; its role is pri-
marily to scale the NNM loss. We analyze the properties
of ∥Al∥∗/∥Al∥F as follows, and its effectiveness will be
demonstrated in the experimental section. According to
Cauchy-Schwarz inequality [16], we have:

∥A∥∗ =

r∑
i=1

σi ≤
√
r

√√√√ r∑
i=1

σ2
i =

√
r · ∥A∥F . (11)

According to (11),
√
r∥A∥F serves as an upper bound for

∥A∥∗. On one hand, the inequality holds with equality if and
only if all singular values are equal. Optimizing the loss func-
tion (9) results in a more uniform distribution of singular val-
ues within matrix A, exerting an equivalent influence on the
matrix ∆W . On the other hand, incorporating the F-norm
scaling in the NNM regularization loss serves to control the
nuclear norm from becoming excessively large.

4. EXPERIMENT

We apply NNM-LoRA for fine-tuning two models, BERT-
base [10] with 110 million parameters and RoBERTa-large
[17] with 355 million parameters. Our evaluation of the pro-
posed method spans multiple language understanding tasks,
including intent classification (CLINC [18]) and natural lan-
guage inference (MNLI [11]) for BERT-base, and common-
sense reasoning (SWAG [19]) for RoBERTa-large.

Implementation Details. Our implementation is based
on the PEFT1 code-base. We incorporate the NNM regular-
ization on matrix A for all the query and value modules, using
the plug-and-play manner.

1https://github.com/huggingface/peft



Baselines. We conduct comparisons between NNM-
LoRA and the following methods, and not including the
concurrent work - ReLoRA:
•Full fine-tuning: Given the pre-trained model, all parameters
are updated through gradient updates.
•LoRA [8]: LoRA freezes the pre-trained models and only
updates the low-rank matrices.
•AdaLoRA [13]: A variant of LoRA, offers dynamic adjust-
ments to the rank of low-rank matrices during training.

Training hyper-parameters. Table 1 presents the hyper-
parameter settings. We set max sequence length to 512,
AdamW optimizer and a linear warmup learning rate strat-
egy (ratio=0.1). All baseline methods share the core hyper-
parameters used in full fine-tuning. In the case of LoRA, r
and α correspond to the low-rank matrix dimension and scal-
ing coefficients. AdaLoRA r and r̂ represent the initial and
target dimensions of low-rank matrices, respectively, while
∆T is the steps interval between two budget allocations. To
facilitate a meaningful comparison, NNM-LoRA employs the
same low-rank matrix dimensions (r and α) as LoRA.

Table 1. Hyper-parameters setup in training

Method Dataset
(Model)

CLINC
(BERT-base)

MNLI
(BERT-base)

SWAG
(RoBERTa-large)

Full fine-
tuning

Learning Rate 1e-4 1e-5 5e-6
Batch Size 64 64 32

Epoch 50 30 20
LoRA LoRA r / α 64 / 128 64 / 128 64 / 128

AdaLoRA r / r̂ / α 96 / 64 / 128 96 / 64 / 128 96 / 64 / 128
∆T 100 1000 100

NNM-LoRA λ 5 1 10

Main results. We report the median results over 5 random
seeds in Table 2. The outcome for each run is obtained from
the best epoch. The best results, excluding those from full
fine-tuning, are highlighted in bold. It is evident that NNM-
LoRA consistently outperforms other methods in our experi-
ments. For instance, NNM-LoRA achieves 94.52% accuracy
on CLINC, surpassing LoRA by 1%. Similarly, on the SWAG
dataset, NNM-LoRA achieves an accuracy of 89.21%, sur-
passing both LoRA at 88.55% and full fine-tuning at 89.06%.
Additionally, it’s noteworthy that achieving satisfactory per-
formance with AdaLoRA in tasks like MNLI and SWAG can
be challenging, primarily due to the complexity of its hyper-
parameter settings.

Table 2. Accuracy results on three tasks.
Method Venue CLINC MNLI SWAG

Full fine-tuning - 94.87 84.44 89.06
LoRA [8] ICLR 2021 93.52 82.29 88.55

AdaLoRA [13] ICLR 2023 93.65 76.97 82.74
NNM-LoRA Ours 94.52 83.36 89.21

Distribution of singular values. Fig. 2(a) shows singular
values spectra of the query matrix of all layers of BERT-base,
which are trained with different baselines on CLINC. And

singular values less than 10−6 are ignored. It is clearly ob-
served that NNM-LoRA significantly increases the singular
value of low-rank matrices. Furthermore, since the properties
and analysis of the value matrix closely resemble those of the
query matrix, we omit its analysis for the sake of brevity.

(a) Distributions for baselines (b) Effect of F-norm on distribution

Fig. 2. Singular value distribution of low-rank matrices ∆W

Ablation studies. We conducted ablation studies on two
critical components of NNM-LoRA: λ and F-norm. From the
findings in Table 3, it’s apparent that the impact of λ on per-
formance exhibits a local maximum at values such as λ = 5.
Moreover, NNM-LoRA consistently performs worse when F-
norm is not applied compared to when it is included. This
aligns with our previous analysis, where the absence of F-
norm causes NNM-LoRA to prioritize increasing all singular
values rather than achieving a more uniform distribution. As
illustrated in Fig. 2(b), the inclusion of F-norm leads to a
more uniform distribution of singular values, whereas its ab-
sence results in the parameter matrix heavily relying on a few
large singular values and their corresponding basis vectors,
ultimately reducing subspace utilization.

Table 3. Ablation studies of λ and F-norm on CLINC.
(with = w/, without = w/o.)

w/o NNM λ 0.1 2 5 10 50

93.52
w/o F-norm 93.68 93.77 93.81 93.45 93.32
w/ F-norm 93.55 94.23 94.52 94.32 94.13

5. CONCLUSION AND LIMITATIONS

In this paper, we introduce NNM-LoRA, a novel approach to
fine-tuning pre-trained language models. NNM-LoRA lever-
ages nuclear norm maximization to regulate low-rank adapta-
tion matrices, addressing the underutilization of subspaces in
a straightforward manner. Our experimental results demon-
strate the effectiveness of NNM-LoRA across various lan-
guage understanding tasks.

Our work has limitations. Compared to LoRA, NNM-
LoRA requires the calculation of the nuclear norm and
F-norm of down-projection matrices A, which introduces
30% and 10% additional time overhead for BERT-base and
RoBERTa-large, respectively. One promising future direc-
tion is to explore approximate methods for computing NNM
regularization loss efficiently.
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