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ABSTRACT

Vision-Language Pre-training (VLP) has shown the merits of analysing medical
images, by leveraging the semantic congruence between medical images and their
corresponding reports. It efficiently learns visual representations, which in turn fa-
cilitates enhanced analysis and interpretation of intricate imaging data. However,
such observation is predominantly justified on single-modality data (mostly 2D
images like X-rays), adapting VLP to learning unified representations for medical
images in real scenario remains an open challenge. This arises from medical im-
ages often encompass a variety of modalities, especially modalities with different
various number of dimensions (e.g., 3D images like Computed Tomography). To
overcome the aforementioned challenges, we propose an Unified Medical Image
Pre-training framework, namely UniMedI, which utilizes diagnostic reports as
common semantic space to create unified representations for diverse modalities
of medical images (especially for 2D and 3D images). Under the text’s guidance,
we effectively uncover visual modality information, identifying the affected areas
in 2D X-rays and slices containing lesion in sophisticated 3D CT scans, ultimately
enhancing the consistency across various medical imaging modalities. To demon-
strate the effectiveness and versatility of UniMedI, we evaluate its performance
on both 2D and 3D images across 10 different datasets, covering a wide range of
medical image tasks such as classification, segmentation, and retrieval. UniMedI
has demonstrated superior performance in downstream tasks, showcasing its ef-
fectiveness in establishing a universal medical visual representation.

1 INTRODUCTION

Chest angiogram was performed 
according to the pulmonary 
thromboembolism protocol and showed 
normal pulmonary arteries with no 
filling defects. Dull glass lesion and 
consolidative area in the right upper 
lobe suggested pneumonia...

Lower lung atelectasis with probable 
left lower lobe pneumonia. Mild edema 
difficult to exclude. PA and lateral 
views of the chest provided.  Airspace 
consolidation in the left lower lung is 
concerning for pneumonia likely within 
the left lower lobe…

Figure 1: An example showing X-ray (up) and CT scan
(down) both demonstrate similar abnormality, record-
ing in the report.

In recent years, the field of medical image anal-
ysis has witnessed significant advancements,
largely driven by the application of deep learn-
ing techniques and the increasing availability
of medical imaging data. Notably, Visual-
Language Pre-training (VLP) (Huang et al.,
2021; Boecking et al., 2022; Bannur et al.,
2023) attracts lots of attention, as it reduces
the need for costly and time-consuming man-
ual annotations by leveraging the vast amount
of information in radiology reports and unla-
beled data. Despite these success, further ex-
panding the data scale for medical VLP re-
mains non-trivial, because the availability of
single-modality medical images is limited, es-
pecially when compared to the general domain.
This introduces a strong need to integrate multi-
modality medical images (e.g., X-rays, Com-
puted Tomography (CT) and Magnetic Resonance Imaging(MRI)) within a unified VL framework.
However, fully leveraging the information across multi-modal images within this VL framework is
unexplored.
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Figure 2: t-SNE visualizations of image representations by models trained with different methods (2D: X-rays,
3D: CT, both modalities denote the same disease, pneumonia.). (a) Two models for different image modalities
are trained individually in separate VLP process. (b) One models for different image modalities are trained
in one VLP processes, but without designes in UniMedI. (c) UniMedI. Learning a common semantic space
for different medical images is non-trivial, even with language guidance, and UniMedI can well handle this
integration. We use circles to highlight differences between different images.

On the above aspect, the inherent heterogeneity of medical imaging from different modalities ob-
structs their effective integration. One obvious and important problem is that medical images have
different dimensions. For example, X-rays are 2D images, while CT scans are 3D images. To tackle
this challenge, we start from the following key observation: despite big differences, medical images
from various modalities share a common semantic latent space, which captures the underlying fea-
tures of an individual’s health status, and such status are reflected in medical reports via language.
As shown in Fig. 1, the X-ray and CT scan can contribute to a comprehensive understanding of
pneumonia, reflecting the commonality within the latent space, and these abnormalities are listed
in reports. This observation motivate us to map data from various medical image modalities into
the shared semantic space, which is guided by language in reports. This strategy not only tackles
data-related issues but also fosters synergy and collaboration among distinct modalities, ultimately
resulting in a more holistic understanding of an individual’s health condition.

However, creating a unified model that effectively maps data from different sources into a com-
mon space for combined learning is challenging, even with language guidance in reports. Figure 2a
demonstrates the representation space of two distinct modalities with different dimensions (i.e., 2D
X-rays and 3D CT scans) when trained individually via VLP. They are far apart in the representation
space, even with same pathological information in reports. Furthermore, Figure 2b shows simply
unifying them in one model does not solve the problem. Although the distance between represen-
tations of two modalities are shortened to some extent, their representations remain insufficiently
compact, since only little space are shared between them.

To address the above challenge, we propose UniMedI, a novel Unified VL framework, designed to
effectively integrate Medical multi-modal Images into a language-guided common semantic space.
First, under the dilemma that paired 2D and 3D medical images are unavailable, and naively integra-
tion is not effectively as we shown above, we first design an attentive selection method to accurately
identify text-relevant 2D slices without extra annotations. This builds a data bridge between 2D
and 3D medical images. Then, we devise a cross-dimensional VLP method to bring both 3D data
and selected 2D slices closer to the same report representation space, constructing a unified VL
framework. Moreover, we introduce a self-distillation technique using a teacher-student structure
and construct a masking and recovery task, further enhancing the associations between 2D and 3D
data within the image space. Figure 2c shows UniMedI significantly reduces the distance between
2D and 3D features after undergoing our effective design for cross-dimensional pre-training.

To further demonstrate the effectiveness of our approach, we conduct extensive visualizations and
experiments to showcase the working mechanisms and superior representational capabilities of our
model. We evaluate our UniMedI framework on 10 real-world medical datasets and various down-
stream tasks (i.e., classification, segmentation and retrieval). The results consistently show superior
performance, regardless of whether UniMedI is applied to full-scale data or limited data scenarios.
We also provide visualizations on regions and slices selected by UniMedI, verifying our claim that
UniMedI can identify key information from both 2D and 3D medical images.
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2 RELATED WORK

Medical Self-supervised Learning In the domain of medical image analysis, a number of self-
supervised learning (SSL) techniques have been developed to exploit the unique characteristics of
medical data. These methods construct feature embedding spaces by designing pre-text tasks, such
as solving jigsaw puzzles Noroozi & Favaro and inpainting tasks Pathak et al. (2016). Recently,
researchers have explored the use of 3D convolutional neural network (CNN) architectures while
retaining established SSL tasks on 2D CNNs Tang et al. (2022). However, the diversity of med-
ical data poses a significant challenge, as the development of a unified visual representation that
adequately captures the intricacies of different data types remains a crucial yet complex task that
requires further investigation. To address this challenge, Xie et al. (2022) proposed Unimiss, a
universal medical self-supervised representation learning framework that overcomes the dimension-
ality barrier. Furthermore, Nguyen et al. (2023) introduced Joint, an SSL framework capable of
accommodating various data dimensions and generating versatile pre-trained weights for both 2D
and 3D downstream applications. These approaches have made notable contributions to handling
data from different modalities. However, they have given relatively less attention to the relationships
and connections between different types of medical data.

Medical Vision-Language Processing Medical Vision-Language Processing (VLP) has emerged
as a promising approach for learning medical visual representations by leveraging naturally occur-
ring paired descriptive text Zhang et al. (2022). Huang et al. (2021) propose Gloria, an attention-
based framework that contrasts image sub-regions and words in the paired report to learn global and
local representations. Wang et al. (2022) further optimize the framework from the perspective of dis-
ease in their method MGCA. These methods exhibit remarkable performance in various downstream
tasks involving medical images. However, the application of medical VLP is primarily limited to 2D
images, mainly due to the limited availability of extensive 3D medical image-text datasets. Com-
pared to 2D medical image-text pairs, 3D images and reports contain more abundant information,
which offers clear advantages for learning visual representations. While some methods Liu et al.
(2023); Chen et al. (2023) attempt to address this limitation by converting 3D data into 2D slices
and subsequently employing generative models to generate captions for 3D medical data, this ap-
proach results in a loss of the original 3D volume structure information. Therefore, it is imperative
to develop strategies that can effectively harness the valuable information present in 3D images and
reports while preserving the structural integrity of the data. This will facilitate the enhancement of
the learning process for visual representations in medical VLP.

3 METHODOLOGY

Figure 3 illustrates UniMedI and its designs to realize integration of 2D and 3D medical images.
Generally, to overcome the challenges that no paired 2D and 3D image data exists, UniMedI em-
ployes the following pipeline. When the input is a 3D volume, we first extract a portion of 2D slices
from it which most relevant to the report, and then regard the selected slices as 2D image. Those
selected 2D slices are fed into the network along with the original 3D volume, allowing us to jointly
learn the relationships between 2D, 3D, and radiology reports, and ultimately form a unified feature
space. When the input is a 2D image, the slice selection process is omitted.

In Section 3.1, we demonstrate our designed attentive slice selection method, which can identify
more relevant 2D slices in 3D data related to the report text, helping us learn the unified space be-
tween 2D and 3D data guided by report. In Section 3.2, we design a method to bring together 3D
data and selected 2D slices closer to the same report representation, which serves as the foundation
for our language-guided construction of a unified model. In Section 3.3, we design a self-distillation
technique to EMA teacher for the visual encoder, constructing image-level and patch-level con-
trastive learning tasks, further enhancing the connection between 2D and 3D data.

3.1 ATTENTIVE SLICE SELECTION

In order to construct a cross-modal unified representation space, we have chosen language as the
bridge. Therefore, we need to extract key information from various image modalities that correspond
to the information in medical reports. Particularly, important 2D slices relevant with reports should
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Figure 3: Illustration of the proposed UniMedI framework. To effectively integrate multi-modal medical images
in a language-guided common semantic space, UniMedI incorporates following designs. (1) An strategy of at-
tentive slice selecting from 3D volume to bridge 2D and 3D images even without paired 2D and 3D data (details
shown in Fig. 4). The concatenated inputs of 2D and 3D allow us to perform joint modeling across dimensions.
(2) Shared backbone Ev for 2D and 3D images and separate tokenizer T2D and T3D . (3) Language-guidance
for unified image representation provided by the language encoder El and vision-language loss Lvl. (4) Self-
distillation (implemented by image contrastive learning loss Licl and patch contrastive learning loss Lpcl) to
enhance interactions between images tokens from different modalities. The distillation target comes the teacher
network Ev , which is updated by exponential moving averaged (EMA) over the student network Ev .

be selected from 3D volume. This process is similar to how doctors view CT scans; they also base
their report descriptions on some important slices.

As shown in Figure 4, in order to better locate the lesion-related 2D slices in the 3D data, we use
the attention weights of the [CLS] token in the EMA teacher as the basis for calculation. The visual
encoder’s [CLS] token is directly supervised by the radiology report features from the language
encoder, reflecting the most likely lesion areas described in the report. For the attentive score at
token location P :

sP =
1

HL

L∑
l=1

H∑
h=1

Softmax

(
fqlh(CLS) · fklh(P )√

C

)
, (1)

where l denotes the layer index; h denotes the attention head index; fqlh(CLS) denotes the query
embedding of the [CLS] token at Layer l and Head h; fklh(P ) denotes the key embedding of Layer l
and Head h for an 3D image token at location P ; C is the number of channels for the query and key
embedding.

The important slices located strategy is based on the token-level score. Each token in the original
CT volume represents a small voxel. By aggregating scores based on the slice dimension, we can
calculate the total score for each group of slices:

si =
1

N

N∑
j=1

sPij , (2)

where si is the attentive score for the i-th slice, sPij is the token-level attentive score for the j-th
voxel in i-th slice, N represents the total number of voxels included in a slice. After aggregating
the attentive scores, we can obtain text relevance scores for each 2D slice. We then choose the top k
slices to establish a connection with the 3D data and the report, allowing us to learn a shared feature
space.

3.2 CROSS-DIMENSIONAL MEDICAL VISUAL-LANGUAGE PRETRAINING.

We use CLIP Radford et al. (2021) loss for cross-modal pre-training of 2D and 3D medical images
and their corresponding reports. CLIP is a powerful tool that enables the alignment of features from
two modalities after large-scale contrastive learning. For 2D X-ray training, we directly use T2D and
Ev for feature extraction, obtaining the global image feature [CLS] token, and then aligning it with
the language encoder El’s [CLS] token. For the training of 3D CT scan data, the 2D slices within
it also carry the content of the same radiology report, so we select attentive 2D slices according to

4



Under review as a conference paper at ICLR 2024

ത𝐸𝑣

Report
Guide

...

Selected slices

...
Inter-slices

average

Per-slice score

Top K slice

𝑇3𝐷

Attention map

Reshape 

attention map 

to 3D format

Visual CLS token Visual Patch token

Figure 4: Attentive slice selection from 3D volume. Generally, the slice is selected according to the attention
weights of the [CLS] token attending to other tokens, and the [CLS] token is also guided by language in the
report. We compute the average attention weights within each sliced area, and then select the top K slices with
the highest scores.

the method in Section 3.1 as joint input. Through this approach, we bring the 2D slice features and
3D features closer to the same language encoder’s features, using radiology reports as a medium to
form cross-dimensional interactions.

A highlight of our work is the use of attentive slices selection to ensure that the selected 2D slices are
sufficiently representative. Only in this way can these 2D slices carry the supervision information
from the report and, together with the 3D features, construct a joint feature space. If we were to use
random selection, it would be easy to cause mismatches between the visual and textual information,
and the noise generated would make the model’s understanding on 2D data very confusing. Once the
common coordinates from the report are no longer accurate, it would not be possible to effectively
form a cross-dimensional information bridge.

3.3 ENHANCING DIMENSIONAL INTERACTIONS VIA SELF-DISTILLATION

In Section 3.1, we introduced the method for selecting 2D slices that can share the same report.
Then, in Section 3.2, we aligned them across dimensions using text as shared coordinates for visual-
textual training. In fact, apart from using text as a medium, the projected representative 2D slice
features and 3D features with global information also possess strong correlations. We aim to con-
struct an auxiliary task to directly leverage this correlation, further enhancing the cross-dimensional
communication.

We adopted a simple and straightforward auxiliary task design: mask and recovery. We chose to
use the self-distillation method for implementation Yang et al. (2023); Zhou et al. (2021), due to its
simplicity and effectiveness. During the training process, we mask a certain proportion of both 2D
and 3D tokens in the online encoder, while keeping the complete input in the EMA encoder. There-
fore, this non-trivial task requires predicting the EMA encoder’s features directly from the online
encoder, as there is a significant amount of missing information. For both 2D and 3D recovery tasks,
the model has to learn the correlation with the other modality to obtain more reference information,
thus directly strengthening the interaction between 2D and 3D features within the network.

Similarly, during the token masking phase, we also employed the attentive selection design. While
passing through the EMA encoder, we calculated the patch scores as described in Equation 1, and re-
tained the portion with the highest scores. This approach minimizes the disruption of effective lesion
structures, thereby avoiding ambiguity and making the cross-modal interaction more meaningful.

During the feature distillation process, we utilized the head and loss from BYOL Grill et al. (2020).
We applied this loss to both the global [CLS] tokens and all local patch tokens in the output 2D and
3D features, thereby enabling interaction at different granularities to enhance feature robustness.

4 EXPERIMENTS

We build our universal medical framework UniMedI and pre-train on the two medical vision-report
datasets with different modalities including 2D X-rays and 3D CT scans. Furthermore, extensive
experiments on multiple cross-modal downstream dataset from diverse tasks are conducted to verify
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CheXpert(AUC) RSNA(AUC) COVIDx(ACC)
Method 1% 10% 100% 1% 10% 100% 1% 10% 100%
Random Init 56.1 62.6 65.7 58.9 69.4 74.1 50.5 60.3 70.0
ImageNet Init 74.4 79.9 81.4 74.9 74.5 76.3 64.8 78.8 86.3
pre-trained on CheXpert
DSVE Engilberge et al. (2018) 50.1 51.0 51.5 49.7 52.1 57.8 - - -
VSE++ Faghri et al. (2017) 50.3 51.2 52.4 49.4 57.2 57.9 - - -
GLoRIA Huang et al. (2021) 86.6 87.8 88.1 86.1 88.0 88.6 67.3 77.8 89.0
pre-trained on MIMIC-CXR
Caption-Transformer Cornia et al. (2020) 77.2 82.6 83.9 - - - - - -
Caption-LSTM Xu et al. (2015) 85.2 85.3 86.2 - - - - - -
Contrastive-Binary Tan & Bansal (2019) 84.5 85.6 85.8 - - - - - -
ConVIRT Zhang et al. (2022) 85.9 86.8 87.3 77.4 80.1 81.3 72.5 82.5 92.0
GLoRIA-MIMIC Huang et al. (2021) 87.1 88.7 88.0 87.0 89.4 90.2 66.5 80.5 88.8
MGCA (ResNet-50) Wang et al. (2022) 87.6 88.0 88.2 88.6 89.1 89.9 72.0 83.5 90.5
MGCA (ViT-B/16) Wang et al. (2022) 88.8 89.1 89.7 89.1 89.9 90.8 74.8 84.8 92.3
UniMedI (Ours, ViT-B/16) 89.4 89.7 90.5 90.0 90.4 91.5 80.3 92.4 94.6

Table 1: Linear classification results on CheXpert, RSNA and COVIDx with 1%, 10%, 100% training data.
Area under ROC curve (AUROC [%]) are reported for CheXpert and RSNA dataset, and accuracy (ACC [%])
is reported for COVIDx dataset. The best results are highlighted in boldface.

the effectiveness of the multi-modal vision representations. In the following subsections, we first
present the pre-training experiments settings in Section 4.1 and two main downstream tasks in Sec-
tion 4.2. In addition, we compare the performance of our proposed approach with the state-of-the-art
vision-language processing methods in Section 4.3. Finally, we perform plenty of ablation experi-
ments on multi-modal downstream tasks and visualization to show the validity of each module of
our framework.

4.1 PRE-TRAINING SETUP

Dataset We pre-train our UniMedI framework on the JPG version of 2D X-rays dataset MIMIC-
CXR 2.0.0 Johnson et al. (2019) and the MINC version of 3D CT scans dataste BIMCV de la Igle-
sia Vayá et al. (2021). As the downstream 2D datasets only encompass frontal-view chest images,
we remove the lateral-view images to preprocess the 2D dataset MIMIC-CXR 2.0.0. Similarly, as
the downstream 3D datasets only encompass frontal-view chest images, we remove the lateral-view
images to preprocess the 3D dataset BIMCV. For the processing of text reports, we remove the
reports which are less than 3 tokens for 2D and 3D datasets following Wang et al. (2022).

Implementation Details Following Gloria Huang et al. (2021), we utilize ViT-B/16 Dosovitskiy
et al. (2020) as the vision encoder to extract representations in the common feature space for 2D and
3D visual data. We use BioClinicalBERT Alsentzer et al. (2019) as the text encoder to obtain the
report embeddings.

CC-CCII
Method 1% 10% 100%
Random Init 43.4 69.7 74.8
UniMiSS∗ Xie et al. (2022) 41.6 73.1 84.1
UniMedI∗ 64.2 75.1 84.9
UniMedI 75.6 84.8 89.4

Table 2: Linear classification results on CC-CCII
with 1%, 10%, 100% training data. Accuracy are
reported for the dataset. ∗ denotes the input size
16× 96× 96. Others is 32× 128× 128. The best
results are highlighted in boldface.

Method CC-CCII LUNA
supervised
ResNet3D101 85.5 -
CovidNet3D-L 88.7 -
unsupervised
Joint Nguyen et al. (2023) - 94.2
UniMedI 93.8 95.9

Table 3: Classification results on CC-CCII, RI-
CORD with full training data. ACC [%] is re-
ported for CC-CCII and AUC [%] is reported for
LUNA2016-v2. The best results are highlighted in
boldface.
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Table 4: Ablation study of training mode on linear classification (2D dataset CheXpert, RSNA and 3D dataset
CC-CCII) settings. We report Area under ROC curve (AUROC [%]) on CheXpert and RSNA datasets, and
(Acc [%]) on CC-CCII dataset. Best results of each setting are in boldface.

Training tasks CheXpert (AUC) RSNA (AUC) CC-CCII (Acc)
2D 3D 1% 10% 100% 1% 10% 100% 1% 10% 100%

✓ 87.1 88.0 88.4 88.7 89.5 90.3 - - -
✓ - - - - - - 55.6 71.7 76.4

✓ ✓ 87.4 88.1 88.5 88.9 89.3 90.6 72.4 80.0 86.2

4.2 DOWNSTREAM TASKS AND EXPERIMENTAL SETUP

Medical Classification We conduct medical image classification on three representative datasets:
(1) CheXpert Irvin et al. (2019), which contains 191,229 frontal-view chest radiographs. The task
is to classify each image into 5 individual binary labels: atelectasis, cardiomegaly, consolidation,
edema, and pleural effusion. Following Zhang et al. (2022); Huang et al. (2021), we hold out
the expert-labeled validation set as test data and randomly select 5,000 radiographs from training
data for validation. (2) RSNA Pneumonia Shih et al. (2019). We use the stage 2 version, which
contains around 29,700 frontal view chest radiographs. The task is a binary classification, i.e.,
classifying each chest image into normal or pneumothorax positive. Following Huang et al. (2021),
we manually split the dataset into training, validation, and test set with 70%/15%/15% ratio. (3)
COVIDx Wang et al. (2020), which contains over 30k CXR images from a multinational cohort
of over 16,600 patients. This dataset contains 16,490 positive COVID-19 images from over 2,800
patients. We use the latest version 6 of this dataset. The task is a three-class classification, i.e.,
classifying each radiograph into COVID-19, non-COVID pneumonia or normal. We use the original
validation dataset as test data and manually split 10% of original training set for validation.

Table 5: Ablation study of our framework on linear classification (2D dataset CheXpert, RSNA and 3D dataset
CC-CCII) settings. We report Area under ROC curve (AUROC [%]) on CheXpert and RSNA datasets, and
(Acc [%]) on CC-CCII dataset. V L represents the default experiment setting include image-text contrastive
loss Lvl with random slices selection. FD will include Licl and Lpcl loss to execute self feature distillation.
Attn will use attentive slices selection instead of random. Best results of each setting are in boldface.

Training tasks CheXpert (AUC) RSNA (AUC) CC-CCII (Acc)
V L FD Attn 1% 10% 100% 1% 10% 100% 1% 10% 100%

✓ 87.4 88.1 88.5 88.9 89.3 90.6 72.4 80.0 86.2
✓ ✓ 89.0 89.3 90.1 89.5 90.1 91.2 74.6 80.9 86.7
✓ ✓ ✓ 89.4 89.7 90.5 90.0 90.4 91.5 75.6 84.8 89.4

We conduct medical volume classification on two representative datasets: (1) CC-CCII Zhang et al.
(2020) and LUNA 16 Setio et al. (2017). More details about the 3D datasets are in Appendix.

we use the Linear Classification setting to evaluate the representative ability of our universal vision-
language pre-training framework. Apart from this, we also apply Classification to evaluate UniMedI
for 3D data. Linear Classification freezes the pre-trained ViT vision encoder and only training a
randomly initialized linear classification head for the downstream classification task with 1%, 10%,
and 100% training data on each classification dataset.

Medical Semantic Segmentation We conduct experiments to evaluate the performance of our
framework for medical semantic segmentation on RSNA and BCV datasets: (1) RSNA Pneumonia
Shih et al. (2019), contains 29700 frontal view radiograph. The task is to predict bounding boxes in-
dicating evidence of pneumonia. We randomly split the original training set into 16,010/5,337/5,337
for training/validation/testing. We convert object detection ground truths into masks for semantic
segmentation. (2) BCV Landman et al. (2015), which consists of 50 CT scans and is divided into
24/26 for training/testing following Xie et al. (2022).

We evaluate the segmentation performance with the paradigm that we use the pre-trained vision
encoder as a frozen encoder and train a decoder portion using 1%, 10% and 100% training data
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on RSNA dataset and 20%, 40%, 100% training data on BCV dataset. Dice scores are reported to
evaluate the segmentation performance.

4.3 RESULT

4.3.1 RESULTS ON MEDICAL CLASSIFICATION

2D Medical Image Classification Table 1 reports the results of Linear Classification on three 2D
medical image classification datasets (CheXpert, RSNA and COVIDx). The results of other methods
on CheXpert and RSNA are from original paper Wang et al. (2022). The methods including UniMedI
shown in the table are pre-trained on MIMIC-CXR dataset, which achieves a fair comparison. As
for the state-of-the-art method, MGCA, we mainly compare the performance with the MGCA (ViT-
B/16) which employs the ViT as the visual encoder. It is obvious that our method shows the best
performance in the three 2D medical image classification for the different training data ratio (1%,
10%, 100%), outperforming the state-of-the-art MGCA (ViT-B/16) by a large margin. Specifically,
our method outperforms MGCA with ViT-B/16 backbone with +0.6%, +0.6%, +0.8% AUROC on
CheXpert dataset, +0.9%, +0.5%, +0.7% AUROC on RSNA dataset and +5.5%, +7.6%, +2.3%
ACC on COVIDx dataset under the 1%, 10%, 100% training ratio respectively. The significant
improvement indicates the data efficiency and effectiveness of our method.

3D Medical Volume Classification Table 2 reports the results of Linear Classification on the
2D medical image classification dataset, CC-CCII. We compare UniMedI with UniMiss Xie et al.
(2022). To our knowledge, the UniMiSS Xie et al. (2022) is the state-of-the-art unified method to
process 2D and 3D medical images. We show the performances of both UniMiSS and UniMedI,
where the results are that our method achieves a +22.6%, +2.0% and +0.8% ACC gain on CC-CCII
dataset comparing with the UniMiSS under the 1%, 10%, 100% training ratio respectively. The
significant improvement indicates the data efficiency and effectiveness of our method.

When fine-tuning the total vision encoder and the linear classification head with full training data,
as listed in Table 3, our method gets the best performance on the multiple 3D medical volume
classification datasets (CC-CCII and LUNA2016-v2) compared with other methods. It is observed
that our method achieves with 93.8% ACC on CC-CCII dataset, and 95.9% ACC on LUNA2016-v2
dataset respectively. The remarkable performance of our method shows the generalization of our
method for 2D and 3D medical classification tasks. It demonstrates our framework possesses the
ability of extracting universal features for multi-modal data.

RSNA
Method 1% 10% 100%
ConVIRT 55.0 67.4 67.5
GLoRIA 59.3 67.5 67.8
GLoRIA-MIMIC 60.3 68.7 68.3
MGCA 88.6 81.2 94.3
MGCA (ViT-B/16) 66.2 71.3 73.6
UniMedI (ViT-B/16) 67.8 73.1 75.3

Table 6: 2D Semantic segmentation results (Dice [%])
on RSNA with 1%, 10% and 100% training labels. Best
results of each setting are in boldface.

BCV
Method 20% 40% 100%
MoCo v3 74.5 78.2 82.0
DINO 75.3 78.9 82.6
UniMiSS 78.0 81.0 85.0
UniMedI 77.5 81.6 85.4

Table 7: 3D Semantic segmentation results (Dice
[%]) on BCV with 20%, 40% and 100% training
labels. Best results of each setting are in boldface.

4.3.2 RESULTS ON MEDICAL SEMANTIC SEGMENTATION

Table 6 and Table 7 report the results of Semantic Segmentaion on 2D and 3D medical data. In 2D
semantic segmentation task, our method UniMedI significantly outperforms the current state-of-the-
art algorithm, MGCA. When using 1% training data, UniMedI achieves 67.8% Dice, surpasssing
the MGCA 1.6%. Meanwhile, concurrently, UniMedI also demonstrates exceptional performance
in 3D semantic segmentation tasks. In the BCV dataset, UniMedI achieves 0.6% and 0.4% perfor-
mance gain under 20% and 40% label settings compared with Unimiss. These results underscore
the exceptional performance of our method in dense prediction tasks.
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Pulmonary vasculature is normal.  Streaky left 
lower lobe opacity is present along with a small 
left pleural effusion…

Bilateral pleural effusions of mild-to-moderate 
extent persist…

Exam is limited secondary to degree of the thoracic
scoliosis with posterior fixation hardware and 
rotation to the left…

Language guided module

Pulmonary nodules

Figure 5: Visualization of mask and slices selection result under the guidance of language.

4.4 ANALYSIS OF OUR FRAMEWORK

Visualization To better demonstrate the effectiveness of our selection process guided by language,
we visualize the original X-rays, masked X-rays, their corresponding reports, and original CT scans,
as well as the selected lesion slices in Figure 5. On the left side of Figure 5, the first row effectively
demonstrates how UniMedI accurately captures the areas referenced in the report, including the
“Normal post-operative alignment of the sternal wires” and “Bilateral pleural effusions of mild-to-
moderate extent persist”. In addition, the second and third cases adeptly showcase the detection
of pleural effusion and scoliosis, further emphasizing the method’s precision. The right side of
Figure 5 displays the comprehensive slice selection process employed by UniMedI. Amidst the
extensive collection of CT scan slices, our method exhibits remarkable accuracy in pinpointing the
slices containing lesions. As an example, the presence of pulmonary nodules is clearly noticeable in
slices 28-31.

Ablation Study of Component Design We conduct ablation experiments primarily focusing on two
aspects: training mode and framework module.

Training mode We pre-train our framework separately using only 2D data, only 3D data, and a
combination of 2D and 3D data. Subsequently, we evaluated the performance on downstream 2D
dataset CheXpert, RSNA and 3D dataset CC-CCII on linear classification task respectively, with the
results presented in Table 3. It can be observed that the pretraining approach combining 2D and
3D data yields benefits for both single-modal 2D and 3D data classification tasks. Particularly, the
enhancement achieved with the use of multimodal data on the 3D dataset is remarkably significant.
We obtained improvements of +16.8% ACC, +8.3% ACC, +9.8% ACC when using 1%, 10%, and
100% of the training data, respectively.

Framework module In this section, we further analyze the effects of self feature distillation and
attentive slices selection on our framework. We conduct a linear classification task on downstream
2D datasets CheXpert and RSNA, as well as the 3D dataset CC-CCII. The results are summarized in
Table 5. The experimental results show that incorporating both self feature distillation and attentive
slices selection into our framework significantly improves the performance across all data splits and
datasets.

5 CONCLUSION

In this paper, we propose a novel approach called UniMedI that leverages diagnostic reports as a
shared semantic space to create unified representations for diverse modalities of medical images,
with a specific emphasis on 2D and 3D images. By using medical diagnostic reports as a bridge,
we establish the unified vision-language framework that connects visual medical data across dif-
ferent modalities. Moreover, with the guidance of the text, we effectively extract visual modality
information and accurately identify affected areas in 2D images and lesion slices in 3D CT scans,
thereby enhancing consistency across various visual data modalities. Extensive experiments demon-
strate UniMedI’s superior performance in these downstream tasks(classification, segmentation, and
retrieval) on various 2D and 3D medical image datasets. We hope our work can promote the explo-
ration of VLP in medical image processing.
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A MORE IMPLEMENTATION DETAILS OF PRE-TRAINING

A.1 IMPLEMENTATION DETAILS

Following Gloria Huang et al. (2021), we utilize ViT-B/16 Dosovitskiy et al. (2020) as the vision
encoder to extract representations in the common feature space for 2D and 3D visual data. We use
BioClinicalBERT Alsentzer et al. (2019) as the text encoder to obtain the report embeddings. The
vision encoder and text encoder are universal among 2D X-rays and 3D CT scans data. It is worth
noting that the patch embed module of vision encoder has different operations for 2D X-rays and 3D
CT scans. In general, the image size of 2D images is 224× 224 and the volume size of 3D volumes
is 128 × 128 × 32. We pre-train our UniMedI framework 50 epochs on 8 pieces of Tesla V100
GPUs with batch size of 128. The optimizer is AdamW Loshchilov & Hutter (2017) with learning
rate of 2e−5 and weight decay of 0.05, where the learning rate follows a linear warmup with cosine
annealing scheduler Loshchilov & Hutter (2016). We initialize learning rate as 1e−8 and warmup
epoch as 20.

B MORE IMPLEMENTATION DETAILS OF DOWNSTREAM TASKS

B.1 MEDICAL CLASSIFICATION

2D Medical Image Classification. Except for the fine-tuning of the entire CheXpert dataset, where
we use a batch size of 96, we use a batch size of 48 for the rest of the linear classification settings.
Similar to the image preprocessing of MIMIC-CXR, we resize the larger dimension to 256 and pad
zeros on the smaller side, resulting in an image size of 256 × 256. Then, we randomly crop (for
training) or centered crop (for validation and testing) an image to 224 × 224 and normalize it into the
range [0, 1] as the input for the model. The optimizer used is AdamW Loshchilov & Hutter (2017)
with a learning rate of 5e-4 (except for COVIDx where we use 5e-3) and weight decay of 1e-6. We
fine-tune the image classifier for 50 epochs and implement early stopping when the validation loss
does not decrease for 10 consecutive runs. Afterward, we save the checkpoint model with the lowest
validation loss for testing.

3D Medical Image Classification. (1) CC-CCII Zhang et al. (2020) contains a total number 617,775
slices of 6,752 CT scans from 4,154 patients. The task is to classify each volume into three cate-
gories: novel coronavirus pneumonia, common pneumonia, and normal. We use a batch size of 8.
We resize the 3D volumes to 32× 128× 128. We use the randomflip to augment the train set. The
optimier used is AdamW and we train the classifier for 50 epochs. (2) LUNA 16 Setio et al. (2017),
which is established from LIDC-IDRI Armato III et al. (2011). It finally contains 888 CT scans with
annotations which removes CT scans with slice thickness greater than 3mm of LIDC-IDRI database.
The task is a binary classification, i.e., classifying each CT volume into pulmonary nodule or nor-
mal. The optimier used is AdamW and we train the whole network for 100 epochs. Our baseline
methods include UniMiss Xie et al. (2022) and Joint Nguyen et al. (2023), which belongs to 2D and
3D co-learning methods. Unimiss not only learns 2D and 3D representations but also concurrently
learn all 2D sections derived from 3D volumes, along with all 2D X-ray data. Joint directly learn all
2D sections derived from 3D volumes, along with all 2D X-ray data through contrastive learning.

B.2 MEDICAL SEGMENTATION.

2D Medical Image Segmentation. In the case of the RSNA dataset, we create masks for the
pneumonia-affected areas based on the provided bounding boxes. These images and correspond-
ing masks are then resized to dimensions of 224 × 224. To augment the training set, we implement
ShiftScaleRotate, encompassing random affine transformations such as translation, scaling, and rota-
tion. Following this, the images are normalized to fall within the [0, 1] range before being supplied
to the semantic segmentation model. we use the SETR-PUP (progressive upsample) architecture
in Zheng et al. (2021) by replacing the encoder with UniMedI. We freeze the pre-trained image
encoder and only train decoder portion. The training process involves the use of the AdamW opti-
mizer with a learning rate of 5e-4 and a weight decay of 1e-6. As suggested by Huang et al. (2021),
we adopt a combined loss equation of α× FocalLoss + DiceLoss, with α set to 10. The semantic
segmentation model undergoes fine-tuning for 50 epochs, with batch size 16 and early stopping im-
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RSNA
Method 1% 10% 100%

ConVIRT 8.2 5.6 17.9
GLoRIA 9.8 14.8 18.8
GLoRIA-MIMIC 11.6 16.1 24.8
MGCA (ResNet-50) 12.9 16.8 24.9
MGCA (ViT-B) 14.7 18.4 25.8
UniMedI 15.5 19.2 26.6

Table 8: Object detection results (mAP [%]) on RSNA. Each dataset is fine-tuned with 1%, 10%, 100% training
data. Best results are in boldface.

AMOS
Method 20% 40% 100%

UniMiss 79.5 82.3 85.8
UniMedI 78.8 82.9 86.4

Table 9: 3D Semantic Segmentation results on AMOS (Dice [%]). AMOS is fine-tuned with 20%, 40%, 100%
training data. Best results are in boldface.

plemented if the validation loss ceases to decrease after 10 consecutive runs. The checkpoint model
that exhibits the minimum validation loss is then preserved for testing.

3D Medical Image Segmentation. In the case of the BCV dataset, the images and correspoind-
ing. The 3D volumes are resized to 48 × 224 × 224. To augment the traning set, we imple-
ment random rotation, scaling, flipping, adding white Gaussian noise, Gaussian blurring, adjusting
rightness and contrast, simulation of low resolution, and Gamma transformation. We use the UN-
ETR Hatamizadeh et al. (2022) architecture by replace the encoder with pre-trained UniMedI. We
freeze the pre-trained image encoder and only train decoder portion. The training process involves
the use of the AdamW optimizer with a learning rate of 1e-4. We adopt a combined loss equation of
Dice + CE. The semantic segmentation model fintunes for 25,000 iterations with batch size 2.

C MORE ANALYSIS

C.1 PNEUMONIA DETECTION IN RSNA

We evaluate the localized performance of pre-trained image encoder on RNSA Pneumonia. RSNA
contains 29700 frontal view radiograph. The task is to predict bounding boxes indicating evidence
of pneumonia. Due to use ViT-B as our bakcbone, it is sufficient to build a simple feature pyramid
from a single-scale feature map. Therefore, we evaluate the detection performance by ViTDet Li
et al. (2022) with using the pre-trained ViT-B as a frozen backbone and only finetuning the non-
backbone layers. Similarly, we finetune the model by 1%, 10% and 100% training data to evaluate
the data efficiency.

C.2 3D MEDICAL SEGMENTATION IN AMOS

AMOS is a large-scale, diverse, clinical dataset for abdominal organ segmentation, which is divided
into 200/100 CTs for training/validation. We use the validation set as our test set and the training
details is the same as B.2. We report the Dice score (%) training with 20%, 40%, and 100% portion.

C.3 DIFFERENT METRICS IN COVIDX

We applied two distinct evaluation metrics, namely AUC (Area Under the Curve) and ACC (Accu-
racy), to assess the performance of our model on the COVIDx dataset. AUC is a widely used metric
in machine learning and it represents the probability that a random positive example will be ranked
higher than a random negative example. A higher AUC indicates better model performance. On
the other hand, Accuracy (ACC) is a measure of how many predictions a model gets right out of all
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COVIDx (Acc/AUC)
Method 1% 10% 100%

MGCA 74.8/89.0 84.8/97.0 92.3/97.9
UniMedI 80.3/93.5 92.4/98.1 94.6/98.1

Table 10: 3D Semantic Segmentation results on AMOS (Dice [%]). AMOS is fine-tuned with 20%, 40%, 100%
training data. Best results are in boldface.

Discrepancy between 
2D and 3D modalities

Discrepancy between 
pneumonia and cardiomegaly

Discrepancy between 
pneumonia and cardiomegaly

Discrepancy between 
pneumonia and cardiomegaly

(a) (b) (c)

Figure 6: t-SNE visualizations of image representations by models trained with different methods. (a) Two
models for different image modalities are trained individually in separate VLP process. (b) One models for
different image modalities are trained in one VLP processes, but without designes in UniMedI. (c) UniMedI.
We use circles to highlight differences between different images.

the predictions it makes. It is calculated as the number of correct predictions divided by the total
number of predictions. The results of our evaluation using these metrics on the COVIDx dataset are
presented in Table 10. These findings provide insights into the robustness of our model.

C.4 VISUALIZATION OF FEATURE QUALITY

We add three t-SNE visualization in Figure. 6. Compared to Figure. 2, Figure. 6 add more class
(cardiomegaly) to demonstrate the ability to unify different modal representations. We have marked
the changes in distances between different modalities in the figure. As shown in Figure. 6, UniMedI
effectively reduces the distance between different modalities and stablishes a unified representation
space.
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