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Abstract

3D scene understanding has been transformed by open-vocabulary language models
that enable interaction via natural language. However, at present the evaluation
of these representations is limited to datasets with closed-set semantics that do
not capture the richness of language. This work presents OpenLex3D, a dedicated
benchmark for evaluating 3D open-vocabulary scene representations. OpenLex3D
provides entirely new label annotations for scenes from Replica, ScanNet++, and
HM3D, which capture real-world linguistic variability by introducing synonymical
object categories and additional nuanced descriptions. Our label sets provide
13 times more labels per scene than the original datasets. By introducing an
open-set 3D semantic segmentation task and an object retrieval task, we evaluate
various existing 3D open-vocabulary methods on OpenLex3D, showcasing failure
cases, and avenues for improvement. Our experiments provide insights on feature
precision, segmentation, and downstream capabilities. The benchmark is publicly
available at: https://openlex3d.github.io.
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Figure 1: The OpenLex3D evaluation benchmark enables more detailed analysis of open-vocabulary 3D
scene representations than closed-vocabulary evaluation methods. We compare the same open-vocabulary
representation when assessed under closed-vocabulary semantics (left) and using OpenLex3D labels (right). In
contrast to closed-vocabulary methods where a prediction must match the exact ground truth label, OpenLex3D
provides a manifold of label categories of varying precision: synonyms being the most precise; depictions, which
include, e.g., printed images on objects; visually similar, which refer to objects with comparable appearance;
and clutter, which accounts for label perturbation due to imprecise segmentation.
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1 Introduction

3D scene understanding is a key capability enabling embodied agents to perceive, interpret, and
interact with the physical world. An effective scene representation should generalize across diverse
indoor and outdoor environments [3]. The introduction of visual-language models such as CLIP [25]
and LLaVa [18] has transformed this field, allowing objects to be labeled using free-form semantics
rather than being constrained to a closed-set of object categories. This has motivated the incorporation
of open-vocabulary vision-language models in 3D scene understanding [6, 9, 13, 15, 20, 24, 32, 35]

Evaluating closed-set semantics is relatively straightforward—the predicted class label of each point-
wise prediction either matches the point’s ground truth label or does not — as shown in Fig. 1.
In contrast, assessing the performance of open-vocabulary models is more challenging and is not
yet well defined by a benchmark. Published works on open-vocabulary representations [32, 35]
have typically used closed-set semantic segmentation labels and metrics—despite this underlying
mismatch. This defeats the purpose and flexibility of open-vocabulary predictions by constraining
the model assessment to a limited set of evaluation labels [23, 32].

We argue that relying on closed-set evaluation overlooks the nuance of real-world language labeling,
which is rarely constrained to a single label per object. For example, a couch might also be referred
to as a “sofa” or “seating”. Prior work has proposed using existing ontologies like WordNet (a large
English language lexical database) [22] to mitigate these ambiguities in language benchmarks, though
differentiating between similarities and associations remains an open question [8]. Several methods
have sought to evaluate downstream performance by focusing on tasks such as visual question
answering and object retrieval [4, 5, 38]. However, this only provides sparse estimates of the overall
fidelity of the underlying scene representation.

In this work, we aim to overcome these limitations by introducing OpenLex3D, a novel benchmark for
evaluating open-vocabulary scene representation methods. OpenLex3D introduces four different label
categories of description precision: synonyms, depictions, visual similarity, and clutter. We use the
categories to evaluate the performance of a method in capturing the correct labels (synonyms) while
also diagnosing different types of misclassification. Our benchmark is implemented by relabeling
scenes from three widely used indoor RGB-D datasets with a new set of human-annotated ground
truth labels. Our label sets contain between 300 and 1200 unique labels per scene and have 13 times
more labels per scene than the original datasets. To summarize, we make the following contributions:

1. We introduce a new labeling scheme where each object is described by multiple free-form
text labels organized into four categories of different linguistic levels of precision.

2. We provide OpenLex3D labels for a total of 3812 objects from Replica [31], Scannet++ [39]
and Habitat-Matterport 3D [26]. Each object has been labeled by four human annotators.

3. We propose two evaluation tasks building on the OpenLex3D labels: tiered semantic
segmentation and object retrieval—including newly proposed metrics reflecting performance
at the different precision levels introduced. Our prompt lists for segmentation contain up to
3500 labels per dataset and our retrieval query set contains up to 1500 queries per scene (see
Tab. 1), enabling comprehensive evaluation of several state-of-the-art 3D open-vocabulary
methods.

4. We make the OpenLex3D toolkit and ground truth data publicly available at:
https://openlex3d.github.io.

2 Related Work

Open-Vocabulary Scene Representations: The recent development of Visual-Language Models
(VLMs) has motivated their integration in both object-centric and dense map representations:

Object-centric representations explicitly factorize scene geometry as a set of 3D objects and represent
semantic information as object-level open-vocabulary features from vision-language encoders such
as CLIP [25]. Methods typically derive object features by fusing features from multiple views using
various strategies [12]. This makes them a compact representation for embodied AI applications
that involve object-level understanding and interaction, such as object retrieval. Methods such as
OpenMask3D [32] and OpenIns3D [10] first determine candidate objects using instance segmentation
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Dataset Scene Name No. of
Objects

No. of Unique
Orig. Labels

No. of Unique
OL3D Labels

No. of Labels
per Object

(Avg)

No. of Labels
per Object

(Max)

No. of
Ambiguous

Objects

Sem. Seg.
Prompt List

Size

No. of
S Queries

No. of
S+D Queries

Total Number
of Queries

Replica

room0 92 28 478 16 33 6 1150 236 373 609
room1 52 24 297 14 26 0 1150 164 93 257
room2 61 21 336 15 27 1 1150 165 122 287
office0 57 24 352 13 25 7 1150 195 211 406
office1 43 22 292 11 30 4 1150 163 70 233
office2 68 21 391 14 30 3 1150 208 87 295
office3 83 26 409 14 27 2 1150 211 112 323
office4 55 16 330 14 28 2 1150 176 122 298

ScanNet++

49a82360aa 127 48 707 13 32 1 3407 433 409 842
1f7cbbdde1 154 55 1187 14 35 0 3407 629 782 1411
8a35ef3cfe 97 43 575 11 30 1 3407 303 532 835
0a76e06478 110 41 750 13 26 1 3407 356 1068 1424
4c5c60fa76 295 62 1110 12 25 0 3407 633 864 1497
0a7cc12c0e 134 60 654 8 17 0 3407 377 169 546
c0f5742640 131 49 730 12 23 0 3407 414 488 902
fd361ab85f 79 36 454 12 30 1 3407 250 137 387

HM3D

000824 307 72 404 5 12 6 2350 340 173 513
000829 170 71 500 8 26 8 2350 372 293 665
000843 234 67 514 7 19 63 2350 367 98 465
000847 306 69 521 6 18 22 2350 424 128 552
000873 345 102 935 11 38 39 2350 623 945 1568
000877 345 139 831 10 33 34 2350 569 518 1087
000890 467 107 829 8 22 42 2350 624 216 840

Table 1: Summary of the OpenLex3D labels, segmentation prompt lists, and object retrieval queries per
scene across all categories. OL3D stands for OpenLex3D, S stands for synonyms and D for depictions. The
total number of labeled objects across all scenes is 3812, with as many as 38 unique labels for an individual
object. HM3D has the highest number of difficult-to-classify (ambiguous) objects. Our label sets provide 13
times more labels than the original datasets per scene. We also provide label distributions in Supp. Sec. E.

and then assign CLIP embeddings to each object instance. A similar approach has been followed by
open-vocabulary scene graph methods, which use the object vocabulary instances as graph nodes,
and then extend the nodes with edges that encode relationships or affordances, which can also be
obtained by means of a VLM such as LLaVa [18] or GPT-4V [37]. Open-vocabulary scene graphs
include ConceptGraphs [6], HOV-SG [35], Clio [21], and Open3DSG [15].

Dense representations instead yield dense open-vocabulary feature embeddings for every point in a
scene. The underlying geometric representations include voxels and point clouds, or more recently,
neural fields or Gaussian splats. These methods include OpenScene [23], ConceptFusion [11] and
SAS [17] and produce dense point cloud maps, where each point stores an open-vocabulary embed-
ding. More recent work uses radiance fields to encode open-vocabulary features [13] [33] [30] [19].
This enables the rendering of photo-realistic novel views with pixel-wise open-vocabulary feature
labeling. Similar ideas have also been used with 3D Gaussian representations [24] [7] [36].

Evaluating Open-Vocabulary Representations: Recent works focus on two tasks to evaluate
open-vocabulary 3D representations: semantic segmentation and object retrieval given a text query.

Semantic Segmentation: Open-vocabulary 3D representations can achieve class prediction by compar-
ing their features with a prompt list to output the top-ranking class for every point, and then rely on
conventional segmentation metrics for evaluation. Common datasets include ScanNet++ (100 classes
for evaluation) [39] and Replica (101 classes) [31]. More recent benchmarks such as OpenScan [40],
expand the original label sets to include attributes such as property or type or provide per-mask
captions such as Mosiac3D [16]. Most of these attributes are derived using an NLP knowledge graph.
Additionally, these approaches do not take into account the nuance of real-world object labeling,
where multiple correct labels are possible.

Object Retrieval: An object-centric representation can serve as a retrieval system by returning objects
sharing similar features with a user-specified text query. We treat retrieval as an instance segmentation
task, while another line of work focuses on bounding-box regression [2, 34]. The flexibility of the
task makes it challenging to automate evaluation, and previous query results do not cover all scene
objects. ConceptGraphs [6] evaluates recall for 60 queries, while OpenScene [23] visually verifies
retrieval results for 11 classes. Automated evaluation is possible when narrowing the scope of the
queries to class labels [20, 32] at the cost of query diversity. The first OpenSun3D [5] workshop
challenge provides replicable retrieval evaluation on multiple scenes but is restricted to 25 queries.

In contrast, OpenLex3D overcomes these challenges by providing an extensive set of human-annotated
labels for each object. These labels account for natural variability in language and are categorized
in terms of description specificity. We complement our benchmark with two novel segmentation
metrics to explore both the top predictions and the complete ranking of the prompt list. In addition,
we leverage the OpenLex3D category labels to procedurally generate hundreds of queries per scene as
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Figure 2: OpenLex3D label example on ScanNet++ [39]. We provide not only synonyms for the object but
also labels for various potential failure cases, including depictions visible on the target object (e.g., flower prints),
visually similar objects (e.g., blanket), and surrounding clutter (indicated by the IDs of the neighboring objects).

part of an automated benchmark. Our queries cover all scene objects and include specific information
such as motifs, cultural references, and brands.

3 The OpenLex3D Benchmark

Our benchmark consists of multiple ground truth labels for each object that are categorized into
different levels of specificity. Those category levels are arranged hierarchically and thus allow us
to identify potential classification failure cases and to analyze why they occur. The tiered category
approach is inspired by SimLex-999 [8], which attempted to assign more accurate similarity scores
between word pairs by carefully distinguishing between similarities and associations or relatedness.
The four categories we consider, in decreasing order of description specificity, are:

Synonyms: This category includes the primary labels for the target object as well as any other equally
valid label. For instance, “glasses” and “spectacles”.

Depictions: Labels in this category describe any images or patterns depicted on the target object. For
example, if a pillow features an image of a tree, the label “tree” would fall under this category.

Visually Similar: This includes objects that appear to be visually similar to the target objects and
are likely to be confused for it. For example, visually similar terms for “glasses” could include
“sunglasses” or “goggles”.

Clutter: This category covers nearby or surrounding objects. Surrounding object features may "leak"
into the features of interest due to 1) co-visibility in the same RGB frames and/or 2) incorrect merging
in object-centric representations. This is the only category not defined by text labels but by object
IDs pointing to neighboring objects in 3D.

We visualize an example of these categories in Fig. 2. An ideal 3D scene representation would
generate high-scoring predictions that fall exclusively under the synonym category. However, in
practice, most representations yield predictions distributed across all categories, therefore providing
insights into different failure modes. For example, a representation yielding many predictions in
the clutter category may indicate erroneous under-segmentation or merging of objects such as small
items on tables. Conversely, a representation with many predictions in the visually similar category
might point to issues with the open-vocabulary model itself or the feature-merging strategy used,
suggesting a failure to differentiate between visually similar but non-synonymical objects.

We employ nouns (including multiple word labels such as “sofa cushion”) for our ground truth labels
to reduce the ambiguities of sentences and captions. For instance, sentence embedding models [27]
are sensitive to variations in word order and struggle to distinguish between sentences with similar
structures but different meanings. By using diverse nouns, we can still capture semantic similarities
without introducing such challenges.

3.1 Label Acquisition and Processing

To implement the benchmark, we create an entirely new set of semantic labels for scenes from three
prominent RGB-D datasets (see Supp. Sec. C for additional details):
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Replica [31] consists of a set of high-quality reconstructions of indoor spaces, including offices,
bedrooms, and living spaces. We use eight scenes (room0-room2 and office0-office4) and utilize the
camera trajectories provided by NICE-SLAM [41].
ScanNet++ [39] is a large-scale dataset of a variety of real indoor scenes. Each scene provides
laser scanner-registered images from a DSLR camera and RGB-D streams from an iPhone. We
use the RGB-D iPhone images, along with their associated poses (metrically-scaled COLMAP [29]
trajectories) from eight scenes.
HM3D [26] consists of high-resolution 3D scans of building-scale residential, commercial, and civic
spaces. We use the trajectories generated by HOV-SG [35] and obtain RGB-D images as well as
semantic ground truth across seven scenes of the Habitat-Matterport 3D Semantics split.

The goal of OpenLex3D is to provide a set of high-quality human-annotated labels for evaluation on
commonly used scenes, rather than prioritizing a large quantity of scenes for training purposes.

3.1.1 Annotation Process

To generate the labeling data, we first obtained a set of representative images for each ground truth
object instance using a method similar to that described in OpenMask3D [32]. For each object
instance in the ground truth point cloud, we re-projected its 3D points to the camera plane for labeling.
These projected 2D points were used to define a bounding box that encloses the object in the image.
Additionally, we used the projected points to generate a Segment Anything (SAM) [14] mask, which
provided guidance for the annotator on the object to be labeled.

The annotators were required to fill in responses for the first three categories only (synonyms,
depictions, and visually similar), and each object in every scene was labeled by four different
annotators. The full instructions given to the annotators are included in Supp. Sec. D. In addition, we
illustrate the annotation interface in Supp. Fig. 7. The clutter category was filled in post-processing
after the annotation process (see Sec. 3.1.2).

We recruited annotators of varying backgrounds and professions from four different countries. As
such, we opted for direct recruitment instead of relying on third-party platforms such as Amazon
Mechanical Turk (MTurk), which was shown to yield a significant number of incorrect labels [28].

3.1.2 Label Post-processing

After obtaining the labels, we curated them to correct spelling errors and eliminate invalid responses.
The reviewing process followed these conventions: 1. If the same label occurred in multiple categories,
it was assigned to the lowest (least specific) category. 2. If there was significant disagreement in
the synonyms category for the target object, the object was kept but flagged as “ambiguous” to
indicate that it was difficult to recognize. 3. Variations such as plurals and differences in spacing
were permitted and remained unaltered (e.g., “shelves” and “shelf” or “counter top” and “countertop”.
Regarding the clutter category, we identified nearby or surrounding objects based on their 3D
Intersection over Union (IoU). We used the Objectron [1] implementation to estimate bounding boxes
and compute the IoU. Any neighboring objects with an IoU greater than 0 with the target object were
assigned to the clutter category.

3.2 Evaluation Methodology

We propose two tasks to evaluate open-vocabulary 3D scene representation methods: a semantic
segmentation task and an object retrieval task.

3.2.1 Task 1: Tiered Open-Set Semantic Segmentation

In the first task, we evaluate the point-level open-vocabulary features stored in a representation using
our category-based ground truth. For every 3D point p in the ground truth, benchmarked methods
must predict a language-aligned feature vector that can be compared with the label features of a
prompt list L using the cosine similarity, yielding a ranked list Lp per point p.

We use separate prompt lists for each dataset. Each prompt list consists of the unique labels across all
categories, objects, and scenes from a given dataset, and contains between 1,000 and 3,000 unique
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Figure 3: Top-N Frequency and Set Ranking metrics illustration. (a) Top-N Freq. measures whether any
of the top-N responses contain a label from category C. (b) Set Ranking evaluates the ranking of responses,
assessing how closely the predicted rankings align with ideal rankings of categories.

labels each (Tab. 1). This mitigates the problem of positive bias toward the correct labels [12]. To
evaluate the performance of a method, we introduce two metrics: Top-N Frequency and Set Ranking.

Top-N Frequency at Category: In our setting, each ground truth object is assigned multiple and
unique labels. This makes direct application of standard mIoU infeasible (for more details see Supp.
Sec. B). To address this, we define a new metric that characterizes the proportion of 3D points that
are classified into a given category C within a scene. Our metric is defined as

FC
N =

1

|O|
∑
o∈O

1

no

∑
p∈o

1(Ĉ(Lp
1:N ) = C), (1)

where 1(·) is the indicator function. We normalize by the number of points no in any given ground
truth object o ∈ O to ensure that the metric is not skewed by objects with a large number of points.
Ĉ assigns a category based on Lp

1:N — the top-N most similar labels in Lp (Fig. 3 a))— and the
OpenLex3D categories for p. This helps to mitigate any inconsistencies in the ground truth labels
(Supp. Sec. H.1). Specifically, Ĉ predicts synonym if Lp

1:N includes a synonym, depictions if Lp
1:N

includes a depiction but no synonyms and visually similar if Lp
1:N includes a visually similar label

but no synonyms or depictions. Absent the first three categories, Ĉ predicts clutter if Lp
1:N includes a

label that falls into any category of a neighboring object. If a method omits to predict some features
for a ground truth point, Ĉ returns missing.

Set Ranking: Our second metric assesses the distribution of the label-feature similarity of each
point in the scene representation. For this, we quantify the mismatch of the responses when compared
against an ideal tiered ranking of category sets. We establish synonyms (S) as the first-rank set,
while depictions and visually similar are considered as a joint second-rank set (DV S). Within both
sets, we do not assume any label ordering as each label within a category set y ∈ Yp

C is equally
explanatory. The size of the sets is determined by the number of corresponding labels in the ground
truth categories for each point as shown in Fig. 3(b). We only consider matched pairs of points
between ground truth points p ∈ P and predicted points, yielding P∗, thus not evaluating missing
or falsely predicted points. Our proposed metric is computed for each point p ∈ P∗ and its ranked
predictions Lp in the predicted point cloud P∗. We sort the ground truth labels according to the ideal
set ranking (synonyms first, then depictions and visually similar) and obtain left and right ranking
bounds for each set, bCl and bCr , where C denotes the category type (S or DV S). We then compute a
rank score si for each prediction i, as a function of its rank ri compared to the ground truth bounds:

s(ri) = min (1 + min (0,
ri − bCl

bCl
), 1−max (0,

ri − bCr
|Lp| − bCr

)). (2)

If the prediction falls in the correct category set, we obtain s(ri) = 1.0, and s(ri) < 1.0 otherwise.
The rank scores are then used to determine the set inlier rates RS and RDV S as:

RC =
1

|P∗|
∑
p∈P∗

 1

|Yp
C |

|Yp
C |∑
i

1 (s(ri) = 1)

 , (3)
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Figure 4: Top-5 Freq. results for category classification for OpenMask3D [32], ConceptGraphs [6] and
ConceptFusion [11] colored by category class. Object-centric methods that segment in 3D, like OpenMask3D
(top), often miss points due to generalization or depth quality issues. Those merging 2D segments tend to merge
smaller ones, leading to misclassifications (middle). Dense representations, such as ConceptFusion, produce
noisier predictions due to point-level features aggregating information from various context scales. In the highly
cluttered environments of ScanNet++ [39], all evaluated methods show reduced performance.

where |Yp
C | denotes the number of labels per point p ∈ P∗ for the particular set C (S or DV S). In

addition, we compute penalty scores that constitute inverse set ranking scores quantifying underscor-
ing of synonyms and both under- and overscoring of the labels within the DV S category set. Those
are defined as P ↰

S , P ↰

DV S , and P

↰

DV S . As formalized in Suppl. Sec. F, they quantify the degree to
which the score distribution falls short of satisfying the underlying box constraints and thus go from
zero (low penalty) to one (high penalty). Lastly, we also report a mean ranking score mR, defined as:

mR =
1

|P∗|
∑
p∈P∗

 1

|Yp
S+DV S |

|Yp
S+DV S |∑

i

s(ri)

 , (4)

where |Yp
DV S+S | is the number of elements in the ground truth sets S and DV S for each point p.

3.2.2 Task 2: Open-Set Object Retrieval

The object retrieval task involves segmenting object instances that correspond to a given text-based
query in a similar manner to the OpenSun3D Challenge [5]. Here, methods must predict a set of
objects, each described with a 3D point cloud and an object-level language-aligned feature vector.
For query generation, we use the synonyms in the OpenLex3D label set, along with combinations of
synonyms and their associated depictions using the template “[depiction] [synonym]". The resulting
queries include references to motifs (“polka dots duvet cover”), specific characters (“ironman portrait")
and brands (“nike athletic sneaker"). The number of queries ranges from 200 to 1,500 per scene. For
evaluation, we use the Average Precision (AP). We report AP50 (IoU of 50%), AP25 (IoU of 25%),
and mAP scores averaged over the IoU range of [0.5 : 0.95 : 0.05].

4 Experiments

In this section, we present a benchmark evaluation of four state-of-the-art object-centric methods and
two dense methods across two tasks: semantic segmentation and object retrieval. Implementation
details for each method are provided in Supp. Sec. G. We exclude floors, ceilings, and walls
from our evaluation and downsample the point clouds to a resolution of 0.05m using voxel-based
downsampling. We use the ViT-H-14 CLIP backbone for all methods except OpenScene, which uses
the ViT-L OpenSeg backbone.

4.1 Open-Set Semantic Segmentation

Top-N Freq.: We report the Top-5-frequency FN=5 in Tab. 2. The frequencies at 1 and 10 are
provided in Supp. Sec. H.1. Top-down views of a selection of the output point clouds colored by
category are presented in Fig. 4. Examples of specific predictions are shown in Fig. 5.
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Method: 
ConceptFusion
Pred.: sky
Cat.: depiction

Method : 
Kassab2024
Pred.: picture frame
Cat.: visually similar

Method: 
ConceptGraphs
Pred.: table
Cat.: synonyms

Figure 5: Example predictions and categories. We
show a correctly predicted label (top). Depictions han-
dles cases in which the image depicted on an object
is mistaken for the object itself (middle). The visually
similar category handles reasonable but unprecise pre-
dictions (bottom).

Data Method S ↑ D ↓ V S ↓ C ↓ M ↓ I ↓

ConceptGraphs [6] 0.41 0.01 0.11 0.24 0.02 0.22
ConceptGraphs (GPT) [6] 0.47 0.03 0.05 0.21 0.02 0.23
HOV-SG [35] 0.45 0.00 0.05 0.27 0.07 0.16
Kassab2024 [12] 0.26 0.00 0.06 0.26 0.12 0.30
OpenMask3D [32] 0.43 0.01 0.07 0.29 0.10 0.10
ConceptFusion [11] 0.32 0.01 0.09 0.16 0.00 0.41

R
ep

lic
a

OpenScene [23] 0.44 0.00 0.06 0.30 0.07 0.13

ConceptGraphs [6] 0.26 0.02 0.05 0.10 0.13 0.44
ConceptGraphs (GPT) [6] 0.43 0.01 0.04 0.11 0.13 0.28
HOV-SG [35] 0.40 0.02 0.04 0.16 0.08 0.30
Kassab2024 [12] 0.11 0.00 0.03 0.17 0.38 0.31
OpenMask3D [32] 0.27 0.01 0.03 0.29 0.13 0.27
ConceptFusion [11] 0.29 0.01 0.03 0.08 0.04 0.54Sc

an
N

et
++

OpenScene [23] 0.16 0.00 0.02 0.23 0.22 0.36

ConceptGraphs [6] 0.27 0.02 0.03 0.12 0.08 0.47
ConceptGraphs (GPT) [6] 0.45 0.01 0.04 0.11 0.09 0.31
HOV-SG [35] 0.33 0.02 0.04 0.18 0.08 0.36
Kassab2024 [12] 0.19 0.01 0.01 0.15 0.23 0.41
OpenMask3D [32] 0.31 0.01 0.03 0.13 0.26 0.26
ConceptFusion [11] 0.23 0.01 0.03 0.09 0.08 0.57

H
M

3D

OpenScene [23] 0.18 0.00 0.02 0.16 0.06 0.59

Table 2: Freq. Top 5 Results for Object-Centric
and Dense Representations. S is the frequency of
synonyms, D is depictions, VS is visually similar, C is
clutter, M is missing, and I is incorrect. Optimal per-
formance would be a FS score of 1 while achieving a
F score of 0 for all other categories.

As shown in Tab. 2, ConceptGraphs (GPT) is the top-performing method in the synonyms category.
The GPT prompt generates precise descriptions of the target object, which is then encoded into a
highly specific text embedding using the CLIP text encoder. In contrast, the CLIP image encoder,
used by other methods, encodes both object-related and broader contextual information from the
image, making it more prone to confusion due to visually similar labels or depictions. HOV-SG
achieves the next best results. In general, dense methods yield noisier predictions as they use per-pixel
features (Fig. 4 and Fig. 5 (middle)).

Regarding depictions and visually similar categories, OpenScene and Kassab2024 consistently yield
the best results. This may stem from their distinct feature association strategies. OpenScene, unlike
ConceptFusion, relies solely on per-pixel embeddings without relying on global or region-level
merging strategies. Similarly, Kassab2024 selects a feature for each object using Shannon entropy
without feature merging. This may preserve feature granularity and reduce classification confusion.

The clutter category has worse frequency results across all methods, suggesting that crop scaling
and/or segmentation is critical in improving overall classification performance. This is also appar-
ent in the missing category. Methods that perform initial segmentation in 3D (Kassab2024 and
OpenMask3D) tend to have more missing points compared to those that segment at an image level
(ConceptGraphs and HOV-SG). In general, most methods struggle with ScanNet++ and HM3D,
indicating that cluttered, real-world environments still pose challenges for all approaches.

Set Ranking: In Tab. 3, we report set ranking results. In general, the mean results are high, suggesting
that synonyms tend to score higher in the predicted ranks, and that depictions and visually similar
labels generally score below synonyms, described as the ideal ranking in Sec. 3.2.1. We observe
that across all three datasets, HOV-SG [35] and ConceptGraphs [6] yield consistently high mean set
ranking scores, while OpenScene [23] and OpenMask3D [32] achieve worse results on ScanNet++.

Furthermore, we observe high RS scores for ConceptGraphs (GPT), similar to the top-5
frequencyFS

N=5, again suggesting that the text embeddings generated from GPT captions are highly
specific compared to CLIP image encodings. However, ConceptGraphs (GPT) also consistently over-
scores the depictions and visually-similar categories (high P

↰

DV S) while also underscoring synonyms
compared to the remaining methods (high P ↰

S ). This implies that multi-view aggregation of CLIP
predictions, as executed by HOV-SG, OpenMask3D, and ConceptGraphs, better approximates the
desired set distribution compared to GPT predictions, which yields rather stochastic hits resulting
in high RS scores. As demonstrated, our proposed set ranking evaluation sheds light on non-top-
performing scores and quantifies the underlying score distribution compared to the Top-N-frequency
metric.
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Data Method mR ↑ RS ↑ P ↰

S ↓ RDV S ↑ P ↰

DV S ↓ P

↰

DV S ↓

R
ep

lic
a

ConceptGraphs [6] 0.82 0.13 0.14 0.06 0.63 0.23
ConceptGraphs (GPT) [6] 0.63 0.21 0.33 0.07 0.52 0.43
HOV-SG [35] 0.82 0.17 0.14 0.07 0.50 0.23
Kassab2024 [12] 0.76 0.10 0.21 0.03 0.54 0.27
OpenMask3D [32] 0.83 0.17 0.12 0.06 0.51 0.21
ConceptFusion [11] 0.76 0.11 0.21 0.05 0.57 0.28
OpenScene [23] 0.85 0.16 0.10 0.05 0.53 0.21

Sc
an

N
et

++

ConceptGraphs [6] 0.80 0.09 0.19 0.03 0.59 0.24
ConceptGraphs (GPT) [6] 0.66 0.18 0.31 0.03 0.60 0.40
HOV-SG [35] 0.84 0.15 0.14 0.04 0.64 0.19
Kassab2024 [12] 0.72 0.05 0.26 0.01 0.60 0.30
OpenMask3D [32] 0.79 0.12 0.19 0.02 0.57 0.25
ConceptFusion [11] 0.74 0.10 0.26 0.02 0.63 0.30
OpenScene [23] 0.77 0.06 0.18 0.01 0.57 0.31

H
M

3D

ConceptGraphs [6] 0.86 0.08 0.13 0.02 0.59 0.20
ConceptGraphs (GPT) [6] 0.68 0.15 0.32 0.03 0.59 0.36
HOV-SG [35] 0.88 0.12 0.11 0.02 0.59 0.19
Kassab2024 [12] 0.80 0.06 0.19 0.01 0.62 0.26
OpenMask3D [32] 0.86 0.10 0.12 0.02 0.56 0.20
ConceptFusion [11] 0.78 0.07 0.20 0.02 0.61 0.27
OpenScene [23] 0.87 0.05 0.10 0.01 0.56 0.22

Table 3: Set Ranking Evaluation. For mR, RS , RDV S

being the mean score and the respective inlier rates, higher is
better. For the underscoring and overscoring penalties P ↰

S ,
P

↰

DV S , P

↰

DV S , lower is better.

Data Method mAP ↑ AP50 ↑ AP25 ↑

R
ep

lic
a

ConceptGraphs [6] 5.86 11.32 22.39
ConceptGraphs (GPT) [6] 5.13 10.77 18.19
HOV-SG [35] 5.76 11.67 25.30
Kassab2024 [12] 1.38 2.87 7.54
OpenMask3D + NMS [32] 11.47 17.01 24.02

Sc
an

N
et

++

ConceptGraphs [6] 1.45 4.36 15.27
ConceptGraphs (GPT) [6] 1.97 5.54 13.39
HOV-SG [35] 1.79 4.95 18.75
Kassab2024 [12] 0.40 1.19 3.39
OpenMask3D + NMS [32] 4.00 6.90 10.34

H
M

3D

ConceptGraphs [6] 5.09 8.05 11.18
ConceptGraphs (GPT) [6] 4.80 7.75 10.76
HOV-SG [35] 3.44 5.39 7.42
Kassab2024 [12] 1.03 1.87 3.97
OpenMask3D + NMS [32] 4.03 5.56 8.35

Table 4: Object Retrieval Evaluation. All val-
ues are reported in percentage (%). NMS stands
for Non-maximum Suppression and is used to
select object masks in the OpenMask3D [32]
pipeline.

4.2 Open-Set Object Retrieval

We report AP results in Tab. 4. Overall AP is low and in line with comparable benchmarks [5],
highlighting the challenges of this task and the potential for improvement. OpenMask3D (with Non-
Maximum Suppression and access to clean mesh inputs) leads the Replica and ScanNet++ metrics
but fails to generalize to the larger HM3D scenes, where ConceptGraphs is the top-performing
method. The performance of most methods significantly increases when queries include depiction
information—a fact that can be directly observed in Supp. Fig. 14, where we provide separate metrics
for synonym queries and synonym-depiction queries. The performance improvement is less noticeable
in the case of ConceptGraphs (GPT), a possible sign that short image captions tend to prioritize
synonyms. Those results emphasize the importance of a benchmark supporting queries for every
object in a scene to prevent bias towards objects with prominent imagery.

For a more thorough analysis, we further report the queried object ranks in Supp. Fig. 15, with
separate counts for queries with no predicted match at IoU .25. For a significant number of queries,
methods fail to output predicted instances that significantly overlap with the ground truth. Properly
segmenting instance geometry remains challenging for all considered methods.

5 Limitations

While our benchmark offers a comprehensive set of ground truth labels across diverse 3D scenes,
it has certain limitations. Our label set does not account for additional object properties such as
affordances, material, and color. It is restricted to the segments provided in the original RGB-D
datasets, often omitting smaller parts of a larger object such as cupboard handles or sofa cushions.
Our object retrieval query set inherits the same limitations and is generated using a simple template
that could warrant further investigation.

6 Conclusion

We introduced OpenLex3D, a new benchmark for open-vocabulary evaluation that captures real-
world language variability. Our benchmark includes human-annotated labels for three RGB-D
datasets—ScanNet++, Replica, and HM3D—providing 13 times more labels per scene than the
original annotations. We categorize our labels into multiple tiers of specificity, allowing for more
nuanced evaluation. We assess the performance of both object-centric and dense representations
on two key tasks: semantic segmentation and object retrieval. Our evaluation shows that no single
method performs well across both tasks, indicating that there is scope for future improvement,
particularly within feature fusion and segmentation strategies.
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