
Improving Spatial and Temporal Awareness of Large Language Models for
Personalized Travel Planning

Anonymous ACL submission

Abstract
Travel itinerary planning requires coordinating001
multiple tasks, like flight and hotel bookings,002
while meeting spatial and temporal constraints.003
Although Large Language Models (LLMs)004
show promise in tackling complex planning005
tasks, they often struggle with maintaining006
geographical consistency, managing real-time007
travel constraints, and providing accurate lo-008
gistical details. We present TRAVLINKTO, a009
system designed to enhance the spatial and tem-010
poral awareness of LLMs for travel itinerary011
planning. TRAVLINKTO ensures geographical012
coherence by leveraging city graphs to opti-013
mize routes across cities. It integrates LLM-014
generated content with real-time data from ex-015
ternal sources, such as flight schedules and016
restaurant booking systems, through an iter-017
ative self-refinement process that utilizes au-018
tomated query generation, execution, and pa-019
rameterized planning templates. We evaluate020
TRAVLINKTO on the TravelPlanner dataset.021
Experimental results show that TRAVLINKTO022
significantly outperforms existing LLM-based023
methods, enhancing both the quality and effi-024
ciency of travel planning.025

1 Introduction026

Travel itinerary planning systems aim to automate027

the creation of personalised travel plans. Given a028

user query — such as “three-day trip to London029

with family” — these systems generate detailed030

itineraries that include attractions, restaurants, ac-031

commodations, and transportation arrangements.032

An effective planning system should understand033

the user’s query to generate itineraries that satisfy034

spatial (e.g., locations) and temporal (e.g., time)035

constraints, as well as other requirements such as036

budget and preferences. Additionally, it should037

adapt to real-world changes (e.g., flight schedule038

adjustments) or unexpected disruptions to ensure a039

valid travel plan.040

Unlike traditional approaches that rely on prede-041

fined rules or structured data , LLMs (Guo et al.,042

"Where to go?"
"What to eat?"
"Where to stay?"
"What to do there?"
"Budget limit?"
"Personalization?"
 etc. Itinerary Generation

TravLinkTo

Query ItineraryInter-city Planning Intra-city Planning

 ✓ All-in-one ✓ Reasonable routes ✓ Personalization ✓ Verified Itinerary

ItineraryInitial
Itinerary

Itinerary Refining

Figure 1: Overview of TRAVLINKTO, a hierarchical
framework for automated travel planning. The system
first conducts inter-city planning followed by intra-city
activity scheduling, leveraging both city graph structure
and external databases to ensure reasonable routes and
personalised recommendations.

2024) have opened up new opportunities for auto- 043

mated travel planning (Xie et al., 2024; Valmeekam 044

et al., 2023). LLMs can understand complex natu- 045

ral language queries and user preferences, enabling 046

more intuitive travel planning interactions. With 047

carefully designed instruction strategies (Schulhoff 048

et al., 2024), LLMs can function as domain ex- 049

perts to generate precise and personalised travel 050

suggestions (Guo et al., 2024). Furthermore, by in- 051

tegrating with external databases and APIs (Wang 052

et al., 2024b; Li et al., 2023), LLMs can access 053

real-time travel information and dynamically ad- 054

just plans based on current conditions, overcoming 055

the limitations of recommendation-based systems 056

(Valliyammai et al., 2017; Lim et al., 2015) and 057

traditional deep learning approaches (Chen et al., 058

2023). 059

However, LLMs still face challenges in travel 060

planning tasks. First, despite their sophisticated 061

language understanding, these models struggle 062

with spatial reasoning and geographic relation- 063

ships, which are fundamental to creating feasible 064

1

itineraries (Bhandari et al., 2023). For example,065

they may schedule two far-apart attractions in an066

unreasonable timeframe without considering the067

geographic distances between them. Second, even068

with access to external APIs or databases, LLMs069

are still influenced by their outdated training data.070

This reliance on historical information often leads071

to the generation of inconsistent or hallucinated072

content, such as recommending non-existent flights,073

closed attractions, or relocated venues (Huang et al.,074

2024). Third, LLMs struggle to manage multiple075

constraints simultaneously, such as finding hotels076

that meet budget and location preferences while077

aligning with transportation schedules and time078

constraints (Chen et al., 2024; Wang et al., 2024a).079

We present TRAVLINKTO, a novel hierarchical080

framework designed to address the aforementioned081

limitations by enhancing temporal and spatial082

awareness of LLMs for travel itinerary planning.083

An overview of TRAVLINKTO is depicted in Fig-084

ure 1. To enable spatial reasoning, TRAVLINKTO085

models inter-city routes as a city-level graph, en-086

suring LLMs itineraries respect geographic connec-087

tivity and distances. Such a structured represen-088

tation empowers LLMs to generate logically con-089

sistent, geographically feasible itineraries. To en-090

hance reliability, TRAVLINKTO uses a multi-agent091

framework to retrieve external knowledge and it-092

eratively refine itineraries via templates. Cross-093

referencing content with external knowledge and094

providing refinement feedback reduces hallucina-095

tions and ensures adherence to temporal, budgetary,096

and user constraints. Integrating graph-based spa-097

tial reasoning with iterative refinement enables098

TRAVLINKTO to effectively adapt LLMs to com-099

plex travel scenarios, delivering coherent, efficient,100

and personalised itineraries.101

We evaluate TRAVLINKTO on the TravelPlanner102

dataset (Xie et al., 2024), comparing it with ReAct103

(Yao et al., 2023) using multiple LLMs (GPT-3.5-104

Turbo, GPT-4-Turbo, and Gemini Pro) (Team et al.,105

2023; OpenAI, 2024, 2022). Experimental results106

show that TRAVLINKTO significantly improves the107

reasoning capabilities of LLMs in travel planning108

tasks in terms of constraint satisfaction, planning109

efficiency, and adaptability to complex scenarios.110

This paper makes the following contributions:111

• A new approach to integrate knowledge graphs112

and LLMs for location-aware, long-duration113

travel planning;114

• An iterative self-refinment mechanism for miti-115

gating LLM hallucination;116

Table 1: Comparison of different approaches in travel
itinerary planning systems

Type Method
Capabilities

Parse Match Plan Adapt

Mathe-
matical

Integer linear program
Ant colony optimization

Recom-
mendation

Collaborative filtering
Matrix factorization

DL-
based

knowledge graph
Reinforce Learning

LLM-
based

Standalone LLMs
LLMs with prompting
LLMs with RAG
Tools-based LLMs

Hierarchical TRAVLINKTO

Support level: None < < < < Strong

• An efficient tool-based constraint handling sys- 117

tem for improving planning efficiency and user 118

satisfaction. 119

Code availability. The code associated with this 120

work is available at: https://anonymous.4open. 121

science/r/TRAVELINKTO-B728/ 122

2 Related Work 123

Table 1 positions TRAVLINKTO with respect to 124

prior travel planning systems. 125

Early optimisation methods (e.g., integer linear 126

programming (Sylejmani et al., 2024), ant colony 127

optimisation (Dorigo et al., 2006)) focused on math- 128

ematical optimisation of travel routes. Deep learn- 129

ing later enabled more personalised approaches, 130

from recommendation-based methods (collabora- 131

tive filtering (Schafer et al., 2007), matrix factor- 132

ization (Xu et al., 2017)) for POI suggestions to 133

advanced techniques like knowledge graph (Hogan 134

et al., 2021) and reinforcement learning (Zheng 135

et al., 2024) for capturing complex travel patterns. 136

Recent advances in LLMs have created new pos- 137

sibilities for travel planning through natural lan- 138

guage understanding and contextual reasoning. To 139

enhance base LLM capabilities, approaches like 140

prompt engineering (Liu et al., 2023), Retrieval 141

Augmented Generation (RAG) (Edge et al., 2024), 142

and tool integration (Yang et al., 2023), multi-agent 143

collaborate (Guo et al., 2024) have emerged to com- 144

bine language understanding with real-time travel 145

data and specialized reasoning. 146

LLM-based travel planning systems encounter 147

key challenges. Notably, their spatial reasoning is 148

limited; for instance, a Seattle to Los Angeles trip 149

might incorrectly route through Chicago, highlight- 150

ing a lack of geographical awareness. Furthermore, 151

these planners struggle to maintain factual accuracy 152

2

https://anonymous.4open.science/r/TRAVELINKTO-B728/
https://anonymous.4open.science/r/TRAVELINKTO-B728/
https://anonymous.4open.science/r/TRAVELINKTO-B728/

Query

Parsing queries

Param
s

Initial route
planning

M
issing A

ctivity
 Suggestions

C
ities sequence

Initial
itinerary

City graph

Error logging &

updated Itinerary

Stage
 Output*

*
Legend

Intra-city activities planning

Task G
eneration

"M
issing accom

.,
please arrange"

Accom
(pet-friendly,

Single-room
,D

ay1)

Validation

External
database

Inter-city route planning

Final
Itinerary

LLMLLM
LLM

Rule-based check

Loop

P1
P2 P3

Figure 2: TRAVLINKTO uses prompt engineering to instruct a common LLM to play different roles in the processing
pipeline. It combines LLMs and external tools to improve the quality of the generated plan.

in multi-turn conversations with external databases,153

drifting from facts due to their stochastic nature.154

Finally, managing simultaneous travel constraints155

leads to suboptimal solutions in budget, time, and156

preferences.157

To mitigate these limitations, TRAVLINKTO aug-158

ments LLM capabilities by incorporating graph-159

based spatial reasoning and interesting LLMs with160

external tools within an iterative self-refinement161

mechanism to improve the temporal awareness and162

reliability of LLM-based travel planning.163

3 Our Approach164

3.1 Overview165

Figure 2 depicts the workflow of TRAVLINKTO166

for planning inter-city travel (e.g., city sequences)167

and intra-city activities (e.g., hotels, lunches, and168

attractions).169

TRAVLINKTO employs a two-stage processing170

pipeline. The first stage establishes inter-city routes171

using a city-level graph, ensuring geographical and172

logical coherence. The second stage refines intra-173

city activity scheduling through an iterative refine-174

ment process. This process integrates LLMs and175

external tools to instantiate daily activities such176

as hotels and attractions using a customizable and177

parameterized template. To construct a comprehen-178

sive itinerary, TRAVLINKTO retrieves information179

(e.g., hotel availability and flight schedules) from180

external databases. It leverages few-shot prompt181

engineering to map user queries to predefined func-182

tions, which are then interpreted and executed to183

fetch relevant data. Additionally, TRAVLINKTO184

incorporates a self-refinement mechanism to mini-185

mize errors across the processing pipeline, ensuring186

that the generated itineraries adhere to temporal,187

budgetary, and user-defined constraints.188

Table 2 presents the key components of189

TRAVLINKTO with simplified example LLM190

Table 2: Overview of System Components in
TRAVLINKTO

Process (Module) Description (Method | Purpose | Example)

Pr
om

pt
s

Parsing Queries Few-shot | Parameter extraction | "Extract travel
parameters..." (P1).

Activity Planning

Zero-shot | Itinerary review | "Verify complete-
ness..." (P2).
Few-shot | Function calling | "Identify missing
items..." (P3).

To
ol

s

Transportation Transit options and trip details.
Attractions Attraction route planning and visitor information.
Accommodations Lodging options and property details.
Restaurants Dining recommendations and venue information.
City Network City connectivity and travel mode.
Attraction Network Attraction connectivity and visit duration.

U
til

s Code Interpreter Python function execution and processing.
Validator Input validation and schema verification.

Detailed implementations are provided in Appendix 7.2

prompts used by TRAVLINKTO. A complete list 191

of prompts, templates, APIs and examples is given 192

in the Appendix. As a working example, consider 193

responding to a user query for planning “A 3-day 194

trip with travel from Seattle to Los Angeles, in- 195

cluding a pet-friendly room from May 20th, 2025”. 196

After parsing the user query, TRAVLINKTO itera- 197

tively executes the processing pipeline in Figure 2, 198

outlined as follows. 199

Parsing queries. We use an LLM API (e.g., Chat- 200

GPT) to map the query into structured parameters, 201

such as the origin, destination, duration, prefer- 202

ences, and constraints, to be stored in JSON format. 203

This is achieved by using an example-based few- 204

shot prompt (P1 in Table 2) to leverage LLMs for 205

natural language understanding and structured data 206

extraction. 207

Inter-city route planning. Given a JSON document 208

of user query parameters, TRAVLINKTO employs 209

a simple yet effective sampling algorithm to con- 210

struct initial inter-city routes. It selects routes from 211

a city graph database to ensure the geographical 212

validity of the travel sequence. For example, the 213

initial itinerary for our working example could be: 214

“Day 1: Travel from Seattle to Los Angeles, Day 215

3

2: Explore Los Angeles, Day 3: Return to Seattle.”216

Section 3.3 details this planning process.217

Intra-city activity scheduling. With the initial218

itinerary, TRAVLINKTO populates a daily activity219

template (Figure 14 in the Appendix) by iteratively220

refining the plan for each day. In each iteration,221

it presents the partially completed itinerary to the222

LLM, prompting it to suggest actions for missing223

elements (P2 in Table 2). The LLM feedback is224

then used to generate a structured JSON query with225

predefined functions via few-shot prompting (P3 in226

Table 2). The Code Interpreter of TRAVLINKTO in227

Table 2 then interprets and executes this query to re-228

trieve relevant information from external databases,229

such as restaurant and hotel booking systems.230

Validation. At the end of each inter-city planning231

iteration, TRAVLINKTO validates and refines the232

generated information. It checks consistency with233

user preferences and ensures spatial alignment with234

the planned route. Discrepancies are logged and235

fed back into the pipeline for adjustment in the236

next iteration (refinement loop in Figure 2). This237

iterative refinement process continues until a com-238

plete and valid itinerary is generated or a maximum239

of 30 iterations is reached. If the limit is reached,240

TRAVLINKTO resets to the query parsing stage,241

asks the LLM to regenerate user parameters, and242

retries the pipeline, with a maximum of retries (10243

in this work).244

3.2 Parsing Queries245

TRAVLINKTO extracts travel requirements and246

user preferences via a few-shot prompt, “Extract247

and structure the following travel parameters from248

the user query, returning the results in JSON249

format. Output sample: {“travel_days”: 2,250

“origin”: “Washington”, ... }” to extract251

key travel parameters stored in a structured JSON252

format. Here, we want to extract two distinct pa-253

rameter categories: Route Parameters (origin, des-254

tination, stops, duration) for overall route planning,255

and User-specific Parameters (e.g., preferences for256

cuisine, accommodation, activities) for detailed ar-257

rangements at each destination.258

3.3 Inter-City Route Planning259

If the extracted user parameters include multiple260

cities, TRAVLINKTO employs a route-planning al-261

gorithm to determine the optimal sequence of visits262

using city-scale graphs. In this work, we integrate263

TRAVLINKTO with two directed graphs: a city-264

level graph and an attraction-level graph, though 265

this approach can be extended to incorporate other 266

graphs to capture additional data dependencies. 267

The city-level graph G = (V,E) represents 268

cities as nodes V (including attributes such as 269

name, region, and description) and transport links 270

as edges E (characterized by travel mode, time, 271

and cost). Meanwhile, the attraction-level graph 272

G′ = (V ′, E′) models attractions as nodes V ′ (with 273

properties like name, type, and description), while 274

edges E′ encode direct connections based on dis- 275

tance and popularity. 276

For inter-city route planning, we construct a fea- 277

sible travel route given a start city, an end city, and 278

intermediate stops, using a degree-based sampling 279

approach. First, we identify the set of reachable 280

cities Ro that connect the origin city o to the target 281

destination. From this set, we select two anchor 282

cities, c1 and cn, while the top n−2 most connected 283

cities serve as intermediate stops, forming the com- 284

plete city set C = {c1, c2, . . . , cn}. The final route 285

is expressed as P = (p0, p1, . . . , pn+1), where 286

p0 = pn+1 = o and p1, p2, . . . , pn = C. This 287

method ensures that the selected cities are well- 288

connected, maximizing feasibility while allowing 289

customization based on user-defined weights or 290

preferences. 291

TRAVLINKTO implements a retry mechanism 292

in case no valid route is found during one sample 293

iteration. In this case, a new city set is generated, 294

and the algorithm is retried. After 15 unsuccessful 295

attempts, an error is reported, prompting a return to 296

the query-parsing stage, where the LLM is asked 297

to refine the extracted user parameters. 298

3.4 Intra-city Activity Planning 299

Given an initial city visit plan (e.g., “Day 1: Seattle 300

to Los Angeles, Day 2: Los Angeles, Day 3: Return 301

to Seattle”), TRAVLINKTO prompts an LLM to 302

generate structured queries for external databases 303

to instantiate a customizable, predefined daily tem- 304

plate for daily activities like restaurant reservations 305

and accommodation bookings. 306

3.4.1 Template-guided itinerary sketch 307

Using the daily activity template as a guideline, 308

TRAVLINKTO first expands the city sequence into 309

a skeleton itinerary, structured in JSON format with 310

placeholders (i.e., todo) for missing components. 311

For example, a skeleton itinerary for our working 312

example would be: “Day 1": "cities": ["Seattle", 313

"Los Angeles"], "transportation": "todo", "accom- 314

4

modation": "todo", "attractions": "todo", "restau-315

rants": "todo", [...]“ The skeleton itinerary also316

incorporates user preferences and constraints ex-317

tracted from the user query. These may include318

preferences such as pet-friendly accommodation319

and dietary requirements, as well as constraints320

like budget limits or travel duration. We note that321

TRAVLINKTO automatically omits irrelevant ele-322

ments from the template. For instance, if the user323

does not specify a hotel preference, the itinerary324

will exclude a placeholder for accommodation con-325

straints.326

3.4.2 Identifying missing activities327

After generating the skeleton itinerary,328

TRAVLINKTO queries an LLM to generate329

actions to gather data from external databases to330

populate the placeholders. For this task, we utilize331

a zero-shot prompt, “Identify missing items and332

execution errors. Provide actionable feedback for333

both incomplete elements and error solutions.”334

(P3 in Table 2). The prompt instructs the LLM to335

detect gaps and potential issues in the itinerary.336

For instance, if the LLM detects the absence337

of accommodation details (e.g., a todo in the338

hotel element of day 2), it will generate an LLM339

prompt such as, “Accommodation arrangement340

needed for city X,” to be used within the iterative341

planning loop. Essentially, we guide the LLM342

using chain-of-thought-like reasoning to improve343

the generated plan in our processing pipeline.344

3.4.3 Data retrieval345

Using the LLM-generated prompts from the pre-346

vious step, TRAVLINKTO appends examples to347

instruct the LLM to generate structured JSON348

queries (Table 2). For instance, if the LLM349

prompt indicates missing accommodation details,350

TRAVLINKTO provides a list of relevant functions351

and their descriptions related to accommodation352

booking. It then feeds the example prompt to the353

LLM, guiding it in constructing a JSON query. For354

our working example, the LLM may generate the355

following response: "function": "filter_db", "ar-356

gument": "DBName": "accommodations", "city":357

"Los Angeles", "room_type": "pet-friendly". This358

JSON query is then parsed by the TRAVLINKTO359

Code Interpreter, which executes the request by360

searching the accommodation database for avail-361

able pet-friendly rooms in Los Angeles using the362

“filter_db” function. TRAVLINKTO provides a363

Python API to support the integration of exter-364

Column Names
(e.g., flights_origin_city)

Embeddings Cache

Encoder

Encoder
Preprocessing Phase

Input
(e.g., flight city from) Find Best Match

Match Column
(e.g., flights_origin_city)

Query Phase

Figure 3: Column name matching process

nal databases, including transportation, attractions, 365

restaurants, and accommodations. Additionally, it 366

offers built-in query functions such as filter_db 367

for database filtering and cities_confirm for 368

route verification, which can also be easily ex- 369

tended and customized using its API. 370

As LLM-generated JSON queries are not guar- 371

anteed to be syntactically or semantically valid, we 372

need to take extra steps to correct the errors. These 373

are described in the following paragraphs. 374

JSON query sanitization. To correct syn- 375

tax errors and parameter inconsistencies (e.g., 376

flights_source_city vs. departure_city), 377

TRAVLINKTO validates and sanitizes JSON 378

queries using a built-in script. It removes in- 379

valid characters, ensures proper brace matching, 380

and enforces predefined type specifications, includ- 381

ing string length, character restrictions, numerical 382

ranges, and date formats (MM-DD-YYYY). 383

Function name mapping. To ensure JSON 384

queries contain the correct database API calls, 385

TRAVLINKTO uses string similarity computation 386

to map the generated function and DBName to 387

predefined system functions. Specifically, it ap- 388

plies the Levenshtein distance (Miller et al., 2009), 389

which measures the minimum single-character ed- 390

its needed to transform one string into another. 391

This allows mismatched function names (e.g., 392

“data.filter”) to be corrected to predefined system 393

functions (e.g., filter_db). 394

Semantic correction. For semantically similar 395

keys with low lexical overlap (e.g., “departure 396

city” and “source location”), TRAVLINKTO uses 397

text embeddings for semantic alignment of ar- 398

gument keys and database columns. Column 399

names, contextualized with their database (e.g., 400

flights_source_city), are encoded using the 401

OpenAI text-embedding-3-small embedding 402

model (OpenAI, 2022) and cached to match with 403

the embedding of the input. We then select the 404

best-matching column via cosine similarity with 405

cached embeddings, as shown in Figure 3. 406

Retrieval information and error logging. Fi- 407

nally, the TRAVLINKTO Code Interpreter exe- 408

cutes the generated query against the relevant 409

5

database (e.g., “accommodations” with parame-410

ters "city": "Los Angeles", "room_type":411

"pet-friendly"). A successful execution re-412

trieves the required information (e.g., pet-friendly413

accommodations in Los Angeles) and updates the414

skeleton itinerary with the retrieved data.415

During execution, two scenarios may arise. If416

multiple matching records exist, TRAVLINKTO se-417

lects one according to the user preference or the418

default setting (e.g., choosing the lowest-cost op-419

tion). If no matches are found, it logs an error and420

returns to the query parsing stage to reprocess user421

parameters. To prevent duplicates, TRAVLINKTO422

maintains a record of previous results and filters423

out repeated entries before making a selection.424

3.4.4 Validation and optimization425

During intra-city planning iteration, TRAVLINKTO426

validates the current itinerary to ensure it meets all427

constraints extracted from the user query, focusing428

on spatial coherence and temporal consistency.429

For spatial coherence, TRAVLINKTO verifies430

that retrieved information aligns with the planned431

city route. Any misaligned items are logged to432

re-execute the relevant processing pipeline. For433

temporal consistency, it checks whether hotel min-434

imum stay requirements match the planned dura-435

tions in each city. If conflicts arise, TRAVLINKTO436

resolves them by merging adjacent stays, redis-437

tributing days, or reordering cities while maintain-438

ing the total trip duration.439

4 Experimental Setup440

4.1 Datasets441

We evaluate TRAVLINKTO using the TravelPlanner442

benchmark (Xie et al., 2024). This dataset consists443

of a validation set with 180 queries categorized444

into three difficulty levels, and a test set of 1,000445

randomly distributed queries. The difficulty levels446

are defined by specific constraints. Table 4 in the447

Appendix contains detailed information about these448

constraints for each difficulty level.449

4.2 Evaluation Metrics450

We evaluate the generated travel plans based on451

three dimensions defined in TravelPlanner (Xie452

et al., 2024): Commonsense (8 criteria), Hard Con-453

straints (5 criteria), and Environmental Feasibility454

(2 criteria). More descriptions for criteria are in Ta-455

ble 5 of Appendix. Each criterion is assessed using456

binary values (1 for satisfaction, 0 for failure). In457

this work, we employ four metrics for evaluation. 458

The Delivery Rate measures whether a plan is gen- 459

erated within 30 rounds. The Commonsense Pass 460

Rate and Hard Constraint Pass Rate evaluate their 461

respective criteria using micro-average (proportion 462

satisfied) and macro-average (1 if all are satisfied, 463

0 otherwise). The Final Pass Rate is 1 only if all 464

criteria are met for a query. 465

4.3 Competing Baselines 466

Greedy search. Following TravelPlanner (Xie et al., 467

2024), we implement a greedy search algorithm 468

as a baseline method. The algorithm first selects 469

destination cities from search results based on the 470

specified trip duration. Each daily itinerary adopts 471

a cost-minimizing strategy for transportation, din- 472

ing, and accommodation selections while randomly 473

choosing attractions. 474

LLMs and planning strategies. TRAVLINKTO 475

can be interfaced with any LLM. In our eval- 476

uation, we interface TRAVLINKTO with Ope- 477

nAI’s GPT-3.5-Turbo and Google Gemini, us- 478

ing text-embedding-3-small as the embedding 479

model. For comparison, we implement the Re- 480

Act framework (Yao et al., 2023) with GPT-3.5- 481

Turbo, GPT-4-Turbo (OpenAI, 2024), and Gemini 482

Pro (Team et al., 2023). React is a reasoning frame- 483

work for LLMs that processes user queries by rea- 484

soning, invoking predefined functions to interact 485

with external databases and generating a final plan. 486

The key difference between TRAVLINKTO and Re- 487

Act is that TRAVLINKTO employs graph-based spa- 488

tial recommendations and a self-refinement mecha- 489

nism, whereas ReAct relies on free-form summa- 490

rization and LLM-based reasoning. 491

We compare TRAVLINKTO with TRE. It shares 492

a similar structure with TRAVLINKTO, including 493

comparable query parsing and identification of 494

missing data retrieval, but differs in the valida- 495

tion stage. TRE utilizes an LLM to summarize 496

the retrieved information based on a specifically 497

designed prompt. More details are in Appendix 498

7.5. 499

5 Experimental Results 500

5.1 Overall Results 501

Table 3 reports the performance of TRAVLINKTO 502

integrated with two LLMs, comparing it against 503

other LLMs and the greedy search strategy. Higher 504

metric values indicate better performance, with the 505

best results highlighted in bold. 506

6

Table 3: Main results of different LLMs and planning strategies on the TravelPlanner validation and test set (in %).
Higher scores indicate better performance.

Validation (#180) Test (#1000)

Delivery
Rate

Commonsense
Pass Rate

Hard Constraint
Pass Rate Final

Pass Rate
Delivery

Rate

Commonsense
Pass Rate

Hard Constraint
Pass Rate Final

Pass Rate
Micro Macro Micro Macro Micro Macro Micro Macro

Greedy Search 100.0 74.4 0.0 60.8 37.8 0.0 100.0 72.0 0.0 52.4 31.8 0.0
GPT-4-Turbo 89.4 61.1 2.8 15.2 10.6 0.6 93.1 63.3 2.0 10.5 5.5 0.6

Gemini Pro 28.9 18.9 0.0 0.5 0.6 0.0 39.1 24.9 0.0 0.6 0.1 0.0
TRAVLINKTO_Gemi 36.7 28.1 6.7 10.7 7.8 3.3 74.9 52.0 8.2 1.3 2.8 2.4
Improve (↑) 27.0% 48.7% 6.7 10.2 7.2 3.3 91.6% 109.6% 8.2 0.7 2.7 2.4

GPT-3.5-Turbo 86.7 54.0 0.0 0.0 0.0 0.0 91.8 57.9 0.0 0.5 0.6 0.0
TRAVLINKTO_GPT3.5 98.9 89.1 45.0 37.1 20.0 13.9 98.7 79.7 25.9 21.4 11.3 6.7
Improve (↑) 14.1% 65.0% 45.0 37.1 20.0 13.9 7.5% 37.7% 25.9 20.9 10.7 6.7

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Within Sandbox

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Complete Information

Easy Medium Hard
Difficulty

0

50

100
Pa

ss
 R

at
e

(%
)

Within Current City

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Reasonable City Route

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Diverse Restaurants

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Diverse Attractions

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Non-conf. Transportation

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Minimum Nights Stay

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Budget

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Room Rule

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Cuisine

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Room Type

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Transportation

Easy Medium Hard
Difficulty

0

50

100

Pa
ss

 R
at

e
(%

)

Final Pass Rate
GPT-3.5-Turbo

GPT-4.0-Turbo

TRE

TravTo

Figure 4: Performance comparison across different models and constraint types. Higher pass rates indicate better
performance.

TRAVLINKTO outperforms all competing base-507

lines across various evaluation metrics. When508

utilizing GPT-3.5-Turbo as the base LLM,509

TRAVLINKTO enhances the delivery rate from510

86.7% to 98.9% and increases the final pass rate511

from 0% to 13.9%. For Gemini Pro, the improve-512

ments are from 28.9% to 36.7% in delivery rate and513

from 0% to 3.3% in final pass rate. Notably, de-514

spite using a relatively weaker base LLM (GPT-3.5-515

Turbo), TRAVLINKTO surpasses the ReAct scheme516

of GPT-4-Turbo, achieving a higher delivery rate517

(98.9% versus 89.4%) and a final pass rate (13.9%518

versus 0.6%). This demonstrates TRAVLINKTO’s519

effectiveness in completing tasks and meeting con-520

straints in LLM-based travel planning.521

TRAVLINKTO shows significant advancements522

in managing both commonsense and hard con-523

straints. For commonsense constraints, it achieves524

relative improvements ranging from 37% to 65%525

in micro-average pass rates and from 6% to 45%526

in macro-average pass rates compared to baseline 527

models. Regarding hard constraints, while Re- 528

Act with GPT-3.5-Turbo achieves a pass rate of 529

0%, TRAVLINKTO using the same LLM reaches 530

a micro-average pass rate of 37.1% and a macro- 531

average pass rate of 20.0%. 532

These enhancements are primarily attributed to 533

the benefits offered by TRAVLINKTO, including 534

spatial-aware recommendations (see Section 5.2), 535

a self-refinement mechanism (see Section 5.3), and 536

practical sets of function calling (see Section 5.4). 537

Figure 4 shows how TRAVLINKTO enhances the 538

base LLMs across user constraints of varying diffi- 539

culty levels, as defined in Table 5 of the Appendix. 540

5.2 Spatial-aware Recommendations in 541

inter-city route planning 542

For inter-city route planning, four key metrics 543

are evaluated: Transport Consistency, Reasonable 544

City Route, Within Budget, and Transportation. 545

7

TRAVLINKTO significantly outperforms the base-546

line models in all metrics. Specifically, in Rea-547

sonable City Route, TRAVLINKTO reaches 96.7-548

98.3%, substantially outperforming GPT-3.5-Turbo549

(20.0-28.3%) and GPT-4-Turbo (58.3-66.7%), and550

in Transportation constraints, it reaches 51.0%551

compared to baseline models’ 0-23.5%.552

To further evaluate our system’s effectiveness553

in cross-city travel planning, Figure 5 compares554

performance across two scenarios: multi-city (120555

queries) and direct round-trip (60 queries). In multi-556

city queries, TRAVLINKTO achieves a final pass557

rate of 11.7% (vs. baselines’ near-zero) and out-558

performs GPT-4-Turbo in both common (Macro:559

+7.8%, Micro: +18.3%) and complex constraint560

metrics (Macro: +22.2%, Micro: +15%). For561

direct round-trip queries, it attains a macro pass562

rate of 20.6% (vs. GPT-4-Turbo’s 0.6%). These563

results demonstrate the effectiveness of our city-564

graph-based route optimization in handling com-565

plex travel scenarios.566

5.3 Self-refinement Mechanism in intra-city567

activities planning568

For planning intra-city activities, we evaluate met-569

rics across various categories, including options570

diversity (restaurants and attractions), user pref-571

erences (room types, cuisines, and house rules),572

location accuracy (activity-city matching), tem-573

poral constraints (minimum stay requirements)574

and environmental feasibility (within sandbox).575

TRAVLINKTO significantly outperforms baseline576

models in all metrics, demonstrating both enhanced577

user requirement satisfaction and hallucination mit-578

igation.579

Most notably, TRAVLINKTO demonstrates ex-580

ceptional performance in hallucination prevention581

and location accuracy. In Within Sandbox tests,582

it achieves 81.7-93.3% pass rates (vs. GPT-3.5-583

Turbo’s 0% and GPT-4-Turbo’s 31.7-55.0%), while584

for Within Current City, it reaches 96.7-100% ac-585

curacy (vs. GPT-3.5-Turbo’s 66.7-70.0%). The586

system also shows significant improvements in han-587

dling user preferences, achieving substantial gains588

in Room Rule (40.0-45.6%), Cuisine (34.6-50.0%),589

and Room Type (26.1-33.3%) compared to baseline590

models’ 0% performance.591

5.4 Planning Efficiency with Impact of592

Iteration Rounds593

Figure 6 shows TRAVLINKTO’s performance on594

1000 queries across three difficulty levels and trip595

0
18

37
56

75

Delivery
Rate

Commonsense
Micro

Commonsense
Macro

Hard
Micro

Hard
Macro

Final Pass
Rate

0
10

20
30

40

Delivery
Rate

Commonsense
Micro

Commonsense
Macro

Hard
Micro

Hard
Macro

Final Pass
Rate

GPT-3.5-Turbo
GPT-4-Turbo
TravTo

(a) Multi-City (b) Direct Route

Figure 5: Performance comparison on multi-city and
direct round-trip travel planning tasks.

0 5 10 15 20 25
Round

Easy

Medium

Hard

D
iff

ic
ul

ty

3.8

6.9

8.2

4.0

7.2

9.2

5.2
9.5

9.7

Duration
3
5
7

Figure 6: Distribution of rounds by difficulty and trip
duration, with means (dashed lines) and standard devia-
tions.

durations (3/5/7-day). Easy queries require 3.77– 596

8.73 rounds on average (σ : 1.19–2.92), medium 597

queries need 3.96–9.20 rounds (σ : 1.36–3.35), 598

and hard queries take 5.17–9.74 rounds (σ : 2.00– 599

3.88). All queries are completed within the 30- 600

round limit, with longer trips generally requiring 601

more rounds. The efficiency gains stem from 602

TRAVLINKTO’s structured JSON-like commands 603

that enable batch generation and multi-parameter 604

queries, allowing simultaneous processing of differ- 605

ent planning aspects (e.g., transportation, accom- 606

modation) while avoiding iterative searches and 607

potential errors. 608

6 Conclusions 609

We have presented TRAVLINKTO, a novel frame- 610

work to enhance the spatial and temporal rea- 611

soning of LLMs for automated travel planning. 612

The approach adopts a hierarchical strategy, uti- 613

lizing knowledge graphs for inter-city routing to 614

enhance spatial awareness while implementing an 615

iterative self-refinement mechanism to improve 616

planning efficiency and reliability. Extensive ex- 617

periments on TravelPlanner datasets show that 618

TRAVLINKTO significantly outperforms baseline 619

models across multiple metrics, effectively mitigat- 620

ing hallucination and handling complex multi-city, 621

long-duration travel planning tasks. 622

8

Limitations623

Despite the promising results, we acknowledge sev-624

eral limitations of our current work.625

First, the inter-city route planning in Section 3.2626

is based on a relatively small dataset of 315 cities627

from TravelPlanner. While effective for our ex-628

periments, real-world applications would need to629

handle a much larger scale of cities. Our current630

simple route planning methods may need to be631

replaced with more efficient algorithms like Bidi-632

rectional A-star (Islam et al., 2016) or Multi-source633

Dijkstra Algorithm(Eklund et al., 1996) for larger634

city graphs.635

Second, our current approach is limited to text-636

based itinerary generation. Future work could ex-637

plore multi-modal travel planning, incorporating638

visual information and other modalities to enhance639

the planning experience.640

Third, the template-based validation in Sec-641

tion 3.4.4 relies on fixed activity categories (trans-642

portation, meals, attractions, accommodation). A643

more flexible approach that can automatically gen-644

erate templates based on user preferences would645

benefit personalized travel planning.646

Finally, the quality of our results heavily depends647

on the underlying language model’s ability to iden-648

tify and process input parameters correctly. Tradi-649

tional nature language process (Yang et al., 2024)650

methods might be needed as a fallback mechanism651

in real-world deployments when the base model652

fails to recognize crucial parameters.653

References654

Prabin Bhandari, Antonios Anastasopoulos, and Dieter655
Pfoser. 2023. Are large language models geospatially656
knowledgeable? Preprint, arXiv:2310.13002.657

Lei Chen, Jie Cao, Haicheng Tao, and Jia Wu. 2023.658
Trip reinforcement recommendation with graph-659
based representation learning. ACM Trans. Knowl.660
Discov. Data.661

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun662
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,663
Songyang Zhang, Dahua Lin, Kai Chen, and Feng664
Zhao. 2024. T-eval: Evaluating the tool utilization665
capability of large language models step by step. In666
Proc. 62nd Annu. Meeting Assoc. Comput. Linguis-667
tics, pages 9510–9529.668

Marco Dorigo, Mauro Birattari, and Thomas Stutzle.669
2006. Ant colony optimization. IEEE Comput. Intell.670
Mag., 1(4):28–39.671

Darren Edge, Ha Trinh, Newman Cheng, Joshua 672
Bradley, Alex Chao, Apurva Mody, Steven Truitt, 673
and Jonathan Larson. 2024. From local to global: A 674
graph rag approach to query-focused summarization. 675
Preprint, arXiv:2404.16130. 676

P.W. Eklund, S. Kirkby, and S. Pollitt. 1996. A dynamic 677
multi-source dijkstra’s algorithm for vehicle routing. 678
In Proceedings. ANZIIS 96, pages 329–333. 679

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, 680
Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xi- 681
angliang Zhang. 2024. Large language model based 682
multi-agents: A survey of progress and challenges. 683
Preprint, arXiv:2402.01680. 684

Aidan Hogan, Eva Blomqvist, Michael Cochez, Clau- 685
dia D’amato, Gerard De Melo, Claudio Gutierrez, 686
Sabrina Kirrane, José Emilio Labra Gayo, Roberto 687
Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga 688
Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, 689
Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, 690
and Antoine Zimmermann. 2021. Knowledge graphs. 691
ACM Comput. Surv., 54(4). 692

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, 693
Zhangyin Feng, Haotian Wang, Qianglong Chen, 694
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting 695
Liu. 2024. A survey on hallucination in large lan- 696
guage models: Principles, taxonomy, challenges, and 697
open questions. ACM Trans. Inf. Syst. 698

Fahad Islam, Venkatraman Narayanan, and Maxim 699
Likhachev. 2016. A*-connect: Bounded suboptimal 700
bidirectional heuristic search. In 2016 IEEE Inter- 701
national Conference on Robotics and Automation 702
(ICRA), pages 2752–2758. 703

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Bin- 704
hua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiy- 705
ing Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, 706
Guoliang Li, Kevin Chang, Fei Huang, Reynold 707
Cheng, and Yongbin Li. 2023. Can llm already 708
serve as a database interface? a big bench for large- 709
scale database grounded text-to-sqls. In Proc. 37th 710
Conf. Neural Inf. Process. Syst. Datasets Benchmarks 711
Track. 712

Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and 713
Shanika Karunasekera. 2015. Personalized tour rec- 714
ommendation based on user interests and points of 715
interest visit durations. In Proc. 24th Int. Conf. Artif. 716
Intell. 717

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, 718
Hiroaki Hayashi, and Graham Neubig. 2023. Pre- 719
train, prompt, and predict: A systematic survey of 720
prompting methods in natural language processing. 721
ACM Comput. Surv., 55(9). 722

Frederic P. Miller, Agnes F. Vandome, and John 723
McBrewster. 2009. Levenshtein Distance: Informa- 724
tion theory, Computer science, String (computer sci- 725
ence), String metric, Damerau? Levenshtein distance, 726
Spell checker, Hamming distance. Alpha Press. 727

9

https://arxiv.org/abs/2310.13002
https://arxiv.org/abs/2310.13002
https://arxiv.org/abs/2310.13002
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155

OpenAI. 2022. ChatGPT.728

OpenAI. 2024. Gpt-4 technical report. Preprint,729
arXiv:2303.08774.730

J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shi-731
lad Sen. 2007. Collaborative Filtering Recommender732
Systems, pages 291–324. Berlin, Heidelberg.733

Sander Schulhoff, Michael Ilie, Nishant Balepur, Kon-734
stantine Kahadze, Amanda Liu, Chenglei Si, Yin-735
heng Li, Aayush Gupta, HyoJung Han, Sevien Schul-736
hoff, Pranav Sandeep Dulepet, Saurav Vidyadhara,737
Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson738
Kroiz, Feileen Li, Hudson Tao, Ashay Srivastava,739
Hevander Da Costa, Saloni Gupta, Megan L. Rogers,740
Inna Goncearenco, Giuseppe Sarli, Igor Galynker,741
Denis Peskoff, Marine Carpuat, Jules White, Shya-742
mal Anadkat, Alexander Hoyle, and Philip Resnik.743
2024. The prompt report: A systematic survey of744
prompting techniques.745

K. Sylejmani, V. Abdurrahmani, A. Ahmeti, et al. 2024.746
Solving the tourist trip planning problem with attrac-747
tion patterns using meta-heuristic techniques. Inf.748
Technol. Tourism, 26:633–678.749

Google Gemini Team, Rohan Anil, Sebastian Borgeaud,750
Yuhuai Wu, Jean-Baptiste Alayrac, Jiahui Yu,751
Radu Soricut, Johan Schalkwyk, Andrew M. Dai,752
Anja Hauth, et al. 2023. Gemini: A family of753
highly capable multimodal models. arXiv preprint754
arXiv:2312.11805.755

C Valliyammai, R PrasannaVenkatesh, C Vennila, and756
S Gopi Krishnan. 2017. An intelligent personalized757
recommendation for travel group planning based on758
reviews. In Proc. 8th Int. Conf. Adv. Comput.759

Karthik Valmeekam, Sarath Sreedharan, Matthew Mar-760
quez, Alberto Olmo, and Subbarao Kambhampati.761
2023. On the planning abilities of large language762
models (a critical investigation with a proposed763
benchmark). Preprint, arXiv:2302.06706.764

Hongru Wang, Yujia Qin, Yankai Lin, Jeff Z. Pan, and765
Kam-Fai Wong. 2024a. Empowering large language766
models: Tool learning for real-world interaction. In767
Proc. 47th Int. ACM SIGIR Conf. Res. Dev. Inf. Re-768
trieval, page 2983–2986.769

Jianguo Wang, Eric Hanson, Guoliang Li, Yannis Pa-770
pakonstantinou, Harsha Simhadri, and Charles Xie.771
2024b. Vector databases: What’s really new and772
what’s next? (vldb 2024 panel). Proc. VLDB Endow.,773
17(12):4505–4506.774

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze775
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 2024.776
Travelplanner: A benchmark for real-world planning777
with language agents. In Proc. 41st Int. Conf. Mach.778
Learn.779

Zhenxing Xu, Ling Chen, Yimeng Dai, and Gencai780
Chen. 2017. A dynamic topic model and matrix781
factorization-based travel recommendation method782

exploiting ubiquitous data. IEEE Trans. Multimedia, 783
19(8):1933–1945. 784

Lu Yang, Wenhe Jia, Shan Li, and Qing Song. 2024. 785
Deep learning technique for human parsing: A survey 786
and outlook. IJCV, 132(8):3270–3301. 787

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, 788
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching 789
large language model to use tools via self-instruction. 790
Preprint, arXiv:2305.18752. 791

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 792
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023. 793
React: Synergizing reasoning and acting in language 794
models. In Proc. 11th Int. Conf. Learn. Represent. 795

Yu Zheng, Qianyue Hao, Jingwei Wang, Changzheng 796
Gao, Jinwei Chen, Depeng Jin, and Yong Li. 2024. A 797
survey of machine learning for urban decision mak- 798
ing: Applications in planning, transportation, and 799
healthcare. ACM Comput. Surv., 57(4). 800

10

https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2302.06706
https://arxiv.org/abs/2305.18752
https://arxiv.org/abs/2305.18752
https://arxiv.org/abs/2305.18752

	Introduction
	Related Work
	Our Approach
	Overview
	Parsing Queries
	Inter-City Route Planning
	Intra-city Activity Planning
	Template-guided itinerary sketch
	Identifying missing activities
	Data retrieval
	Validation and optimization

	Experimental Setup
	Datasets
	Evaluation Metrics
	Competing Baselines

	Experimental Results
	Overall Results
	Spatial-aware Recommendations in inter-city route planning
	Self-refinement Mechanism in intra-city activities planning
	Planning Efficiency with Impact of Iteration Rounds

	Conclusions

