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Abstract

Travel itinerary planning requires coordinating
multiple tasks, like flight and hotel bookings,
while meeting spatial and temporal constraints.
Although Large Language Models (LLMs)
show promise in tackling complex planning
tasks, they often struggle with maintaining
geographical consistency, managing real-time
travel constraints, and providing accurate lo-
gistical details. We present TRAVLINKTO, a
system designed to enhance the spatial and tem-
poral awareness of LLMs for travel itinerary
planning. TRAVLINKTO ensures geographical
coherence by leveraging city graphs to opti-
mize routes across cities. It integrates LLM-
generated content with real-time data from ex-
ternal sources, such as flight schedules and
restaurant booking systems, through an iter-
ative self-refinement process that utilizes au-
tomated query generation, execution, and pa-
rameterized planning templates. We evaluate
TRAVLINKTO on the TravelPlanner dataset.
Experimental results show that TRAVLINKTO
significantly outperforms existing LLM-based
methods, enhancing both the quality and effi-
ciency of travel planning.

1 Introduction

Travel itinerary planning systems aim to automate
the creation of personalised travel plans. Given a
user query — such as “three-day trip to London
with family” —these systems generate detailed
itineraries that include attractions, restaurants, ac-
commodations, and transportation arrangements.
An effective planning system should understand
the user’s query to generate itineraries that satisfy
spatial (e.g., locations) and temporal (e.g., time)
constraints, as well as other requirements such as
budget and preferences. Additionally, it should
adapt to real-world changes (e.g., flight schedule
adjustments) or unexpected disruptions to ensure a
valid travel plan.

Unlike traditional approaches that rely on prede-
fined rules or structured data , LLMs (Guo et al.,
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Figure 1: Overview of TRAVLINKTO, a hierarchical
framework for automated travel planning. The system
first conducts inter-city planning followed by intra-city
activity scheduling, leveraging both city graph structure
and external databases to ensure reasonable routes and
personalised recommendations.

2024) have opened up new opportunities for auto-
mated travel planning (Xie et al., 2024; Valmeekam
et al., 2023). LLMs can understand complex natu-
ral language queries and user preferences, enabling
more intuitive travel planning interactions. With
carefully designed instruction strategies (Schulhoff
et al., 2024), LLMs can function as domain ex-
perts to generate precise and personalised travel
suggestions (Guo et al., 2024). Furthermore, by in-
tegrating with external databases and APIs (Wang
et al., 2024b; Li et al., 2023), LLMs can access
real-time travel information and dynamically ad-
just plans based on current conditions, overcoming
the limitations of recommendation-based systems
(Valliyammai et al., 2017; Lim et al., 2015) and
traditional deep learning approaches (Chen et al.,
2023).

However, LLMs still face challenges in travel
planning tasks. First, despite their sophisticated
language understanding, these models struggle
with spatial reasoning and geographic relation-
ships, which are fundamental to creating feasible



itineraries (Bhandari et al., 2023). For example,
they may schedule two far-apart attractions in an
unreasonable timeframe without considering the
geographic distances between them. Second, even
with access to external APIs or databases, LLMs
are still influenced by their outdated training data.

This reliance on historical information often leads

to the generation of inconsistent or hallucinated

content, such as recommending non-existent flights,
closed attractions, or relocated venues (Huang et al.,

2024). Third, LLMs struggle to manage multiple

constraints simultaneously, such as finding hotels

that meet budget and location preferences while
aligning with transportation schedules and time
constraints (Chen et al., 2024; Wang et al., 2024a).

We present TRAVLINKTO, a novel hierarchical
framework designed to address the aforementioned
limitations by enhancing temporal and spatial
awareness of LLMs for travel itinerary planning.
An overview of TRAVLINKTO is depicted in Fig-
ure 1. To enable spatial reasoning, TRAVLINKTO
models inter-city routes as a city-level graph, en-
suring LLMs itineraries respect geographic connec-
tivity and distances. Such a structured represen-
tation empowers LL.Ms to generate logically con-
sistent, geographically feasible itineraries. To en-
hance reliability, TRAVLINKTO uses a multi-agent
framework to retrieve external knowledge and it-
eratively refine itineraries via templates. Cross-
referencing content with external knowledge and
providing refinement feedback reduces hallucina-
tions and ensures adherence to temporal, budgetary,
and user constraints. Integrating graph-based spa-
tial reasoning with iterative refinement enables
TRAVLINKTO to effectively adapt LLMs to com-
plex travel scenarios, delivering coherent, efficient,
and personalised itineraries.

We evaluate TRAVLINKTO on the TravelPlanner
dataset (Xie et al., 2024), comparing it with ReAct
(Yao et al., 2023) using multiple LLMs (GPT-3.5-
Turbo, GPT-4-Turbo, and Gemini Pro) (Team et al.,
2023; OpenAl, 2024, 2022). Experimental results
show that TRAVLINKTO significantly improves the
reasoning capabilities of LLMs in travel planning
tasks in terms of constraint satisfaction, planning
efficiency, and adaptability to complex scenarios.

This paper makes the following contributions:

* A new approach to integrate knowledge graphs
and LLMs for location-aware, long-duration
travel planning;

* An iterative self-refinment mechanism for miti-
gating LLM hallucination;

Table 1: Comparison of different approaches in travel
itinerary planning systems

Capabilities
Type Method

Parse  Match

Mathe-
matical

Integer linear program
Ant colony optimization

Recom- Collaborative filtering
mendation Matrix factorization

DL- knowledge graph
based Reinforce Learning

Standalone LLMs
LLMs with prompting
LLMs with RAG
Tools-based LLMs

LLM-
based
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* An efficient tool-based constraint handling sys-
tem for improving planning efficiency and user
satisfaction.

Code availability. The code associated with this
work is available at: https://anonymous. 4open.
science/r/TRAVELINKTO-B728/

2 Related Work

Table 1 positions TRAVLINKTO with respect to
prior travel planning systems.

Early optimisation methods (e.g., integer linear
programming (Sylejmani et al., 2024), ant colony
optimisation (Dorigo et al., 2006)) focused on math-
ematical optimisation of travel routes. Deep learn-
ing later enabled more personalised approaches,
from recommendation-based methods (collabora-
tive filtering (Schafer et al., 2007), matrix factor-
ization (Xu et al., 2017)) for POI suggestions to
advanced techniques like knowledge graph (Hogan
et al., 2021) and reinforcement learning (Zheng
et al., 2024) for capturing complex travel patterns.

Recent advances in LLMs have created new pos-
sibilities for travel planning through natural lan-
guage understanding and contextual reasoning. To
enhance base LLM capabilities, approaches like
prompt engineering (Liu et al., 2023), Retrieval
Augmented Generation (RAG) (Edge et al., 2024),
and tool integration (Yang et al., 2023), multi-agent
collaborate (Guo et al., 2024) have emerged to com-
bine language understanding with real-time travel
data and specialized reasoning.

LLM-based travel planning systems encounter
key challenges. Notably, their spatial reasoning is
limited; for instance, a Seattle to Los Angeles trip
might incorrectly route through Chicago, highlight-
ing a lack of geographical awareness. Furthermore,
these planners struggle to maintain factual accuracy
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Figure 2: TRAVLINKTO uses prompt engineering to instruct a common LLM to play different roles in the processing
pipeline. It combines LLMs and external tools to improve the quality of the generated plan.

in multi-turn conversations with external databases,
drifting from facts due to their stochastic nature.
Finally, managing simultaneous travel constraints
leads to suboptimal solutions in budget, time, and
preferences.

To mitigate these limitations, TRAVLINKTO aug-
ments LLM capabilities by incorporating graph-
based spatial reasoning and interesting LLMs with
external tools within an iterative self-refinement
mechanism to improve the temporal awareness and
reliability of LLM-based travel planning.

3  Our Approach

3.1 Overview

Figure 2 depicts the workflow of TRAVLINKTO
for planning inter-city travel (e.g., city sequences)
and intra-city activities (e.g., hotels, lunches, and
attractions).

TRAVLINKTO employs a two-stage processing
pipeline. The first stage establishes inter-city routes
using a city-level graph, ensuring geographical and
logical coherence. The second stage refines intra-
city activity scheduling through an iterative refine-
ment process. This process integrates LLMs and
external tools to instantiate daily activities such
as hotels and attractions using a customizable and
parameterized template. To construct a comprehen-
sive itinerary, TRAVLINKTO retrieves information
(e.g., hotel availability and flight schedules) from
external databases. It leverages few-shot prompt
engineering to map user queries to predefined func-
tions, which are then interpreted and executed to
fetch relevant data. Additionally, TRAVLINKTO
incorporates a self-refinement mechanism to mini-
mize errors across the processing pipeline, ensuring
that the generated itineraries adhere to temporal,
budgetary, and user-defined constraints.

Table 2 presents the key components of
TRAVLINKTO with simplified example LLM

Table 2: Overview of System Components in
TRAVLINKTO

Process (Module) Description (Method | Purpose | Example)

Few-shot | Parameter extraction | "Extract travel
parameters..." (P1).

Parsing Queries

‘é_ Zero-shot | Itinerary review | "Verify complete-
S Activity Planning ness..." (P2). X . . R L.
A Few-shot | Function calling | "Identify missing
items..." (P3).

Transportation Transit options and trip details.

Attractions Attraction route planning and visitor information.
< Accommodations Lodging options and property details.
£ Restaurants Dining recommendations and venue information.

City Network
Attraction Network

City connectivity and travel mode.
Attraction connectivity and visit duration.

Code Interpreter
Validator

Python function execution and processing.
Input validation and schema verification.

Utils

Detailed implementations are provided in Appendix 7.2

prompts used by TRAVLINKTO. A complete list
of prompts, templates, APIs and examples is given
in the Appendix. As a working example, consider
responding to a user query for planning “A 3-day
trip with travel from Seattle to Los Angeles, in-
cluding a pet-friendly room from May 20th, 2025”.
After parsing the user query, TRAVLINKTO itera-
tively executes the processing pipeline in Figure 2,
outlined as follows.

Parsing queries. We use an LLM API (e.g., Chat-
GPT) to map the query into structured parameters,
such as the origin, destination, duration, prefer-
ences, and constraints, to be stored in JSON format.
This is achieved by using an example-based few-
shot prompt (P1 in Table 2) to leverage LLMs for
natural language understanding and structured data
extraction.

Inter-city route planning. Given a JSON document
of user query parameters, TRAVLINKTO employs
a simple yet effective sampling algorithm to con-
struct initial inter-city routes. It selects routes from
a city graph database to ensure the geographical
validity of the travel sequence. For example, the
initial itinerary for our working example could be:
“Day 1: Travel from Seattle to Los Angeles, Day



2: Explore Los Angeles, Day 3: Return to Seattle.”
Section 3.3 details this planning process.

Intra-city activity scheduling. With the initial
itinerary, TRAVLINKTO populates a daily activity
template (Figure 14 in the Appendix) by iteratively
refining the plan for each day. In each iteration,
it presents the partially completed itinerary to the
LLM, prompting it to suggest actions for missing
elements (P2 in Table 2). The LLM feedback is
then used to generate a structured JSON query with
predefined functions via few-shot prompting (P3 in
Table 2). The Code Interpreter of TRAVLINKTO in
Table 2 then interprets and executes this query to re-
trieve relevant information from external databases,
such as restaurant and hotel booking systems.

Validation. At the end of each inter-city planning
iteration, TRAVLINKTO validates and refines the
generated information. It checks consistency with
user preferences and ensures spatial alignment with
the planned route. Discrepancies are logged and
fed back into the pipeline for adjustment in the
next iteration (refinement loop in Figure 2). This
iterative refinement process continues until a com-
plete and valid itinerary is generated or a maximum
of 30 iterations is reached. If the limit is reached,
TRAVLINKTO resets to the query parsing stage,
asks the LLM to regenerate user parameters, and
retries the pipeline, with a maximum of retries (10
in this work).

3.2 Parsing Queries

TRAVLINKTO extracts travel requirements and
user preferences via a few-shot prompt, “Extract
and structure the following travel parameters from
the user query, returning the results in JSON
format. Output sample: {“travel_days”: 2,
“origin”: “Washington”, }” to extract
key travel parameters stored in a structured JSON
format. Here, we want to extract two distinct pa-
rameter categories: Route Parameters (origin, des-
tination, stops, duration) for overall route planning,
and User-specific Parameters (e.g., preferences for
cuisine, accommodation, activities) for detailed ar-
rangements at each destination.

3.3 Inter-City Route Planning

If the extracted user parameters include multiple
cities, TRAVLINKTO employs a route-planning al-
gorithm to determine the optimal sequence of visits
using city-scale graphs. In this work, we integrate
TRAVLINKTO with two directed graphs: a city-

level graph and an attraction-level graph, though
this approach can be extended to incorporate other
graphs to capture additional data dependencies.

The city-level graph G = (V, E) represents
cities as nodes V (including attributes such as
name, region, and description) and transport links
as edges E (characterized by travel mode, time,
and cost). Meanwhile, the attraction-level graph
G’ = (V', E’") models attractions as nodes V' (with
properties like name, type, and description), while
edges F’ encode direct connections based on dis-
tance and popularity.

For inter-city route planning, we construct a fea-
sible travel route given a start city, an end city, and
intermediate stops, using a degree-based sampling
approach. First, we identify the set of reachable
cities R, that connect the origin city o to the target
destination. From this set, we select two anchor
cities, ¢; and c,, while the top n—2 most connected
cities serve as intermediate stops, forming the com-
plete city set C' = {c1, ca, ..., cp }. The final route
is expressed as P = (po,p1,---,Pnt1), Where
Po = Pnt+1 = o and py1,p2,...,pn = C. This
method ensures that the selected cities are well-
connected, maximizing feasibility while allowing
customization based on user-defined weights or
preferences.

TRAVLINKTO implements a retry mechanism
in case no valid route is found during one sample
iteration. In this case, a new city set is generated,
and the algorithm is retried. After 15 unsuccessful
attempts, an error is reported, prompting a return to
the query-parsing stage, where the LLM is asked
to refine the extracted user parameters.

3.4 Intra-city Activity Planning

Given an initial city visit plan (e.g., “Day 1: Seattle
to Los Angeles, Day 2: Los Angeles, Day 3: Return
to Seattle”), TRAVLINKTO prompts an LLM to
generate structured queries for external databases
to instantiate a customizable, predefined daily tem-
plate for daily activities like restaurant reservations
and accommodation bookings.

3.4.1 Template-guided itinerary sketch

Using the daily activity template as a guideline,
TRAVLINKTO first expands the city sequence into
a skeleton itinerary, structured in JSON format with
placeholders (i.e., todo) for missing components.
For example, a skeleton itinerary for our working
example would be: “Day 1": "cities": ["Seattle",
"Los Angeles"], "transportation”: "todo", "accom-



modation": "todo", "attractions': "todo", "restau-
rants": "todo", [...]“ The skeleton itinerary also
incorporates user preferences and constraints ex-
tracted from the user query. These may include
preferences such as pet-friendly accommodation
and dietary requirements, as well as constraints
like budget limits or travel duration. We note that
TRAVLINKTO automatically omits irrelevant ele-
ments from the template. For instance, if the user
does not specify a hotel preference, the itinerary
will exclude a placeholder for accommodation con-
straints.

3.4.2 Identifying missing activities

After generating the skeleton itinerary,
TRAVLINKTO queries an LLM to generate
actions to gather data from external databases to
populate the placeholders. For this task, we utilize
a zero-shot prompt, “Identify missing items and
execution errors. Provide actionable feedback for
both incomplete elements and error solutions.”
(P3 in Table 2). The prompt instructs the LLM to
detect gaps and potential issues in the itinerary.
For instance, if the LLM detects the absence
of accommodation details (e.g., a todo in the
hotel element of day 2), it will generate an LLM
prompt such as, “Accommodation arrangement
needed for city X,” to be used within the iterative
planning loop. Essentially, we guide the LLM
using chain-of-thought-like reasoning to improve
the generated plan in our processing pipeline.

3.4.3 Data retrieval

Using the LLM-generated prompts from the pre-
vious step, TRAVLINKTO appends examples to
instruct the LLM to generate structured JSON
queries (Table 2). For instance, if the LLM
prompt indicates missing accommodation details,
TRAVLINKTO provides a list of relevant functions
and their descriptions related to accommodation
booking. It then feeds the example prompt to the
LLM, guiding it in constructing a JSON query. For
our working example, the LLM may generate the
following response: "function": "filter_db", "ar-
gument": "DBName": "accommodations", "city":
"Los Angeles", "room_type": "pet-friendly". This
JSON query is then parsed by the TRAVLINKTO
Code Interpreter, which executes the request by
searching the accommodation database for avail-
able pet-friendly rooms in Los Angeles using the
“filter_db” function. TRAVLINKTO provides a
Python API to support the integration of exter-
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Figure 3: Column name matching process

nal databases, including transportation, attractions,
restaurants, and accommodations. Additionally, it
offers built-in query functions such as filter_db
for database filtering and cities_confirm for
route verification, which can also be easily ex-
tended and customized using its AP

As LLM-generated JSON queries are not guar-
anteed to be syntactically or semantically valid, we
need to take extra steps to correct the errors. These
are described in the following paragraphs.

JSON query sanitization.  To correct syn-
tax errors and parameter inconsistencies (e.g.,
flights_source_city vs. departure_city),
TRAVLINKTO validates and sanitizes JSON
queries using a built-in script. It removes in-
valid characters, ensures proper brace matching,
and enforces predefined type specifications, includ-
ing string length, character restrictions, numerical
ranges, and date formats (MM-DD-YYYY).

Function name mapping. To ensure JSON
queries contain the correct database API calls,
TRAVLINKTO uses string similarity computation
to map the generated function and DBName to
predefined system functions. Specifically, it ap-
plies the Levenshtein distance (Miller et al., 2009),
which measures the minimum single-character ed-
its needed to transform one string into another.
This allows mismatched function names (e.g.,
“data.filter”) to be corrected to predefined system
functions (e.g., filter_db).

Semantic correction. For semantically similar
keys with low lexical overlap (e.g., “departure
city” and “source location”), TRAVLINKTO uses
text embeddings for semantic alignment of ar-
gument keys and database columns. Column
names, contextualized with their database (e.g.,
flights_source_city), are encoded using the
OpenAl text-embedding-3-small embedding
model (OpenAl, 2022) and cached to match with
the embedding of the input. We then select the
best-matching column via cosine similarity with
cached embeddings, as shown in Figure 3.

Retrieval information and error logging. Fi-
nally, the TRAVLINKTO Code Interpreter exe-
cutes the generated query against the relevant



database (e.g., “accommodations” with parame-
ters "city”: "Los Angeles”, "room_type":
"pet-friendly”). A successful execution re-
trieves the required information (e.g., pet-friendly
accommodations in Los Angeles) and updates the
skeleton itinerary with the retrieved data.

During execution, two scenarios may arise. If
multiple matching records exist, TRAVLINKTO se-
lects one according to the user preference or the
default setting (e.g., choosing the lowest-cost op-
tion). If no matches are found, it logs an error and
returns to the query parsing stage to reprocess user
parameters. To prevent duplicates, TRAVLINKTO
maintains a record of previous results and filters
out repeated entries before making a selection.

3.4.4 Validation and optimization

During intra-city planning iteration, TRAVLINKTO
validates the current itinerary to ensure it meets all
constraints extracted from the user query, focusing
on spatial coherence and temporal consistency.

For spatial coherence, TRAVLINKTO verifies
that retrieved information aligns with the planned
city route. Any misaligned items are logged to
re-execute the relevant processing pipeline. For
temporal consistency, it checks whether hotel min-
imum stay requirements match the planned dura-
tions in each city. If conflicts arise, TRAVLINKTO
resolves them by merging adjacent stays, redis-
tributing days, or reordering cities while maintain-
ing the total trip duration.

4 Experimental Setup

4.1 Datasets

We evaluate TRAVLINKTO using the TravelPlanner
benchmark (Xie et al., 2024). This dataset consists
of a validation set with 180 queries categorized
into three difficulty levels, and a test set of 1,000
randomly distributed queries. The difficulty levels
are defined by specific constraints. Table 4 in the
Appendix contains detailed information about these
constraints for each difficulty level.

4.2 Evaluation Metrics

We evaluate the generated travel plans based on
three dimensions defined in TravelPlanner (Xie
et al., 2024): Commonsense (8 criteria), Hard Con-
straints (5 criteria), and Environmental Feasibility
(2 criteria). More descriptions for criteria are in Ta-
ble 5 of Appendix. Each criterion is assessed using
binary values (1 for satisfaction, O for failure). In

this work, we employ four metrics for evaluation.
The Delivery Rate measures whether a plan is gen-
erated within 30 rounds. The Commonsense Pass
Rate and Hard Constraint Pass Rate evaluate their
respective criteria using micro-average (proportion
satisfied) and macro-average (1 if all are satisfied,
0 otherwise). The Final Pass Rate is 1 only if all
criteria are met for a query.

4.3 Competing Baselines

Greedy search. Following TravelPlanner (Xie et al.,
2024), we implement a greedy search algorithm
as a baseline method. The algorithm first selects
destination cities from search results based on the
specified trip duration. Each daily itinerary adopts
a cost-minimizing strategy for transportation, din-
ing, and accommodation selections while randomly
choosing attractions.

LILMs and planning strategies. TRAVLINKTO
can be interfaced with any LLM. In our eval-
uation, we interface TRAVLINKTO with Ope-
nAI’'s GPT-3.5-Turbo and Google Gemini, us-
ing text-embedding-3-small as the embedding
model. For comparison, we implement the Re-
Act framework (Yao et al., 2023) with GPT-3.5-
Turbo, GPT-4-Turbo (OpenAl, 2024), and Gemini
Pro (Team et al., 2023). React is a reasoning frame-
work for LLMs that processes user queries by rea-
soning, invoking predefined functions to interact
with external databases and generating a final plan.
The key difference between TRAVLINKTO and Re-
Actis that TRAVLINKTO employs graph-based spa-
tial recommendations and a self-refinement mecha-
nism, whereas ReAct relies on free-form summa-
rization and LLLM-based reasoning.

We compare TRAVLINKTO with TRE. It shares
a similar structure with TRAVLINKTO, including
comparable query parsing and identification of
missing data retrieval, but differs in the valida-
tion stage. TRE utilizes an LLM to summarize
the retrieved information based on a specifically
designed prompt. More details are in Appendix
7.5.

5 Experimental Results

5.1 Overall Results

Table 3 reports the performance of TRAVLINKTO
integrated with two LLMs, comparing it against
other LLMs and the greedy search strategy. Higher
metric values indicate better performance, with the
best results highlighted in bold.



Table 3: Main results of different LLMs and planning strategies on the TravelPlanner validation and test set (in %).
Higher scores indicate better performance.

Validation (#180) Test (#1000)
Commonsense Hard Constraint Commonsense Hard Constraint
Delivery Pass Rate Pass Rate Final Delivery Pass Rate Pass Rate Final
Rate Pass Rate Rate Pass Rate
Micro ~ Macro  Micro ~ Macro Micro  Macro ~ Micro ~ Macro
Greedy Search 100.0 74.4 0.0 60.8 37.8 0.0 100.0 72.0 0.0 52.4 31.8 0.0
GPT-4-Turbo 89.4 61.1 2.8 15.2 10.6 0.6 93.1 63.3 2.0 10.5 5.5 0.6
Gemini Pro 28.9 18.9 0.0 0.5 0.6 0.0 39.1 24.9 0.0 0.6 0.1 0.0
TRAVLINKTO_Gemi 36.7 28.1 6.7 10.7 7.8 3.3 74.9 52.0 8.2 1.3 2.8 2.4
Improve (1) 27.0%  48.7% 6.7 10.2 7.2 3.3 91.6% 109.6% 8.2 0.7 2.7 2.4
GPT-3.5-Turbo 86.7 54.0 0.0 0.0 0.0 0.0 91.8 57.9 0.0 0.5 0.6 0.0
TRAVLINKTO_GPT3.5 98.9 89.1 45.0 37.1 20.0 13.9 98.7 79.7 25.9 21.4 11.3 6.7
Improve (1) 14.1% 65.0% 45.0 37.1 20.0 13.9 7.5% 37.7% 25.9 20.9 10.7 6.7
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Figure 4: Performance comparison across different models and constraint types. Higher pass rates indicate better
performance.

TRAVLINKTO outperforms all competing base-  in macro-average pass rates compared to baseline
lines across various evaluation metrics. When  models. Regarding hard constraints, while Re-
utilizing GPT-3.5-Turbo as the base LLM, Act with GPT-3.5-Turbo achieves a pass rate of
TRAVLINKTO enhances the delivery rate from 0%, TRAVLINKTO using the same LLM reaches
86.7% to 98.9% and increases the final pass rate  a micro-average pass rate of 37.1% and a macro-
from 0% to 13.9%. For Gemini Pro, the improve-  average pass rate of 20.0%.
ments are from 28.9% to 36.7% in delivery rate and These enhancements are primarily attributed to
from 0% to 3.3% in final pass rate. Notably, de-  the benefits offered by TRAVLINKTO, including
spite using a relatively weaker base LLM (GPT-3.5-  spatial-aware recommendations (see Section 5.2),
Turbo), TRAVLINKTO surpasses the ReAct scheme  a self-refinement mechanism (see Section 5.3), and
of GPT-4-Turbo, achieving a higher delivery rate  practical sets of function calling (see Section 5.4).
(98.9% versus 89.4%) and a final pass rate (13.9% Figure 4 shows how TRAVLINKTO enhances the
versus 0.6%). This demonstrates TRAVLINKTO’s  base LLMs across user constraints of varying diffi-
effectiveness in completing tasks and meeting con-  culty levels, as defined in Table 5 of the Appendix.
straints in LLM-based travel planning.

5.2 Spatial-aware Recommendations in

TRAVLINKTO shows significant advancements ) ) ]
inter-city route planning

in managing both commonsense and hard con-
straints. For commonsense constraints, it achieves  For inter-city route planning, four key metrics
relative improvements ranging from 37% to 65%  are evaluated: Transport Consistency, Reasonable
in micro-average pass rates and from 6% to 45%  City Route, Within Budget, and Transportation.



TRAVLINKTO significantly outperforms the base-
line models in all metrics. Specifically, in Rea-
sonable City Route, TRAVLINKTO reaches 96.7-
98.3%, substantially outperforming GPT-3.5-Turbo
(20.0-28.3%) and GPT-4-Turbo (58.3-66.7%), and
in Transportation constraints, it reaches 51.0%
compared to baseline models’ 0-23.5%.

To further evaluate our system’s effectiveness
in cross-city travel planning, Figure 5 compares
performance across two scenarios: multi-city (120
queries) and direct round-trip (60 queries). In multi-
city queries, TRAVLINKTO achieves a final pass
rate of 11.7% (vs. baselines’ near-zero) and out-
performs GPT-4-Turbo in both common (Macro:
+7.8%, Micro: +18.3%) and complex constraint
metrics (Macro: +22.2%, Micro: +15%). For
direct round-trip queries, it attains a macro pass
rate of 20.6% (vs. GPT-4-Turbo’s 0.6%). These
results demonstrate the effectiveness of our city-
graph-based route optimization in handling com-
plex travel scenarios.

5.3 Self-refinement Mechanism in intra-city
activities planning

For planning intra-city activities, we evaluate met-
rics across various categories, including options
diversity (restaurants and attractions), user pref-
erences (room types, cuisines, and house rules),
location accuracy (activity-city matching), tem-
poral constraints (minimum stay requirements)
and environmental feasibility (within sandbox).
TRAVLINKTO significantly outperforms baseline
models in all metrics, demonstrating both enhanced
user requirement satisfaction and hallucination mit-
igation.

Most notably, TRAVLINKTO demonstrates ex-
ceptional performance in hallucination prevention
and location accuracy. In Within Sandbox tests,
it achieves 81.7-93.3% pass rates (vs. GPT-3.5-
Turbo’s 0% and GPT-4-Turbo’s 31.7-55.0%), while
for Within Current City, it reaches 96.7-100% ac-
curacy (vs. GPT-3.5-Turbo’s 66.7-70.0%). The
system also shows significant improvements in han-
dling user preferences, achieving substantial gains
in Room Rule (40.0-45.6%), Cuisine (34.6-50.0%),
and Room Type (26.1-33.3%) compared to baseline
models’ 0% performance.

5.4 Planning Efficiency with Impact of
Iteration Rounds

Figure 6 shows TRAVLINKTO’s performance on
1000 queries across three difficulty levels and trip

Commonsense Commonsense Commonsense Commonsense  ____ Gp13 5 Turbo

. Macro Micro
Macro Micro e D — GPT-4-Turbo

{ N —— TravTo
L by
S Rate

clivery Hard

Hard i
S —""Rate Micro

Micro

Hard Final Pass Hard Final Pass
Macro Rate Macro Rate
(a) Multi-City (b) Direct Route

Figure 5: Performance comparison on multi-city and

direct round-trip travel planning tasks.
_

Hard{

Medium| -

Difficulty

Easy

Round

Figure 6: Distribution of rounds by difficulty and trip
duration, with means (dashed lines) and standard devia-
tions.

durations (3/5/7-day). Easy queries require 3.77—
8.73 rounds on average (o : 1.19-2.92), medium
queries need 3.96-9.20 rounds (o : 1.36-3.35),
and hard queries take 5.17-9.74 rounds (o : 2.00—
3.88). All queries are completed within the 30-
round limit, with longer trips generally requiring
more rounds. The efficiency gains stem from
TRAVLINKTO’s structured JSON-like commands
that enable batch generation and multi-parameter
queries, allowing simultaneous processing of differ-
ent planning aspects (e.g., transportation, accom-
modation) while avoiding iterative searches and
potential errors.

6 Conclusions

We have presented TRAVLINKTO, a novel frame-
work to enhance the spatial and temporal rea-
soning of LLMs for automated travel planning.
The approach adopts a hierarchical strategy, uti-
lizing knowledge graphs for inter-city routing to
enhance spatial awareness while implementing an
iterative self-refinement mechanism to improve
planning efficiency and reliability. Extensive ex-
periments on TravelPlanner datasets show that
TRAVLINKTO significantly outperforms baseline
models across multiple metrics, effectively mitigat-
ing hallucination and handling complex multi-city,
long-duration travel planning tasks.



Limitations

Despite the promising results, we acknowledge sev-
eral limitations of our current work.

First, the inter-city route planning in Section 3.2
is based on a relatively small dataset of 315 cities
from TravelPlanner. While effective for our ex-
periments, real-world applications would need to
handle a much larger scale of cities. Our current
simple route planning methods may need to be
replaced with more efficient algorithms like Bidi-
rectional A-star (Islam et al., 2016) or Multi-source
Dijkstra Algorithm(Eklund et al., 1996) for larger
city graphs.

Second, our current approach is limited to text-
based itinerary generation. Future work could ex-
plore multi-modal travel planning, incorporating
visual information and other modalities to enhance
the planning experience.

Third, the template-based validation in Sec-
tion 3.4.4 relies on fixed activity categories (trans-
portation, meals, attractions, accommodation). A
more flexible approach that can automatically gen-
erate templates based on user preferences would
benefit personalized travel planning.

Finally, the quality of our results heavily depends
on the underlying language model’s ability to iden-
tify and process input parameters correctly. Tradi-
tional nature language process (Yang et al., 2024)
methods might be needed as a fallback mechanism
in real-world deployments when the base model
fails to recognize crucial parameters.
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