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ABSTRACT

Neural Architecture Search (NAS) is a fast-developing research field to promote
automatic machine learning. Among the recently populated NAS methods, one-
shot NAS has attracted significant attention since it greatly reduces the training
cost compared with the previous NAS methods. In one-shot NAS, the best can-
didate network architecture is searched within a supernet, which is trained only
once. In practice, the searching process involves numerous inference processes
for each user case, which causes high overhead in terms of latency and energy
consumption. To tackle this problem, we first observe that the choices of the first
few blocks that belong to different candidate networks will become similar at the
early search stage. Furthermore, these choices are already close to the optimal
choices obtained at the end of the search. Leveraging this interesting feature, we
propose a progressive choice freezing evolutionary search (PCF-ES) method that
gradually freezes block choices for all candidate networks during the searching
process. This approach gives us an opportunity to reuse intermediate data pro-
duced by the frozen blocks instead of re-computing them. The experiment results
show that the proposed PCF-ES provides up to 55% speedup and reduces energy
consumption by 51% during the searching stage.

1 INTRODUCTION

Neural Architecture Search (NAS) has been proposed and extensively studied as an efficient tool
for designing state-of-the-art neural networks (Elsken et al., 2019; Wistuba et al., 2019; Ren et al.,
2020). NAS approaches automate the architecture design process and can achieve higher accuracy
compared to human-designed architectures (Liu et al., 2019; Xie et al., 2019; Cai et al., 2019).
However, the early NAS methods, such as reinforcement NAS (Zoph & Le, 2016), came with the
price of expensive computation costs since every searched architecture needs to be trained from
scratch, which makes the total search time unacceptable. To reduce the search cost of earlier NAS
methods, the weight sharing technique has been proposed (Yu et al., 2020; Chen et al., 2020), among
which the one-shot NAS method has attracted a lot of attention recently (Bender et al., 2018; Li et al.,
2020).

The one-shot NAS method is known as cost-efficient as it requires training a supernet only once.
A supernet is a stack of basic blocks, each of which contains multiple choices. A candidate net-
work architecture (defined as subnet) can be formed by selecting one choice for each block in the
supernet, and its corresponding weights can be inherited from the supernet. During the architecture
searching stage, candidate architectures are evaluated on the validation dataset and the best architec-
ture, i.e., the architecture with the highest validation accuracy, is updated in every searching epoch
of Evolutionary Algorithm (EA) (Real et al., 2019). Surprisingly, although training is commonly
deemed as a lengthy and energy-consuming task, the architecture searching stage in one-shot NAS
is much more costly (Cai et al., 2020) than training a supernet. The reason is that a new searching
stage should be performed whenever a different searching scenario is given, e.g., different hardware
constraints, learning tasks, and workloads, while the trained supernet can be reused. Hence, the
numerous inferences on the subnets can take a much longer time than training a supernet only once.
According to (You et al., 2020), searching can be 10 GPU days longer than supernet training when
10 different constraints/platforms are required.
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To tackle this problem, our work first makes a key observation that, for the first few continuous
blocks of the candidate architecture (defined as continuous shallow blocks), their optimal choices
can be determined at an early search epoch. Based on this observation, we propose to freeze the
choices of continuous shallow blocks at the early search epoch, which means these choices will
not be changed during the remaining search epochs. This strategy elaborately “creates” redundant
computations in the continuous shallow blocks since all candidates will share exactly the same ar-
chitecture, inherited weights, and input validation data for the shallow blocks during later search
epochs. Then we leverage such redundancy and propose a simple yet effective data reuse scheme
to save large amounts of computations, thus further reducing time and energy cost. Specifically, we
propose to reuse the last output of the continuous shallow blocks instead of re-computing it repeat-
edly throughout the remaining searching stage. Interestingly, we further discover that the freezing
strategy may in turn help to determine the optimal choices of the subsequent blocks earlier. Such
phenomenon enables us to keep freezing the choices of blocks progressively after the initial freez-
ing, which will create more redundant computations of the blocks that possess the same architecture
(choice), thus more computations can be saved.

With the proposed freezing technique, the intermediate data (the last output of the continuous shal-
low blocks) of a certain subnet can be stored and reused during the evaluation of other subnets.
However, as the searching stage requires to evaluate a subnet with a large batch (e.g., batch size =
5000) of input samples, storing the intermediate data of only one subnet may cause serious mem-
ory issues (Sec.3.5). Inspired by the Importance Sampling technique employed in many training
methods (Zeng et al., 2021), we propose to sample the “important” input data that contribute more
to distinguish the evaluation accuracy of the candidate subnets. More importantly, we empirically
demonstrate that the important samples are shared across different subnets. Therefore, it only re-
quires to store the intermediate data of important samples for one certain subnet, and then reuse it
for all other subnets.

We evaluate the proposed method on multiple benchmarks trained with the state-of-the-art ap-
proaches on the ImageNet dataset (Krizhevsky et al., 2012). The experimental results indicate
superb performance in improving the search efficiency while maintaining the search performance
with only 0.1% searching accuracy loss. Our contributions can be summarized as follows:

· We observe that, in the one-shot NAS evolutionary searching stage, the optimal architecture
of shallow blocks is determined at the early searching stage.

· We propose to freeze the choices of continuous shallow blocks for all candidates at the
early stage, and progressively freeze the choices of the subsequent blocks in the later stage.
This approach creates a great amount of redundant computations, which provide us a good
opportunity to reuse the intermediate data and reduce the searching time.

· To alleviate memory capacity issue for storing intermediate data, we leverage the concept
of importance sampling and propose a distinguish-based sampling method to reduce the
size of the intermediate data.

· We conduct extensive experiments on different benchmarks with our proposed methods.
The evaluation results show that our method can achieve up to 55% time saving and 51%
energy saving with 0.1% accuracy loss.

2 REVIEW OF ONE-SHOT NAS

Different from the traditional neural network training that aims to optimize weights given a network
architecture, NAS seeks to optimize both weight and architecture at the same time. Conventional
NAS methods (Zoph & Le, 2016; Baker et al., 2016; Zhong et al., 2018; Zela et al., 2018) have
tried to solve these two optimization problems at a nested approach. However, these methods are
usually prohibitively expensive because each architecture sampled from the search space has to
be trained from the scratch and evaluated separately. Recent works (Bender et al., 2018; Pham
et al., 2018; Cai et al., 2019; 2018) have proposed a weight sharing strategy to reduce high costs
of architecture and weight searching procedure in conventional NAS. As one of the most popular
weight sharing techniques, one-shot NAS achieves unprecedented search efficiency by decoupling
the whole searching process into two stages: supernet training (Fig.1 (a))and subnet searching (Fig.1
(b)). One-shot NAS encodes the search space into a supernet and trains it only once. Then it allows
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Figure 1: An Overview of One-Shot NAS.

sampled architectures directly inherit the weights from the supernet. As shown in Fig.1 (a), the
commonly used chain-structured supernet (Suganuma et al., 2017) is a stack of blocks, and each
block consists of multiple choices. Each choice can be different operations, e.g., a 3×3 / 5×5
convolutional layer, a max-pooling layer or an identity layer. We further define the first few blocks
in the supernet as shallow blocks, while the subsequent blocks are defined as deep blocks.

The second step of one-shot NAS is the searching stage which employs EA to find the subnet archi-
tecture with the highest validation accuracy. Each subnet can be obtained by selecting one choice for
each block in the supernet, and its weights are inherited from the supernet. The overall workflow is
shown in Fig.1 (b). At each search epoch, also known as generation, there are N candidate subnets
in the candidate pool sampled from the supernet and evaluated using validation dataset. Then the
candidate subnets are ranked together with the previous top candidates according to the validation
accuracy. Candidates with Top-K validation accuracy are selected and then evolved into N new
subnets by performing mutation and crossover operations (Real et al., 2019). The above process is
repeated until reaching the maximum number of search epochs E, and the subnet with the highest
accuracy can be obtained. The architecture of this subnet will be regarded as the optimal architec-
ture since the validation accuracy obtained by using inherited weights is highly predictive on the
accuracy obtained by training from scratch (Bender et al., 2018).

Recently, many studies focused on improving the efficiency and accuracy of the supernet training
stage by introducing various subnet sampling methods (Guo et al., 2020; Chu et al., 2021; You
et al., 2020). Nevertheless, none of them considered the efficiency of the searching stage. The
searching stage can be more time-consuming compared with supernet training (Cai et al., 2020).
This is because the supernet only need to be trained once while numerous searching processes are
required to search the optimal architecture for various deployment scenarios, e.g., different hardware
platforms, workloads. Therefore, it is essential to improve the search efficiency. NASA (Ma et al.,
2021) is the first work that focuses on accelerating the search process, and a NAS accelerator was
proposed that utilizes network fusion based on the computation sharing and data reuse within a
search generation. Different from their approach, we propose an algorithm-level optimization for
one-shot NAS evolutionary search and exploit data sharing from both within generation and across
generation levels, which achieves significant improvement on the searching efficiency.

3 METHODOLOGY

This section first introduces several key observations during the evolutionary searching phase, based
on which the progressive choice freezing evolutionary search (PCF-ES) is then proposed, along with
how it saves the computations during the searching stage. Finally, to mitigate the memory issue of
our method, the distinguish-based importance sampling method is proposed to reduce the size of the
intermediate data.

3.1 OBSERVATION: MAJORITY CHOICE IN CONTINUOUS SHALLOW BLOCKS

Figure 2 illustrates how the choices of blocks evolve across generations during the evolutionary
search in SPOS (Guo et al., 2020). The right-up subgraphs record the choice evolution in shallow
blocks. Especially, we take the 1st, the 2nd, and the 3rd blocks as the examples to show their choice
evolution across the search generations, respectively. The right-bottom subgraphs are the choice
evolution in deep blocks, and the 15th, the 16th, and the 17th blocks are used as the examples.
Each curve in the subgraph indicates the percentage of subnets among all candidate subnets in a
certain generation that select a certain choice for the block. As an example shown in the left part of
the figure, at the i-th generation, the percentage of the blue choice in the 1st block equals to 80%

3



Under review as a conference paper at ICLR 2023

Figure 2: The percentage of different choices with generation from shallow blocks to deep blocks in
SPOS.

Figure 3: The distance of the shallow blocks (a) before the majority choice appears and (b) after the
majority choice appears to the best architecture in the first and last generation.

if 40 out of 50 subnets select the blue choice. As can be seen in the right-up subgraphs, there is
one choice whose percentage increases dramatically and surpasses all the other choices in the early
generations (i ≤ 10, highlighted by the left of the blue dotted line). We define such choice as the
majority choice. We further observed that the majority choice will be selected by more subnets and
become even more dominating for the shallow blocks in the following generations. However, this is
not the case for the deep blocks. In the right-bottom subgraphs, we observed that either the majority
choice emerges at very later generations, or multiple curves intertwine with each other, thus there is
no obvious majority choice for deep blocks. The above observations indicate that candidate subnets
tend to vote majority choice in the shallow blocks at the early searching stage, while for deeper
blocks the majority choice is unclear.

3.2 RELATION BETWEEN THE MAJORITY CHOICE AND THE OPTIMAL CHOICE

Majority choice is the choice that most of the candidate subnets ”think” it can lead to better accuracy
during evolution. Intuitively, majority choice should be representative of optimal choice. To quanti-
tatively analyze the relationship between the majority choice and the optimal choice, we first define
a binary categorical choice distance D, where D equals to 0 if two choices are the same otherwise
D equals to 1. Then we calculate four types of D for the choices in the continuous shallow blocks
as follows: the average distance D between the non-majority choices and the block choices in the
first generation (i.e., initial block choices), the average distance D between the non-majority choices
and the block choices in the last generation (i.e., optimal block choices), the average distance D
between the majority choices and the block choices in the first generation, and the average distance
D between the majority choices and the block choices in the last generation. Here, all D denotes the
averaged distance across all shallow blocks. Note that the non-majority choices are all the choices
of shallow blocks when their average percentage is below an empirically predetermined threshold
(0.7) at the early searching stage. The majority choices are obtained once we observe their average
percentage rising above 0.7. The results of non-majority choices and majority choices are shown
in Figure 3 (a) and (b), respectively. The x-axis (y-axis) represents the distance between the non-
majority/majority choices and the block choices of the first (last) generation. Each point represents
an independent searching process with random seeds. As can be seen, for non-majority choices
(Figure 3 (a)), the points are scattered in a symmetrical way, which means a certain non-majority
choice can be either close or far away from the optimal choice. In contrast, for majority choices
(Figure 3 (b)), most points are located at the right-bottom of the plane, which indicates that the
majority choices are very close to the final optimal choices.
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Figure 4: (a) No data reuse if the first two blocks have different choices (b) The overall workflow
with choice freezing.

Figure 5: The choice percentage of one subsequent block after its previous blocks are frozen.

3.3 KEY INSIGHTS: CHOICE FREEZING

The above comparative experiment shows that majority choices are very close to optimal choices
and can be safely used to approximate optimal choices. This provides a solid foundation for us to
freeze the majority choices in the shallow blocks when they appear in the early searching stage. The
motivation of freezing the block choices is illustrated in Fig.4. As shown in Fig 4 (a), assuming there
are two candidate subnets to be evaluated sequentially at the current searching epoch, the choices of
the first two blocks CB1,CB2 of Net1 and Net2 are {blue, red} and {yellow, red} respectively. Since
the choices of these two shallow blocks are not totally the same (even though the choices of CB2
are the same), the intermediate feature maps (FM1, FM2) in Net1 and Net2 will be different. Hence,
to obtain the evaluation results for both subnets, the computations of all the blocks are required.
However, as shown in Figure 4 (b), if the choices in CB1 and CB2 are already majority choices in
the previous searching epoch and we managed to freeze them at the i-th search generation, Net1 will
have the same choices for CB1 and CB2 as Net2, so does Net3 to Net50 in the current generation
and all other subnets in the following generations. Since one-shot NAS uses the same validation
dataset as input, the FM1 and FM2 of these subnets will be exactly the same and the computations
for CB1 and CB2 will become redundant. Therefore, one can simply store the FM2 and reuse it
for all the subsequent evaluation of candidate subnets, with a significant computation savings of all
frozen blocks. Note that the stored FMs can be reused both within and across generations by every
subnet evaluation process, which brings more computation savings than NASA (Ma et al., 2021).

3.4 PROGRESSIVE CHOICE FREEZING EVOLUTIONARY SEARCH

To further explore the behaviour of the choices of deeper blocks, we keep monitoring the choice
percentage of every subsequent block once the previous blocks are frozen in the candidate subnet.
As shown in Figure 5, we conduct three independent search processes where the first 3, 6, and 8
continuous block choices are frozen according to the majority choice percentage threshold. For
example, the orange curve represents the choice percentage of the 7th block B7 if we freeze the
first 6 continuous blocks at the 5th generation (marked by the dot line). It can be seen that, for all
three blocks in the figure, the choice percentage increases drastically after previous blocks are fixed.
Since higher choice percentage means higher possibility that a majority choice is observed, freezing
the previous block choices will help freeze the latter block choices. Based on this observation, we
propose to freeze more block choices progressively when the previous ones are already frozen.

The overall idea is implemented in our proposed Progressive Choice Freezing Evolutionary Search
(PCF-ES) algorithm in Alg. 1. The population of the first generation is randomly generated (Line
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Algorithm 1 Progressive Choice Freezing Evolutionary Search
Input: supernet weight WA, population size P , architecture constraints C, max generation T , validation dataset
Dv , choice percentage threshold H , mutation rate r, number of blocks N , monitor size f
Output: architecture with best validation performance
1: Random initialize P0

2: c = 0
3: for i = 1 : T do
4: if c = 0 then
5: for j = N : 1 do
6: average choice percentage Mj from Bj to B1

7: block ratio Brj from Bj to B1

8: if M > H and Brj > 0.5 then
9: a1∼j

Top−K = a1∼j
maj

10: c = 1
11: break
12: end if
13: end for
14: else
15: for x = f : 1 do
16: average choice percentage Mf from Bj+1 to Bj+f

17: if Mf > H and Brf > 0.5 then
18: a

1∼(j+x)
Top−K = a

1∼(j+x)
maj

19: end if
20: end for
21: end if
22: Pmutation = Mutation(Topk, r, C)
23: Pcrossover = Crossover(Topk,C)
24: P = Pmutation ∪ Pcrossover

25: Acc = Inference(WA, Dv, P )
26: end for
27: Return architecture with highest accuracy

1) and c is a flag to check if there are block choices that have been frozen (Line 4). When c is
0 which implies no block choice has been frozen, we calculate and examine the average choice
percentage of the first j blocks at each search generation, and j starts from N (the number of blocks
in a subnet) to 1 because we aim to freeze as many block choices as possible at the beginning (Lines
5-6). Note that the average choice percentage Mj is the mean of choice percentage from block B1

to Bj . One obvious downside of the average choice percentage is that it cannot indicate the choice
percentage of each block, thus the choices of some blocks with relatively low choice percentage may
be mistakenly frozen when the averaged choice percentage across the investigated shallow blocks
exceeds the threshold. We employ another metric, i.e., block ratio, to avoid the aggressive choice
frozen. block ratio measures the ratio of blocks whose choice percentage exceeds the threshold. For
example, if the average choice percentage of the first 10 blocks exceeds the threshold, among which
only 7 of these blocks exceeds the threshold, then the block ratio is 70%. Only when the block ratio
is above the block ratio threshold, we allow the block choices to be frozen, which ensures that most
of the frozen block choices reach the required choice percentage.

If both metrics, i.e., average choice percentage and block ratio, are above the thresholds (Line 8),
choices of the first j blocks in all Top-K subnets are changed to the current majority choices (Line
9) and become frozen. Accordingly, we set flag c = 1 when the first j blocks are frozen. For the
rest of the searching process, these block choices will not be affected by the mutation and crossover
operations. On the other hand, if any of the two metrics is below the threshold and the flag c = 0,
the algorithm jumps to population generation and generates new candidates normally (Lines 22-24).
If the first j blocks can be frozen, we keep exploring chances to freeze more block choices during
the later searching stage. The monitor size f is the maximum number of blocks we should monitor
at each generation in the latter searching stage (Line 15). The purpose of using monitor size here
is to prevent aggressive block freezing. Specifically, since the search space is already remarkably
narrowed down in the initial freezing step (up to 8 continuous shallow blocks can be frozen at a
time, while a supernet usually has a total of 20 blocks), keep freezing too many subsequent blocks
(even if their average choice percentage and block ratio are above the threshold) can make the search
space so small that finally leads to inaccurate search results. In the progressively freezing phase, the
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Figure 6: The importance of samples for different subnets after shallow blocks are frozen.
average choice percentage Mf is the mean of choice percentage from block Bj+1 to Bj+f (Line
16). If the Mf is above the threshold, blocks Bj+1 to Bj+f in Top-K subnets will be frozen based
on the current majority choice.

After all candidate subnets are generated, they are evaluated on the validation dataset and ranked
based on the validation accuracy (Line 25). We keep track of the Top-K subnets and return the
Top-1 subnet architecture when maximum generation is reached or all block choices are frozen.

3.5 DISTINGUISH-BASED IMPORTANCE SAMPLING

To achieve the potential computation savings, it’s necessary to store the intermediate feature maps,
e.g. FM2 in Fig.4, of all the input samples in the validation dataset, the size of which may exceed
the memory capacity of the GPUs in some circumstances. For instance, for each input sample, the
intermediate data size of the second block of subnets in SPOS on ImageNet is approximately 0.8
MB. If the validation dataset contains more than 5000 input images, the memory storage of all the
intermediate feature maps could exceed a GPU’s memory capacity with 4GB main memory and
need to be saved in CPU memory. However, transferring data from CPU memory to GPU is very
time and energy consuming with compared to transferring from GPU local memory. The frequent
CPU-GPU data transfer impairs the search efficiency significantly. To tackle this problem, we first
leverage Importance Sampling (Alain et al., 2015) to compress the intermediate data. The idea of
importance sampling comes from the fact that not all the input samples contribute to distinguishing
the evaluation accuracy of candidate subnets. For example, for images which are easy to be classified
by most subnets, they barely contribute to distinguishing the performance of the searched subnets.

Inspired by the importance sampling during training (Zeng et al., 2021), we follow the similar prin-
ciple to sample the important data for the subnets evaluation. Let x denotes the input data, p denotes
the uniform distribution referred from random sample, q denotes the distribution adopted by impor-
tance sampling and f(x) denotes the evaluation accuracy of input data x. The unbiased estimation
of evaluation accuracy can be obtained by Eq.(1).

Ep[f(x)] =

∫
p(x)f(x)dx = Eq[

p(x)

q(x)
f(x)] (1)

if q(x) > 0 whenever p(x) > 0.

Moreover, the estimation variance of the distribution q is minimized when

q(x)∗ =
1

Z
p(x)||f(x)||2, and Z =

∫
p(x)||f(x)||2dx (2)

In our design, we use the cross-entropy loss to approximate the evaluation accuracy and then calcu-
late the important sampling distribution q(x)∗ based on Eq.(2).

Although we can obtain the important samples for a certain subnet using the above method, we
cannot reuse the intermediate data of these important samples for other subnet’s evaluation unless
the important samples are shared across different subnets. Therefore, we quantitatively analyze the
importance of samples for different subnets after the shallow blocks are frozen. As shown in Fig.6,
we present the importance distribution of 500 important samples (x-axis) for 50 different subnets
(y-axis). The color represents the importance of a sample. It can be found that the sample with high
importance (deep blue) for one subnet is also important for other subnets. Overall, the importance
distribution of a certain subnet (a certain row) is similar to the importance distribution of other
subnets (other rows). As a result, it is only necessary to store the intermediate data of important
samples for one subnet and then reuse it for other subnets.
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Table 1: Comparison of searched architecture w.r.t different benchmarks and search methods. T :
majority choice percentage threshold.MS: monitor size.

Supernet Method T MS Top-1 Top-5 FLOPS(M) GPU Hour GPU Energy(MJ)
SPOS Evolutionary % % 73.5 90.2 328 16.7 4.5

CF-ES 0.7 % 73.5 90.1 324 13.9 3.8
PCF-ES 0.7 3 73.4 90.1 316 7.5 2.2

FairNAS Evolutionary % % 72.0 89.8 322 15.2 4.2
CF-ES 0.5 % 72.2 90.0 323 11.7 3.4

PCF-ES 0.4 2 71.9 90.1 329 8.4 2.5
GreedyNAS Evolutionary % % 72.5 90.1 322 17.9 4.8

CF-ES 0.4 % 72.3 90.2 327 15.1 3.9
PCF-ES 0.4 3 72.5 90.2 328 11.1 3.0

Figure 7: The search time breakdown on SPOS with (a) evolutionary search (b) CF-ES (c) PCF-ES.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Our experiments are conducted on widely used ImageNet(Krizhevsky et al., 2012), of which the
validation dataset contains 50000 images at 1000 categories. Both supernet training and subnet
searching processes are performed on Tesla P100 GPUs with 16 GB memory. We employ the
chain structure supernet adopted with three benchmarks: SPOS (Guo et al., 2020), FairNAS (Chu
et al., 2021) and GreedyNAS (You et al., 2020), whose supernets contain 20, 19 and 21 blocks,
respectively. The supernets are trained with the parameter settings in the original papers. The
maximum search generation is 20 and the population size is 50. At each generation, subnets with
top-10 validation accuracy are kept as parent networks.

4.2 EXPERIMENT RESULTS

The search results on different benchmarks and search methods are shown in Table 1. Evolution-
ary represents the original evolutionary algorithm used in (Guo et al., 2020), which is regarded as
the baseline in our study. Choice Frozen Evolutionary Search (CF-ES) represents the method that
only freezes shallow blocks and does not monitor the deep blocks for further freezing. Thanks to
the reduced computations for the frozen shallow blocks, CF-ES method achieves averagely 19%
time saving and 18% energy saving while maintaining Top-1 and Top-5 accuracy compared to the
baseline. Progressively Choice Freezing Evolutionary Search (PCF-ES) is our proposed method
that freezes both shallow and deep blocks during the searching, which achieves much more latency
reduction with little accuracy loss. Specifically, PCF-ES reduces 38% ∼ 55% search latency and
37% ∼ 51% GPU energy consumption in three benchmarks. To understand where the speedup ex-
actly comes from, we further breakdown the execution time at each generation when using different
searching methods. As shown in Fig.7, the searching time (latency) of each generation is close to
each other in the original evolutionary search, while CF-ES takes less time since the 6th generation
because shallow blocks are frozen. The latency of PCF-ES begins to decrease from the 6th gener-
ation and keeps dropping progressively until it becomes 0 in the 13th generation, during which all
blocks are frozen. In other words, it takes only 13th searching epochs to find the optimal architecture
when using PCF-ES method.

Fig.8 shows the Top-1 searching accuracy during the searching stage for different approaches and
benchmarks. It can be observed that, for all benchmarks, all three methods have the same accuracy
at the early generations when no choices are frozen. Compare to other two methods, PCF-ES shows
very little accuracy loss in SPOS and FairNAS, and can always terminates earlier.

To determine appropriate hyper-parameters, i.e., choice percentage threshold, block ratio thresh-
old, and monitor size, used in our algorithm, we conduct sensitivity analysis for all three types of
thresholds. Note that the proper thresholds we obtained using one dataset are effective for different
searching scenarios. We first study the effects of selecting the choice percentage threshold for dif-

8



Under review as a conference paper at ICLR 2023

Figure 8: The Top-1 accuracy with different methods on (a) SPOS (b) FairNAS (c) GreedyNAS.

Figure 9: Top-1 accuracy v.s. generation with different majority choice percentage thresholds (T)
on (a) SPOS (b) FairNAS (c) GreedyNAS.
ferent benchmarks are shown in Fig.9. The monitor size and block ratio are empirically initialized
to be 3 and 0.5. As can be seen, for SPOS, when choosing the smallest threshold (T = 0.6), the
searching terminates at the earliest (at the 10th generation) with relatively low accuracy. This is
because some shallow blocks are mistakenly frozen. Similar behavior can be observed when setting
threshold as 0.3 for FairNAS and GreedyNAS. To avoid the blocks being frozen too aggressively,
a proper threshold should be picked. For example, when setting threshold as 0.7 for SPOS and 0.4
for FairNAS and GreedyNAS, the searching process maintains relatively high accuracy while ter-
minating early as well. These thresholds are the optimal thresholds that ensure both high accuracy
and low latency at the same time. The effects of selecting different block ratios are not shown here
since we observed similar results to the effects of the choice percentage threshold. We empirically
set block ratio as 0.5 in all three benchmarks.

Figure 10: The searching accuracy and computation savings using different monitor sizes on (a)
SPOS (b) FairNAS (c) GreedyNAS.

Fig.10 shows the searching accuracy and saved computations with different monitor sizes. For SPOS
and GreedyNAS, the accuracy fluctuate with the increase of the monitor size. However, for FairNAS,
the accuracy drops significantly when the monitor size is greater than 2. This is because too many
deep blocks are frozen in this case. The saved computation increases steadily in all benchmarks as
the number of monitored blocks increases.

Figure 11: Validation accuracy v.s.
sample rate.

Fig.11 shows the validation accuracy of the optimal ar-
chitecture searched by PCF-ES with different importance
sampling rate (the ratio of sampled data to total data). We
observe that when the sample rate is higher than 40%,
the accuracy impact is negligible. However, the accuracy
drops rapidly if the sample rate further decreases.

5 CONCLUSION

In this work, we profiled the evolutionary searching process of one-shot NAS and observed the key
observations regarding the choice of blocks. Motivated by the majority choices that appears at the
shallow blocks at the early searching stage, we proposed a progressively choice freezing evolution-
ary search to narrow the search space and reduce the searching time. As our evaluation results show,
our method reduces averagely 46% of searching latency and 43% of energy consumption for all
benchmarks while incurs only 0.1% accuracy loss.
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A APPENDIX

A.1 OBSERVATION

As introduced in Section 3.1, the majority choices of shallow blocks can be determined in the early
search generations while deep blocks cannot. Here we present the choice evolution of more blocks
in two other one-shot NAS benchmarks: FairNAS and GreedyNAS. As shown in Fig. 12. Moreover,
choice evolution of different dataset are shown in Fig.13. It can be found that the majority choices
of shallow blocks appears in the early search stage and their percentage increases steadily. On the
contrary, the majority choice in deep blocks can not be decided during the search process.

Figure 12: The percentage of different choices in shallow blocks and deep blocks v.s. generations
on (a) FairNAS (b) GreedyNAS.

A.2 PROGRESSIVELY CHOICE FREEZING

In section 3.4, we show that in SPOS, the choice percentage of the subsequent blocks increases
rapidly after the previous blocks are frozen. We further conduct the same experiments for other
two benchmarks. As shown in Fig. 14, for all six searching processes in (a) and (b), the choice
percentage of subsequent blocks increases dramatically after freezing the previous blocks.

A.3 EXPERIMENT RESULTS WITH MORE DATASET

We conducted our experiment on multiple datasets to support Section 4.1. Some of the experiment
results on CIFAR-10 and CIFAR-100 dataset at SPOS are shown as Table 2. It is can be found
that, our CF-ES method could achieve up to 20% time saving with no accuracy loss while PCF-ES
achieves up to 52% time saving with negligible accuracy loss.

A.4 THE COMPARISON BETWEEN SAMPLING METHOD

We compare the validation accuracy of the importance sampling with random sampling, as shown in
Table 3. It can be found that our importance sampling method achieves higher or the same accuracy
compared to random sampling at all sample rates. Our method can achieve a lower sample rate while
maintaining high search accuracy.
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Figure 13: The percentage of different choices in shallow blocks and deep blocks v.s. generations
on SPOS on (a) CIFAR-10 (b) CIFAR-100.

Figure 14: The choice percentage of subsequent blocks after previous blocks are frozen in (a) Fair-
NAS (b) GreedyNAS.

Table 2: Comparison of searched architecture w.r.t different dataset

Dataset Method Top1 Top5 GPU Hour
CIFAR-10 Evolutionary 96.5 99.9 5.4

CF-ES 96.5 99.9 4.6
PCF-ES 96.4 99.9 3.0

CIFAR-100 Evolutionary 75.1 92.4 5.4
CF-ES 75.0 92.1 4.4
PCF-ES 74.9 92.3 2.6
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Table 3: Validation accuracy with random sampling and distinguish-based importance sampling

Method
Sample Rate 90% 70% 50% 30%

Random Sampling 73.4 73.5 73.1 73.1
Importance Sampling 73.5 73.5 73.4 73.1

Table 4: Validation accuracy with distinguish-based importance sampling and quantization.

Sample Rate
Bit 32 16 8 4

50% 73.4 73.4 73.1 73.0
30% 73.1 73.1 72.8 72.8
10% 73.1 73.1 73.0 72.8

A.5 THE EFFECTS OF QUANTIZATION

In an attempt to achieve more memory savings, we tested another compression technique, i.e.,
quantization, on our sampled dataset. Quantization is a commonly used compression method
that converts a floating-point value to a fixed-point value with fewer bits. Here the quantization is
applied on the intermediate data before storing them into the memory. The validation accuracy with
different importance sampling rate and quantization bit for SPOS benchmark is shown in Table 4.
It can be seen that the search accuracy maintains when the intermediate data are quantized to 16
bit, but drops considerably when further quantized to lower bit. For the configuration of PCF-ES
method, we use 40% sample rate and 16-bit quantization for the best searching performance.
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