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ABSTRACT

Conventional end-to-end deep neural networks often degrade under domain shifts
and require costly retraining when deployed in unpredictable, noisy environ-
ments. Inspired by biological neural computation, we propose a modular frame-
work in which each module is a recurrent neural network pretrained using a
simple, task-agnostic protocol to learn robust, transferable features. We show
that low-dimensional, input-driven continuous attractor manifolds, embedded in
a high-dimensional latent space, yield task-invariant representations that enable
robust transfer and resilience to temporal perturbations. At deployment, only a
lightweight adapter needs training, allowing rapid adaptation to new tasks. Val-
idated on the Dynamic Vision Sensor (DVS) Gesture benchmark and a custom
rehabilitation action recognition dataset we collected, our framework achieves ac-
curacy competitive with state-of-the-art methods, especially in few-shot settings,
while requiring an order of magnitude fewer parameters and minimal training.
By integrating biologically inspired attractor dynamics with cortical-like modular
composition, the framework provides a practical route to robust, continual adap-
tation in real-world information processing.

1 INTRODUCTION

Artificial Intelligence (Al) systems deployed in real-world contexts—such as robotics, autonomous
vehicles, and wearable assistants—must operate reliably in open-ended, unpredictable environments.
In practice, they routinely encounter sensor noise, adversarial perturbations, data imbalance, and
non-stationarity (Xing et al., 2025). Achieving robust performance under such conditions demands
rapid domain adaptation (Liu et al., 2021), especially when training data are scarce or environments
shift over time. This raises three fundamental challenges: 1) transferability: how to build represen-
tations that generalize across environments; 2) robustness: how to remain stable under noise and
corrupted inputs; 3) cross-task adaptability: how to rapidly learn new tasks with minimal data.

Conventional end-to-end deep learning architectures are poorly suited to these challenges of real-
world deployment. They assume matched training and testing distributions (Roy et al.l [2021)),
leaving their task-specific features brittle under distributional shifts. Biological cognition, by con-
trast, achieves remarkable adaptability and generalization from limited supervision (Barry et al.,
2007), drawing on evolutionarily conserved neural circuitry that can be flexibly reused across many
tasks (Anderson,2010;2016)). A key mechanism is the emergence of collective neural dynamics that
self-organize into attractors—low-dimensional, stable activity patterns that remain consistent across
diverse input conditions (Khona & Fiete, [2022)). Attractors can encode core motion variables such
as direction and position, and have been proposed as reusable cognitive “symbols” for fundamental
concepts or operations (Nam et al.| 2023} |[Shadlen & Newsomel 2001)). Their tolerance to noise
and representational stability make them well-suited for modular computation and transfer across
tasks (Burak & Fiete, 2009; Mathis| [2024). Yet it remains unclear how randomly recurrent neural
networks (RNNs) can develop continuous attractors that serve as robust, transferable representa-
tions, and how such dynamics can be recomposed for rapid adaptation with minimal supervision.

To address this gap, we propose a brain-inspired modular framework that explicitly embeds contin-
uous attractor manifolds (Manjunath et al.,[2012)) as transferable representations for domain adapta-
tion. Drawing on insights from neuroscience and dynamical systems (Hocker et al.| 2025), we pre-
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train RNN modules not on task-specific labels, but on simple synthetic sequences that capture funda-
mental spatiotemporal symmetries. This process sculpts each module’s high-dimensional state space
into structured, low-dimensional manifolds—rings, cylinders, and tori—that represent interpretable
motion primitives such as direction, velocity, and position. These input-driven manifolds (Sussillo
& Barakl |2013}|Gallego et al., 2017) exhibit smooth and flexible dynamics: they remain stable under
noise and perturbations while adapting rapidly to changing inputs. This enables robust encoding of
continuous task variables under strong distribution shift, preserving performance across tasks.

We validate the framework on the DVS (Dynamic Vision Sensor) gesture benchmark and a custom
RGB (Red-Green-Blue) rehabilitation dataset. In both domains, the learned manifolds preserve their
structures—anchored to interpretable motion variables—even under severe interruptions such as cor-
rupted or missing frames. The pretrained RNN modules can be flexibly composed within a modular
architecture, each specializing in distinct spatiotemporal features. A Hebbian inspired mechanism
allows lightweight reconfiguration at deployment, requiring only a small adapter to be trained. This
enables rapid few-shot adaptation in a single epoch without disrupting the pretrained attractor dy-
namics. Our framework matches or exceeds the performance of leading deep models, e.g., C3D
(Convolutional 3D) (J1 et al.l |2012) and ViViT (Video Vision Transformer) (Arnab et al., [2021)),
while using an order of magnitude fewer parameters and dramatically reducing training energy de-
mands. By unifying biologically inspired attractor dynamics with modular composition, this work
provides a practical path toward robust, efficient, and continually adaptive information processing.

2 RELATED WORK

Deep models, such as two-stream CNNs (Simonyan & Zisserman, |2014) and GNNs (Yan et al.,
2018), achieve strong recognition accuracy but require costly optical flow or skeleton extraction,
yielding opaque features and require extensive retraining for each task. Reservoir computing (RC)
leverages the dynamics of randomly connected RNNs without training recurrent weights (Poole
et al., 2016} |L1 et al.l 2023; Yang et al.l 2023), but lacks the inductive biases required for robust
transfer. Invariant representation learning for domain adaptation, via augmentation (Chen et al.,
2023)), contractive autoencoders (Rifai et al., [2011), adversarial alignment (Ganin & Lempitsky),
2015;/Shi et al., 2022), or causal mechanisms (Rojas-Carulla et al., [2018)), is typically data-intensive
and produces latent features with limited interpretability. In contrast, our framework introduces
explicit attractor-based invariance that enables robust transfer with minimal training.

3 MODEL

Many human actions involve low-complexity, constrained motions that resemble rigid-body dy-
namics (Johansson, 1973} |An, [1984). Recognizing such actions can often be reduced to identify-
ing a few core spatiotemporal observables, such as position, direction, and velocity of movement
(Fig. [Th). We hypothesize that RNNs pretrained to extract these elementary features from syn-
thetic sequences can develop reusable inductive biases that generalize to naturalistic settings. To
test this, we pretrain vanilla RNNs on synthetic, task-agnostic video sequences that isolate spe-
cific motion attributes (Williams & Zipser, |1989) (Fig. ). Each RNN specializes in encoding one
of three primitives—direction, velocity, or spatial salience—forming smooth low-dimensional man-
ifolds aligned with physical motion parameters. These representations emerge independently of
any downstream task, enabling transfer across domains. We integrate these pretrained modules into
a Pretrained Reservoir Group (PRG) framework. At deployment, modules are flexibly composed
into task-specific pipelines for action recognition, with mechanisms for input alignment, feature
encoding, and lightweight adaptive decoding. This design supports efficient adaptation and strong
generalization under domain shifts.

To instantiate each module, we employ a vanilla recurrent neural network (RNN) with 512 neurons,
where the hidden state h(t) evolves as a leaky integration of the previous state and current input,
followed by ReLU and layer normalization for stability:

h(t+1) = LayerNorm{(l — L) h(t) + L ReLU (Wreeh(t) + Wﬂ(t))], (1)

with 7 = 2, input weights W, and recurrent weights W.o..
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Figure 1: Overall concept, pretraining schema, and emergent neural manifolds. (a) Concept: Action
sequences are decomposed into core motion attributes—direction, velocity, and position—captured by
specialized pretrained RNN modules as low-dimensional manifolds. (b) Pretraining tasks: Each
module is pretrained on synthetic motion primitives (bars or dots) to encode its target attribute.
(c-e) Principal component (PC) projections of emergent dynamics. (¢) Direction RNN: A smooth
ring manifold aligned with input direction emerges after pretraining (bottom), contrasting with the
unstructured dynamics of a random RNN (top); (d) Salience RNN: A toroidal manifold aligned with
z (top) and y (bottom) positions; Black dashed line indicates trajectory at a fixed azimuthal angle.

(e) Velocity RNN: A structured cylindrical manifold jointly encoding motion speed |‘7| (top) and
velocity direction 6 (bottom).

Three such RNNs were pretrained from random initialization on synthetic video sequences, each
isolating a distinct motion attribute. The Direction RNN was trained on 7" = 100-frame bar-motion
clips spanning 12 directions, with Bernoulli noise (p = 0.01), to classify motion angle 6. The Veloc-
ity RNN was trained on bars moving at five discrete speeds across 12 directions, jointly predicting
direction and speed. The Salience RNN was trained on dot-cloud clips with a smoothly drifting
Gaussian centroid, estimating (x, y) positions on a discretized grid.This pretraining circumvents the
challenges of task-specific end-to-end optimization (e.g., vanishing/exploding gradients (Pascanu
etal.}[2013)) and induces dynamics aligned with core kinematic primitives (details in Appendix|[A.I)).

These pretrained RNNs are organized in the PRG framework that draws on principles of cortical
organization and integrates motion-related attributes effectively to achieve robust, interpretable, and
adaptive gesture cognition across tasks. The architecture consists of three components (Fig. [2): an
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Figure 2: PRG framework. (a) Overview of the PRG framework. (b) DVS input processing: At each
time pointt = 1, ..., n, preprocessed DVS frames (st1) drive Salience RNN to estimate focus points
(x[t], y[t]), which crop a focused frame (st2’). Both st1 and st2’ are then fed into pretrained RNN
modules to extract spatial and temporal(direction and velocity) features. (¢) Temporal encoding in
the Z module: Motion directions ¢ are binned into histograms over time and concatenated into a
time-direction map, capturing trajectory evolution for downstream decoding.

input alignment module, a set of pretrained RNN modules, and a fusion layer for evidence accumu-
lation. The alignment module merges data from diverse sources into a unified binary video format
at multiple spatial resolutions, ensuring compatibility with all pretrained modules. Each pretrained
RNN module is specialized for a distinct kinematic attribute, and their outputs are combined through
a structured, biologically inspired fusion process.

Mirroring cortical parallelism, we design multiple RNNs tuned to complementary motion attributes:
1) A Spatial Module, with strong self-connections, integrates pixel-wise activity to capture spa-
tial occupancy; 2) A Direction RNN encodes motion angle into 12 angular bins, yielding coarse
directional features (Z, Z_); 3) A Velocity RNN encodes trajectory speed into 5 discrete levels,
producing (V, V_); 4) A Salience RNN, inspired by the attentional mechanism in the frontal eye
field (FEF) (Schall, 2004; Thompson et al., 2005), predicts motion centroids (z(t), y(t)), which de-
fine high-resolution patches that are further processed by the Direction and Velocity RNNs, yielding
refined estimates (ZF'y, ZF_,V F,VF_) (more details in [A3).

Finally, decision-making is modeled after parietal-prefrontal circuits that integrate heterogeneous
evidence over time (Gold & Shadlen| [2007; [Ernst & Banks|, [2002). We implement a two-stage fu-
sion: 1) Static fusion: each module’s hidden state is mapped to class probabilities (via SVM) and
uniformly aggregated. 2) Adaptive Hebbian fusion: Module fusion weights, applied to the class
probabilities, are dynamically updated on a small validation set. This reinforcement of correct asso-
ciations enables rapid few-shot adaptation without full retraining (see Fig. [I0} details in Sec.[A4).

This modular design decomposes complex gestures into interpretable components (A-TT), supports
robust cross-domain transfer, and provides a principled path toward brain-inspired generalization.

4 RESULTS

4.1 HIDDEN REPRESENTATIONS OF EACH RNN MODULE

To examine the emergent dynamics, we recorded hidden states from each pretrained RNN under
the correspondent synthetic video sequences and projected them into 3D subspaces via principal
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component (PC) analysis. Pretraining produced strikingly structured low-dimensional manifolds
embedded in high dimensional neural space. 1) Direction RNN: hidden states self-organized into
a smooth ring manifold (effective dimension ~ 2.11, measured by participation ratio [A.6), each
point encoding a distinct motion angle-reminiscent of biological ring attractors for head direction
or angular velocity (Khona & Fiete} [2022)) (Fig. ). 2) Salience RNN: hidden states formed a
toroidal manifold (effective dimension 3.81), where positions on the torus mapped to (x, ) spatial
coordinates, embedding 2D locations into a continuous latent structure (Fig. [IJd). 3) Velocity RNN:
hidden states traced a cylindrical manifold (effective dimension 3.46), with angular components
encoding motion direction and radial or axial coordinates capturing speed (Fig.[Ik). In all cases, the
relevant motion feature emerged as an order parameter, around which activity self-organized into a
smooth, low-dimensional manifold. Thus, synthetic attribute-specific pretraining can reliably sculpt
modular RNNSs into interpretable dynamics.

4.2 PROBING HIDDEN DYNAMICS

We analyze the internal dynamics of each RNN under perturbations of both internal states and ex-
ternal inputs (Fig. 3, b, and for methods refer to [A.5). Across modules, emergent manifolds are
low-dimensional, anchored to inputs, and resilient to both internal noise and external input varia-
tion. The dynamics are fully inpuz-driven: internal states closely follow current stimuli rather than
sustaining themselves autonomously. For example, in the Direction RNN, a directional input (e.g.,
Iy = 90°) positions the state on the ring manifold; removing the input rapidly drives activity back
to baseline. Unlike autonomous attractors, these modules function as input-driven continuous at-
tractors tailored to fast-changing streams. The manifold consists of input-dependent fixed points
with two core dynamical properties (Fig. [3k-e): 1) Stability: Perturbations of internal states under
a fixed input contract back to the manifold within 5 ~ 10 steps. Vector fields show strong restora-
tive flows toward input-anchored regions, with restoring forces increasing with distance—consistent
with input-driven fixed points. 2) Adaptability: Small input shifts (e.g., motion angle +30°, posi-
tion %1, or velocity 1) induce smooth tangential flows toward the fixed point corresponding to the
new input. A high cosine similarity between the flow and the manifold’s tangent directions confirms
that the geometry is preserved, thereby enabling stable and continuous tracking.

These properties drive strong out-of-distribution generalization: 1) Direction RNN maintains over
80% decoding accuracy under novel combinations of direction change frequency and speed (Fig. 3f),
far outperforming a C3D (Ji et al., |2012) baseline, which exhibits > 40% error at high velocities;
2) Salience RNN generalizes across centroid moving speed and spatial spread o, again surpassing
C3D (Fig.[3g); 3) Velocity RNN retains high accuracy under unseen velocity-change frequencies
and speed ranges, demonstrating strong resilience to distribution shifts (Fig. [3h). Overall, synthetic
pretraining sculpts rings, tori, and cylinders—smooth, input-driven manifolds that are dynamically
attractive and geometrically stable (Sussillo & Barak,[2013)). These manifolds act as strong inductive
biases, supporting robust extrapolation beyond training distributions.

4.3 REPRESENTATION TRANSFER TO REAL-WORLD TASKS FOR DOMAIN ADAPTATION

Crucially, the pretrained manifolds (input-driven continuous attractors) transfer directly to real-
world tasks, preserving both geometric structure and dynamical properties. This supports our core
claim: low-dimensional attractor manifolds act as robust, reusable computational substrates for nat-
uralistic motion recognition without retraining.

We validated this on two real-world datasets: the DVS Gesture benchmark and a custom RGB re-
habilitation action dataset. For each, we projected real-task neural activity into the same PC spaces
defined during synthetic pretraining, directly testing whether trajectories remained confined to the
original manifolds. Despite the sharp distribution shift from synthetic videos (direction, salience,
velocity) to real-world tasks (Fig. [6), both topology and flow dynamics persisted (Fig. d). Two key
transfer conditions emerged. 1) Dynamical confinement: Real input streams induce smooth, low-
dimensional flows that remain near the pretrained manifold’s tangent space, ensuring stable encod-
ing. 2) Geometric alignment: The pretrained manifold structure provides a topological metric for
real task inputs, embedding relevant motion features—direction, spatial position, and velocity—into
continuous latent coordinates.

These principles generalize across all modules (Fig. ). 1) Direction RNN: Clockwise (CW) and
counterclockwise (CCW) arm-waving gestures trace oppositely circulating trajectories around the
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Figure 3: Neural dynamics around attractor manifolds in direction (c), salience (d), and velocity
(e) RNNs. (a) Input-driven dynamics: Activity converges to a stable location on the ring manifold
under a fixed input (Iy = 90°) and decays when input is removed. (b) Perturbation types: Internal
perturbations (off-manifold) vs. input shifts (along-manifold). (¢) Direction RNN: Internal stability
analyses (vector fields, force—distance profiles, angle histograms) show recovery toward the mani-
fold using manifold analysis (A.5). Input shift analyses (vector fields, tangent-angle statistics) reveal
smooth adaptation under opposite offsets. (d, e) Same analyses for Salience and Velocity RNNs, re-
spectively; point colors in PC spaces match Fig.[I] (f-h) Generalization performance across input
direction, duration, and velocity variations, compared to a C3D baseline trained under the same
paradigm. Red squares denote training conditions.

ring manifold (Fig. fip, left). Trajectories align with tangent flow (cosine similarity; Fig. @, mid-
dle), yielding 97% classification accuracy and robustness to frame dropout (random deletion of a
proportion of frames) and interpolation (insertion of random clips between consecutive frames[A.7),

surpassing C3D 2012) (Fig. [, right). 2) Salience RNN: Left- vs. right-hand waves map to
spatially distinct toroidal regions (Fig. @b, left). Decoded z-positions show clear separation (Fig. fip,
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Figure 4: Task-specific neural dynamics and robustness of pretrained RNNs in real motion tasks.
(a) Direction RNN (0): Clockwise and counterclockwise arm-waving gestures evoke opposite tra-
jectories on the ring manifold (left); Cosine similarity confirms flow alignment with tangent vectors
(middle); Decoding remains robust under frame perturbations, outperforming C3D (right). The x-
axis indicates the proportion of frames deleted or random clips inserted between consecutive frames.
(b) Salience RNN (position z): Left vs. right hand waves map to spatially distinct regions on the
toroidal manifold (left); Decoded z-positions show clear separation (middle); Decoding accuracy
surpasses C3D (right). (¢) Velocity RNN (speed |‘7|): Shoulder movements of different intensities
map to distinct cylindrical trajectories (left); Decoded speed levels capture motion intensities (mid-
dle); Decoding accuracy remains stable under perturbations, exceeding C3D (right).

middle), preserving the spatial structure learned in pretraining under naturalistic inputs. Robustness
tests confirm stable decoding under noisy inputs (Fig. @, right). 3) Velocity RNN: Shoulder move-
ments of different intensities trace distinct cylindrical trajectories (Fig. [k, left). Decoded speed
levels reliably capture motion strength, including null and full movements in the RGB rehabilitation
actions (Fig. @, middle), and remain robust under temporal perturbations (Fig. @, right).

Most critically, we find that manifolds violating the low-dimensional property exhibit dra-
matically reduced transferability. When additional features are entangled during pretraining, the
corresponding manifold becomes mixed and its dimensionality increases (details in[A-8). As a con-
sequence, both geometric alignment and dynamical stability break down during transfer, resulting in
poor task performance (Fig.[7). In contrast, low-dimensional attractors that encode disentangled mo-
tion attributes preserve topological invariance, ensure smooth flow alignment, and maintain robust
performance under noise and distributional shifts.

Together, these results demonstrate that low-dimensional, input-driven continuous attractors are
not only biologically plausible but also necessary for reliable and generalizable representation trans-
fer. They provide a principled mechanism for robust generalization—one that static feedforward
models like C3D fail to match, especially under nonstationary or corrupted conditions (Fig. [8).
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Figure 5: Model performance on DVS and RGB tasks. (a) DVS-task Confusion matrices: Clas-
sification accuracy using spatial module only (left), spatial+temporal (direction) modules (middle),
and all modules (right). Darker colors indicate higher accuracy. (b) RGB-task Confusion matri-
ces: Same comparison across module combinations. (¢) DVS-task few-shots learning performance
comparison. (d) RGB-task few-shots learning performance comparison: Overall (left) and macro-
averaged (right) accuracy across different sample sizes.

4.4 PERFORMANCE AND ABLATION STUDIES ACROSS TWO DATASETS

We evaluated the full PRG system on two datasets: the DVS gesture dataset and a custom RGB-
based rehabilitation action dataset. The rehabilitation dataset comprises 14 fine-grained action
classes involving upper- and lower-limb joints (e.g., shoulder, elbow, and knee), designed to simu-
late realistic rehabilitation scenarios with diverse camera angles and subject variability (more details
in [A72). Our compact model with ~ 5-million (5M) parameters achieves high accuracy, inter-
pretability, and robustness, even in data-limited settings. Despite its small size, it outperforms sub-
stantially larger baselines, including ResNet C3D (10- and 50-layer) and ViViT, which require orders
of magnitude more parameters (240 ~ 300M) and far longer training times (hours vs. minutes).

On the DVS dataset, our model reaches 94% accuracy across 10 gesture classes. Ablation highlights
the contribution of each module: 1) Spatial Module alone achieves 80% accuracy by capturing
location cues (e.g., left vs. right hand waves); 2) Adding Direction RNN (Temporal Z) boosts
performance to 88% by encoding coarse trajectory directionality (e.g., CW vs. CCW rotations in
classes 4&5); 3) Incorporating Salience RNN and fine-grained features further improves accuracy to
94%, enabling the system to resolve subtle gesture variations (e.g., amplitude differences in classes
1&29). On the RGB rehabilitation action dataset, our full model achieves 90% macro-class accuracy
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Table 1: Performance on the DVS gesture dataset: all 10 classes, classes 4&5 and 1&9.

Network All(10) 4vs.5 1vs.9
End-to-End trained RNN 0.46 0.50 0.55
C3D(10) 0.94 0.98 0.81
ViViT 0.93 0.87 0.51
Temporal Z 0.66 0.90 0.70
Temporal Z + Spatial 0.88 0.95 0.83

Our model: Temporal Z+ Spatial + Salience 0.94 0.98 0.85

Table 2: Performance on the rehabilitation RGB dataset.

Action type Our model C3D(10) C3D(50) ViVviT
Macro class 0.90 0.90 0.86 0.75
Action 1 0.81 0.58 0.56 0.44
Action 2 0.81 0.55 0.49 0.50
Action 3 0.78 0.40 0.30 0.41
Action 4 0.63 0.32 0.32 0.35
Action 5 0.49 0.44 0.41 0.43
overall (14 classes) 0.62 0.46 0.43 0.36

and 62% overall subclass accuracy across all 14 categories, substantially outperforming both the
ResNet C3D (10- and 50-layer versions) and ViViT baselines. The ablation results show: 1) Spatial
Module alone achieves 43% overall accuracy with 79% macro-class accuracy and 55% averaged
subclass accuracy; 2) Adding Velocity RNN (Temporal V') improves performance to 56.5% overall
with 85% macro-class and 66% subclass accuracy; 3) Incorporating Salience RNN and fine-detail
refinements raises performance to 62% overall with 90% macro-class and 71% subclass accuracy.
Remaining fine-grained misclassifications (e.g., elbow vs. knee motions) largely stem from the
inherent difficulty of projecting 3D joint dynamics onto 2D image under diverse viewpoints and
distances. Nonetheless, the system robustly distinguishes coarse categories (e.g., shoulder vs. elbow
motions), making it practical for physiotherapy monitoring and other real-world applications.

In few-shot scenarios, our system demonstrates strong sample efficiency: 1) On DVS dataset, with
only 5 samples per class, it achieves =~ 70% accuracy, far exceeding 3D ResNet-50 (58%) and
ViViT (28%); 2) On RGB dataset, with 5 samples per class, it attains ~ 75% macro-class accuracy,
compared to ~ 20% for ResNet C3D and ViViT. Accuracy continues to improve steadily with
additional samples, reaching nearly 80% macro-class accuracy for 25 samples per category. These
results highlight the benefits of modular pretraining and Hebbian-style adaptive fusion, enabling
low-resource gesture recognition with interpretability and adaptability in real-world rehabilitation
and monitoring contexts.

5 CONCLUSION

In summary, our framework combines the stability of classical attractor networks with the adapt-
ability of input-driven RNNs through task-agnostic pretraining. We sculpt invariant input-driven
continuous attractors that maintain stable, low-dimensional representations even under abrupt in-
put changes, enabling robust representation transfer and few-shot adaptation in nonstationary, real-
world settings. This biologically inspired modular design also allows agents to expand their attrac-
tor repertoire through synthetic pretraining—using, for example, generative models or physics-based
simulators—and to dynamically select and compose modules via meta-learning or neural architecture
search. Together, these capabilities lay the groundwork for resilient, low-cost embodied Al that can
learn continually and adapt in real time with minimal data and computation.
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A METHOD DETAILS

A.1 RNN PRETRAINING

All three RNN modules are obtained through a task-agnostic pretraining method with synthesized
input videos designed as follows. To ensure versatility across various scenarios, we employ the
original vanilla recurrent neural network (RNN) with 512 neurons, with an input weight matrix W7y,
an internal matrix W, and a readout matrix Wy. The decay timescale 7 is set to be 2 time steps.
The internal matrix W is initially a sparse matrix with 80% positive and 20% negative values,
mimicking the E-I network in the cortex (Pastore et al., 2018)).

The hidden state h(t) in the RNN evolves as:

h(t+1) = (1 - i) h(t) + %ReLU (Wrech(t) + Wil (1)), @

ht+1)—E [ﬁ(t + 1)}

\/Var [iz(t + 1)] +e

where I(t) represents the input frame at time ¢ flattened into a 1D vector, € is a small positive offset,
and E[-] (Var[-]) denotes the mean (variance) of the signal. To maintain consistency across different
input conditions and enhance network stability, layer normalization (Eq.[3) is applied at each time
step, ensuring that the hidden state h(t) remains normalized throughout the network’s operation.

h(t+1) = : (3)

A linear readout function and cross-entropy loss are used to train the network:

Z(t) = Woh(t) + b, “)
Pu(t) = exp(Z.(t)) , s
" ST exp(Z;(1)) ®

T
S=—a)_ P(t)logP(t), (6)

where P is the one-hot ground truth label, P is the estimated probability, Classes is the number
of categories, T is the total time steps per clips. The optimization uses truncated backpropagation
through time (Werbos, [1990) with an Adam optimizer at a learning rate of 10~#. The input video
and training target vary across the direction, salience, and velocity networks, and their respective
network configurations are provided in Tab. [3| All models converge within 10° training episodes,
requiring approximately 48 hours of computation on a single NVIDIA A40 GPU.

A.2 DATA ACQUISITION AND PREPROCESSING

We evaluate our system using two distinct datasets. The DVS Gesture Dataset (Amir et al., 2017)
provides event-based recordings particularly suited for motion recognition tasks. Additionally,
we curated a custom RGB-based rehabilitation action dataset inspired by the Fugl-Meyer Assess-
ment (Gladstone et al., 2002)), comprising 1,678 samples across five major categories (Fig. J):

(1) Shoulder flexion from 90° to 180°

(2) Shoulder flexion from 0° to 90°

(3) Shoulder abduction from 0° to 90°

(4) Pronation and supination

(5) Knee flexion to 90°
Each category is further subdivided into three recovery levels: none (0), partial (1), and full (2),

yielding 15 subcategories in total. Since categories (2) and (3) are indistinguishable at level O (none),
we merge these two cases into a single group, resulting in 14 effective categories.

The gestures are recorded using an RGB camera from various viewing angles and distances to sim-
ulate real-world usage scenarios. A summary of the two datasets is provided in Tab. 4]
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Table 3: Pretraining configurations and readout functions for recurrent neural networks

Network | Category  Parameter Value
Velocity range 0-1(pixel per frame)
Pretraining Clip length 100
Direction RNN Noise model Bernoulli(p = 0.01)
Prediction target Motion direction 6
Output variable(s) Z(t)
Readout Classes 12
Loss function S(cross entropy)
Velocity range 0-1
Pretrainin Clip length 50
Salience RNN € Noise model Gaussian(o € [2,8])
Prediction target Centroid (x,y)
Output variable(s) Z(t), Z,(t)
Readout Classes 42(x), 42(y)
Loss function Sz + Sy
Velocity range 1-5
Pretraining Clip length >0
Velocity RNN Noise model Bernoulli(p = 0.01)
Y Prediction target Speed, direction
Output variable(s) Z,(t), Zy(t)
Readout Classes 5(v), 12(0)
Loss function Sy, + Sg
Velocity range 0-1
Pretrainin Clip length >0
Position direction RNN € Noise model Gaussian(o € [2,8])
Prediction target ~ Centroid (z,y), direction
Output variable(s)  Z,(t), Z,(t), Zs(t)
Readout Classes (42(x), 42(y)), 12(6)
Loss function Sz + Sy + Sp

Table 4: Quantitative summary of datasets

Dataset Total samples Total classes Samples per class Train/Test split
DVS 1,220 10 122 4:1
RGB 1,678 15 (5 macrox 3 levels) 112 4:1

To ensure compatibility with both DVS and RGB streams, we design a unified preprocessing pipeline
that (1) converts inputs into a standardized binary video format and (2) denoises in both spatial
and temporal domains. For DVS data, we employ a dedicated spatio-temporal core (ST-core) struc-
ture (Zhao et al.|[2022) for noise reduction (Fig. Eb). The ST-core consists of binary neural networks
that perform spatial and temporal processing, ensuring effective denoising while preserving critical
spatio-temporal information. The spatial computation integrates the data as follows:

Jm
si(t)=H [ > di(t) -0, |, (7)
1=J1
where d;(t) is the value of the i™ pixel at time ¢, s;(¢) is the output pixel, and integration occurs

over a detection range of square region m = AST,?(correspond to j; to j,, pixel in input frame).
The Heaviside step function H (S — ;) equals 1 if the sum S exceeds the spatial threshold 0, and
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0 otherwise. Temporal computation is performed as:

t
sty =11 ([ shar o). ®
t—AST,

where AST; is the temporal integration window and 6; is the temporal threshold. The parameters
ASTs, 05, AST;, 0, control the spatial and temporal receptive fields and thresholds of the ST-core.
We generate two binary video resolutions: st1 (42 x 42) with parameters 3, 2, 3, 2 and st2 (128 x 128)
with parameters 1, 1, 2, 2.

For RGB video preprocessing, we first employ YOLOv8 (Redmon et al., 2016])) to detect the subject
and extract a 500 x 500 region centered on the detected bounding box from the original 1920 x 1080
video. To generate multiscale inputs consistent with the DVS modality, we apply average pooling
with window sizes of 10 x 10 and 4 x 4, producing two spatial resolutions referred to as stl and st2.

To capture motion dynamics and align with the sparsity characteristics of DVS input, we compute
the pixel-wise temporal difference between each frame and the final frame of the clip. The resulting
difference maps are then binarized using a fixed threshold (95%), yielding binary video representa-
tions that mimic the temporal sparsity of event-based data.

A.3 FEATURE ENCODING

Our modular, pretrained RNNs extract 11 complementary feature streams from each input sequence,
encompassing spatial layout, motion dynamics, and salience trajectories (Fig. 2] [0).

Spatial Distribution. We first collapse temporal dynamics to capture the overall spatial layout. For
each pixel j, we sum the low-resolution binary frames st1(t) over time:

SP = stl(t), )

yielding a 2D activity map that encodes zero-order spatial features, reflecting the cumulative spatial
distribution of events (Fig.[9).

Bidirectional Motion Code. To capture bidirectional motion patterns, we feed both the original
and time-reversed low-resolution sequences into pretrained Direction and Velocity RNNs, yielding
readout vectors for direction [z(t), z—(¢)] and velocity [v(t), v—(t)]. Concatenating across frames
produces global motion codes (Fig. [9):

Zy =z - [ 2(T), Zo=z ) - [I2-(T), (10)
Vi=o) [ - [lo(T), V—fv W - o (T). (11

This bidirectional temporal code summarizes the evolution of motion direction and speed across
time, providing a compact representation of global motion dynamics.

Salience Trajectory. The Salience RNN tracks the spatiotemporal focus of motion over time, out-
putting probability distributions z,(t) and z,(¢) over horizontal and vertical positions, respectively.
These are concatenated into per-frame vectors f(t) = z,(t), ||, zy(t), which are then sequentially
aggregated to form a trajectory (Fig.[9):

SA=fW NI --- 11 A(T), (12)

resulting in a high-dimensional trajectory that captures attentional shifts throughout the sequence.

Fine-Detail Encoding To capture subtle local variations, we leverage high-resolution input frames
st2. Using the predicted salience center (x5, y$) from the low-resolution stream st1, we scale
the coordinates to the st2 resolution as:, (z5,yS) = (xf,yf) X %, and extract a centered
crop from st2, denoted as st2’. We then apply the same RNN-based feature extractors to
st2’ to obtain fine-grained spatial features (SF'), as well as refined direction and velocity codes
(ZFy,ZF_,VF,_ VF_). These features are particularly effective for disambiguating gestures that
share similar global patterns but differ in localized movements.

Collectively, the eleven feature descriptors {S’P, 4,2 Vo, V_ . SASF,ZF, , ZF_VF, , VF_ }
constitute a compact yet expressive representation for general-purpose action encoding.
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A.4 FEATURE DECODING

The decoding pipeline comprises two sequential stages: per-module probabilistic mapping and mod-
ular fusion. This design combines efficient SVM-based classification with a biologically inspired
evidence integration strategy (Fig. [T0).

A.4.1 STAGE I: PER-MODULE PROBABILISTIC MAPPING

For each descriptor, a Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel is
trained to produce a class probability vector, p(X) = SVMgpr(X), where X denotes the feature

descriptor. The decision function is f(X) = Zf\il iy K (X;, X) + b, with the RBF kernel

defined as K (X;, X;) = exp (_W>

We use Platt scaling (Boken, [2021) to convert these decision scores into calibrated probability es-
timates. The resulting probability that sample 7 belongs to class k is computed using the softmax
function over the scaled decision scores:

exp(Akfk(Xi) + Bk)
S exp(Afi(Xi) + By)

where the scaling parameters Ay and Bj, are determined by maximizing the log-likelihood function
on a calibration set:

P(yir = 1|1X;) = (13)

N C
L(Ag, Br) =Y ) dirlog (Plya = 11X3)), (14)

i=1 k=1

where g;;, denotes the one-hot encoded ground-truth label for sample ¢ and class k.

A.4.2 STAGE II: MODULAR FUSION

For each task, we perform module selection by retaining the top-k modules based on validation
accuracy (20% of the training data). The outputs of the selected modules are then fused using either
simple multiplicative fusion (static fusion) or adaptive Hebbian learning-based fusion (Fig.[I0), with
the latter improving few-shot performance (Table[5).

Static Fusion Assuming equal reliability, we compute the element-wise product of all module
probability vectors(Fig. [I0p):

K
Psimple = @pja (15)

where p; is the probability vector from module j.

Adaptive Hebbian Fusion We convert each module’s probability output p; to a one-hot activation
B; via winner-take-all and feed these into a Hebbian-learning layer (Dol [1949) with weight matrix

W (Fig. ). The weights are updated during training:
AWy 1 = €Y Bjy = AW 1,

where YZ is the true class indicator, e is the learning rate(taken as 10~3), and )\ is the decay rate(taken
as 10~ ") At inference, the final weighted log-likelihood for class [ is computed as:
E C
S = Z Z ng)’l logpjm, and g =arg max Si.

j=1m=1

A.5 MANIFOLD ANALYSIS
We treat the recurrent neural network (RNN) as a nonlinear dynamical system whose hidden states

settle near “slow points” after training (Sussillo & Barakl 2013)). Our procedure for identifying these
slow-manifold regions is summarized below.
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Recording internal states. Each pretrained RNN is driven by two stimulus types: (i) synthetic
sequences: 500 clips of 100 frames covering the full range of motion parameters for manifold char-
acterization; (ii) real sequences: the complete DVS gesture set and RGB rehabilitation videos at
resolution sty for probing representation transfer. For every frame ¢, we store the input x, its order
parameter ¢, and the hidden state h(t), yielding triplets {(x¢, ¢+, h(t))}.

Perturbation analysis. We probe stability by controlled deviations of both hidden states and input
parameters. For hidden states, we apply a linear perturbation

hy = hy + ev, (16)

where € € R is small and v is a unit vector along h;. For inputs, order parameters such as direction
6, velocity v, or spatial position (x,y) are perturbed,

0 =0+ A0, z, =x,(0), (17
v =v+ Av, z) = 2 (V'), (18)
(@', y) = (z £ Az, y £ Ay), 2} = (2, y). (19)

Relaxation dynamics. Starting from h;, we iterate the RNN under constant input z; for £ = 10
steps:

PO =ny, BT = (Y ay), i =0, k—1. (20)

The relaxed state h} = hik) defines the local attractor. The average update Ah; = (h} — hy)/k
provides the velocity v; = ||Ah¢||2 and normalized direction d; = Ah/||Aht]|2.

Low-dimensional embedding and visualization. All recorded hidden states are projected onto
the first three principal components of a PCA fit, yielding a 3D representation. States are colored
by their order parameter, and the manifold ridge is traced by the centroid of PC coordinates for each
discrete parameter value.

Quantifying contraction. For each perturbed state we measure the alignment of the update direc-
tion with the vector toward the manifold p;:

oy = cos_l(dt -ﬁt). 21)

Angles oy near 180° indicate a restoring force. Plotting v; against dist(h;, M) reveals how contrac-
tion speed depends on distance to the manifold.

A.6 EFFECTIVE DIMENSIONALITY VIA PARTICIPATION RATIO.

To quantify the dimensionality of neural population activity, we adopt the participation ratio (PR),
a standard measure derived from the eigenvalue spectrum of the covariance matrix of hidden
states (Gao et al., 2017). Given eigenvalues {\; }, the PR is defined as

(s 2)°
PR = L . (22)
PR
PR provides a robust estimate of the effective dimensionality of the representation manifold, allowing
us to compare how different pretrained modules compress or expand task-relevant dynamics.

A.7 DECODING TEST OF REPRESENTATION TRANSFER

RNN-manifold decoding. Let h; € R be the hidden state of a pretrained RNN at time t. We
perform PCA on these hidden states (as in the manifold analysis) and retain the top three principal
components. Real-task inputs generate a length-7T" sequence of hidden states hy.7, which are pro-
jected onto the top three PCA components to form a 3D trajectory z1.7 with z; € R3. For decoding,
each trial is flattened into a feature vector x = vec([z1, .. .,z7]|) € R3?, which is then classified by
an RBF-kernel SVM to predict the action label. The same pipeline is applied to all datasets (DVS
Gesture and the RGB rehabilitation set).

Robustness to temporal perturbations. To test decoder stability, we apply two temporal corrup-
tions to the input before projection: (1) Frame dropout, which uniformly removes a fixed proportion
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p of frames; (2) Random interpolation, which inserts stochastic spatiotemporal noise. For the lat-
ter, each adjacent frame pair is flattened, concatenated, randomly shuffled to destroy spatial locality
while preserving pixel-intensity statistics, then reshaped and inserted between the pair. The SVM is
trained and evaluated on both clean and perturbed sequences.

A.8 CONTROLLED REPRESENTATION EXPERIMENT

A natural question is whether transfer performance is preserved when motion attributes (e.g., di-
rection and velocity) are encoded in a more entangled, high-dimensional space. To test this, we
designed an alternative pretraining protocol that jointly learns direction and position, yielding a
high-dimensional mosaic representation(effective dimensionality 7.7 measured by participation ra-
tio) . The same manifold visualizations and representation analyses were performed. While this net-
work achieves comparable decoding accuracy on the synthetic pretraining task, it exhibits markedly
reduced transferability to real action recognition, as shown in Fig.

A.9 HIERARCHICAL CLUSTERING METHOD

We analyze module representations using the hierarchical clustering method (Murtagh & Contreras,
2012). The processed video st1 is taken for analysis. These features are transformed by their respec-
tive modules into high-dimensional representations. To facilitate analysis, we apply t-SNE to project
these representations into a low-dimensional space. We then compute pairwise distances between
all data points to form a distance kernel matrix, which serves as input for bottom-up hierarchical
clustering. The resulting dendrogram provides a hierarchical structure of the data, allowing us to
interpret relationships between instances at different granularities.

A.10 C3D AND VIVIT NETWORKS

To benchmark our system, we implement two representative video models: a 3D CNN based on
ResNet-50 and a Video Vision Transformer (ViViT).

ResNet-50 C3D. We inflate a standard ResNet-50 (Tran et al., 2015) to 3D by extending all 2D
convolutions. The first layer uses a 7x7x7 kernel with stride (1,2, 2), followed by 3D batch nor-
malization, ReLU, and a 3x3x3 max-pool. We initialize weights with Kaiming initialization and
train for 30 epochs on both the DVS gesture and RGB rehabilitation datasets using Adam (initial
learning rate 10~*%, halved every 10 epochs; weight decay 10~°) and a batch size of 16.

ViViT. We adopt the Factorised Encoder variant of ViViT (Arnab et al., 2021) to capture spatio-
temporal structure. Videos are first partitioned into non-overlapping tublets via a 3D convolution
(2%x16x16 kernel and stride), linearly projected to 1024-dimensional embeddings, and augmented
with learnable positional encodings to yield a sequence of 1536 tokens. The transformer encoder
contains 12 layers of factorized self-attention, each with pre-norm LayerNorm, 12-head multi-head
attention, and a feed-forward MLP with GELU activation. Training uses AdamW (learning rate
5x107°, weight decay 10~%) for 50 epochs with batch size 8 on both datasets.

A.11 INTERPRETABILITY OF MODULAR REPRESENTATIONS

To verify that the transferred representations remain interpretable in downstream tasks, we conduct
fully unsupervised kernel and hierarchical clustering analyses to examine how individual modules
encode meaningful features across tasks. These analyses reveal that each module maintains dis-
tinctive, reusable representational structures from pretraining through deployment (Fig. [ITh). In the
DVS task, the Spatial module partitions the scene into task-relevant regions (e.g., left/center/right or
upper/lower fields), while the Spatial fine module further resolves localized and subtle variations—
such as distinguishing left-hand from right-hand waves—resulting in compact, well-separated clus-
ters. Meanwhile, the Direction module (temporal ) captures global motion patterns, such as CW
vs. CCW rotations). These distinctions are evident in the clear cluster boundaries in the dendro-
grams and the consistent separations in the 2D embeddings (Fig. [[Ib). In the rehabilitation task,
the Salience, Spatial and Velocity (temporal V') modules each separate action 1 apart from actions
3, 4, 5, by leveraging different features—such as knee movements captured by the Spatial mod-
ule (Fig. ). Additionally, the three temporal modules (V, Z, and V' F') characterize subclasses
within action 1, cleanly distinguishing low (None) vs. high (Full) movement intensities in the 2D
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embeddings (Fig. [TTd-f). This clear, modular “alphabet” of motion primitives—absent in monolithic
black-box networks—underscores the interpretability and transferability advantage of our framework.

A.12 DECLARATION OF LLM USAGE

The core method development does not involve LLMs, which are only used for editing, e.g., gram-
mar, spelling, word choice.
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B ADDITIONAL FIGURES AND TABLES

== grtificial video == real video
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PCA 2
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Figure 6: Distributions of artificial pretraining (Direction, Salience, Velocity) and real-task videos
(DVS Gesture, RGB Rehabilitation). Each source provides 200 videos, projected into a common
PCA space after preprocessing to uniform clip length and flattening.
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Figure 7: Comparison of RNN hidden-state representations of motion direction in PC space, pre-
trained on (a,b) position-direction and (c,d) velocity-direction tasks (@. Panels (a,c, left) show
structured manifolds of hidden states in the pretrained tasks; (a,c, right) depict pretraining perfor-
mance across different durations and velocities. Panels (b,d, left) present cosine similarity between
flow alignment and manifold tangent vectors in the DVS task for clockwise and counterclockwise
motion; (b,d, right) show transfer performance under interpolation and dropout perturbations.
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Figure 8: Structural invariance under temporal perturbations. For each RNN module (Direction,
Salience, Velocity), we apply the same perturbation protocol: frame dropout (deleting 40% or 80%
of frames) and interpolation (inserting 2 or 4 random clips between consecutive frames). (a) Direc-
tion RNN (6): decoding of clockwise vs. counterclockwise motions from PC states remains accurate
under perturbations. (b) Salience RNN (position x): decoding of left-hand vs. right-hand waves
remains robust under perturbations. (¢) Velocity RNN (speed |17| ): decoding accuracy of shoulder-
movement levels (full vs. none) remains stable under perturbations. The x-axis indicates the propor-
tion of frames deleted (dropout) or the number of random clips inserted (interpolation).
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(a) DVS gesture dataset
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(b) RGB rehabilitation action dataset

auoN

1ind4

B

shoulder flextion shoulder flextion hould: " p ion and
90° — 180° 0" —00° 0° —90° supination

st1 coarse st2' fine detail 2
processing processing -5
e i

Spatial (SP) Temporal (Z)

knee flexion to 90°

P
)
-

s -
Salience (SA) K Spatial fine (SF) Temporal fine (ZF)

Hand clapping

Arm waving

y position

Shoulder flexion

X position X position

Figure 9: Dataset overview with salience focus position tracking. (a) DVS task for different cate-
gories with the focus trace provided by salience RNN(red line with the star indicating focus center
across frames). (b) RGB rehabilitation action task for different categories with the focus trace pro-
vided by salience RNN(red line with the star indicating focus center across frames). For the RGB
task, five major action categories are illustrated. (¢) Visualizations of encoding features.
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Figure 10: Dataset overview with salience focus position tracking. (a) Module predictions: Each
RNN module outputs a probability distribution, which is combined via element-wise multiplication
to sharpen and improve the final category prediction. (b) Hebbian-based adaptive fusion: Module
outputs form an “activation sheet” (rows = modules, columns = categories). Hebbian updates (blue
arrows) strengthen connections between active modules and the correct output.

Table 5: Performance comparison of Hebbian vs. non-Hebbian fusion across tasks under varying
training sample sizes. Columns correspond to the number of labeled training samples per class (5,

10, 20, 50).
5 samples 10 samples 20 samples 50 samples

Task/Category | b No-Heb | Heb No-Heb | Heb No-Heb | Heb No-Heb
DVS (Gesture) | 0.697  0.635 | 0.799 0.778 | 0.858 0.855 | 0.921  0.920
Macro 0.723 0723 | 0.777 0.780 | 0.848 0.833 | 0.866  0.869
Action 1 0209 0209 | 0.672 0.672 | 0.597 0.567 | 0.701  0.701
Action 2 0551 0539 | 0449 0416 | 0.685 0.685 | 0.652 0.640
Action 3 0.543 0522 | 0457 0457 | 0.804 0.804 | 0.630 0.587
Action 4 0.239 0224 | 0403 0343 | 0.507 0.507 | 0463  0.448
Action 5 0299 0313 | 0403 0343 | 0328 0.328 | 0.522  0.507
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Figure 11: Module-specific Representations across tasks (DVS task: (a-b); RGB task: (c-f)). (a)
Kernel matrices (top) show pairwise distances between internal states for each module (spatial (SP),
temporal (T), spatial fine (SF)) across 10 action categories, revealing distinct representational pat-
terns; Circular dendrograms (bottom) display how each module clusters actions, capturing structure
such as left/right arm movements, motion direction (CW/CCW), and hand-related actions. Cluster
labels summarize shared features within groups. (b) t-SNE plots show clear separations among ac-
tions like “Left arm CW”, “Right arm CW”, and “Left arm CCW”, reflecting strong spatial and tem-
poral selectivity. (¢) Kernel and clustering analysis across 5 major action categories. (d) Kernel and
clustering analysis across 3 fine-grained subcategories. (e) t-SNE plots showing clear separations
among different macro action groups for each module. (f) t-SNE plots showing clear separations
among different micro action groups for each module.
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