
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

ACTIVATION FUNCTION DESIGN SUSTAINS PLASTICITY IN
CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In independent, identically distributed (i.i.d.) training regimes, activation functions have
been benchmarked extensively, and their differences often shrink once model size and
optimization are tuned. In continual learning, however, the picture is different: beyond
catastrophic forgetting, models can progressively lose the ability to adapt (referred to as loss
of plasticity) and the role of the non-linearity in this failure mode remains underexplored.
We show that activation choice is a primary, architecture-agnostic lever for mitigating
plasticity loss. Building on a property-level analysis of negative-branch shape and saturation
behavior, we introduce two drop-in nonlinearities (Smooth-Leaky and Randomized Smooth-
Leaky) and evaluate them in two complementary settings: (i) supervised class-incremental
benchmarks and (ii) reinforcement learning with non-stationary MuJoCo environments
designed to induce controlled distribution and dynamics shifts. We also provide a simple
stress protocol and diagnostics that link the shape of the activation to the adaptation under
change. The takeaway is straightforward: thoughtful activation design offers a lightweight,
domain-general way to sustain plasticity in continual learning without extra capacity or
task-specific tuning.

1 INTRODUCTION

Continual learning requires neural networks to acquire new knowledge over time without erasing previously
learned information. This poses a fundamental challenge: maintaining a balance between plasticity—the
ability to adapt to new data—and stability—the ability to retain prior knowledge. While catastrophic forgetting
refers to poor performance on previously learned tasks when they are no longer explicitly trained on, loss of
plasticity is a distinct phenomenon: networks might retain past capabilities but become increasingly incapable
of learning new ones. Despite growing interest, loss of plasticity remains less understood and underexplored,
particularly in reinforcement learning (RL) settings where the agent’s evolving policy changes the distribution
of data it encounters, making it difficult to disentangle learning ability from environmental exposure.

Recent work documents symptoms associated with plasticity loss in deep RL, including reduced gradient
magnitudes Abbas et al. (2023), increasing parameter norms Nikishin et al. (2022), rank-deficient curvature
Lyle et al. (2022); Lewandowski et al. (2023), and declining representation diversity Kumar et al. (2020; 2023);
Dohare et al. (2024). Yet no single factor explains its onset across settings. Lyle et al. (2024) propose a “Swiss
cheese” view: multiple, partly independent mechanisms—e.g., pre-activation distribution shift, uncontrolled
parameter growth, and the scale of bootstrapped value targets in temporal-difference learning—can each
contribute. Mitigation strategies range from architectural refresh (Continual Backprop’s generate-and-test
replacement of low-utility units Dohare et al. (2021)) to regularization that targets plasticity retention Lyle
et al. (2022); Kumar et al. (2023); see Klein et al. (2024) for a survey.

Preprint. Under review at ICLR 2026.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

We argue that a more fundamental knob is hiding in plain sight: the activation function. Differences among
activations often shrink in i.i.d. training once model size and optimization are tuned, but under continual,
non-stationary data they can matter substantially. This motivates a property-level study of how activation
shape, especially negative-side responsiveness and saturation, affects plasticity0. Previous work has shown
that alternative activations such as CReLU Shang et al. (2016); Abbas et al. (2023); Lee et al. (2023) or rational
functions Molina et al. (2019); Delfosse et al. (2021b;a) can improve performance under non-stationary
conditions. Section 2 closes with a simple IID vs. class-incremental (C-IL) comparison using a shared setup
to illustrate this contrast and motivate the case studies that follow.

Our contributions are as follows:
• Comparison of activations function performance across supervised continual learning and non-

stationary RL benchmarks (Sec. 2, Tab. A1).

• Analysis of activation function properties identifying a moderate, non-zero negative-side respon-
siveness (‘Goldilocks zone’) and small dead-band width as key predictors of sustained plasticity
(Secs. 3, 4).

• Two drop-in activation functions—Smooth-Leaky and Randomized Smooth-Leaky—that preserve
a non-zero derivative floor and target the moderate-leak regime with a C1 transition (i.e., having a
continuous first derivative) between its linear and non-linear regions efficiently improving continual
adaptation. (Secs. 6, 7).

2 ACTIVATION FUNCTIONS AND PLASTICITY IN CONTINUAL LEARNING

Activation functions are the first gatekeepers of gradient information. Their slope near zero, negative input
behavior, and degree of saturation jointly determine how much learning signal survives backpropagation,
a critical factor once data distributions change. We provide a comparative overview of commonly used
activation functions, highlighting their potential to either exacerbate or mitigate plasticity loss.

Rectifiers. ReLU is efficient but prone to the dead-unit problem (Maas et al., 2013): neurons that output 0
receive no gradient and thus become inactive permanently. Continual-learning studies confirm a rising fraction
of dormant units over time (dormant neurons phenomenon Sokar et al. (2023)), shrinking gradient norms
and eventually freezing learning (Abbas et al., 2023; Dohare et al., 2024). ReLU networks often show an
increase in parameter norms during training (as they drive outputs with ever-larger weights) and a drop in the
number of effective directions in weight space that can reduce error Lewandowski et al. (2023). Leaky-ReLU
alleviates this with a constant negative slope, while PReLU (He et al., 2015) and RReLU (Xu et al., 2015)
postpone dormancy by making the negative slope learnable or by randomly sampling it during training.

Saturating sigmoids. Sigmoid and Tanh map inputs to bounded ranges; when units saturate, derivatives
shrink toward zero and gradients can vanish, slowing learning Glorot & Bengio (2010). This is relevant for
continual learning, which requires sustained adaptation under shift and where loss of plasticity has been
repeatedly observed Dohare et al. (2024); Abbas et al. (2023); Juliani & Ash (2024). (See Sec. 4 for empirical
evidence.)

Smooth non-monotonic. Swish (Ramachandran et al., 2017) and GeLU (Hendrycks & Gimpel, 2016) are
smooth, weakly non-monotonic rectifiers that preserve small—but non-zero—gradients for inputs near and
below zero. This mitigates “dying ReLU” behavior (Maas et al., 2013), so units remain trainable when pre-
activation distributions drift under shift. In continual settings, this responsiveness supports ongoing adaptation;
empirically, non-monotonic/smooth rectifiers have shown advantages in both supervised and RL domains
(Ramachandran et al., 2017; Hendrycks & Gimpel, 2016; Elfwing et al., 2018), and in our experiments
(Secs. 3–4) they exhibit lower dead-unit fractions and stronger late-cycle adaptation than zero-floor rectifiers.

0Code available at: https://anonymous.4open.science/r/activations_plasticity-E431/

2

https://anonymous.4open.science/r/activations_plasticity-E431/

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Exponential variants. ELU/CELU (Clevert et al., 2015; Barron, 2017) reduce bias shift via a negative branch
(CELU is C1), while SELU (Klambauer et al., 2017) self-normalizes activations toward zero mean/unit
variance. Under continual, non-i.i.d. data, where batch-statistics can drift and hurt retention, such built-in
stabilization helps maintain trainable scales across tasks (Ioffe, 2017; Pham et al., 2022).

Why focus on continual learning? Under identical models and training budgets on Split-CIFAR-100,
activation function rankings compress in i.i.d. joint training but separate sharply in class-incremental (C-IL)
settings (Van de Ven et al., 2022) (see Table 1). This motivates probing how negative-branch behavior
affects plasticity under shift. Unless noted, all case studies use the same 4-layer CNN backbone, the Adam
optimizer (Kingma, 2014), and training budget (full details in App. B), isolating activation effects from
architectural or optimization confusion.

ReLU LReLU RReLU PReLU Swish GeLU CeLU eLU SeLU Tanh Sigmoid

i.i.d. 72.11
(0.40)

72.00
(0.63)

73.71
(0.24)

71.43
(0.52)

73.16
(0.55)

72.51
(0.8)

72.66
(0.42)

72.64
(0.33)

72.12
(0.78)

66.49
(0.59)

58.78
(0.48)

C-IL 24.41
(0.75)

28.57
(0.64)

32.95
(0.12)

22.71
(0.93)

24.43
(0.86)

20.91
(0.64)

22.79
(0.25)

27.59
(0.89)

27.49
(0.18)

26.44
(0.64)

25.47
(0.69)

Table 1: Values for Split-CIFAR-100 are reported as average accuracy (standard deviation) for 5 independent
runs with identical architecture, optimizer, and budget. Performance differences across activation functions
are modest under i.i.d. joint training but widen under class-incremental learning (C-IL). RReLU attains the
top mean in both settings; the C-IL improvement is statistically significant (all p < 0.05), whereas i.i.d.
differences are not.

3 CASE STUDY 1: NEGATIVE-SLOPE ‘GOLDILOCKS ZONE’

We now test whether negative-side responsiveness drives plasticity under shift. Using the shared setup from
Sec. 2 (Table 1), we sweep the negative branch for three families: piece-wise linear (Leaky-ReLU, RReLU),
smooth-tailed activations (Swish, GeLU, ELU/CELU/SELU), and adaptive (PReLU at global/layer/neuron
scopes). Our goals are: (i) test if there exists a consistently good value of the negative-side slope across
activation functions; (ii) test whether smooth tails approximate the effective slope (s̄) of optimal linear
regimes; and (iii) assess whether adaptively learned slopes discover optimal values without extra guidance.

‘Goldilocks zone’ for negative slopes (with shape-matched comparison). Performance of activations with
constant negative-branch slope (Leaky-ReLU, RReLU), reliably peaks for a moderate leak 0.6≲ s̄≲0.9 and
degrades once s̄≳ 0.9 (Fig. 1A, Tab. 1), suggesting a ‘Goldilocks zone’ for negative slopes. To compare
smooth-tailed functions on a common scale, we project their negative-branch behavior onto an effective
slope axis, s̄ = Ex<0[φ

′(x)], representing the average derivative for negative inputs. When matched by s̄,
these smooth tails still underperform linear leaks within the ‘Goldilocks zone’ and exhibit higher dead-unit
fractions (Fig. 1B), approaching (but not surpassing) the linear-leak peak only for s̄ > 1.

Failure Modes for Slope Magnitude. We identify two distinct mechanisms defining the zone’s boundaries.
As s̄→0, a dead-unit regime dominates (≈45% inactive). We implement dead-unit here as effective inactivity,
identifying units either stuck in saturation plateaus or contributing negligible magnitude relative to the layer’s
scale. This inactivity strongly correlates with accuracy loss (Pearson r=− 0.51, p=8.2×10−28), and weakly
but also significant with respect to final scaled gradient norms (Pearson r= − 0.11, p=0.029) (App. C.1).
Conversely, as s̄→1, performance degrades despite minimal dead units. Fig. 1C-D reveals this coincides
with optimization instability: sharp spikes in principal curvature (λmax) and effective rank (App. B.7). Thus,
sustaining plasticity requires a trade-off: avoiding gradient starvation (low s̄) without inducing landscape
stiffness (high s̄).

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Figure 1: A: Final accuracy vs. effective negative slope s̄. B: Dead-unit fraction vs. s̄. Linear-leak families
peak for s̄∈ [0.6, 0.9]. Smooth-tailed activations are plotted on the same s̄ axis; they underperform within
the ‘Goldilocks zone’ and only approach the linear-leak peak when s̄>1, reflecting concentrated near-zero
responsiveness and vanishing tails. C: Effective rank of the gradient Gram matrix. D: Dominant λmax.
Smooth-tailed activations show spikes at large s̄, while constant-slope leaks remain comparatively stable.
Current adaptive, learnable slopes fail and need constraints to stay in-band. Under non-stationarity, the
“right” negative-side responsiveness is not uniform across units or tasks. We therefore asked whether learnable
or randomized slopes can find and maintain their specific ‘Goldilocks zone’. Per-neuron PReLU (PReLU-N)
drifts below the band (≈ 0.3− 0.6) over training and attains 30.1% ACC (see Figs.. C.2); layer/global scopes
drift even further (Figs. C3). Thus, adaptivity is relevant—it offers robustness when a single fixed leak cannot
serve all units—but unconstrained adaptation does not reliably remain in the pre-defined ‘Goldilocks zone’,
which explains why learned slopes may sit outside it despite good (but suboptimal) ACC.

4 CASE STUDY 2: DESATURATION DYNAMICS UNDER SHOCKS

Case Study 3 showed that negative leak (a non-zero derivative floor1) is necessary but not sufficient: after a
distributional shift, many pre-activations can be pushed deep into an activation’s tail, where gradients are
effectively zero. We hypothesize that the time it takes a network to desaturate (how quickly gradients reopen
after a shock) is a key determinant of adaptation delay in lifelong settings. Therefore, we subject the network
to a protocol which isolates how quickly different activation families reopen gradients and regain performance
after controlled shocks, complementing the steady-state results from Case Study 3.

Every Cℓ=10 epochs we apply a one-epoch scaling shock by multiplying all pre-activations z by γ ∈
{1.5, 0.5, 0.25, 2.0}, then revert to γ=1 (App. D.1). Large γ (e.g., 2.0) pushes z into negative tails or
positive plateaus (saturation); small γ (e.g., 0.5) produces the mirrored event. Each activation uses its best
negative-slope setting from Case Study 3 (Table B2). A unit is saturated at a step if |φ′(x)| < 10−3. We
report: (i) Peak SF: the maximum saturated fraction immediately after each shock; (ii) AUSC: the area under
the saturation curve over the recovery window (lower is better); (iii) Recovery time τ95: steps needed to
regain 95% of pre-shock performance (App. D.4).

Derivative-floor rule. Activations with a strict non-zero derivative floor (Leaky-ReLU, RReLU, PReLU)
achieve the lowest AUSC and near-zero non-recovery rates (<5%) even under the strongest shocks (Fig. 2,
middle/right). In contrast, zero-floor types (ReLU, Sigmoid, Tanh) show the largest AUSC and very high
non-recovery across all γ (Fig. 2, left).

Two-sided penalty. Activations that saturate on both sides (Sigmoid, Tanh) suffer the worst shocks: they
show the largest peak saturated fraction and AUSC (Fig. 3, left/right), and fail to desaturate in roughly half of

1We call an activation zero-floor if infx |φ′(x)| = 0 (e.g., ReLU, and Sigmoid/Tanh whose derivatives approach
0 in the tails). We call it non-zero-floor if there exists α > 0 such that φ′(x) ≥ α on the negative branch (e.g.,
Leaky/PReLU/RReLU). We call it effective non-zero floor if the derivative is non-zero on finite negative inputs near the
decision boundary even though it decays toward 0 as x→ −∞ (e.g., Swish/GeLU).

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Figure 2: Desaturation under scaling shocks γ. Left: mean AUSC (lower is better). Middle: SF recovery time
(epochs to halve the saturated fraction after the shock; successful recoveries only). Right: SF non-recovery
rate (%). Groups: Zero-floor = ReLU, Tanh, Sigmoid; Non-zero-floor = Leaky-ReLU, RReLU, PReLU;
Effective non-zero-floor = ELU, CELU, SELU, GELU, Swish. See App. D.2 for details.

runs (49.8%). One-sided (Kink2) non-zero-floor rectifiers (Leaky-ReLU, PReLU, RReLU) recover far more
reliably (non-recovery ≈ 13.3%). One-sided (Smooth) (ELU, CELU, SELU) sit between these extremes:
when they recover, they do so quickly (Fig. 3, middle), but failures still occur frequently at strong shocks.
Overall, a single hard saturation boundary is less harmful than two; maintaining a non-zero derivative floor
on the negative side remains the most protective.

Figure 3: Sidedness effects under shocks. Left: Peak saturated fraction during the shock (higher = more
units saturated). Middle: Saturation Fraction (SF) time-to-half-recover (epochs; successful recoveries only;
lower is better). Right: AUSC (lower is better). Groups: One-sided (kink) = Leaky-ReLU, PReLU, RReLU;
One-sided (smooth) = ELU, CELU, SELU; Two-sided (saturating) = Sigmoid, Tanh. See App. D.3 for
details.
The width of the dead band predicts shock sensitivity. Beyond the findings of derivative floor and sidedness,
we ask how much of the input range of an activation produces nearly zero gradients. We define a Dead-Band
Width (DBW) as the fraction of a typical pre-activation range (e.g., [-100, 100]) where the magnitude of the
activation’s first derivative, |φ′(x)| falls below certain threshold, ϵ < 10−3. Analytically computed DBW ,
|φ′(x)| < 10−3, strongly tracks desaturation outcomes across activations.

We hypothesize that this analytically derived DBW will positively correlate with experimentally observed
adverse saturation dynamics. Intuitively, a wider intrinsic dead-band means pre-activation scaling shocks are
more likely to push numerous units into these unresponsive, vanishing-gradient regions and keep them there.

2By kink we mean continuous but not differentiable at x=0 (C0 but not C1; e.g., ReLU, Leaky-ReLU). By smooth
we mean at least once differentiable at x=0 (C1+; e.g., ELU, Swish).

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

This, in turn, diminishes the network’s ability to desaturate, which we expect to manifest as a greater overall
saturation impact (higher AUSC) and increased non-recovery rates.

Figure 4 strongly supports this hypothesis, revealing that the analytical Dead-Band Width Score is strongly
and significantly correlated with adverse saturation outcomes. Activations with a higher DBW experience
a greater overall saturation impact (Avg. AUSC, r = 0.81, p = 0.0016) and are much more likely to
fail recovery entirely (Avg. SF Non-Recovery Rate, r = 0.84, p = 0.0013). DBW does not predict
recovery speed. Successful desaturation, when it occurs, is consistently fast (around one epoch) and shows no
correlation with the DBW . This suggests the DBW score predicts the likelihood and severity of saturation,
but not the speed of recovery.

Figure 4: Correlation of Dead-Band Width Score with Saturation Recovery Metrics (All Gammas
Aggregated). (Left): Average Area Under Saturation Curve (Avg. AUSC) vs. Dead-Band Width Score.
A strong positive correlation (Pearson r = 0.81, p = 0.0016) is observed. (Middle): Average Saturation
Fraction (SF) Recovery Time (for successful recoveries, measured by epochs) vs. Dead-Band Width Score.
No significant correlation is found (Pearson r = −0.25, p = 0.45). (Right): Average SF Non-Recovery
Rate (%) vs. Dead-Band Width Score. A strong positive correlation (Pearson r = 0.84, p = 0.0013) is
observed, indicating functions more prone to saturation are more likely to fail SF recovery.

5 IMPLICATIONS FOR ACTIVATION-FUNCTION DESIGN

Sections 3–4 suggest three rules for plasticity-friendly nonlinearities: (i) maintain a non-zero derivative floor,
(ii) keep negative-side responsiveness in a moderate, activation-specific ‘Goldilocks zone’, and (iii) prefer a
C1 (smooth) transition at the origin when (i)–(ii) are held fixed. Conversely, avoid two-sided saturation and
wide analytic dead bands (|φ′| < 10−3), which track larger AUSC and non-recovery.

Our measurements reveal two competing objectives: (A) recovery success (low non-recovery rate after
shocks) and (B) recovery speed/extent (low AUSC, short time-to-recover) conditional on recovery. Kinked
C0 rectifiers with a strict floor minimize non-recovery across γ (Fig. 2, middle/right), whereas one-sided C1

shapes often recover faster when they do recover (Fig. 3, middle), yet fail more frequently at the largest shocks
(Fig. 2, right). Thus “smooth beats kink” is not universal: we prioritize (A) recovery success—irreversible
non-recovery dominates downstream performance—and use (B) as a tie-breaker among activations that
recover. Therefore, we keep the strict floor and negative linear leak of the Leaky-ReLU family aiming for an
empirical ‘Goldilocks zone’, and introduce smoothness only insofar as it preserves those two properties.

5.1 SMOOTH-LEAKY AND RANDOMIZED SMOOTH-LEAKY

Guided by Sec. 5—(i) strict non-zero floor, (ii) moderate leak, (iii) prefer C1 over C0 when (i)–(ii) are held
fixed—we introduce two drop-in rectifiers that keep capacity unchanged.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Figure 5: Smooth-Leaky with α=0.1,
p=3.0, c=5.0. Randomized Smooth-Leaky
draws α from bounds; visually matching
Smooth-Leaky.

The Smooth-Leaky activation function (Fig. 5) is designed as
a direct, C1, drop-in substitute for Leaky ReLU that preserves
the negative-side floor and the positive-side identity while re-
moving the kink with a smooth, curved transition region. It
is asymptotically linear (f(x)≈ αx for x≪ 0, f(x)≈ x for
x≫0) and controlled by a leak α plus a smooth transition set
by (p, c):

f(x) = αx+ (1− α)x · σ
(

cx
p

)
(1)

where σ is the sigmoid. Here, α fixes the negative-side floor,
and (p, c) set the width/steepness of the transition.

To add lightweight exploration around a moderate leak we
introduce Randomized Smooth-Leaky by replacing the fixed
α with a random slope r drawn uniformly from [l, u] on each
forward pass; at inference we fix r to its mean (l+u)/2:

f(x) = r x+ (1− r)xσ
(

cx
p

)
, r ∼ U(l, u), rtest =

l+u
2 . (2)

This randomized variant preserves the strict floor and C1 transition while encouraging robustness to small
variations in negative-side responsiveness. Limitations of multi-parameter design are explained in App. B.2.

6 CONTINUAL SUPERVISED LEARNING

Following Kumar et al. (2023), we evaluate five supervised continual image-classification benchmarks
spanning two shift types: input distribution shift (Permuted MNIST, 5+1 CIFAR, Continual ImageNet) and
concept shift (Random Label MNIST, Random Label CIFAR). Training proceeds as a sequence of tasks
without task-identity signals where the agent receives mini-batches for a fixed duration per task. Permuted
MNIST Goodfellow et al. (2013) applies a fixed random pixel permutation to a shared subset for each task.
Random Label MNIST Lyle et al. (2023) and Random Label CIFAR assign random labels to a fixed subset
to encourage memorization. CIFAR 5+1 draws and alternates hard (5 classes) and easy (single class) tasks
from CIFAR-100. Evaluation focuses on hard tasks to stress plasticity loss mitigation. Finally, Continual
ImageNet Dohare et al. (2024); Russakovsky et al. (2015) performs a task-binary classification over two
ImageNet classes which do not repeat across tasks, ensuring non-overlapping class exposure and clearer
measurement of plasticity over time. An extended explanation of each benchmark problem is found in App. E.

Across the five continual benchmarks, we observe a clear pattern, reported in Tab. 2. First, rectifiers with
a learnable or randomized negative branch dominate: Leaky-ReLU, RReLU, PReLU, Smooth-Leaky,
and Rand. Smooth-Leaky consistently outperform ReLU—especially on the harder settings—while
smooth rectifiers such as Swish/SiLU are competitive but typically trail the best leaky-family members.
Second, we again observe the first reported ‘Goldilocks zone’ for the negative branch (cf. Sec. 3): the strongest
performers cluster around an initial/effective negative slope in the range [0.6, 0.9] (including the mean of
RReLU bounds and neuron-wise α in PReLU). We also evaluated CReLU and Rational activations Abbas
et al. (2023); Delfosse et al. (2021b), Deep Fourier Features Lewandowski et al. (2024), which
satisfies our criteria for a smooth, non-zero gradient floor, maintaining responsiveness via periodic oscillation
rather than a fixed linear slope, and SwiGLU Shazeer (2020), a gated nonlinearity that that gained recent
popularity due to improve Transformer feed-forward layers and widely adopted in PaLM and LLaMA Touvron
et al. (2023); Chowdhery et al. (2023). Constrained rationals were excluded, as previous work shows that they
improve RL stability but reduce plasticity Surdej et al. (2025), which is our main focus. In our experiments,
CReLU, Rational and Deep Fourier outperform ReLU, but remain below other standard activations
and our proposed variants (see Tab. E2 and Fig. E1).

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Activation
Permuted
MNIST

Random Label
MNIST

Random Label
CIFAR

CIFAR
5+1

Continual
ImageNet

ReLU 78.85 ± 0.06 20.03 ± 2.46 25.79 ± 6.18 4.76 ± 1.01 73.71 ± 0.43
Leaky-ReLU 84.14 ± 0.01 91.53 ± 0.18 98.34 ± 0.01 48.86 ± 0.70 85.28 ± 0.20
Sigmoid 76.96 ± 0.07 79.59 ± 0.75 52.24 ± 2.99 1.79 ± 0.19 63.89 ± 7.38
Tanh 70.32 ± 0.54 63.40 ± 0.12 58.56 ± 1.05 28.59 ± 2.34 70.97 ± 0.44
RReLU 83.95 ± 0.02 93.10 ± 0.02 98.02 ± 0.03 53.60 ± 1.06 84.97 ± 0.17
PReLU 82.62 ± 0.05 92.67 ± 0.23 96.86 ± 0.32 43.30 ± 0.61 82.37 ± 0.11
Swish (SiLU) 83.41 ± 0.03 67.73 ± 0.46 87.40 ± 2.42 35.31 ± 1.87 82.64 ± 0.99
GeLU 78.97 ± 0.09 38.79 ± 0.95 42.85 ± 2.12 17.60 ± 1.71 75.49 ± 0.11
CeLU 82.93 ± 0.04 37.16 ± 0.90 29.64 ± 10.44 54.23 ± 1.44 81.15 ± 0.68
eLU 80.50 ± 0.09 84.23 ± 0.70 57.45 ± 20.16 47.64 ± 1.44 80.10 ± 0.34
SeLU 80.43 ± 0.16 79.95 ± 0.91 84.61 ± 2.07 49.07 ± 1.25 80.98 ± 0.49
CReLU 82.66 ± 0.04 89.47 ± 0.28 92.90 ± 0.13 20.56 ± 2.28 84.85 ± 0.25
Rational 80.08 ± 0.05 92.35 ± 1.97 94.82 ± 0.75 40.41 ± 4.21 80.65 ± 0.38
SwiGLU 77.69 ± 0.26 31.20 ± 2.10 83.06 ± 3.51 9.57 ± 1.81 63.57 ± 2.04
Deep Fourier 83.69 ± 0.04 92.61 ± 0.04 96.24 ± 0.51 72.29 ± 2.11 76.03 ± 0.75
Smooth-Leaky 84.03 ± 0.02 91.69 ± 0.12 98.36 ± 0.00 49.87 ± 1.67 85.38 ± 0.25
Rand. Smooth-Leaky 84.26 ± 0.02 93.33 ± 0.05 98.42 ± 0.01 57.01 ± 1.59 86.23 ± 0.13

Table 2: Total Average Online Task Accuracy (%) on Continual Supervised Benchmarks, averaged over 5
independent runs. Values are reported as mean ± standard deviation (SD). Statistical significance between
the top two performers in each column was determined using an independent two-sample Welch’s t-test (p
< 0.05). Rand. Smooth-Leaky is statistically significant with respect to the next best-performing activation
(Smooth-Leaky). Smooth-Leaky is also significant compared to the next best in Rand. Label CIFAR, CIFAR
5+1 and Continual ImageNet.

7 CONTINUAL REINFORCEMENT LEARNING

Continual learning is particularly critical in reinforcement learning (RL), where non-stationarity arises not
only from changes in the environment but also from the agent’s evolving policy, which affects the data
distribution even in fixed environments. This tight feedback loop between learning and data collection
makes RL especially vulnerable to loss of plasticity, where neural networks become progressively less
responsive to new experiences. Recent work has shown that deep RL agents suffer from a gradual decline in
representational diversity and gradient signal quality as training progresses, leading to suboptimal adaptation
in later stages of learning Dohare et al. (2024); Abbas et al. (2023). Diagnosing and understanding this
phenomenon in RL can be more challenging than supervised learning settings due to high variability in
algorithmic design (e.g., model-based vs. model-free, use of replay buffers, off-policy dynamics) and the
inherent stochasticity of agent-environment interactions. As a result, systematic demonstrations of plasticity
loss in RL require carefully controlled protocols and extensive experimentation, a challenge that we approach
from the perspective of activation functions and their influence on network adaptability. Activation functions
play a pivotal role in deep reinforcement learning. Although ReLU and Tanh remain the most widely used
options (e.g., Mnih et al. (2013; 2015); Hessel et al. (2018)), both exhibit limitations that affect learning
dynamics Nauman et al. (2024). ReLU, as previously mentioned, is susceptible to issues such as the dormant
neuron phenomenon Sokar et al. (2023), loss of plasticity Lyle et al. (2023; 2022), and overestimation when
encountering out-of-distribution inputs Ball et al. (2023). Tanh, commonly employed to constrain outputs
within a fixed range, suffers from saturation at its extremes, leading to vanishing gradients that hinder efficient
learning in deep networks Pascanu et al. (2013).

Therefore, to investigate plasticity loss in a continual RL setting, we train a single PPO agent Schulman et al.
(2017) on a fixed and repeating sequence of four MuJoCo locomotion tasks using Gymnasium Towers et al.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

(2024): HalfCheetah-v4→ Hopper-v4→ Walker2d-v4→ Ant-v4→ HalfCheetah-v4→
Hopper-v4 → · · · . The agent cycles through this sequence three times, training for 1M timesteps per
environment per cycle (total 12M). Episodes terminate early on invalid configurations following Dohare et al.
(2024) (e.g., falls for Hopper/Walker2d, unstable heights for Ant); HalfCheetah runs full-length. The
policy and value networks share a two-layer MLP backbone (256 units each) that is updated across all tasks.
For each environment we attach a lightweight input adapter (to map its observation space) and a task-specific
output head (for its action space); both persist across cycles and continue learning when the environment
reappears. We trained using the Adam optimizer. Hyperparameters are in App. B1.

Metric Swish PReLU Sigmoid
Rand.

Smooth-Leaky Smooth-Leaky

IQM ± 95% CI† 0.3149 ± 0.071 0.2716 ± 0.038 0.3329 ± 0.059 0.3875 ± 0.038 0.3305 ± 0.037

Table 3: Average Plasticity Score across 5 seeds (higher is better). We only report the top-performing
activations. See Table F1 for a full comparison of all activations. † Values are reported as Min-Max
Normalized IQM mean ± 95% CI half-width. For bootstrap CIs, which can be asymmetric, we report the
larger one-sided margin so the printed ± interval conservatively covers the equal-tailed 95% CI [L,U].

Figure 6: Plasticity Score across 5 seeds (95% bootstrap CIs) showing a complete sequence of 3 cycles
across all 4 environments. The table 3 reports the Min-Max Normalized IQM of this score across seeds, only
showing the top-performing activations to avoid clutter.

Plasticity Score (definition). To rigorously aggregate performance across environments with distinct
reward scales, we employ a normalized scoring protocol following Agarwal et al. (2021). For each run r we
compute the mean episodic return of the last cycle’s steady-state (final 15% of steps). This value Rr,e for

environment e is Min-Max normalized: Sr,e =
Rr,e−Rmin

e

Rmax
e −Rmin

e
. Global bounds [Rmin

e , Rmax
e] are determined via

a robust percentile sweep across all activations. To prevent physics simulation instabilities in failure cases
(e.g., Humanoid-v5) from skewing the mean with unbounded negative values, we apply a stability floor:
rewards below a functional failure threshold are clipped to the lower bound (Sr,e = 0). Finally, we report the
Interquartile Mean (IQM) across all seeds and environments. IQM is robust to outliers while still accounting
for the magnitude of performance gains and failures, providing a reliable measure of expected plasticity. The
resulting Plasticity Score ∈ [0, 1] reflects the agent’s ability to maintain high performance relative to the
environment’s known theoretical maximum.

7.1 TRAINABILITY VS. GENERALIZABILITY

Anchoring plasticity loss to a single mechanism risks conflating cause and effect. We distinguish trainability
(learning capacity on current data) from generalizability (transfer to unseen variations). Prior work (Berariu
et al., 2021) distinguishes trainability—reduced ability to lower loss on new data (Dohare et al., 2021; Elsayed
& Mahmood, 2024; Lyle et al., 2022)—from generalizability—reduced performance on unseen data (Ash &
Adams, 2020; Zilly et al., 2021). Mitigating plasticity loss should improve both, not merely memorize the

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

latest data Lee et al. (2024); nevertheless, their relationship remains unsettled, and terminology is often mixed
Klein et al. (2024). In brief: loss of trainability (no effective parameter updates) can cause loss of functional
plasticity, but the reverse need not hold—models may still update yet fail to transfer gains.

This failure of plasticity has two faces in RL: (i) train-side adaptation—can the agent still improve on the
data it now collects?—and (ii) transfer to perturbed test conditions (e.g., randomized MuJoCo friction Abbas
et al. (2023)). We report two complementary metrics. The Plasticity Score (IQM) summarizes late-cycle
trainability. The Generalization Gap (∆GAP) measures how much the train–test gap widens over time
(App. F). For each cycle c and environment e, GAPc,e = Rtrain

c,e − Rtest
c,e, where R is the expected return

(measured at the end of cycle c). Thus ∆(GAPe) = GAP3,e −GAP1,e; larger ∆ means the train–test gap
widened over time (worse transfer). We aggregate ∆ per activation using the Interquartile Mean (IQM)
across environments. Crucially, these metrics must be analyzed together.

A high Plasticity Score is not preferable if it comes with a large, widening gap, just as a small gap is
meaningless if absolute rewards are near zero (as seen in physics failures). Our two-metric system captures
this tension. While Rand. Smooth-Leaky suffers from stability issues in Humanoid (zero rewards
and thus a zero gap), in stable environments like Ant and Cheetah where it maximizes the Plasticity Score,
it also attains a lower IQM ∆(GAPe) compared to baselines (Tab. 4). This indicates that its trainability does
not come at the cost of overfitting; rather, it encourages solutions that transfer well, provided the dynamics
remain stable. In contrast, Sigmoid achieves a moderate Plasticity Score via safety—its bounded nature
prevents divergence in Humanoid—yet it exhibits a larger widening of the gap in other tasks.

These metrics are complementary, not redundant. Plasticity Score asks “did the agent remain adaptable on the
data it collected?”, while ∆(GAPe) asks “did that adaptation carry to perturbed tests?”. Our activation designs
primarily target sustained train-side plasticity (strict floor, moderate leak, C1 transition)—a prerequisite for
learning under shift. We report both metrics to surface, not mask, this open question.

Activation HalfCheetah-v5 Humanoid-v5 Ant-v5 Hopper-v5 ∆IQM

Swish (SiLU) 533.55 ± 1314.41 0.00 ± 0.00 780.79 ± 730.11 13.39 ± 37.27 273.47
PReLU 839.60 ± 596.03 -316.28 ± 2211.72 94.17 ± 660.28 -22.35 ± 74.09 35.91
Sigmoid -288.53 ± 2576.85 18.92 ± 111.38 276.48 ± 1018.48 152.14 ± 129.02 85.53
Smooth-Leaky 847.49 ± 1611.57 0.00 ± 0.00 44.09 ± 1089.34 27.01 ± 72.58 35.55
Rand. Smooth-Leaky -49.38 ± 863.55 0.00 ± 0.00 -336.13 ± 971.75 -68.68 ± 96.31 59.03

Table 4: Change in Generalization Gap (∆GAP). We report the difference in generalization gap between
the final and first cycles (∆(GAPe) = GAP3,e −GAP1,e). Positive values indicate a widening gap (worse
transfer) over time. Values are mean ± 95% CI. The rightmost column reports the Interquartile Mean (IQM)
of these deltas across environments. Note: Runs exhibiting physics simulation failures (reward < −500) are
treated as having a gap of 0.0 (indicating no meaningful performance difference to overfit).

8 CONCLUSION AND FUTURE WORK

The choice of the activation function greatly impacts performance and plasticity in continual learning; it
must be designed, not assumed. We do not claim universal wins, but our results show that first-principles
activations mitigate plasticity loss and improve trainability. Building on these findings, future work will test
interactions with other standard continual learning approaches such as experience replay and regularization,
narrow the RL generalization gap by tracking train-side plasticity and test-time robustness, which will help
clarify when improved trainability helps versus when it simply leads to overfitting on recent data, and
move from fixed ‘Goldilocks zone’ slopes to adaptive, per-neuron self-tuning. We plan to derive a stronger
theoretical understanding (curvature/desaturation bounds for smooth-leaky families) and scale to larger
and more challenging CL domains while studying the interplay of activation design with optimizer and
normalization effects, culminating in a principle-guided automated search for new robust activations.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity in
continual deep reinforcement learning. In Conference on lifelong learning agents, pp. 620–636. PMLR,
2023.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep
reinforcement learning at the edge of the statistical precipice. Advances in neural information processing
systems, 34:29304–29320, 2021.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural information
processing systems, 33:3884–3894, 2020.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning with
offline data. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 1577–1594. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/ball23a.html.

Jonathan T Barron. Continuously differentiable exponential linear units. arXiv preprint arXiv:1704.07483,
2017.

Tudor Berariu, Wojciech Czarnecki, Soham De, Jorg Bornschein, Samuel Smith, Razvan Pascanu, and
Claudia Clopath. A study on the plasticity of neural networks. arXiv preprint arXiv:2106.00042, 2021.

Garrett Bingham and Risto Miikkulainen. Efficient activation function optimization through surrogate
modeling. Advances in Neural Information Processing Systems, 36:6634–6661, 2023.

Garrett Bingham, William Macke, and Risto Miikkulainen. Evolutionary optimization of deep learning
activation functions. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp.
289–296, 2020.

Zhipeng Cai, Ozan Sener, and Vladlen Koltun. Online continual learning with natural distribution shifts: An
empirical study with visual data. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 8281–8290, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). arXiv preprint arXiv:1511.07289, 4(5):11, 2015.

Quentin Delfosse, Patrick Schramowski, Alejandro Molina, Nils Beck, Ting-Yu Hsu, Yasien Kashef, Salva
Rüling-Cachay, and Julius Zimmermann. Rational activation functions. https://github.com/
ml-research/rational_activations, 2020.

Quentin Delfosse, Patrick Schramowski, Alejandro Molina, and Kristian Kersting. Recurrent rational
networks. arXiv preprint arXiv:2102.09407, 2021a.

Quentin Delfosse, Patrick Schramowski, Martin Mundt, Alejandro Molina, and Kristian Kersting. Adaptive
rational activations to boost deep reinforcement learning. arXiv preprint arXiv:2102.09407, 2021b.

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic gradient
descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.

11

https://proceedings.mlr.press/v202/ball23a.html
https://github.com/ml-research/rational_activations
https://github.com/ml-research/rational_activations

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Ruapm Mahmood, and
Richard S. Sutton. Loss of plasticity in deep continual learning. Nature, 632:768—774, 2024.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Mohamed Elsayed and A Rupam Mahmood. Addressing loss of plasticity and catastrophic forgetting in
continual learning. arXiv preprint arXiv:2404.00781, 2024.

Vivek F Farias and Adam D Jozefiak. Self-normalized resets for plasticity in continual learning. arXiv
preprint arXiv:2410.20098, 2024.

Yasir Ghunaim, Adel Bibi, Kumail Alhamoud, Motasem Alfarra, Hasan Abed Al Kader Hammoud, Ameya
Prabhu, Philip HS Torr, and Bernard Ghanem. Real-time evaluation in online continual learning: A
new hope. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11888–11897, 2023.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.
249–256. JMLR Workshop and Conference Proceedings, 2010.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pp. 1026–1034, 2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan,
Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep reinforcement
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized models.
Advances in neural information processing systems, 30, 2017.

Arthur Juliani and Jordan Ash. A study of plasticity loss in on-policy deep reinforcement learning. Advances
in Neural Information Processing Systems, 37:113884–113910, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural
networks. Advances in neural information processing systems, 30, 2017.

Timo Klein, Lukas Miklautz, Kevin Sidak, Claudia Plant, and Sebastian Tschiatschek. Plasticity loss in deep
reinforcement learning: A survey. arXiv preprint arXiv:2411.04832, 2024.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization inhibits
data-efficient deep reinforcement learning. arXiv preprint arXiv:2010.14498, 2020.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual learning via
regenerative regularization. arXiv preprint arXiv:2308.11958, 2023.

Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-Young Yun,
and Chulhee Yun. Plastic: Improving input and label plasticity for sample efficient reinforcement learning.
Advances in Neural Information Processing Systems, 36:62270–62295, 2023.

Hojoon Lee, Hyeonseo Cho, Hyunseung Kim, Donghu Kim, Dugki Min, Jaegul Choo, and Clare Lyle. Slow
and steady wins the race: maintaining plasticity with hare and tortoise networks. In Proceedings of the
41st International Conference on Machine Learning, pp. 26416–26438, 2024.

Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C Machado. Directions of curvature as an
explanation for loss of plasticity. arXiv preprint arXiv:2312.00246, 2023.

Alex Lewandowski, Dale Schuurmans, and Marlos C Machado. Plastic learning with deep fourier features.
In The Thirteenth International Conference on Learning Representations, 2024.

Jiashun Liu, Zihao Wu, Johan Obando-Ceron, Pablo Samuel Castro, Aaron Courville, and Ling Pan. Measure
gradients, not activations! enhancing neuronal activity in deep reinforcement learning. arXiv preprint
arXiv:2505.24061, 2025.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in reinforcement
learning. arXiv preprint arXiv:2204.09560, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney. Under-
standing plasticity in neural networks. In International Conference on Machine Learning, pp. 23190–23211.
PMLR, 2023.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens, and Will
Dabney. Disentangling the causes of plasticity loss in neural networks. arXiv preprint arXiv:2402.18762,
2024.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural network
acoustic models. In Proc. icml, volume 30, pp. 3. Atlanta, GA, 2013.

Franco Manessi and Alessandro Rozza. Learning combinations of activation functions. In 2018 24th
international conference on pattern recognition (ICPR), pp. 61–66. IEEE, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

Alejandro Molina, Patrick Schramowski, and Kristian Kersting. Padé activation units: End-to-end learning of
flexible activation functions in deep networks. In International Conference on Learning Representations,
2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814, 2010.

Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzciński, Mateusz Ostaszewski, and Marek
Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of reinforcement learning.
arXiv preprint arXiv:2403.00514, 2024.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy
bias in deep reinforcement learning. In International conference on machine learning, pp. 16828–16847.
PMLR, 2022.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural net-
works. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th International Conference
on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pp. 1310–1318, At-
lanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/
pascanu13.html.

Quang Pham, Chenghao Liu, and Steven Hoi. Continual normalization: Rethinking batch normalization for
online continual learning. arXiv preprint arXiv:2203.16102, 2022.

Ameya Prabhu, Zhipeng Cai, Puneet Dokania, Philip Torr, Vladlen Koltun, and Ozan Sener. Online continual
learning without the storage constraint. arXiv preprint arXiv:2305.09253, 2023.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving convolutional
neural networks via concatenated rectified linear units. In international conference on machine learning,
pp. 2217–2225. PMLR, 2016.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phenomenon in
deep reinforcement learning. In International Conference on Machine Learning, pp. 32145–32168. PMLR,
2023.

Rafał Surdej, Michał Bortkiewicz, Alex Lewandowski, Mateusz Ostaszewski, and Clare Lyle. Balancing
expressivity and robustness: Constrained rational activations for reinforcement learning. arXiv preprint
arXiv:2507.14736, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu, Manuel
Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard interface for
reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning. Nature
Machine Intelligence, 4(12):1185–1197, 2022.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in convolutional
network. arXiv preprint arXiv:1505.00853, 2015.

14

https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.mlr.press/v28/pascanu13.html

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Julian Zilly, Alessandro Achille, Andrea Censi, and Emilio Frazzoli. On plasticity, invariance, and mutually
frozen weights in sequential task learning. Advances in neural information processing systems, 34:
12386–12399, 2021.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

A CHARACTERIZATION OF ACTIVATION FUNCTION PROPERTIES

Activation HDZ NZG Sat± Sat− C1 NonM SelfN L/Rslp f ′′

ReLU Nair & Hinton (2010) ✓ – – ✓ – – – – –
LeakyReLU Maas et al. (2013) – ✓ – – – – – – –
PReLU He et al. (2015) – ✓ – – – – – ✓ –
RReLU Xu et al. (2015) – ✓ – – – – – ✓ –
Sigmoid – ✓* ✓ ✓ ✓ – – – ✓
Tanh – ✓* ✓ ✓ ✓ – – – ✓
Swish (SiLU) Ramachandran et al. (2017) – ✓ – – ✓ ✓ – – ✓
GeLU Hendrycks & Gimpel (2016) – ✓ – – ✓ ✓ – – ✓
ELU Clevert et al. (2015) – ✓ – ✓ ✓† – – – ✓
CELU Barron (2017) – ✓ – ✓ ✓ – – – ✓
SELU Klambauer et al. (2017) – ✓ – ✓ –‡ – ✓♣ – ✓
CReLU Shang et al. (2016) ✓∗ ✓ – – – – – – –
Rational□ Delfosse et al. (2021b) – ✓ – – ✓ ✓ – –◦ ✓
SwiGLU♢ Shazeer (2020) – ✓ – – ✓ ✓ – – ✓
Deep FourierLewandowski et al. (2024) – ✓ – – ✓ ✓ – – ✓
Smooth-Leaky△ – ✓ – – ✓ ✓♢ – – ✓
R-Smooth-Leaky△ – ✓ – – ✓ ✓♢ – ✓ ✓

Table A1: Binary property grid (✓= present, – = absent). Abbreviations. HDZ: hard dead zone; NZG:
non-zero gradient for x < 0; Sat±: two-sided saturation; Sat−: negative-side saturation; C1: first derivative
continuous; NonM: non-monotonic segment; SelfN: self-normalizing output; L/Rslp: learnable or randomized
slope; f ′′: non-zero second derivative.
*Gradients are small but non-zero except at extreme inputs (risk of effective inactivity via saturation). † ELU is C1 only
for α = 1. ‡ SELU has a small derivative jump at x = 0 because α ̸= 1. ♣ SELU’s self-normalizing behavior holds
under the prescribed (λ, α). □ Unconstrained activations are smooth, non-monotonic, and non-saturating; outputs can
grow large under training. ◦ Rational do not have “slopes” like Leaky-ReLU/PReLU; they learn polynomial coefficients.
∗ Each branch retains the ReLU dead zone, but concatenation ensures that for any input at least one branch is active,
avoiding global inactivity. ♢ SwiGLU is a gating mechanism (acting on a vector split) rather than a scalar activation ϕ(z).
While it lacks a static hard dead zone based on input sign, the multiplicative gating creates a dynamic dead zone: if the
gate branch saturates to zero, gradients for the value branch vanish. △ Proposed in this work. ♢ Potentially non-monotonic
depending on the choice of slope parameter (and on the randomization bounds for R-Smooth-Leaky).

B EXPERIMENTAL AND ARCHITECTURAL DESIGN

Models for both Case Studies 3 and 4 share the same backbone (4 × 32 conv + 256-unit MLP) and are trained
on the 20-task Split-CIFAR100 benchmark; Kaiming initialization uses the correct gain for each starting slope
(α0=0.25 for every PReLU). Metrics recorded every epoch include final average accuracy (ACC), online
forgetting, dead unit fraction, gradient signal-to-noise, λmax for the fc1→fc2 block, and— for PReLU—the
full trajectory αi(t).

For continual supervised learning we deliberately use compact networks to accentuate capacity–limited
plasticity loss: a model may attain high average online accuracy on a few tasks, yet its ability to adapt
degrades over long sequences. We employ two backbones. (i) MLP: two hidden layers, each of width 100.
(ii) CNN: two 5× 5 convolutional layers with 16 output channels each, every conv followed by 2× 2 max
pooling, then two fully connected layers of width 100. All architectures end with a linear classifier whose

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

output size is 10 for Permuted MNIST, Random Label MNIST, and Random Label CIFAR; 100 for 5+1
CIFAR; and 2 for Continual ImageNet.

For continual RL (Sec. 7), policy and value functions share a multi–head MLP designed for sequential
adaptation: a shared backbone with two hidden layers of 256 units is trained across all tasks, while for each
environment we instantiate a dedicated input adapter that maps its observation space to the backbone and
dedicated output head(s) for its action (and value) space. This modular design reuses core features while
accommodating heterogeneous state–action spaces.

B.1 LIMITATIONS AND IMPLICATIONS OF CHOOSING AN OPTIMIZER.

A valid question is how our results might interact with different optimizers (e.g., SGD, RMSProp) beyond
Adam. Our study’s primary goal was to isolate the effect of activation functions on plasticity, which required
fixing other key variables to create a controlled experiment. We intentionally selected the Adam optimizer for
two main reasons:

• Consistency with Prior Work: Our continual supervised learning benchmarks are adapted from
recent literatureKumar et al. (2023), which used Adam for their experiments. Anchoring our design
to these established baselines allows for more direct comparisons.

• A "Stress Test" for Plasticity: More importantly, adaptive optimizers like Adam have been
specifically implicated in the literature as a contributing factor to plasticity loss. Prior work has
suggested that Adam can struggle to update large-magnitude weights Dohare et al. (2021) and has
been shown to lose its ability to learn on non-stationary tasks Lyle et al. (2023).

We reasoned that if we wanted to study how activation functions mitigate plasticity loss, we should run our
experiments in a setting known to induce it. By demonstrating that our activation-design principles can
sustain plasticity even when paired with an optimizer known to exacerbate the problem, we provide a more
robust finding. We do not claim this is the optimal optimizer-activation pair for SOTA results, but rather that
activation design is a fundamental mechanism for preserving plasticity, even under these challenging and
fixed conditions.

B.2 LIMITATIONS AND IMPLICATIONS OF MULTI-PARAMETER ACTIVATION DESIGN.

Smooth-Leaky and Randomized Smooth-Leaky expose several shape-controlling hyperparameters. This
enlarges the tuning space—and thus the cost—but also grants useful control, as reflected in our benchmarks.
A common response is to replace sweeps with adaptive or learnable parameters. However, as shown in
Section 3, adaptive, granular learnable slopes (e.g., PReLU) underperformed in all our settings, while
bounded, stochastic constraints (e.g., RReLU) worked better. In continual learning, where short-term
objectives dominate, unconstrained learned parameters can drift to task-local optima that hurt performance
across tasks. Attempts to automate shape learning (Bingham & Miikkulainen, 2023; Bingham et al., 2020;
Manessi & Rozza, 2018) with highly expressive forms (e.g., Rational activations Delfosse et al. (2020)) also
lagged behind our first-principles designs here. This suggests that we have not yet reconciled expressivity
with robust automation. A promising direction is to rethink where and on what timescale hyperparameters are
adapted—potentially decoupling their updates from the main training loop to better handle non-stationarity.

B.3 CRELU INTEGRATION.

To insert CReLU without changing the hidden width or the rest of the network, we follow a capacity–neutral
design: for any hidden layer with target width H , the preceding linear layer produces H/2 pre–activations
z ∈ RH/2, and we apply CReLU(z) =

[
max(z, 0), max(−z, 0)

]
∈ RH , which restores the width to H by

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

concatenation. This mirrors the “CReLU (+half)” configuration: the parameter count of the producer linear
is halved (input×H/2 instead of input×H), the consumer linear still receives H features, and the forward
shape everywhere else is identical to the ReLU baseline. Thus CReLU’s representational benefit (explicit
positive/negative phase features) is preserved while keeping model size and interface unchanged, enabling
plug–in replacement of the activation without branching logic in the forward pass.

For convolutional blocks with target channel width C and fully connected blocks with target width H , we
apply CReLU in a capacity–neutral manner: the producer layer outputs C/2 (or H/2) pre–activations z,
and we apply CReLU(z) = [max(z, 0), max(−z, 0)] along the channel/feature dimension, restoring the
width to C (or H) by concatenation. This mirrors the “CReLU (+half)” configuration, preserving parameter
count relative to a ReLU baseline while exposing explicit positive/negative phase features. Subsequent
layers therefore see the same interface shapes as in the baseline, allowing CReLU to be swapped in without
modifying the forward pass.

B.4 HYPER-PARAMETER SWEEPS FOR ACTIVATION FUNCTIONS

Activation Symbol(s) Values explored

ReLU / CReLU α 0.0
Leaky-ReLU |
Swish / GeLU α | β 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.05, 1.1, 1.2, 1.3,

1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0
ELU / CELU α 0.1, 0.5, 1.0, 1.5, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.3, 3.5, 3.6, 3.7, 3.8, 3.9,

4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0 5.1, 5.2, 5.3, 5.4, 5.5
SELU α 1.0, 1.3, 1.673, 2.0, 2.3, 2.4, 2.6, 2.8, 3.0, 3.1, 3.3, 3.5, 3.7, 3.8, 3.9, 4.0,

4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0 5.1, 5.2, 5.3, 5.4, 5.5
RReLU U = [l, u] [0.01,0.05], [0.05,0.10], [0.1,0.3], [0.125,0.333], [0.3,1.0],

[0.4,1.0], [0.5,1.0], [0.6,1.0], [0.6,0.8], [0.7,1.0], [0.8,1.0],
[0.9,1.0], [1.0,1.5], [1.6732,1.6732], [1.4232,1.9232], [1.168,2.178]
[0.9232,2.4232], [1.548,1.798], [0.673,2.673], [0.423,2.923]

PReLU scope global, layer, neuron
Sigmoid / Tanh /
SwiGLU / DFF – –
Rational P(x), Q(x), V, Af Grid over:

(P (x), Q(x)) ∈ {(7, 6), (5, 4), (3, 2)}
V ∈ {A,B,C,D}
Af ∈ {ReLU, Leaky −ReLU, Swish, Tanh, Sigmoid}

Smooth-Leaky△ (c, p, α) Grid over:
c, p ∈ {1, 2, 3, 4, 5}
α ∈ {0.1, 0.3, 0.5, 0.65, 0.7, 0.8, 0.9}
(total 175 combos).

Rand-Smooth-Leaky△ (c, p, l, u) Grid over:
c, p ∈ {1, 2, 3, 4, 5}
lower bound l ∈ {0.01, 0.3, 0.4, 0.5, 0.6, 0.7}
upper bound u ∈ {0.05, 0.8, 1.0}
(total 450 combos); r ∼ U(l, u) sampled
per element during training.

Table B1: A summary of the hyper-parameter sweeps performed for each activation function. The table details
the specific values, ranges, and distributions tested for the corresponding symbols during our experiments.
Best-performing hyperparameters are used to compute the results in Sections 3 and 4.
△ Proposed in this work. See Section 5 and App. G.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

The hyperparameter sweep of the activation function for continual supervised problems and continual RL is sim-
ilar to those presented in Table B1 with the exception of Smooth-Leaky and Ran. Smooth-Leaky where we will
add new values to the shape-controlling variables c and p, as well as new upper (u) and lower l bounds. There-
fore, the full list of variables will be: c, p ∈ {0.1, 0.3, 0.5, 0.8, 1, 2, 3, 4, 5}, and the new bounds are [l, u] =
[0.673, 2.673], [0.55, 1.0], [0.05, 0.70], [0.01, 0.02], [0.01, 0.10], which were used to test a wider range of possibili-
ties outside of intuitive bounds. We also introduce two activations functions presented in previous works as mentioned
earlier: CReLU and Rational Activations. CReLU, as a concatenated ReLU, only has the original negative value α of
0. On the other hand, Rational Activations are defined by the polynomial of the numerator P(x), denominator Q(x), the
rational version (V) used (e.g., A, B, C, or D), and the function (Af) that is trying to approximate (e.g., ReLU, Swish,
etc).

B.5 I.I.D. VS CLASS-INCREMENTAL CONTINUAL LEARNING COMPARISON HYPERPARAMETERS

Activation i.i.d. CL
HP LR HP LR

ReLU − 0.001 − 0.0001
Leaky-ReLU 0.01 0.001 0.7 0.0003
RReLU (0.125, 0.333) 0.001 (0.673, 2.673) 0.0003
PReLU layer 0.001 neuron 0.001
Swish 1.0 0.001 0.05 0.0001
GeLU 1.0 0.001 0.05 0.001
CeLU 1.0 0.001 2.4 0.001
eLU 1.5 0.001 3.9 0.0001
SeLU 1.673 0.001 3.7 0.0001
Tanh − 0.001 − 0.0001
Sigmoid − 0.001 − 0.001

Table B2: Optimal Hyperparameters (HP) and Learning Rate (LR) on Split-CIFAR100. A dash (−) indicates
that such activation function uses the unique or baseline parameter (e.g., ReLU does not have any shape-
controlling parameter since is linear on the positive right side and 0 on the negative left side).
Following the grid search over the hyper-parameters listed in Table B1, we chose the best-performing configuration for
each activation function presented in Table B2. Each continual-learning run comprised 100 epochs across 20 tasks (100
classes in total, five classes per task). We adopted a standard Experience Replay (ER) framework with a random-sampling
buffer of size |M | = 10,000, capped at 500 examples per task. The larger-than-usual buffer was intended to mitigate
catastrophic forgetting and ensure consistent performance across activation functions, allowing us to isolate the effects of
reduced plasticity (following the intuition presented in Dohare et al. (2024)).

B.6 UNDERSTANDING CLASS-INCREMENTAL CONTINUAL LEARNING METRICS

To properly understand the choice of metrics throughout this paper, we first need to define and explain some of the
classical metrics used in continual learning—Final Average Accuracy (ACC), Backward Transfer (BWT), and Forward
Transfer (FWT)—and relate them to loss of plasticity. Consider a learning process unfolding over N+1 sequential
phases/tasks t=0, . . . , N . Between consecutive phases t−1 and t (t≥1), the data distribution, environment dynamics,
reward signal, or task objective may change, inducing non-stationarity; we denote the distribution at phase t by Et. The
model enters phase t with parameters θt−1 and is updated for Tphase adaptation steps3, producing intermediate iterates
θt,k (k=1, . . . , Tphase) and terminating at θt=θt,Tphase .

Then: (i) ACCT = 1
T

∑T
i=1 AT,i summarizes performance after learning T tasks but mixes current-task performance,

retention of past tasks, and interference; (ii) BWTT = 1
T−1

∑T−1
i=1

(
AT,i −Ai,i

)
quantifies forgetting/retention; and (iii)

FWTT compares pre-training performance on future tasks to a suitable baseline, capturing positive/negative transfer.

3“Steps” may be epochs, mini-batches, or timesteps, depending on the domain.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Although BWTT and FWTT are widely reported in continual learning, in our setting we focus on performance metrics
related to ACCT following recent work (Kumar et al., 2023). We therefore briefly outline their differences and use-cases.

Because ACCT averages over tasks, it cannot isolate plasticity—fast adaptation within the current phase. In our class-
incremental continual learning setup with experience replay (Sec. 2; (Van de Ven et al., 2022)), we report ACCT for
overall performance. For the rest of our continual supervised learning benchmarks we shift to a more plasticity-focused
evaluation and report lifetime aggregate of per-task Average Online Task Accuracy named Total Average Online Accuracy
which track within-phase learning and, when task difficulty is comparable, reveal trends of loss of plasticity.

B.6.1 DIFFERENT ACCURACY METRICS ACROSS CONTINUAL LEARNING

Average accuracy across seen tasks (ACCT). This is the standard average accuracy used in (offline or online)
class-incremental CL to summarize performance after training up to task T . Let acc(T)

i be the test accuracy on task i
measured after finishing training on task T . Then

ACCT =
1

T

T∑
i=1

acc
(T)
i . (3)

High ACCT implies some combination of plasticity (learning new tasks) and stability (retaining old ones). However,
ACCT mixes current-task performance, retention on past tasks, and the interference caused by learning the current task,
so it does not isolate plasticity on the most recent shift. In our Case Studies 3–4, which use an experience-replay buffer,
we report this metric as final accuracy.

Average online task accuracy (per task). To quantify adaptation on a single task independently of past-task test
performance, we use the mean online accuracy over the batches of task Ti. Let Mi be the number of mini-batches in task
i and let ai,j denote the online accuracy on batch j of task i. Define

AOA(Ti) =
1

Mi

Mi−1∑
j=0

ai,j . (4)

This captures how quickly the agent learns the current task (plasticity). A downward trend of AOA(Ti) across tasks of
equal difficulty indicates plasticity loss.

Total average online accuracy (lifetime). For optimal hyper-parameter selection we also aggregate online accuracy
over all batches seen so far (common in online CL Cai et al. (2021); Ghunaim et al. (2023); Prabhu et al. (2023); Kumar
et al. (2023)). Let B≤T =

∑T
i=1 Mi be the total number of processed batches up to task T , and let at be the online

accuracy at global batch index t. Then

TAOA≤T =
1

B≤T

B≤T−1∑
t=0

at =
1∑T

i=1 Mi

T∑
i=1

Mi−1∑
j=0

ai,j . (5)

If all tasks have equal length Mi ≡M , this reduces to

TAOA≤T =
1

MT

MT−1∑
t=0

at. (6)

We distinguish this lifetime aggregate from the per-task quantity AOA(Ti). This metric is reported in Section 6.

B.7 CURVATURE METRICS

In order to study the properties of the curvature of a neural network and how it affects the loss of plasticity, we need
to work with the Hessian matrix. For a loss function L(θ) (where θ represents all the parameters of the network), the
Hessian matrix H is defined as:

H = ∇2L(θ)
This is a symmetric matrix that captures the second-order derivatives (curvature) of the loss function with respect to the
parameters.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

B.7.1 PRINCIPAL CURVATURE

The principal curvature is defined as the maximum eigenvalue λmax of the Hessian H . In other words, it’s the largest value
in the set of eigenvalues {λ1, λ2, . . . , λd} where d is the number of parameters (or the dimension of H). The largest
eigenvalue indicates the steepest direction of curvature. If you move in the direction of the corresponding eigenvector
(the principal direction), the loss increases most rapidly. We employ the Power iteration algorithm to find the dominant
eigenvector, and thereby the dominant eigenvalue using the Rayleigh Quotient:

λmax ≈ v⊤k Hvk

The principal eigenvector is the direction in parameter space corresponding to λmax. This is the steepest direction—any
movement along that eigenvector direction leads to the largest second-order change in the loss.

B.7.2 EFFECTIVE RANK

To quantify the intrinsic dimensionality of the loss-landscape curvature in a given layer, we collect per-sample gradients
{gi}mi=1 ⊂ Rd and stack them into a matrix G = [g1, . . . , gm] ∈ Rd×m. We then form the Gram matrix

M = G⊤G ∈ Rm×m,

compute its singular values σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0, and define the effective rank at threshold τ ∈ (0, 1) by

erankτ (G) = min
{
k :

∑k
j=1 σj∑m
j=1 σj

≥ τ
}
.

Effective Rank represents how many independent directions of principal directions that account for at least a fraction
τ of the total “energy” in the gradient subspace Kumar et al. (2020). Therefore, effective rank tells you the number of
eigenvectors (or directions) that are necessary to capture a specified fraction (for example, 99%) of the total curvature
energy of the Hessian. In other words, it indicates how many independent directions contribute significantly to the
curvature. If the effective rank is low, then most of the curvature is concentrated in just a few directions; if it’s high, then
the curvature is spread out over many directions.

C EXPANDING ON CASE STUDY 1: NEGATIVE-SLOPE ‘GOLDILOCKS ZONE’

C.1 FAILURE MODES FOR SLOPE MAGNITUDE.

We continue investigating the primary drivers of functional plasticity loss. As provided in the main section results,
the correlation between Final Average Accuracy (ACC) and dead unit fraction remains robust and significant (Pearson
r = −0.51, p = 8.2×10−28), as seen in Fig. C1, right. In contrast, the correlation between ACC and final scaled
gradient norms is negligible (Pearson r = −0.11, p = 0.029) (Fig. C1, left). Settings that maintain dead unit fraction
below approximately 8% consistently achieve high ACC (27–33%), whereas dead unit rates above 25% lead to ACC
collapsing to 20% or lower. This indicates that while gradient magnitude is a factor, the rise in dead units (gradient
starvation) is a more direct and reliable indicator of plasticity loss than the raw magnitude of gradients, which can be small
in well-adapted, flat minima or large in failing networks with high curvature. The fact that dead units do not account for
all performance variance aligns with our finding in Section 3 that landscape curvature drives failure at high slopes, distinct
from unit death. The results highlight that plasticity is not about maximizing any single statistic but about achieving a
delicate balance, primarily tuned by the negative slope characteristics, to ensure unit survival while maintaining a benign
loss landscape.

C.2 ADAPTIVE, GRANULAR SLOPES ARE USEFUL—BUT NEED GUIDANCE TO STAY IN-BAND

As seen in Sec. 3, PReLU-N, with its per-neuron learnable αi, demonstrates this adaptability. Fig. C2 (left) shows the
dynamic evolution over time of how PReLU-N learns heterogeneous αi values, ideally we will observe many neurons
dynamically adjusting their slopes into a beneficial range (e.g., 0.3-0.6, approaching the Goldilocks zone), while others
can remain near zero if required by their local input statistics. However, our PReLU-N configuration (with default

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Figure C1: Person (r) correlation between Plasticity Loss and diverse metrics to evaluate the primary drivers
of such phenomenon for some activation functions evaluated across Case Study 1 (see Section 3) Left: Dead
Units; Right: Average Gradient Norm.
initialization α = 0.25) undershot the empirically optimal α ≈ 0.7 for fixed Leaky-ReLU but its performance surpassed
PReLU-G/L which tended towards slope decay and lower ACC (α evolution for PReLU-G/L shown in Figs. C3). All
PReLU scopes (Neuron, Layer, Global) evolve towards values outside the Leaky-ReLU-family ‘Goldilocks Zone’.

While not optimal, this might suggest that neuron-wise adaptability is a valuable trait, potentially enhanced further with
optimized initialization or per-parameter learning rates if the learning can be guided towards the ‘Goldilocks zone’. Which
also opens up the question of properly finding such zone for different experimental settings.

Figure C2: PReLU-N per-neuron learnable α. Left: Distribution of all individual neurons’ α per layer
(activation.N) and the pre-defined ‘Goldilocks zone’ representing the best-performing α value in Leaky-ReLU.
Right: Fraction of α’s < ϵ indicating values for which the post-activation will be ’saturated’ (too small to
produce significant changes).

C.3 SATURATION FRACTION AS METRIC FOR ’DEAD UNITS’.

Regarding Saturation Fraction used in Fig. 1 we acknowledge that recent works, such as Sokar et al. (2023) or Liu et al.
(2025), highlighted the ’dormant neuron phenomenon’, and ’GraMa’ (Gradient Magnitude Neural Activity Metric) in
deep reinforcement learning, proposing a valuable metric based on a neuron’s average absolute activation (or gradient)
relative to its layer-neuron connections to identify consistently underutilized units. While this provides a generalized

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Figure C3: PReLU-GŁper-neuron learnable α. Left: PReLU-G. Distribution of all neurons’ α for the whole
network (1 learnable parameter shared across all layers); Right: PReLU-L. PReLU-G. Distribution of all
layers’ parameters α for the whole network (1 learnable parameter per layer).

approach to ’dead units’, our investigation into a diverse array of activation functions—each with unique output ranges and
saturation characteristics (e.g., ReLU’s unbounded positive output versus Tanh’s strict [-1, 1] bounds, or ELU’s negative
saturation plateau)—necessitated a more concrete definition of what constitutes a ’saturated’ or ’effectively dead’ state
based on post-activation values. Therefore, while sharing the goal of identifying inactive units, our saturation fraction
metrics employ criteria specific to each activation function family (such as proximity to +/-1 for Tanh, near-zero output
for ReLU, or low output magnitude relative to batch statistics for functions like Swish or Leaky ReLU). This specific
approach allows us to more precisely capture the distinct ways different activation architectures can lead to or avoid states
of unresponsiveness under duress, rather than applying a single relative threshold across functions with fundamentally
different output scales and properties. See code for the full criteria used for each activation function.

D EXPANDING ON CASE STUDY 2: SATURATION-THRESHOLD STRESS TEST

D.1 STREES PROTOCOL

Let Γ = {1.5, 0.5, 0.25, 2.0} be the set of shock amplitudes and let Cl be a user–defined cycle length (we use Cl = 10
for results in the main body Sec. 4). During training we step through the epochs of every task as

xpre ←− γk(t) x
pre, γk(t) =

{
Γk, t mod Cl = 0,

1, otherwise,

where the index k is advanced cyclically k←(k+1) mod |Γ| each time a shock epoch occurs. Thus every Cl epochs we
devote exactly one epoch to a scale–shock whose value alternates 1→1.5→1→0.5→1→0.25→1→2.00→1→
The multiplicative factor is applied after all layers and before its non-linearity; all other epochs run with γ=1.

D.2 DERIVATIVE-FLOOR RULE.

The data presented in Figure 2 provides strong support for the idea which posits that activation functions with non-zero
derivative floors offer superior desaturation and recovery dynamics.

Fig. 2 (left) reveals that, as expected, stronger "expanding" shocks (γ=1.5,2.0) generally induce a higher overall saturation
impact (AUSC) than "shrinking" shocks (γ=0.25,0.5) across all floor types.

Critically, activations in the "Non-Zero Floor" category consistently demonstrate the most effective minimization of
AUSC, maintaining the lowest values particularly under expanding shocks. Conversely, "Zero Floor" activations exhibit

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

the highest AUSC, indicating a greater susceptibility to prolonged saturation. The "Effective Non-Zero Floor" group
shows a mixed response, with AUSC values sometimes higher than "Zero Floor" for certain shrinking shocks (e.g., γ=0.5)
but better than "Zero Floor" under strong expansion.

This pattern of robustness for "Non-Zero Floor" activations is further evidenced in their SF recovery capabilities, as
shown in Fig. 2 (middle) and Fig. 2 (right). While successful recovery times tend to be quick (around 1 epoch or
slightly more) for stronger shocks (γ=1.5,2.0) across most types that do recover, the "Non-Zero Floor" category stands
out by also maintaining the lowest non-recovery rates, especially for expanding shocks where it approaches 0-5%. In
contrast, "Zero Floor" activations not only take noticeably longer to recover SF during shrinking shocks but also suffer
from extremely high non-recovery rates across all shock conditions. The ’Effective Non-Zero Floor’ group (typically
smooth-tailed functions) demonstrates rapid SF recovery Fig. 2 (middle) if recovery occurs. However, they suffer from
high non-recovery rates, particularly akin to ’Zero Floor’ types during shrinking shocks, and show less consistent AUSC
improvements compared to ’Non-Zero Floor’ activations. This indicates their negative tail mechanisms, despite providing
an average non-zero gradient, may not consistently prevent saturation or ensure recovery across diverse shocks.

In conclusion, "Zero Floor" activations are clearly detrimental to saturation resilience. While "Effective Non-Zero Floor"
functions offer fast recoveries when successful, it is the presence of a consistent and sufficiently large "Non-Zero Floor"
that most effectively minimizes overall saturation impact and ensures reliable, rapid recovery from saturation-inducing
shocks."

D.3 TWO-SIDED PENALTY.

We hypothesized that activations that saturate on both sides (Sigmoid, Tanh, Swish/GELU at very low β) will accumulate
≥ 50% more saturation and take≥ 50% longer to recover than one-sided families. The data provides nuanced support for
this. As seen in Fig. 3, "Two-Sided" functions indeed accumulate more saturation, evidenced by having the highest average
Peak SF Fig. 3 (left) and high AUSC values Fig. 3 (right). While their successful SF recoveries are very fast—around one
epoch Fig. 3 (middle)—this is severely counterbalanced by a very high non-recovery rate of 49.83% (data not shown in
figure). This high failure rate means that, in practice, they are far less reliable at desaturating than "One-Sided (Kink)"
activations, which had a non-recovery rate of 13.30%. If non-recovery is considered an infinite recovery time, then
"Two-Sided" functions effectively "take longer to recover" on average due to frequent outright failure. Interestingly,
"One-Sided (Smooth)" functions also exhibit a high non-recovery rate (48.93%), barely surpassing that of "Two-Sided"
functions, despite their successful recoveries also being very fast. This suggests that while their smooth negative tail can
allow for quick desaturation if conditions are right, they are also prone to getting stuck in a saturated state.

Therefore, the penalty for two-sided saturation is evident in both the magnitude of saturation experienced (Peak SF,
AUSC) and the overall reliability of recovery (high non-recovery rates). The "One-Sided (Kink)" group, while having a
tail of longer successful recovery times, is actually the most reliable at achieving recovery.

D.4 PERFORMANCE RECOVERY TIME ON CASE STUDY 2

To assess the functional recovery of the network after pre-activation shocks, we measured the performance recovery time
τ95, defined as the number of epochs required to regain 95% of the pre-shock validation accuracy on the current task.
This metric provides insight into the immediate resilience of the network’s learning capability for the task at hand when
subjected to sudden internal perturbations.

Overall, the rate of complete performance non-recovery (failure to reach 95% of pre-shock current-task accuracy within
the observation window) was very low across all experiments (1.14%). This indicates that, in most instances, the model’s
ability to perform the current task bounces back effectively after the applied shocks. Figure D1 illustrates the mean τ95
for these successful recoveries, grouped by activation ’Floor Type’ (left) and ’Sidedness’ (right), across different gamma
shock intensities.

For mild to moderate expanding shocks (γ=1.5) and all shrinking shocks (γ=0.25,0.5), the mean τ95 is consistently low
(around 1.2-1.3 epochs) and remarkably similar across all floor types and sidedness categories. This suggests that for
less extreme shocks, most activation functions allow for rapid recovery of performance on the current task. However,
differences emerge under strong expanding shocks (γ=2.0):

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

Figure D1: Functional performance recovery time τ95 versus gamma shock intensity. Grouped by
Floor Type (Left) and Sidedness (Right), showing mean epochs for successful recoveries. Most activations
demonstrate rapid recovery from mild to moderate shocks; however, under strong γ=2.0 shocks, ’Two-Sided’
functions are notably fastest and most reliable (0% non-recovery), while ’Non-Zero Floor’ and ’One-Sided
(Kink)’ types show slower recovery. (Overall performance non-recovery rate: 1.14%)."

• Impact of Floor Type (at γ=2.0): ’Non-Zero Floor’ activations, despite their strong SF recovery characteristics,
surprisingly exhibit the longest average τ95 (≈3.4 epochs) for performance and also contribute most to the
few performance non-recoveries observed (2.85% non-recovery rate for this group at γ=2.0). In contrast,
’Effective Non-Zero Floor’ (≈1.75 epochs τ95, 0.36% non-recovery) and ’Zero Floor’ (≈1.9 epochs τ95, 0.74%
non-recovery) activations recover current-task performance more quickly under these strong shocks.

• Impact of Sidedness (at γ=2.0): Most notably, ’Two-Sided’ activations (e.g., Sigmoid, Tanh) demonstrate
exceptional current-task functional recovery. They consistently recovered performance (0% non-recovery rate
in your stats) and did so fastest on average (≈1.1 epochs). ’One-Sided (Smooth)’ activations also performed
well. ’One-Sided (Kink)’ activations showed the slowest average τ95 and the highest performance non-recovery
rate among sidedness categories for these strong shocks.

It is crucial to note that this τ95 metric reflects the immediate recovery of performance on the task currently being trained.
While it indicates a certain resilience to transient internal shocks, it does not directly measure the long-term impact on
catastrophic forgetting or the overall ability to learn a sequence of tasks effectively.

The ultimate test of an activation function’s suitability for continual learning lies in metrics like Final Average Accuracy
(ACC) across all tasks and Average Forgetting (AF), evaluated at the end of the entire training sequence. It is in these
end-to-end CL metrics that more significant and often different disparities between activation functions emerge. For
instance, while ’Two-Sided’ activations show rapid current-task performance recovery here, their known issues with
vanishing gradients and saturation might still lead to poorer overall ACC or higher forgetting in the full CL scenario. The
current τ95 results offer a valuable piece of the puzzle regarding short-term resilience, but the broader impact on plasticity
and stability across the entire sequence of tasks remains best assessed by holistic CL evaluation metrics.

E EXPANDING ON CONTINUAL SUPERVISED LEARNING EXPERIMENTS

Following Kumar et al. (2023), we evaluate five supervised continual image–classification benchmarks spanning two
shift types: input distribution shift (Permuted MNIST, 5+1 CIFAR, Continual ImageNet) and concept shift (Random
Label MNIST, Random Label CIFAR). Across all settings, training proceeds as a sequence of tasks without task–identity
signals: the model is never told when a task switch occurs. Within each task, the learner receives mini–batches for a
fixed duration (specified below) and is updated incrementally with cross–entropy on the arriving batches. Summary of
experimental settings is shown in Table E1.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

Permuted MNIST Goodfellow et al. (2013) (input shift). We first sample a fixed subset of 10,000 images from the
MNIST training set. Each task is defined by drawing a new fixed random permutation over pixel indices and applying it
to every image in the subset. The permutation is constant within a task and independent across tasks. Each task presents
exactly one pass (1 epoch) over its 10,000 permuted images in mini–batches of size 16; the next task then begins with a
new permutation. We train for 500 tasks total. This setting induces strong input–space remapping while preserving label
semantics within tasks, isolating rapid adaptation to input shift.

Random Label MNIST Lyle et al. (2023) (concept shift). We fix a subset of 1,200 MNIST images once. For each task,
we generate a fresh random label for each image in this subset, leaving the inputs unchanged but altering the input to
label mapping. To encourage memorization under an arbitrary target function, the model is trained for 400 epochs per
task with batch size 16. After 400 epochs, a new task arrives with an independent random labeling; we run 50 tasks in
sequence. Inputs are identical across tasks; only concepts change, directly probing plasticity versus interference.

Random Label CIFAR (concept shift). Identical protocol to Random Label MNIST, but using images drawn from
CIFAR–10. We again use a fixed subset of 1,200 images and re-assign random labels independently per task. Training
uses 400 epochs per task, batch size 16, for 50 tasks. This mirrors the concept–shift regime on a higher–variability image
domain than MNIST.

5+1 CIFAR (input shift with alternating difficulty). Tasks are constructed from CIFAR–100 and alternate in difficulty:
even–indexed tasks are hard and odd–indexed tasks are easy. A hard task contains data from 5 distinct classes with
2,500 examples total (500 per class); an easy task contains data from a single class with 500 examples. Classes do not
repeat across the sequence, ensuring non–overlapping exposure. Each task lasts 780 timesteps, which corresponds to
approximately 10 epochs on the hard task data set with batch size 32; easy tasks use the same 780 time step budget for
consistency. We evaluated performance on the hard tasks only (single-class tasks are near the ceiling for all activation
functions). Alternating input diversity stresses both rapid adaptation (when diversity spikes) and retention across shifts,
serving as a targeted stress test for plasticity–loss mitigation.

Continual ImageNet Dohare et al. (2024) (input shift). Each task is a binary classification problem between two distinct
ImageNet classes. For every task we draw 1,200 images total (600 per class) and down-sample to 32×32, following
Dohare et al. (2024), to reduce compute while maintaining semantic variability. Classes do not repeat across tasks,
yielding clear, non–overlapping episodes of input shift. We train for 10 epochs per task with batch size 100 and report
task accuracy. Despite down-sampling, the setting retains ImageNet–level variability while enabling precise measurement
of adaptation and retention under non–reused classes.

Benchmark
Per-Task
Data Size Batch Epochs Timesteps # Tasks

Permuted MNIST 10,000 images 16 1 625 500
Random Label MNIST 1,200 images 16 400 30,000 50
Random Label CIFAR 1,200 images 16 400 30,000 50

5+1 CIFAR Hard: 2,500 images
(5 classes, 500/class) 32

Hard: ≈ 10
780 15

Easy: 500 images
(1 class)

Easy: ≈ 50 15

Continual ImageNet 1,200 images/task (600/class) 100 10 120 500

Table E1: Hyperparameters and schedule per benchmark. Timesteps denote parameter-update steps (i.e.,
mini-batches) within a task. For 5+1 CIFAR, a fixed timestep budget per task implies approximate epochs
depending on data size.
Notes. (i) In 5+1 CIFAR, classes do not repeat across tasks; tasks alternate easy/hard. 780 timesteps ≈ 10 epochs on the
hard set (since 2,500/32 ≈ 78.125 batches/epoch) and ≈ 50 epochs on the easy set (since 500/32 ≈ 15.625). (ii) In
Continual ImageNet, images are downsampled to 32×32 to reduce compute; classes do not repeat across tasks. (iii)

Timesteps are computed as the number of mini-batches per task.

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

E.1 EXPERIMENTAL RESULTS EXPANSION

Here we expand the empirical comparison of activation functions across five continual supervised benchmarks. Table 2
reports Total Average Online Task Accuracy. Two broad patterns emerge. First, rectifiers with a learnable or randomized
negative branch dominate: Leaky-ReLU, RReLU, PReLU, Smooth-Leaky, and its randomized variant consistently
outperform ReLU—often by large margins (e.g., CIFAR 5+1: ReLU 4.76 vs. Rand. Smooth-Leaky 57.01). Second,
smooth rectifiers (Swish/SiLU) also fare well, but tend to trail the best “leaky–family” members on the harder
settings. On the memorization-friendly random-label tasks, several of these parametric/leaky activations saturate near
100%, whereas saturating sigmoid and tanh struggle on CIFAR with random labels—consistent with their known
optimization brittleness under distributional churn. Overall, the strongest single performer is Rand. Smooth-Leaky,
with Smooth-Leaky, RReLU, and Leaky-ReLU close behind.

Table E2 clarifies why these families succeed by showing the optimal shape parameters and learning rates. A striking
regularity is a ‘Goldilocks zone’ for the negative linear sides: When an activation exposes a slope (or an effective initial
slope) on the negative branch, the best values typically land between their respective best-performing ranges. For some
it tends to be between 0.6 and 0.9, which was initially reported in Section 3. However, this is not a rule, and optimal
‘Goldilocks zone’ might vary between activations and settings. Nonetheless, this tends holds across Leaky-ReLU,
PReLU, Smooth-Leaky, and Rand. Smooth-Leaky, and even for RReLU when considering the average of its
bounds (important because that average initializes the effective leak). For these activations, we also observe that those
that are within that range tend to also have higher accuracy values than the ones that are outside the preferred range.
Intuitively, this regime prevents dead units and preserves gradient flow without collapsing the asymmetric gating that
helps continual adaptation. We also observe a gentle LR shift: simpler datasets (Permuted/Random-Label MNIST) favor
10−3, while CIFAR 5+1 prefers 10−4, matching the increased optimization stiffness there.

Figure E1: Comparison using Total Average Online Task Accuracy across all five Continual Supervised
Learning Benchmarks for all activation functions. See Tab. 2 for the best total average online accuracies.
Optimal hyperparameters can be seen in Tab. E2.

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

Activation
Permuted
MNIST

Random
Label

MNIST

Random
Label

CIFAR
CIFAR

5+1
Continual
ImageNet

ReLU − ∥ 0.001 − ∥ 0.0001 − ∥ 0.0001 − ∥ 0.0001 − ∥ 0.0001
Leaky-ReLU 0.6 ∥ 0.001 0.8 ∥ 0.001 0.6 ∥ 0.001 0.4 ∥ 0.001 0.6 ∥ 0.001
Sigmoid − ∥ 0.001 − ∥ 0.001 − ∥ 0.001 − ∥ 0.0001 − ∥ 0.001
Tanh − ∥ 0.001 − ∥ 0.0001 − ∥ 0.0001 − ∥ 0.001 − ∥ 0.0001
RReLU [0.6, 0.8] ∥ 0.001 [0.125, 0.333] ∥ 0.001 [0.6, 0.8] ∥ 0.001 [0.673, 2.673] ∥ 0.001 [0.6, 0.8] ∥ 0.001
PReLU neuron, α = 1.2 ∥ 0.001 neuron, α = 0.1 ∥ 0.001 global, α = 0.65 ∥ 0.0001 global, α = 0.9 ∥ 0.0001 neuron, α = 0.65 ∥ 0.001
Swish (SiLU) 0.05 ∥ 0.001 0.01 ∥ 0.001 0.01 ∥ 0.0001 0.1 ∥ 0.001 0.05 ∥ 0.001
GeLU 0.5 ∥ 0.001 0.8 ∥ 0.001 0.05 ∥ 0.001 1.0 ∥ 0.0001 1.0 ∥ 0.001
CeLU 3.6 ∥ 0.001 3.6 ∥ 0.0001 2.0 ∥ 0.0001 3.3 ∥ 0.001 3.3 ∥ 0.001
eLU 1.0 ∥ 0.001 3.6 ∥ 0.0001 3.6 ∥ 0.0001 3.6 ∥ 0.001 1.0 ∥ 0.001
SeLU 1.0 ∥ 0.001 3.0 ∥ 0.0001 3.7 ∥ 0.0001 3.7 ∥ 0.001 3.7 ∥ 0.001
CReLU − ∥ 0.001 − ∥ 0.001 − ∥ 0.001 − ∥ 0.001 − ∥ 0.001
Rational A, (5, 4), Leaky-ReLU ∥ 0.001 D, (5, 4), Tanh ∥ 0.0001 A, (5, 4), Tanh ∥ 0.001 B, (5, 4), Swish ∥ 0.001 C, (5, 4), ReLU ∥ 0.001
SwiGLU − ∥ 0.0001 − ∥ 0.001 − ∥ 0.0001 − ∥ 0.0001 − ∥ 0.0001
Deep Fourier − ∥ 0.001 − ∥ 0.001 − ∥ 0.001 − ∥ 0.001 − ∥ 0.001
Smooth-Leaky 0.1, 0.3, 0.3 ∥ 0.001 0.3, 0.1, 0.3 ∥ 0.001 0.3, 0.5, 0.65 ∥ 0.001 0.1, 3.0, 0.9 ∥ 0.001 3.0, 2.0, 0.65 ∥ 0.001
Rand. Smooth-Leaky 0.8, 1.0, 0.3, 0.6 ∥ 0.001 2.0, 0.8, 0.3, 0.6 ∥ 0.001 0.8, 3.0, 0.5, 0.5 ∥ 0.001 0.5, 0.5, 0.673, 2.673 ∥ 0.001 0.5, 0.5, 0.3, 0.3 ∥ 0.001

Table E2: Optimal Hyperparameters for each activation function in each Continual Supervised Benchmark
Problem. Represented as activation function shape parameter on the left side of the ∥ symbol and the learning
rate to the right. A dash (−) indicates that such activation function uses the unique or baseline parameter
(e.g., ReLU does not have any shape-controlling parameter since is linear on the positive right side and 0 on
the negative left side). The Total Average Online Accuracy reported for these optimal hyperparameters can be
seen in Table 2. PReLU’s α indicates initial parameter value. Smooth-Leaky triplets indicate c, p, α, while
Rand. Smooth-Leaky indicates c, p, and bounds [l, u]. The tuple of values from Rational indicates Version,
((P), (Q)), Function Approx. where (P) and (Q) are the numerator and denominator degrees respectively of
the polynomial.

E.2 ANALYSIS OF GENERALIZATION GAPS

Table E3 reports the Generalization Gap (GAP), calculated as the difference between the final test accuracy on a specific
task (after training on it) and the average online training accuracy during that same task, averaged across all tasks in the
sequence. In this online continual learning setting, a positive gap is the expected, healthy outcome. Because the "online
training accuracy" averages performance from the very first batch (where the model is ignorant) to the last, it naturally
underestimates the model’s final capability. A positive gap (Test > Online Train) therefore quantifies the "learning
gain": it confirms that the final, converged model performs better on held-out data than its average performance while
learning. On the other hand, a negative gap (Online Train > Test) is a critical diagnostic for overfitting or generalization
failure. This occurs when the model fits the incoming stream of training batches but fails to retain that performance when
evaluated on the static test set immediately after. This distinction highlights a key trade-off. For example, while Deep
Fourier Features (DFF) demonstrate high plasticity (high online accuracy) in our main benchmarks, they exhibit large
negative gaps on complex input-shift tasks (e.g., −51.24% on CIFAR 5+1, −21.01% on Continual ImageNet). This
indicates that DFF’s "adaptive linearity" comes at the cost of significant overfitting to the immediate training stream. In
contrast, Rand. Smooth-Leaky achieves a far superior balance. On Continual ImageNet, it effectively closes the gap
(−1.47%), and on CIFAR 5+1, it reduces the gap by nearly half compared to DFF (−29.67% vs. −51.24%). However, if
we look directly at the performance values in Table 2 we see that DFF achieves 72.29% vs Rand. Smooth-Leaky, 57.01,
which points to the same idea of conflation between trainability vs generalizability suggested in Section 7.1 with regard to
loss of plasticity.

We believe that in this case, this metric captures a different phenomenon, overfitting the test set. This is a distinct
concept from the specific challenge we are diagnosing in our RL analysis. That is the reasoning why for our supervised
benchmarks, we instead adopted the standard metrics for generalization in the continual learning community. As detailed
in Appendix B.6.1, we use Total Average Online Accuracy (TAOA) (which follow the setup of Kumar et al. (2023))
for our main online benchmarks 6, which is a common standard (Ghunaim et al. (2023); Prabhu et al. (2023); Cai et al.
(2021), and Average Accuracy (ACCT) for our class-incremental case studies (Section 3 and Section 4). These metrics
are the accepted measures of test-set performance in these CL settings.

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

Activation Permuted MNIST Rand. Label MNIST Rand. Label CIFAR CIFAR 5+1 Continual ImageNet
ReLU 9.37 ± 0.08 3.98 ± 1.52 3.52 ± 2.51 23.42 ± 3.85 5.49 ± 0.17
Leaky-ReLU 5.33 ± 0.03 8.20 ± 0.29 1.67 ± 0.01 -20.81 ± 1.42 -0.24 ± 0.08
RReLU 5.19 ± 0.02 6.83 ± 0.11 2.69 ± 0.01 -25.59 ± 2.89 -0.34 ± 0.17
PReLU 7.39 ± 0.02 6.48 ± 0.90 3.66 ± 0.31 23.11 ± 0.48 0.87 ± 0.33
Sigmoid 10.57 ± 0.05 17.56 ± 0.39 15.06 ± 2.27 18.18 ± 0.66 4.83 ± 0.35
Tanh 12.49 ± 0.10 15.25 ± 0.21 11.57 ± 0.05 25.97 ± 0.55 4.77 ± 0.32
Swish 6.00 ± 0.04 9.86 ± 0.39 10.11 ± 2.64 3.38 ± 2.73 1.72 ± 0.18
GeLU 9.26 ± 0.06 9.13 ± 0.56 15.21 ± 7.59 29.36 ± 0.42 0.74 ± 2.50
eLU 8.76 ± 0.05 16.48 ± 0.96 8.98 ± 2.93 -21.19 ± 2.11 2.45 ± 0.23
CeLU 7.41 ± 0.05 22.69 ± 0.88 3.45 ± 0.40 -28.31 ± 2.00 1.67 ± 0.24
SeLU 8.32 ± 0.15 20.38 ± 0.64 16.47 ± 0.77 -20.17 ± 2.14 1.15 ± 0.30
CReLU 7.42 ± 0.02 10.33 ± 0.39 6.74 ± 0.43 -9.68 ± 1.47 0.85 ± 0.10
Rational 6.22 ± 0.06 8.09 ± 0.95 8.32 ± 0.23 -20.80 ± 6.14 2.01 ± 0.32
SwiGLU 10.22 ± 0.02 2.38 ± 0.44 17.25 ± 1.32 25.01 ± 2.99 5.47 ± 0.90
Deep Fourier 7.03 ± 0.04 4.41 ± 0.15 1.63 ± 1.40 -51.24 ± 2.09 -21.01 ± 0.71
Smooth-Leaky 6.42 ± 0.01 8.27 ± 0.39 1.66 ± 0.01 -16.97 ± 2.05 -0.44 ± 0.31
Rand. Smooth-Leaky 5.98 ± 0.02 6.47 ± 0.09 1.59 ± 0.00 -29.67 ± 2.42 -1.47 ± 0.20

Table E3: Generalization Gap (GAP) in percentage (%) across five datasets. Values are reported as Mean ±
Std. The metric is calculated per-task as GAPt = TestAcct,final−TrainAcct,avg, then averaged across all tasks.
Positive values indicate healthy learning (the final model generalizes better than its average performance
during training). Negative values indicate overfitting (the model performed better on the training stream than
on the held-out test set). Higher is better. Best performance per dataset is bolded.

E.3 CONTINUAL LEARNING INTERVENTIONS TARGETING LOSS OF PLASTICITY

We evaluate the activation functions used throughout this paper to study the effects of being augmented with three standard
continual-learning (CL) algorithms that explicitly target loss of plasticity: L2-Init regularization Kumar et al. (2023),
Self-Normalized Resets (SNR) Farias & Jozefiak (2024), and Elastic Weight Consolidation (EWC) Kirkpatrick et al.
(2017). These three methods are applied orthogonally to the network architecture and activation function choices. They
constrain or refresh parameters, allowing us to quantify the extent to which activation design still contributes to plasticity
when strong CL mechanisms are present.

L2-Init: L2 Regularization to the Initial Parameters. L2-Init modifies conventional weight decay by intro-
ducing a quadratic penalty that pulls the network parameters (θ) back toward their initial values (θ0), rather than toward
zero.The total loss (L) is augmented by the L2-Init regularization term (LL2Init):

LL2Init = λL2Init∥θ − θ0∥22

The rationale is that the randomly initialized network resides in a relatively "plastic" region of the parameter space,
characterized by well-behaved gradients and non-saturated units. As training progresses across tasks, θ may drift into
"stiff" regions where gradients are less effective or highly anisotropic. L2-Init counteracts this drift by softly anchoring θ
back toward the original, high-plasticity configuration. In our experiments, λL2Init is a tunable hyperparameter, and the
penalty is applied throughout training.

Self-Normalized Resets (SNR). SNR is a reset-based method specifically designed to mitigate neuron-level loss
of plasticity. Instead of continuous regularization, SNR monitors the firing statistics of individual units over time. It
tracks an estimate of the expected activation frequency and computes an inter-activation time distribution for each
neuron. If a neuron remains inactive for a duration that is statistically unusual relative to its established baseline, SNR
determines the unit is effectively dormant and triggers a reset. This reset re-initializes the neuron’s incoming weights
and its corresponding optimizer state. The core hyperparameter is a percentile threshold (η). A reset is triggered when
the probability, under the tracked firing-rate model, of observing an inactivity stretch at least as long as the current one
falls below η. Higher η implies more aggressive resets (quicker refreshment of neurons). Lower η corresponds to more
conservative application of the reset mechanism. SNR intuitively injects fresh, plastic units into the network whenever
existing ones become statistically improbable "dead" units.

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

Elastic Weight Consolidation (EWC) EWC is a classical regularization-based CL method that addresses catas-
trophic forgetting by selectively restricting modifications to parameters deemed important for previously encountered
tasks. Following the completion of each task, an approximate Fisher information matrix is computed to estimate the
importance of each parameter. During subsequent task learning, the overall loss (L) is augmented with a quadratic penalty
term (LEWC):

LEWC = λEWC

∑
i

Fi(θi − θ⋆i)
2

Where: Fi is the i-th diagonal element of the Fisher information matrix, quantifying the importance of parameter θi.θ⋆i
are the reference parameters (e.g., those learned after the previous task).λEWC is the hyperparameter controlling the
regularization strength. This penalty increases the cost of updates along directions crucial for past performance, thus
preserving stability while permitting movement in less constrained directions essential for new task plasticity. EWC
serves as a strong CL baseline that explicitly manages the stability-plasticity trade-off.

Ablations. By applying this complementary suite of CL mechanisms, we can rigorously assess whether the effects
arising from activation function geometry and design persist, and how strongly they interact with parameter-constraining
or refreshing strategies. For all methods we report Total Average Online Task Accuracy (%) averaged over 5 independent
runs. Values are reported as mean ± standard deviation (SD). For each activation, we reuse its best hyperparameters from
the main experiments (see Table 2 and sweep a small log-spaced grid over the CL-method hyperparameters, reporting the
best value in each column. Vanilla indicates original results. For each CL intervention (L2-Init, SNR, EWC) we swept a
small grid over its main hyperparameter and report the best values per activation and dataset in Table E11, Table E10, and
Table E9.

E.3.1 DISCUSSION OF RESULTS

Activation Choice Defines the Plasticity Ceiling. A consistent hierarchy emerges across all benchmarks: while CL
interventions—most notably L2-Init—can mitigate plasticity loss in fragile activations like ReLU, they cannot compensate
for the geometric limitations of the activation function itself. For instance, in the challenging Random Label regimes
(Tables E5 and E6), Vanilla ReLU suffers total collapse (≈ 20% accuracy), effectively requiring L2-Init to function at
all. In contrast, our proposed Rand. Smooth-Leaky demonstrates inherent robustness, achieving high performance
even without interventions, and reaching the highest overall performance ceiling when augmented with L2-Init (e.g.,
95.20% on Continual ImageNet). This suggests that optimal plasticity, when coupled with CL interventions, requires a
synergy: an activation function that maintains gradient flow (Smooth-Leaky) combined with a regularization method that
maintains a favorable operating point (L2-Init).

Specific Activation Profiles. We observe distinct specialization among prior approaches. Deep Fourier excels in
high-frequency permutation and noise tasks (Table E6), effectively solving the task without intervention (96.24%), yet
struggles to generalize to natural image distributions (Table E8) where it lags behind smooth non-monotonic functions.
CReLU acts as a reliable "stabilized ReLU," consistently outperforming the baseline but often hitting a lower asymptotic
limit than the smooth variants. Rand. Smooth-Leaky effectively bridges this gap, matching Deep Fourier’s
robustness on noise tasks while dominating on natural data, indicating it captures the necessary curvature for diverse task
boundaries.

The "Constraint-Plasticity" Paradox. A critical anomaly is observed in the CIFAR 5+1 benchmark (Table E7), where
CL interventions actively degrade the performance of strong activations. While L2-Init aids ReLU, it catastrophic reduces
the accuracy of Deep Fourier (from 72.29% to 20.40%) and Rand. Smooth-Leaky (from 57.01% to 34.56%).
This suggests a regime where the optimal solution lies far from the initialization (θ0). By anchoring parameters to θ0,
L2-Init prevents the significant semantic drift required for this specific task shift. Notably, Vanilla Deep Fourier
achieves the highest performance in this setting, proving that in scenarios requiring extreme adaptation, the native plasticity
of the activation function is superior to external constraints. Conversely, methods like EWC consistently underperform
across most benchmarks, confirming that stability-focused regularization is often antithetical to the requirements of
plasticity-heavy regimes.

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

Activation Vanilla +L2-Init +SNR +EWC
ReLU 78.85 ± 0.06 93.36 ± 0.38 85.70 ± 1.12 53.85 ± 2.11
Leaky-ReLU 84.14 ± 0.01 91.60 ± 0.47 89.35 ± 0.38 58.42 ± 1.38
Sigmoid 76.96 ± 0.07 89.88 ± 0.30 85.02 ± 0.35 58.94 ± 3.33
Tanh 70.32 ± 0.54 86.12 ± 0.32 85.32 ± 0.19 59.35 ± 2.09
RReLU 83.95 ± 0.02 90.31 ± 0.44 88.91 ± 0.33 57.95 ± 5.19
PReLU 82.62 ± 0.05 92.49 ± 0.59 88.72 ± 0.38 58.87 ± 1.47
Swish 83.41 ± 0.03 90.40 ± 0.63 89.24 ± 0.27 60.50 ± 2.57
GeLU 78.97 ± 0.09 93.24 ± 0.36 85.72 ± 0.40 56.43 ± 3.18
CeLU 82.93 ± 0.04 93.06 ± 0.24 89.51 ± 0.35 62.10 ± 5.64
eLU 80.50 ± 0.09 93.56 ± 0.40 87.56 ± 0.42 57.94 ± 1.65
SeLU 80.43 ± 0.16 93.67 ± 0.58 87.22 ± 0.34 54.88 ± 3.20
CReLU 82.66 ± 0.04 93.22 ± 0.58 89.58 ± 0.46 45.39 ± 4.07
Rational 80.08 ± 0.05 87.96 ± 0.56 80.17 ± 0.07 50.10 ± 2.30
SwiGLU 77.69 ± 0.26 88.93 ± 0.23 87.68 ± 0.30 74.95 ± 1.72
Deep Fourier 83.69 ± 0.04 93.76 ± 0.18 90.68 ± 0.50 38.98 ± 3.20
Smooth-Leaky 84.03 ± 0.02 92.19 ± 0.43 89.91 ± 0.42 60.16 ± 3.30
Rand. Smooth-Leaky 84.26 ± 0.02 93.92 ± 0.37 90.10 ± 0.48 61.88 ± 2.20

Table E4: Effect of activation function with a series of Continual Learning algorithms on Permuted MNIST.

Activation Vanilla +L2-Init +SNR +EWC
ReLU 20.03 ± 2.46 100.00 ± 0.00 14.65 ± 1.94 12.13 ± 0.74
Leaky-ReLU 91.53 ± 0.18 99.90 ± 0.18 100.00 ± 0.00 22.77 ± 1.80
Sigmoid 79.59 ± 0.75 99.42 ± 0.48 91.43 ± 1.53 82.10 ± 12.65
Tanh 63.40 ± 0.12 98.67 ± 0.33 92.63 ± 1.45 13.07 ± 1.11
RReLU 93.10 ± 0.02 100.00 ± 0.00 99.95 ± 0.07 77.85 ± 25.94
PReLU 92.67 ± 0.23 100.00 ± 0.00 100.00 ± 0.00 85.10 ± 33.32
Swish 67.73 ± 0.46 89.00 ± 5.14 100.00 ± 0.00 24.72 ± 1.49
GeLU 38.79 ± 0.95 99.90 ± 0.14 15.40 ± 1.55 36.57 ± 3.11
CeLU 37.16 ± 0.90 100.00 ± 0.00 20.98 ± 1.96 27.27 ± 1.03
eLU 84.23 ± 0.70 100.00 ± 0.00 99.98 ± 0.04 54.37 ± 41.67
SeLU 79.95 ± 0.91 100.00 ± 0.00 98.45 ± 1.09 56.03 ± 37.14
CReLU 89.47 ± 0.28 100.00 ± 0.00 100.00 ± 0.00 16.75 ± 2.22
Rational 92.35 ± 1.97 100.00 ± 0.00 100.00 ± 0.00 36.27 ± 19.21
SwiGLU 31.20 ± 2.10 99.85 ± 0.34 12.75 ± 0.65 12.13 ± 1.19
Deep Fourier 92.61 ± 0.04 100.00 ± 0.00 100.00 ± 0.00 47.45 ± 47.97
Smooth-Leaky 91.69 ± 0.12 99.40 ± 1.34 100.00 ± 0.00 82.75 ± 38.57
Rand. Smooth-Leaky 93.33 ± 0.05 100.00 ± 0.00 99.93 ± 0.15 33.52 ± 2.83

Table E5: Effect of activation function with a series of Continual Learning algorithms on Random Label
MNIST.

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

Activation Vanilla +L2-Init +SNR +EWC
ReLU 25.79 ± 6.18 93.68 ± 2.81 18.23 ± 8.29 12.77 ± 1.47
Leaky-ReLU 98.34 ± 0.01 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Sigmoid 52.24 ± 2.99 46.83 ± 48.50 31.53 ± 4.99 12.37 ± 2.78
Tanh 58.56 ± 1.05 100.00 ± 0.00 87.55 ± 12.24 11.88 ± 1.72
RReLU 98.02 ± 0.03 100.00 ± 0.00 100.00 ± 0.00 87.25 ± 20.40
PReLU 96.86 ± 0.32 100.00 ± 0.00 100.00 ± 0.00 64.73 ± 48.29
Swish 87.40 ± 2.42 100.00 ± 0.00 100.00 ± 0.00 70.25 ± 40.74
GeLU 42.85 ± 2.12 11.45 ± 1.45 29.10 ± 11.14 13.83 ± 3.82
CeLU 29.64 ± 10.44 99.57 ± 0.57 17.72 ± 8.77 11.20 ± 0.25
eLU 57.45 ± 20.16 100.00 ± 0.00 44.92 ± 46.84 29.50 ± 39.43
SeLU 84.61 ± 2.07 100.00 ± 0.00 99.97 ± 0.07 43.95 ± 46.06
CReLU 92.90 ± 0.13 100.00 ± 0.00 100.00 ± 0.00 83.53 ± 36.82
Rational 94.82 ± 0.75 96.9 ± 1.24 95.56 ± 0.56 30.92 ± 38.66
SwiGLU 83.06 ± 3.51 84.57 ± 34.5 98.63 ± 1.87 19.88 ± 12.59
Deep Fourier 96.24 ± 0.51 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Smooth-Leaky 98.36 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Rand. Smooth-Leaky 98.42 ± 0.01 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Table E6: Effect of activation function with a series of Continual Learning algorithms on Random Label
CIFAR.

Activation Vanilla +L2-Init +SNR +EWC
ReLU 4.76 ± 1.01 47.52 ± 11.87 31.76 ± 7.13 21.20 ± 14.37
Leaky-ReLU 48.86 ± 0.70 33.60 ± 12.91 33.20 ± 13.82 23.44 ± 1.61
Sigmoid 1.79 ± 0.19 20.00 ± 0.00 20.00 ± 0.00 18.40 ± 2.31
Tanh 28.59 ± 2.34 52.00 ± 9.84 45.36 ± 12.45 42.56 ± 5.26
RReLU 53.60 ± 1.06 34.56 ± 7.30 34.00 ± 8.40 29.60 ± 10.48
PReLU 43.30 ± 0.61 56.94 ± 7.98 55.84 ± 7.69 56.92 ± 10.13
Swish 35.31 ± 1.87 39.44 ± 8.09 41.68 ± 8.20 29.36 ± 9.37
GeLU 17.60 ± 1.71 54.48 ± 5.56 49.36 ± 5.96 53.28 ± 16.69
CeLU 54.23 ± 1.44 27.04 ± 5.92 31.44 ± 11.17 25.84 ± 8.56
eLU 47.64 ± 1.44 36.16 ± 7.65 34.08 ± 2.69 30.64 ± 8.15
SeLU 49.07 ± 1.25 32.56 ± 4.81 36.48 ± 7.24 29.60 ± 7.14
CReLU 20.56 ± 2.28 20.00 ± 0.00 4.00 ± 8.94 16.72 ± 10.79
Rational 40.41 ± 4.21 20.00 ± 0.00 20.00 ± 0.00 25.20 ± 6.01
SwiGLU 9.57 ± 1.81 38.56 ± 4.48 35.28 ± 8.37 37.60 ± 11.30
Deep Fourier 72.29 ± 2.11 20.40 ± 1.52 20.08 ± 0.18 27.12 ± 5.10
Smooth-Leaky 49.87 ± 1.67 35.20 ± 19.55 32.96 ± 10.46 31.12 ± 11.40
Rand. Smooth-Leaky 57.01 ± 1.59 34.56 ± 6.01 29.44 ± 7.38 34.72 ± 10.91

Table E7: Effect of activation function with a series of Continual Learning algorithms on CIFAR 5+1.

32

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

Activation Vanilla +L2-Init +SNR +EWC
ReLU 73.71 ± 0.43 85.60 ± 8.29 81.20 ± 10.55 64.80 ± 11.45
Leaky-ReLU 85.28 ± 0.20 80.00 ± 8.25 92.00 ± 3.74 80.00 ± 6.63
Sigmoid 63.89 ± 7.38 71.29 ± 0.56 69.60 ± 14.10 72.00 ± 13.78
Tanh 70.97 ± 0.44 71.11 ± 1.45 80.40 ± 9.53 66.00 ± 10.86
RReLU 84.97 ± 0.17 84.40 ± 0.65 85.20 ± 8.56 80.40 ± 10.14
PReLU 82.37 ± 0.11 74.80 ± 14.39 80.80 ± 11.28 71.60 ± 15.58
Swish 82.64 ± 0.99 82.01 ± 0.56 83.60 ± 15.32 78.40 ± 20.85
GeLU 75.49 ± 0.11 80.40 ± 5.90 53.60 ± 8.05 72.40 ± 10.53
CeLU 81.15 ± 0.68 84.00 ± 3.12 85.20 ± 3.63 80.40 ± 4.56
eLU 80.10 ± 0.34 86.80 ± 2.28 88.40 ± 4.34 53.20 ± 10.83
SeLU 80.98 ± 0.49 84.36 ± 1.23 83.60 ± 7.40 75.60 ± 6.07
CReLU 84.85 ± 0.25 88.40 ± 4.56 86.40 ± 10.24 79.60 ± 7.40
Rational 80.65 ± 0.38 86.16 ± 1.13 81.60 ± 5.73 52.40 ± 8.99
SwiGLU 63.57 ± 2.04 72.00 ± 20.59 79.60 ± 10.71 82.80 ± 10.26
Deep Fourier 76.03 ± 0.75 78.40 ± 8.17 51.60 ± 9.32 74.80 ± 12.38
Smooth-Leaky 85.38 ± 0.25 91.20 ± 2.28 88.80 ± 5.40 90.40 ± 8.41
Rand. Smooth-Leaky 86.23 ± 0.13 95.20 ± 1.20 86.40 ± 10.81 81.60 ± 12.44

Table E8: Effect of activation function with a series of Continual Learning algorithms on Continual ImageNet.

Permuted MNIST Rand-label MNIST Rand-label CIFAR 5+1 CIFAR Cont. ImageNet

Activation LR λ LR λ LR λ LR λ LR λ

ReLU 1e-3 3e-4 1e-4 1e-3 1e-4 1e-3 1e-4 3e-4 1e-4 1e-3
Leaky-ReLU 1e-3 1e-3 1e-3 1e-4 1e-3 1e-4 1e-3 3e-4 1e-3 1e-4
Sigmoid 1e-3 1e-3 1e-3 3e-4 3e-4 1e-3 1e-3 1e-3 1e-3 3e-4
Tanh 1e-4 1e-3 1e-4 1e-3 1e-4 1e-4 1e-4 1e-3 1e-4 1e-3
PReLU 1e-3 1e-4 1e-3 3e-4 1e-4 1e-3 1e-4 3e-4 1e-4 3e-4
RReLU 1e-3 3e-4 1e-3 1e-4 1e-4 1e-3 1e-3 3e-4 1e-4 1e-3
Swish 1e-3 1e-3 1e-3 3e-4 1e-3 1e-3 1e-3 3e-4 1e-4 1e-3
CeLU 1e-3 1e-3 1e-4 1e-4 1e-4 1e-3 1e-3 3e-4 1e-3 1e-3
eLU 1e-3 1e-3 1e-4 3e-4 1e-4 3e-4 1e-3 1e-4 1e-3 1e-3
GeLU 1e-3 3e-4 1e-3 3e-4 1e-4 1e-3 1e-4 1e-4 1e-3 3e-4
SeLU 1e-3 1e-3 1e-4 1e-4 1e-4 3e-4 1e-3 1e-4 1e-4 1e-3
SwiGLU 1e-4 1e-4 1e-3 1e-3 1e-4 1e-4 1e-4 1e-4 1e-3 1e-4
Rational 1e-3 3e-4 1e-4 3e-4 3e-4 1e-4 1e-3 1e-4 1e-3 1e-4
CReLU 1e-3 1e-3 1e-3 1e-4 3e-4 1e-3 1e-3 1e-3 1e-3 1e-4
Deep Fourier 1e-3 1e-3 1e-3 1e-4 3e-4 1e-4 1e-3 3e-4 1e-3 1e-3
Smooth-Leaky 1e-3 1e-3 1e-3 1e-4 1e-3 1e-3 1e-3 1e-4 1e-3 3e-4
Rand. Smooth-Leaky 1e-3 1e-3 1e-3 1e-4 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

Table E9: Best L2-Init hyperparameters per activation and dataset. We report the learning rate and the L2-Init
coefficient λ. We sweep over λ ∈ [1e− 4, 3e− 4, 1e− 3] values.

33

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Under review as a conference paper at ICLR 2026

Permuted MNIST Rand-label MNIST Rand-label CIFAR 5+1 CIFAR Cont. ImageNet

Activation LR η LR η LR η LR η LR η

ReLU 1e-3 3e-3 1e-4 3e-3 1e-4 1e-2 1e-4 3e-3 1e-4 1e-3
Leaky-ReLU 3e-3 3e-3 1e-3 1e-2 1e-3 1e-2 1e-3 3e-3 1e-3 3e-3
Sigmoid 1e-3 3e-3 1e-3 3e-3 1e-3 1e-2 1e-3 3e-3 1e-3 3e-3
Tanh 1e-3 1e-3 1e-3 1e-3 1e-4 1e-2 1e-4 1e-3 1e-4 1e-3
PReLU 1e-3 3e-3 1e-3 1e-3 1e-4 3e-3 1e-4 3e-3 1e-4 1e-3
RReLU 1e-3 1e-3 1e-3 3e-3 1e-3 1e-2 1e-3 1e-2 1e-3 3e-3
CELU 1e-2 1e-3 1e-4 3e-3 1e-4 1e-2 1e-3 1e-2 1e-3 1e-2
ELU 1e-3 3e-3 1e-4 1e-3 1e-4 3e-3 1e-3 3e-3 1e-3 3e-3
GELU 1e-2 1e-3 1e-3 1e-3 1e-3 1e-3 1e-4 1e-3 1e-3 3e-3
SELU 1e-3 1e-3 1e-4 3e-3 1e-4 1e-3 1e-3 3e-3 1e-3 1e-3
Swish 1e-3 1e-3 1e-3 1e-2 1e-4 1e-3 1e-3 1e-3 1e-3 1e-2
CReLU 1e-3 3e-3 1e-3 1e-2 1e-3 1e-2 1e-3 3e-3 1e-3 3e-3
Rational 1e-3 1e-2 1e-4 1e-3 1e-4 3e-3 1e-3 3e-3 1e-3 1e-3
SwiGLU 1e-4 1e-3 1e-4 3e-3 1e-4 1e-3 1e-4 3e-3 1e-4 3e-3
Deep Fourier 1e-3 3e-3 1e-3 1e-2 1e-4 3e-3 1e-3 3e-3 1e-3 1e-2
Smooth-Leaky 1e-3 1e-2 1e-3 3e-3 1e-3 3e-3 1e-3 3e-3 1e-3 1e-3
Rand. Smooth-Leaky 1e-3 1e-2 1e-3 1e-2 1e-3 1e-2 1e-3 1e-2 1e-3 1e-3

Table E10: Best SNR hyperparameters per activation and dataset. We report the learning rate and the SNR
η controlling how rare an inactivity event must be (under the estimated firing-rate model) before resetting
a neuron (tail probability P (A >= a) <= η). For all runs we used an activation magnitude threshold to
count as "fired" of ϵ = 1×10−3 and a max effective window size for mean estimate of 1000. We sweep over
η ∈ [1e3, 3e− 3, 1e− 2] values.

Permuted MNIST Rand-label MNIST Rand-label CIFAR 5+1 CIFAR Cont. ImageNet

Activation LR λ LR λ LR λ LR λ LR λ

ReLU 1e-3 1e1 1e-4 5e1 1e-4 1e1 1e-4 5e1 1e-4 1e1
Leaky-ReLU 1e-3 1e3 1e-3 1e1 1e-3 5e1 1e-3 2e2 1e-3 1e1
Sigmoid 1e-3 1e1 1e-3 1e1 1e-3 1e1 1e-3 1e1 1e-3 1e1
Tanh 1e-3 1e1 1e-4 2e2 1e-4 1e1 1e-4 5e1 1e-4 2e2
PReLU 1e-3 1e1 1e-3 1e1 1e-4 5e1 1e-4 1e1 1e-4 1e1
RReLU 1e-3 1e1 1e-3 1e1 1e-3 1e1 1e-3 5e1 1e-3 1e1
CELU 1e-3 1e1 1e-4 1e1 1e-4 1e1 1e-3 2e2 1e-3 1e1
ELU 1e-3 1e1 1e-4 1e1 1e-4 5e1 1e-3 2e2 1e-3 2e2
GELU 1e-3 1e1 1e-3 1e1 1e-3 1e1 1e-4 1e1 1e-3 1e1
SELU 1e-3 1e1 1e-4 1e1 1e-4 2e2 1e-3 2e2 1e-3 1e1
Swish 1e-3 1e1 1e-3 1e1 1e-4 1e1 1e-3 1e1 1e-3 1e1
CReLU 1e-3 1e1 1e-3 1e1 1e-3 5e1 1e-3 1e1 1e-3 1e1
Rational 1e-3 1e1 1e-4 1e1 1e-3 5e1 1e-3 1e1 1e-4 1e1
SwiGLU 1e-4 1e1 1e-3 1e1 1e-4 1e1 1e-4 1e1 1e-4 1e1
Deep Fourier 1e-3 1e1 1e-3 2e2 1e-4 2e2 1e-3 2e2 1e-3 1e1
Smooth-Leaky 1e-3 1e1 1e-3 5e1 1e-3 1e1 1e-3 2e2 1e-3 1e1
Rand. Smooth-Leaky 1e-3 1e1 1e-3 1e1 1e-3 5e1 1e-3 2e2 1e-3 1e1

Table E11: Best EWC hyperparameters per activation and dataset. We report the learning rate and the EWC
strength of quadratic penalty λ. For all runs we used a decay for older tasks of γ = 1. We sweep over
λ ∈ [10, 50, 200] values.

F EXPANDING ON CONTINUAL REINFORCEMENT LEARNING EXPERIMENTS

Robust Metrics for Non-Stationary RL. Previously, we defined the generalization gap as GAPc,e = Rtrain
c,e −Rtest

c,e.
For each activation and environment, we summarize the change across cycles as ∆(GAPe) = GAP3,e −GAP1,e. A
value of ∆ < 0 implies the gap shrinks (improved transfer), while ∆ > 0 implies it widens (worse transfer).

To provide a rigorous summary across environments with vastly different reward scales (e.g., Humanoid vs. Hopper),
we depart from simple means or medians, which can be sensitive to outliers or mask the magnitude of failures. Instead,

34

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

Activation
IQM ± 95% CI

Plasticity Score LR Optimal HP
ReLU 0.1593 ± 0.043 0.0001 −
Leaky-ReLU 0.1580 ± 0.115 1e-05 0.8
Sigmoid 0.3301 ± 0.059 0.0001 −
Tanh 0.2121 ± 0.028 1e-05 −
RReLU 0.2255 ± 0.059 0.0001 Bounds: [0.125, 0.333]
PReLU 0.2695 ± 0.038 0.0001 Layer. α=0.65
Swish (SiLU) 0.3130 ± 0.071 0.0001 0.01
GeLU 0.1658 ± 0.035 0.0001 1.0
eLU 0.1476 ± 0.107 1e-05 1.0
CeLU 0.1431 ± 0.070 1e-05 1.0
SeLU 0.2182 ± 0.032 1e-05 1.673
CReLU 0.1200 ± 0.010 1e-05 −
Rational 0.2217 ± 0.018 1e-05 C, 5, 4, Leaky-ReLU
SwiGLU 0.0781 ± 0.008 0.0001 −
Deep Fourier 0.1766 ± 0.008 1e-05 −
Smooth-Leaky 0.3283 ± 0.037 0.0001 C:0.5, P:2.0, α=0.1
Rand. Smooth-Leaky 0.3853 ± 0.038 0.0001 C:0.1, P:1.0. Bounds: [0.01, 0.02]

Table F1: IQM plasticity score across 5 seeds with 95% bootstrap confidence intervals (higher is better). Best
IQM per column is bolded. We also report optimal learning rate (LR) and optimal hyperparameters (HP)
per activation function. In the case of bounded activations we provide the lower and upper bounds. PReLU
provides granularity level at the number of parameters per activation layer. A dash (−), in the Optimal HP
column, indicates that such activation function uses the unique or baseline parameter (e.g., ReLU only has
slope α = 0).

we adopt the Interquartile Mean (IQM) (Agarwal et al., 2021) for all cross-environment aggregations. Crucially, we
address the issue of physics simulation instabilities (where plasticity loss leads to rewards≪ −106). We apply a stability
filter: any run resulting in a physics explosion is treated as a functional failure. For the Generalization Gap, this means
assigning a gap of 0.0 (as no meaningful performance difference exists between two failures), preventing numerical
artifacts from skewing the aggregate ∆. We report the average reward per environment for all activation functions in
Table F2.

Plasticity Score Analysis. Separately, we report a Plasticity Score that captures late-cycle functional performance
on the training environments. This is distinct from the generalization gap; it answers: “can the agent still perform well
after repeated shifts on the data it now collects?” To make this metric comparable across tasks, we normalize returns to
[0, 1] using robust global bounds derived from the entire experimental suite. We apply a stability floor to clipped rewards
(treating physics failures as 0.0) and report the IQM across seeds and environments.

Under this rigorous metric, the highest Plasticity Scores are obtained by Rand. Smooth-Leaky (0.388) and Sigmoid
(0.340), followed by Smooth-Leaky (0.330) and Swish (0.315) (see Tab. F1 for full details). This ranking highlights a
critical trade-off between peak plasticity and safety:

• Rand. Smooth-Leaky achieves the highest aggregate score by dominating in solvable locomotion tasks (Ant,
HalfCheetah), demonstrating that smooth, randomized non-linearities facilitate superior gradient flow and
rapid adaptation. However, it lacks an upper bound, which leads to divergence in the volatile Humanoid
environment.

• Sigmoid achieves the second-best score via stability. Its bounded nature (0, 1) prevents physics explosions
in Humanoid, securing a baseline of performance where others fail. However, this saturation limits its peak
learning capacity in simpler environments, resulting in a lower total score than the randomized variant.

35

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

Activation HalfCheetah-v5 Humanoid-v5 Ant-v5 Hopper-v5

ReLU 730.7± 787.7 −1.0× 106 ± 1.7× 106 1041.7± 313.6 −6004.2± 1.2× 104

Leaky-ReLU −2.5× 105 ± 4.3× 105 −2.0× 105 ± 1.3× 105 −4.5× 104 ± 9.1× 104 107.0± 62.8
Sigmoid 2113.2± 811.5 342.2± 46.4 1769.3± 243.6 336.2± 97.9
Tanh 1896.2± 578.8 194.9± 36.0 234.9± 126.7 109.7± 47.5
RReLU 1260.8± 1259.2 −9.3× 104 ± 6.5× 104 1151.3± 200.7 159.9± 125.1
PReLU 2123.3± 1019.1 −5.5× 105 ± 4.5× 105 1525.3± 425.5 146.2± 13.8
Swish (SiLU) 2161.9± 806.8 −7.6× 105 ± 4.2× 105 2135.2± 614.1 106.8± 87.1
GeLU 850.8± 457.7 −1.5× 107 ± 2.6× 107 766.1± 144.8 31.9± 41.3
eLU 274.9± 2997.3 −8.3× 105 ± 8.6× 105 −4.1× 104 ± 7.4× 104 116.5± 102.7
CeLU 521.3± 897.6 194.6± 96.4 42.2± 248.5 49.1± 75.4
SeLU 1437.2± 618.1 270.0± 12.7 342.3± 17.4 174.0± 38.4
CReLU −472.6± 684.6 −1.0× 105 ± 8.2× 104 823.7± 165.7 12.1± 4.6
Rational 1526.4± 317.9 −6.1× 104 ± 3.2× 104 1083.3± 368.6 174.9± 102.3
SwiGLU −4.6× 1010 ± 6.0× 1010 −2.1× 1030 ± 3.3× 1030 105.8± 106.8 118.0± 27.4
Deep Fourier 592.5± 125.7 176.3± 41.5 327.7± 15.2 185.9± 47.0
Smooth-Leaky 2622.4± 536.5 −2.2× 106 ± 2.2× 106 2202.9± 533.6 173.8± 39.6
Rand. Smooth-Leaky 3221.5± 922.6 −6.0× 105 ± 2.6× 105 2791.2± 320.2 187.2± 19.4

Table F2: Average reward per environment (Mean ± Std Dev) over 5 seeds. Higher is better. Best performance
per environment is bolded. Large negative values (e.g., for SwiGLU or Humanoid) indicate potential issues.

Regarding transfer, high plasticity often correlates with a widening gap. Sigmoid and Swish show positive IQM ∆ (gaps
widen), suggesting that their adaptation is somewhat specific to the current stationary distribution. Rand. Smooth-Leaky,
while failing in Humanoid, actually exhibits the lowest IQM ∆ among high-performers in the environments where it
remains stable, suggesting its randomized landscape encourages more generalizable solutions. Conversely, traditional
activations like ReLU and Leaky-ReLU produce low Plasticity Scores, consistent with their known instability under
repeated shifts.

Table F1 provides the raw absolute rewards for all activations. This data is essential for contextualizing the Generalization
Gap (Tab. 4); a low gap should only be considered a "success" if the corresponding absolute reward in Tab. F1 indicates
the agent has actually solved the task.

We therefore present both viewpoints: (i) Plasticity Score (IQM) for functional performance under non-stationarity,
and (ii) Generalization Gap (IQM ∆) for evaluation of the adaptation carried to perturbed tests. Full per-activation,
per-environment results are in Tab. F3, and the cycle-by-cycle evolution is visualized in Fig. F1.

F.1 INTERPRETING NEGATIVE GENERALIZATION GAPS IN CONTINUAL RL

A strongly negative generalization gap at the end of training (GAPc,e < 0) is not paradoxical under non-stationary
streams (e.g., randomized MuJoCo friction Abbas et al. (2023)). As the training environment keeps shifting, the agent
can lose plasticity—it struggles to re-fit the current regime—so Rtrain

c,e is depressed. Yet the policy may retain robust,
regime-invariant skills that carry to perturbed test conditions, where evaluation is noise-free and does not suffer on-policy
update instability. Consequently Rtest

c,e can exceed Rtrain
c,e , yielding a negative GAPc,e. Our summary ∆(GAPe) becomes

highly negative when transferability improves over the training cycle even as within-cycle adaptation degrades—an
acceptable and informative outcome in this setting.

G NOVEL ACTIVATION FUNCTION FORMULATIONS

Our characterization study enables the principled design of many novel activation functions; representative examples
include:

36

1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

Under review as a conference paper at ICLR 2026

Activation HalfCheetah-v5 Humanoid-v5 Ant-v5 Hopper-v5 IQM ∆ Mean ∆ Std ∆

ReLU 124.81 ± 511.73 203.06 ± 158.47 183.00 ± 473.82 -287.15 ± 547.78 153.91 55.93 231.12
Leaky-ReLU 546.91 ± 1425.72 0.00 ± 0.00 -168.86 ± 711.59 -1.91 ± 30.97 -0.95 94.04 312.12
Sigmoid -288.53 ± 2576.85 18.92 ± 111.38 276.48 ± 1018.48 152.14 ± 129.02 85.53 39.75 242.81
Tanh -467.58 ± 1506.19 -2.87 ± 52.27 21.61 ± 213.56 -49.31 ± 117.34 -26.09 -124.54 230.58
RReLU 527.09 ± 1341.00 38.56 ± 1398.73 -26.83 ± 530.91 21.89 ± 69.33 30.22 140.18 259.43
PReLU 839.60 ± 596.03 -316.28 ± 2211.72 94.17 ± 660.28 -22.35 ± 74.09 35.91 148.78 491.86
Swish (SiLU) 533.55 ± 1314.41 0.00 ± 0.00 780.79 ± 730.11 13.39 ± 37.27 273.47 331.93 388.92
GeLU 317.71 ± 730.89 -9.92 ± 245.15 258.21 ± 395.62 -32.29 ± 40.17 124.15 133.43 180.32
eLU 237.41 ± 740.39 617.50 ± 989.90 -81.21 ± 162.09 -10.55 ± 90.69 113.43 190.79 315.58
CeLU -341.13 ± 459.03 -49.31 ± 74.86 -281.51 ± 277.68 3.56 ± 44.91 -165.41 -167.10 169.68
SeLU 837.97 ± 1628.38 15.91 ± 80.82 -339.88 ± 185.25 51.90 ± 52.95 33.90 141.47 496.86
CReLU -238.91 ± 1039.91 640.56 ± 1255.50 329.34 ± 299.75 1.61 ± 3.40 165.48 183.15 383.71
Rational 550.82 ± 919.91 862.09 ± 2004.43 270.39 ± 526.94 54.72 ± 107.53 410.60 434.51 350.01
SwiGLU 0.00 ± 0.00 0.00 ± 0.00 -326.59 ± 186.38 -16.59 ± 44.16 -8.30 -85.80 160.72
Deep Fourier -568.95 ± 551.62 0.34 ± 58.99 -477.68 ± 208.27 41.53 ± 50.34 -238.67 -251.19 316.87
Smooth-Leaky 847.49 ± 1611.57 0.00 ± 0.00 44.09 ± 1089.34 27.01 ± 72.58 35.55 229.65 412.30
Rand. Smooth-Leaky -49.38 ± 883.36 0.00 ± 0.00 -336.13 ± 971.75 -68.68 ± 96.31 -59.03 -113.55 151.18

Table F3: First-to-last cycle ∆ of the Generalization Gap per environment and activation function (rounded to
2 decimals). The ± values indicate the 95% confidence interval. The IQM, mean, and std ∆ are calculated
across the 4 environments. Lower is better (negative values indicate the generalization gap decreased,
improving plasticity). Best (lowest/most negative) per column is bolded.

Figure F1: The heatmap reports end-of-cycle GAPc,e per activation (rows) and cycle (columns). Colors
are centered at 0 (green = negative values, test > train; red = positive values, train > test). Values are
computed on a held-out friction variant of the training environment (Abbas et al., 2023). See Tab. F3 for the
across-cycle summary ∆(GAPe). Together, these views reveal when apparent trainability gains translate (or
fail to translate) into generalization.

G.1 BOUNDED PRELU (BO-PRELU)

The Bounded Parametric Rectified Linear Unit (Bo-PReLU) is designed to combine the adaptability of PReLU with
enhanced stability by constraining its learnable negative slope. Our case studies found that extreme slope values can be
detrimental to performance. Bo-PReLU addresses this by forcing the slope to remain within a predefined "Goldilocks"
range, preventing it from becoming excessively large or small.

The function follows the standard PReLU formulation:

f(x) =

{
x if x ≥ 0

αx if x < 0
(7)

The key innovation lies in how α is learned. It is constrained to the range [αmin, αmax]. To ensure this constraint is
met without interfering with gradient-based optimization, we employ the reparameterization trick. An unconstrained
parameter, αraw, is learned, and the final slope is derived during the forward pass as:

α = αmin + (αmax − αmin) · σ(αraw) (8)

where σ is the sigmoid function. This makes Bo-PReLU a robust and stable learnable rectifier.

37

1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785

Under review as a conference paper at ICLR 2026

Activation HDZ NZG Sat± Sat− C1 NonM SelfN L/Rslp f ′′

RSeLU△ – ✓ – ✓ – – ✓ ✓ ✓
Bo-PReLU△ – ✓ – – – – – ✓ –

Table G1: Binary property grid (✓= present, – = absent). Abbreviations. HDZ: hard dead zone; NZG:
non-zero gradient for x < 0; Sat±: two-sided saturation; Sat−: negative-side saturation; C1: first derivative
continuous; NonM: non-monotonic segment; SelfN: self-normalizing output; L/Rslp: learnable or randomized
slope; f ′′: non-zero second derivative.
△ Proposed in this work.

Activation
Permuted
MNIST

Random Label
MNIST

Random Label
CIFAR

CIFAR
5+1

Continual
ImageNet

PReLU 82.62 ± 0.05 92.67 ± 0.23 96.86 ± 0.32 43.30 ± 0.61 82.37 ± 0.11
Bo-PReLU 84.23 ± 0.02 91.57 ± 0.11 98.41 ± 0.01 48.15 ± 1.20 85.72 ± 0.11
Rand. Smooth-Leaky 84.26 ± 0.02 93.33 ± 0.05 98.42 ± 0.01 57.01 ± 1.59 86.23 ± 0.13

Table G2: Total Average Online Task Accuracy (%) on Continual Supervised Benchmarks, averaged over
5 independent runs. Values are reported as mean ± standard deviation (SD). Statistical significance was
determined using an independent two-sample Welch’s t-test (p < 0.05).

Rand. Smooth-Leaky is only statistically significant with respect to Bo-PReLU on Random Label MNIST, CIFAR 5+1
and Continual ImageNet making Bo-PReLU highly competitive and highlighting the strengths of creating activation
functions following the principles studied on Section 3 and Section 4. Optimal Hyperparameters for Bo-PReLU are
indicated in Table G4, while the rest are in Table E2

G.2 RANDOMIZED-SLOPE SELU (RSELU)

The Randomized-Slope Scaled Exponential Linear Unit (RSELU) is a hybrid activation function designed to merge
the stochastic regularization benefits of RReLU with the training stability of SELU’s self-normalization property.

The function has two modes of operation. During training, it introduces randomization to the negative slope:

f(x) =

{
λx if x ≥ 0

λr(exp(x)− 1) if x < 0
where r ∼ U(l, u) (9)

During inference, the randomization is removed to ensure deterministic output, and the random variable r is fixed to the
mean of its distribution, (l + u)/2. A crucial feature of this design is that the bounds l and u are chosen to be symmetric

Figure G1: Bo-PReLU where αmin = 0.6, αmax = 0.8 and αinit = 0.65.

38

1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832

Under review as a conference paper at ICLR 2026

Figure G2: R-SeLU with bounds r ∼ U(l, u) where r = (0.9232, 2.4232).

around the original SELU alpha parameter (≈ 1.6732). This ensures that the self-normalizing property of SELU is
preserved "in expectation" throughout training, providing a stable foundation while the slope randomization encourages
robust learning and plasticity.

Activation
Permuted
MNIST

Random Label
MNIST

Random Label
CIFAR

CIFAR
5+1

Continual
ImageNet

SeLU 80.43 ± 0.16 79.95 ± 0.91 84.61 ± 2.07 49.07 ± 1.25 80.98 ± 0.49
R-SeLU 81.72 ± 0.04 65.60 ± 2.07 47.23 ± 0.65 39.90 ± 2.91 79.87 ± 0.13
Rand. Smooth-Leaky 84.26 ± 0.02 93.33 ± 0.05 98.42 ± 0.01 57.01 ± 1.59 86.23 ± 0.13

Table G3: Total Average Online Task Accuracy (%) on Continual Supervised Benchmarks, averaged over
5 independent runs. Values are reported as mean ± standard deviation (SD). Statistical significance was
determined using an independent two-sample Welch’s t-test (p < 0.05).

Activation
Permuted
MNIST

Random
Label

MNIST

Random
Label

CIFAR
CIFAR

5+1
Continual
ImageNet

R-SeLU [0.423, 2.923] ∥ 0.001 [0.423, 2.923] ∥ 0.0001 [0.423, 2.923] ∥ 0.001 [1.6732, 1.6732] ∥ 0.001 [1.6732,1.6732] ∥ 0.001
Bo-PReLU layer, α = 0.75, [0.5, 1.0] ∥ 0.001 neuron, α = 0.65, [0.3, 1.0] ∥ 0.001 neuron, α = 0.75, [0.5, 1.0] ∥ 0.001 layer, α = 0.75, [0.5, 1.0] ∥ 0.001 neuron, α = 0.65, [0.3, 1.0] ∥ 0.001

Table G4: Optimal Hyperparameters for extra custom activation function in each Continual Supervised
Benchmark Problem. Represented as activation function shape parameter on the left side of the ∥ symbol and
the learning rate to the right. Bo-PReLU’s α indicates initial parameter value and [l, u] bounds. R-SeLU only
indicates bounds [l, u].

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used an LLM as a tool for early brainstorming, code debugging, and writing/editing of the earlier drafts of this paper.
During ideation, we used it to enumerate experiment variants and sanity-check design choices; for code, we requested
bug-finding hints and refactoring suggestions that we implemented only after manual review and testing; for text, we used
it to improve clarity, organization, and grammar. The LLM did not generate novel research ideas, experiments, or results
on our behalf; all methodological innovations, analyses, and conclusions are our own. We verified any technical claims,
equations, and citations suggested during assisted drafting and we did not include uncited, model-generated text verbatim.
No proprietary or personally identifiable data was provided to the LLM. The authors retain full responsibility for the
content of this paper, and we affirm the novelty and originality of the work.

39

	Introduction
	Activation Functions and Plasticity in Continual Learning
	Case Study 1: Negative-Slope `Goldilocks Zone'
	Case Study 2: Desaturation Dynamics Under Shocks
	Implications for Activation-Function Design
	Smooth-Leaky and Randomized Smooth-Leaky

	Continual Supervised Learning
	Continual Reinforcement Learning
	Trainability vs. Generalizability

	Conclusion and Future Work
	Characterization of Activation Function Properties
	Experimental and Architectural Design
	Limitations and implications of choosing an optimizer.
	Limitations and implications of multi-parameter activation design.
	CReLU integration.
	Hyper-parameter Sweeps for Activation Functions
	i.i.d. vs Class-Incremental Continual Learning comparison Hyperparameters
	Understanding Class-Incremental Continual Learning Metrics
	Different Accuracy metrics across Continual Learning

	Curvature Metrics
	Principal curvature
	Effective Rank

	Expanding on Case Study 1: Negative‑Slope `Goldilocks Zone'
	Failure Modes for Slope Magnitude.
	Adaptive, granular slopes are useful—but need guidance to stay in-band
	Saturation Fraction as metric for 'dead units'.

	Expanding on Case Study 2: Saturation‑Threshold Stress Test
	Strees Protocol
	Derivative-Floor rule.
	Two-sided penalty.
	Performance recovery time on Case Study 2

	Expanding on Continual Supervised Learning Experiments
	Experimental Results Expansion
	Analysis of Generalization Gaps
	Continual Learning Interventions Targeting Loss of Plasticity
	Discussion of Results

	Expanding on Continual Reinforcement Learning Experiments
	Interpreting Negative Generalization Gaps in Continual RL

	Novel Activation Function Formulations
	Bounded PReLU (Bo-PReLU)
	Randomized-Slope SELU (RSELU)

	The Use of Large Language Models (LLMs)

