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When, Where, and What? A Benchmark for Accident Anticipation
and Localization with Large Language Models
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ABSTRACT
As autonomous driving systems increasingly become part of daily
transportation, the ability to accurately anticipate and mitigate
potential traffic accidents is paramount. Traditional accident an-
ticipation models primarily utilizing dashcam videos are adept at
predicting when an accident may occur but fall short in localiz-
ing the incident and identifying involved entities. Addressing this
gap, this study introduces a novel framework that integrates Large
Language Models (LLMs) to enhance predictive capabilities across
multiple dimensions—what, when, andwhere accidents might occur.
We develop an innovative chain-based attention mechanism that
dynamically adjusts to prioritize high-risk elements within complex
driving scenes. This mechanism is complemented by a three-stage
model that processes outputs from smaller models into detailed
multimodal inputs for LLMs, thus enabling a more nuanced under-
standing of traffic dynamics. Empirical validation on the DAD, CCD,
and A3D datasets demonstrates superior performance in Average
Precision (AP) and Mean Time-To-Accident (mTTA), establishing
new benchmarks for accident prediction technology. Our approach
not only advances the technological framework for autonomous
driving safety but also enhances human-AI interaction, making
the predictive insights generated by autonomous systems more
intuitive and actionable.

CCS CONCEPTS
• Applied computing→ Physical sciences and engineering.

KEYWORDS
Traffic Accident Anticipation; Autonomous Driving; Large Lan-
guage Models; Human-AI Interaction; Dynamic Object Attention

1 INTRODUCTION
As autonomous driving technologies advance, the imperative to
foresee and mitigate potential traffic accidents has become a cor-
nerstone of vehicular safety strategies. Current systems primarily
utilize dashcam footage to predict when and if accidents might
occur. Despite substantial advancements in visual perception tech-
nologies, there remains a crucial gap in integrating these insights
into autonomous systems’ decision-making processes. This lack of
integration restricts the systems’ ability to dynamically respond to
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Figure 1: Illustration of accident detection, localization,
and verbal warning generation performed by our model to
enhance safe driving and human-AI interaction. Detected
and accident-involved agents are marked as red and yellow
bounding boxes, respectively.

complex driving scenarios, where not only the timing but also the
location and nature of potential incidents are critical.

Traditional models often treat visual perception and decision-
making as separate entities, limiting the use of rich sensory data for
proactive driving adjustments. Furthermore, these models typically
do not account for the dynamic nature of driving environments,
failing to adapt to real-time changes and the complex interactions
between various traffic participants. This static approach limits their
effectiveness in the unpredictable and varied conditions typical of
real-world driving. Moreover, the outputs from these models are
often not translated into clear, actionable insights, reducing their
practical applicability and hindering their potential to enhance
safety in autonomous driving technologies.

To address these gaps, our research introduces a comprehensive
framework that leverages Large Language Models (LLMs) to en-
hance the predictive capabilities of autonomous driving systems.
By integrating cutting-edge linguistic and cognitive technologies,
our approach not only predicts potential incidents more accurately
but also improves the interaction between human operators and AI-
driven systems, providing a richer, more intuitive user experience.
Our key contributions are:

1) We have expanded the traditional scope of Accident Antic-
ipation (What and When) to include the localization of objects
involved in potential accidents (Where), a task we refer to as Ac-
cident Localization. For the first time, we utilize LLMs to analyze
complex scene semantics, offering precise and timely accident alerts
to passengers. Our system predicts whether an accident will occur

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(What), when it might happen (When), and where it would occur
(Where), thereby filling a crucial gap in accident prevention and
enhancing the safety of autonomous driving.

2) We introduce a novel chain-based attention mechanism that it-
eratively refines feature representations through a dynamic routing
mechanism enhanced by Markov chain noise models. This pro-
cess allows our system to dynamically adjust attention weights
across various objects within multi-agent traffic scenes, prioritizing
those with higher risk levels. This attention mechanism is part of a
three-stage model that preprocesses outputs from smaller models
to generate multimodal inputs (image and text) for large models,
guiding these large models to provide more accurate and detailed
scene descriptions.

3) Our model has undergone rigorous testing on benchmark
datasets such as DAD, CCD, and A3D, where it has demonstrated
superior performance in key metrics like Average Precision (AP)
and Mean Time-To-Accident (mTTA). The results not only surpass
existing methodologies but also mark a significant advancement in
accident prediction technology, setting new standards for the field.

2 RELATEDWORK
As autonomous driving technology is gradually integrated into ev-
eryday use, ensuring its safety has become paramount. The ability
of deep learning models to automatically detect or even predict
accidents in advance could significantly increase confidence in
autonomous driving systems. In this context, the concept of acci-
dent anticipation task was introduced in 2016 by Chan et al. [6],
which builds on the foundation of accident detection to enable early
prediction of accidents.

Addressing the complexities of traffic accident recognition, nu-
merous studies [1, 15, 18, 19, 22, 29, 30, 32, 35, 39, 42, 47, 50, 52, 54,
55] have integrated Convolutional Neural Networks (CNNs) with
sequence processing networks like Recurrent Neural Networks
(RNNs), Long Short-Term Memory (LSTM) cells, Gated Recurrent
Units (GRUs), and Graph Convolutional Networks (GCNs). This
synergy enables the extraction of intricate motion patterns and
temporal features from video data, facilitating the identification
of potential accident precursors. Yao et al. [49] and Takimoto et
al. [49] exemplify this by merging CNNs with RNNs and GRUs
to analyze temporal scene dynamics and predict accidents. Basso
et al. [3] introduce a CNN-based architecture for detailed vehicle
behavior analysis, while Thakare et al. [41] suggest a convolutional
autoencoder for feature extraction with reduced computational
load, though it struggles with capturing extensive spatial patterns.
Other enhancements include the adoption of attention mechanisms
[2, 22–24, 43] and Transformers like UniFormerv2 [25], VideoSwin
[31], and MVITv2 [11], which excel in processing visual data and
understanding dynamic traffic interactions through self-attention
mechanisms.

However, existing frameworks for accident anticipation and ob-
ject detection often operate independently. While these models
can predict accidents in advance, they fall short in identifying the
participants involved in these accidents and thus lack the ability to
implement appropriate actions in response to them autonomously.
To address this gap, this paper extends the accident anticipation

task to include the accident localization task, which predicts the oc-
currence of accidents in videos in advance and accurately identifies
the individuals involved in the accidents.

In addition, with the rapid development of large-scale language
models, more andmore autonomous driving models are using multi-
modal large-scale models for tasks such as voice-guided driving
and trajectory prediction. For example, LMDrive [38], UNIAD [17],
CAVG [26], and DiLu [48], and DriveMLM [46] use multimodal
sensor data, such as point clouds, combined with natural language
instructions to guide vehicle navigation. GPT-Driver [33] turns
trajectory planning into a language modeling task and fine-tunes
GPT-3.5 accordingly. TrafficGPT [53] integrates ChatGPT with a
traffic foundation model and trains on multimodal data inputs to
provide comprehensive support for various traffic-related tasks.
However, most existing works rely on complex multimodal inputs,
which limits the range of usable datasets and complicates the cre-
ation of new datasets. In ourmodel, we process outputs from smaller
models, such as the probability of accidents occurring and informa-
tion about the participants in the accidents, and use them as inputs
to LLaVa-NEXT [27], thereby improving the understanding and
analysis of traffic accident scenarios by the LLMs.

3 PROBLEM FORMULATION
This study extends the conventional scope of accident anticipation
by incorporating the task of accident localization. Our objective is
to devise a model that is capable of: (1) predicting the likelihood of
a traffic accident occurring, (2) providing timely accident warnings
if an accident is imminent, and (3) localizing the reference objects
(traffic agents) involved in the accident. Given a 𝑇 -frames dashcam
video, the model is tasked with calculating a probability score 𝑠𝑡
for each frame 𝑡 ∈ [1,𝑇 ], indicating the potential of an accident at
that moment. An accident is predicted to occur at time step 𝑡 if the
probability score 𝑠𝑡 first surpasses a predefined threshold 𝑠𝜃 . We
define the Time-to-Accident (TTA) as Δ𝑡 = 𝜏 − 𝑡𝜃 , where 𝑡𝜃 is the
time step when the score exceeds 𝑠𝜃 , and 𝜏 represents the actual
time step of the accident occurrence.

To localize the objects involved in accidents, we approach the
task as a mapping problem: the model is required to predict the
probability scores 𝑠1:𝑁𝑡 for 𝑁 objects in each frame 𝑡 , aiming to
pinpoint the specific objects within the video that are involved in
the accident. An object, denoted as the 𝑖th object, is considered to
be involved in an accident if 𝑠𝑖𝑡 > 0.5; otherwise, it is not involved.

4 PROPOSED MODEL
Our model framework is meticulously crafted to not only anticipate
accidents but also to identify objects that could precipitate such
incidents, providing timely linguistic warnings for passengers. We
frame the proposed model into three stages: Feature Extraction and
Fusion, Accident Anticipation and Location, and Verbal Accident
Alerts, as shown in Figure 2.

4.1 Stage-1: Feature Extraction and Fusion
In the first stage, the input dashcam video is first encoded by the
MobileNetv2 [37] in the feature extractor, followed by the dual vi-
sion attention mechanism, producing a set of vision-aware features
𝑂◦
𝑉
, corresponding to each frame of the video. Concurrently, the
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Figure 2: The overall network architecture of our proposed model. It is a cross-modal model including three stages: Feature
Extraction and Fusion, Accident Anticipation and Location, and Verbal Accident Alerts.

raw dashcam video is also fed into the object detector to identify the
object vectors 𝑉𝐵 = {𝑉 1

𝐵
,𝑉 2
𝐵
, . . . ,𝑉𝑇

𝐵
} of the reference objectors via

the pre-trained detector Cascade R-CNN [4]. Each vector at frame
𝑡 , represented as 𝑉 𝑡

𝐵
= {𝐵𝑡1, 𝐵

𝑡
2, . . . , 𝐵

𝑇
𝑁
}, indicates the bounding

boxes of 𝑁 detected objects. Next, these object vectors are refined
through feature extractor and a dynamic object attention mecha-
nism to extract precise object-aware features 𝑂◦

𝐵
.

Dual Vision Attention. This component is responsible for accept-
ing the vision-aware features𝑂◦

𝑉
. In contrast to traditional methods

such as MaskFormer [8], DETR [5], and MDETR [21], which re-
quire extensive token numbers of images for self-attention and
incur significant computational overhead, we introduce a dual vi-
sion attention mechanism inspired by DANet [12, 13]. As depicted
in Figure. 3, it employs a “hindsight fusion” strategy. This strategy
judiciously allocates attention to vision features 𝑂𝑉 extracted by
the feature extractor through a two-pronged method: channel at-
tention and position attention. Specifically, the vision features 𝑂𝑉
is converted to query 𝑄𝑃 , key 𝐾𝑃 , and value 𝑉𝑃 representations
via distinct convolutional layers. These representations are then
utilized to generate the attention maps in the position attention,
which can be represented as follows:

𝐹𝑃 = 𝛾𝜙softmax (𝑄𝑃 × 𝐾𝑇𝑃 ) ×𝑉𝑃 +𝑂𝑉 (1)

where 𝛾 is a trainable coefficient and 𝜙softmax denotes the softmax
activation function. Furthermore, the channel attention mechanism
is distinctively designed to bypass the convolutional layer embed-
dings typically used in position attention, favoring a direct attention
approach instead. Formally,

𝐹𝐶 = 𝛽𝜙softmax (𝑂𝑉 ×𝑂𝑇𝑉 ) ×𝑂𝑉 +𝑂𝑉 (2)

where 𝛽 is also a learnable coefficient. The computed channel
attention maps 𝑊𝐶 along with the position attention maps 𝑊𝑃

Figure 3: Structure of the Dual Vision Attention.

are subsequently integrated to form the refined vision-aware fea-
tures 𝑂◦

𝑉
= 𝐹𝑃 ⊕ 𝐹𝐶 . To enhance computational efficiency, we

utilize down-sampling and up-sampling in conjunction with the
dual vision attention mechanism. This condenses feature dimen-
sions into a more computationally friendly latent space. This ap-
proach improves feature representation by addressing both channel
and position-specific nuances while minimizing computational de-
mands through strategic dimensional adjustments.
Dynamic Object Attention. The dynamic object attention mech-
anism is innovatively designed to dynamically adjust attention
weights across various objects within multi-agent traffic scenes,
effectively enabling the model to prioritize high-risk entities. Tra-
ditional attention mechanisms typically necessitate updating the
attention matrix via gradient descent and backpropagation after
processing a batch through the model. These approaches render the
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attention matrix heavily dependent on the overall model architec-
ture and specific hyperparameters, such as the learning rate, with
feature granularity adjustments occurring across different batches.

Drawing inspiration from the capsule networks [36], we pioneer
a novel chain-based attention strategy, termed dynamic diffuse
attention. This mechanism fine-tunes the granularity of the fea-
ture matrix across various iterations rather than in a batch-centric
manner. As illustrated in Figure. 4, the dynamic diffuse attention
begins with the application of a weight matrix𝑊 to effectuate a
dimensional transformation on the object features 𝑉𝐵 across the
𝑛𝑡ℎ iteration, 𝑛 ∈ [1, 𝑛], resulting in the enhanced object features,
denoted as the F𝐵 =𝑊 ×𝑉𝐵 . Then, the embedding object features
are embedded undergoes the following operation:

𝐻
(𝑛)
𝐵

= 𝜙softmax (𝑊
(𝑛)
𝐵

) · 𝜙dropout (𝐹𝐵) (3)

where𝑊 (𝑛)
𝐵

is a learnable weight matrix with the same shape as
V𝐵 , and 𝜙dropout and · represent the application of softmax function
and element-wise multiplication, respectively.

We also update the object feature representation by integrating
dynamic diffuse noise. The embedded object features 𝐻𝐵 are con-
verted via the squash activation function and then modulated by
𝜙softmax (𝑊

(𝑛)
𝐵

), to which we add a level of diffuse noise D (𝑛) to
compute the update Δ𝑊 (𝑛)

𝐵
for the weight matrix𝑊 (𝑛)

𝐵
:

Δ𝑊 (𝑛)𝐵 = 𝜙softmax (𝑊
(𝑛)
𝐵

) · 𝐻 (𝑛)
𝐵

+ D (𝑛) (4)

This equation underpins the correlation between two matrices
through element-wise multiplication, which improves the weight-
ing of features with higher correlation. The noiseD (𝑛) is intricately
designed as a Markov chain 𝑝 (𝐷 (𝑛) |𝐷 (𝑛−1) ), allowing the noise
from the previous iteration D (𝑛−1) to inform the noise in the cur-
rent iteration D (𝑛) , following the principles outlined in [16]. This
stochastic approach aims to mitigate overfitting and convergence
problems by progressively refining the noise through iterations:

D (𝑛) =
√︁
𝛼 (𝑛)D (𝑛−1) +

√︁
1 − 𝛼 (𝑛)𝜖 (5)

where 𝜖 denotes random Gaussian noise, introducing a measured
degree of unpredictability and variance into the model. In addition,
𝛼 (𝑛) = 𝛼 (0)𝛼 (1) · · ·𝛼 (𝑛) , and 𝛼 (𝑛) is obtained as the 𝑛th value in
a sequence generated through linear interpolation between 0.1/𝑁
and 20/𝑁 over 𝑁 iterations. Finally, we update the weights using
Δ𝑊𝐵 :𝑊

(𝑛+1)
𝐵

= Δ𝑊
(𝑛)
𝐵

+𝑊 (𝑛) . The output of the𝑁 th iteration𝑊 𝑁
𝐵

is the object-aware feature 𝑂◦
𝐵
. Notably, down-sampling and up-

sampling operations are also applied in dynamic diffuse attention
to reduce computational costs and further transform the feature
dimensions into a latent space.

Next, we utilize a tri-layerMultilayer Perceptron (MLP) to adeptly
amalgamate the vision-aware 𝑂◦

𝑉
and object-aware 𝑂◦

𝐵
features.

This integration facilitates the generation of cross-modal features
𝑂𝐶 , which serve as the input for the subsequent stage. Formally,

𝑂◦
𝐶 = 𝜙MLP (𝑂◦

𝑉 ∥𝑂
◦
𝐵) (6)

where the 𝜙MLP is the MLP, while ∥ denotes matrix concatenation.

Figure 4: Structure of the Dynamic Object Attention.

4.2 Stage-2: Accident Anticipation and Location
In the second stage, we seamlessly introduce two novel modules
for the task of accident anticipation and location.
Accident Anticipation Module. This module is architected to
estimate in real-time the probability scores 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑇 }
for each frame of the input video. This estimation serves to iden-
tify the likelihood of an accident occurring, thereby facilitating
the earliest possible detection and providing a critical lead time for
preventive action. To achieve this, we employ GRUs and MLPs to re-
fine the cross-modal features 𝑂◦

𝐶
synthesized during the first stage

of our framework. Subsequently, we implement a series of three
convolution-deconvolution operations across varying receptive
fields. This approach ensures the assimilation of temporal depen-
dency over diverse scales, culminating in a nuanced and precise
prediction of accident probability for any given frame of the video.
Accident Localization Module. In this module, we utilize a so-
phisticated attention mechanism in conjunction with a GRU to
compute the probability values of accident occurrence for each
detected object. To ensure coherent reasoning, we harmonise the
vision-aware 𝑂◦

𝑉
, object-aware 𝑂◦

𝐵
, and cross-modal 𝑂◦

𝐶
features

by projecting them onto the same semantic space through linear
projection and L2 normalisation. This projection yields the query
𝑄◦, key 𝐾◦ and value 𝑉 ◦ representations, formalised as follows:

𝑄◦ =𝑊 ◦
𝑄𝜙MLP

(
𝑂◦
𝑉

)
, 𝐾◦ =𝑊 ◦

𝐾𝜙MLP
(
𝑂◦
𝐵

)
,𝑉 ◦ =𝑊 ◦

𝑉𝜙MLP
(
𝑂◦
𝐶

)
(7)

where𝑊 ◦
𝑄
,𝑊 ◦

𝐾
,𝑊 ◦

𝑉
represent learnable matrices tailored for linear

projection. The transformed query 𝑄◦, key 𝐾◦, and value 𝑉 ◦ are
then fed into the attention block, articulated as follows:

𝐹𝑐 = 𝜙softmax (
𝑄◦ · 𝐾◦√︁

𝑑𝑘

) ·𝑉 ◦ (8)

where 𝑑𝑘 denotes the dimension of the transformed vectors. The
attention-derived matrix 𝐹𝑐 is further refined by a GRU. This GRU
uses scatter and gather operations to efficiently parallelize the ac-
quisition of contextual information alongside the learning of spatio-
temporal interdependencies between agents. This innovative ap-
proach enhances the model’s ability to capture and analyse the
complex dynamics present in multi-agent traffic scenes.

Subsequently, a softmax function calculates likelihood scores for
each detected object. This crucial step allows the identification of
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the top-𝑘 objects that have the highest association with potential
accidents. By prioritizing these objects, our model focuses on the
most critical elements within the traffic scenes and significantly
enhances its practical utility by providing actionable insights for
accident prevention.

4.3 Stage-3: Verbal Accident Alerts
Recent studies [14, 26] have highlighted the importance of natural
language commands in improving passenger experience and accep-
tance of autonomous vehicles (AVs). Therefore, beyond the critical
functions of accident anticipation and localization, our model frame-
work endeavors to enhance human-AI interaction by providing
verbal accident alerts to passengers.

This stage is intricately designed to deliver precise and timely
traffic accident warnings, utilizing the latest Large Language Model
(LLM), LLaVa-NEXT [27, 28]. It processes dashcam video footage,
coupled with accident localization data and structured prompts [44]
as inputs. These prompts encompass exhaustive scene semantic an-
notations derived from the second stage—such as probability scores
and Time-to-Accident (TTA) derived from stage two outputs—to
guide the model to fully understand complex semantic scenes.

To prepare the input for the Mistral-7B model [20], we use CLIP
[34] and Vision Transformer (ViT) [10] for initial object recognition
and image tokenization within the video. This process identifies
key entities such as traffic signs, vehicles, and pedestrians, thereby
enriching the visual cues available to the model. At the same time,
the input prompts are tokenized into sequences using the Bidirec-
tional Transformer (BERT) model’s WordPieces tokenizer [9], and
then also integrated into the Mistral-7B model. Finally, the Mistral
model synthesizes this multimodal information and generates dia-
logues that articulate the expected timing of the accident and the
specific accident-involved traffic agents. To the best of our knowl-
edge, we are the first to leverage the linguistic prowess of the LLMs
to produce accident alert dialogues. This innovation fills a crucial
gap in the realm of safe driving and human-machine interaction,
marking a significant step forward in the integration of linguistic
capabilities into autonomous driving technologies.

5 TRAINING
Our training loss function consists of three main components: the
score loss 𝐿𝑆 for predicting the probability scores of all frames in
dashcam videos, the anticipation loss 𝐿𝐴 for predicting whether
accidents occur in dashcam videos, and the localization loss 𝐿𝑀 for
locating vehicles involved in accidents.

The score loss 𝐿𝑆 is calculated using the ground-truth accident
time 𝜏 and the probability scores 𝑠𝑛,𝑡 at time step 𝑡 . Specifically,
given the positive videos (i.e., videos with accidents), we set the
probability scores 𝑠𝑝,𝑡 of each frame to be close to 1, while for neg-
ative videos (i.e., videos without accidents), we set these scores 𝑠𝑛,𝑡
to approach 0. To account for the increasing relevance of frames
closer to the accident time, we introduce a weighting coefficient
𝑒−max( 𝜏−𝑡𝜆 ,0) that penalizes probability scores closer to the accident
time 𝜏 , where 𝜆 is a decay factor set to 20. For positive and nega-
tive videos, the labels L𝑝

𝑆
and L𝑛

𝑆
are set to 1 and 0, respectively,

resulting in the following formulation for 𝐿𝑆 :

𝐿𝑆 =
1
𝑉

1
𝑇

𝑉∑︁
𝑣=1

𝑇∑︁
𝑡=1

𝑒
−max

(
𝜏−𝑡
𝜆

,0
) [

−L𝑝

𝑆
log(𝑠𝑝,𝑡 ) − (1 − L𝑛

𝑆 ) log(1 − 𝑠
𝑛,𝑡 )

]
(9)

Furthermore, the anticipation loss 𝐿𝐴 can be defined as follows:

𝐿𝐴 =
1
𝑉

𝑉∑︁
𝑣=1

[
−L𝑝

𝐴
log(𝑙𝑎) − (1 − L𝑝

𝐴
) log(1 − 𝑙𝑎)

]
(10)

where 𝑙𝑎 is the output of the accident anticipation module, and𝑉 is
the number of dashcam videos. We assign a labelL𝑝

𝐴
= 1, indicating

a positive instance. Conversely, for videos devoid of accidents, we
denote these as negative instances with a label L𝑛

𝐴
= 0.

In addition, the localization loss 𝐿𝑀 is specifically designed to in-
struct the model in discerning whether each detected object within
the video plays a role in an accident. For every object 𝑛 ∈ [1, 𝑁 ]
that appears in the video, we define labels for objects positively as-
sociated with an accident (𝐿𝑝

𝑀
= 1) and those negatively associated

(𝐿𝑛
𝑀

= 0). Consequently, the localization loss, 𝐿𝑀 , is formulated as
follows:

𝐿𝑀 =
1
𝑉

1
𝑇

1
𝑁

𝑉∑︁
𝑣=1

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

[
−𝐿𝑝,𝑡

𝑀
log(𝑙𝑡,𝑛𝑚 ) − (1 − 𝐿𝑝,𝑡

𝑀
) log(1 − 𝑙𝑡,𝑛𝑚 )

]
(11)

Here, 𝑙𝑡,𝑛𝑚 represents the predictive output for the 𝑛𝑡ℎ object at
frame 𝑡 , with 𝑇 signifying the total frame count. This loss func-
tion enhances the model’s capability in accurately determining the
involvement of each detected object in potential accident scenar-
ios across all frames, thereby optimizing the accuracy of accident
localization.

During the first training phase, the final loss function 𝐿 is the
sum of score loss 𝐿𝑆 and anticipation loss 𝐿𝐴 , i.e., 𝐿 = 𝐿𝑆 + 𝜂𝐿𝐴 ,
where 𝜂 is a constant coefficient. In the second training phase, the
loss function 𝐿 consists only of 𝐿𝑀 . This structured approach allows
for a nuanced and effective model training strategy that addresses
the complexities of traffic accident detection and localization in
dashcam video.

6 EXPERIMENT
6.1 Datasets
DAD. The Dashcam Accident Dataset (DAD) [6] compiles a collec-
tion of 620 dashcam recordings from six prominent cities in Taiwan,
each lasting 5 seconds and captured at a rate of 20 frames per sec-
ond. From these recordings, 1750 video segments were extracted,
including 620 accident segments and 1130 non-crash segments. For
the segments with accidents, the collision time was set to the 90th
frame. Among the three datasets discussed, the DAD dataset is the
only one that includes annotations for object detection bounding
boxes, object IDs, object categories, and labels indicating the oc-
currence of accidents. This unique composition makes the DAD
dataset particularly suitable for tasks related to the localization of
objects involved in accidents. The segmentation of the dataset for
model training and evaluation purposes allocates 70% of the data
to the training set, which is further divided into 455 accident and
829 non-accident segments, while the test set contains 165 accident
and 301 non-accident segments.
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CCD. The Car Crash Dataset (CCD) [1], is an extensive collection
of 4500 video recordings annotated with different environmental
conditions (day/night, different weather conditions such as snow,
rain, or clear sky), the involvement of bicycles and pedestrians, and
detailed explanations of the causes of the accidents. Each video,
which captures 5 seconds of footage at a playback rate of 10 frames
per second, marks accidents in positive cases at the 40th frame. This
dataset is strategically divided into training (80%) and test (20%)
sets, maintaining a balance of one positive to two negative videos
in both segments.
A3D. The AnAn Accident Detection (A3D) dataset [49], contains
1500 dashcam video clips from different East Asian urban environ-
ments, representing a range of weather conditions and times of
day. These clips are each 5 seconds long, with a frame rate of 20
frames per second achieved through down-sampling. In the dataset,
accidents within positive video segments are identified at the 80th
frame. The split of the data for development purposes is set at 80%
training and 20% testing.

6.2 Metrics
In the area of traffic anticipation and localization tasks, three pri-
mary evaluation metrics are used: Average Precision (AP), Mean
Time-To-Accident (mTTA), and Accident Object Localization Accu-
racy (AOLA).
Average Precision (AP). AP serves as a measure to evaluate the
model’s ability to accurately detect the occurrence of traffic acci-
dents within videos, especially in scenarios where there is an imbal-
ance between positive and negative samples. In binary classification
tasks, assuming that 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 represent the number of true
positives, false positives, and false negatives, respectively, we can
calculate the model’s recall 𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 and precision 𝑃 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 .

Recall indicates the proportion of positive instances that are cor-
rectly predicted, while precision reflects the proportion of positive
predictions that are actually positive. A precision-recall curve is
plotted from these values, and AP is defined as the area enclosed
by this curve and the coordinate axes. In practice, the area under
the curve is approximated by discrete summation:

𝐴𝑃 =

∫
𝑃 (𝑅)𝑑𝑅 =

𝑚∑︁
𝑘=0

𝑃 (𝑘)Δ𝑅(𝑘) (12)

Mean Time-To-Accident (mTTA). mTTA quantifies the ability
of the model to predict in advance the occurrence of an accident
among the positive samples. If an accident occurs at frame 𝜏 , TTA
is defined as Δ𝑡 = 𝜏 − 𝑡𝜃 , where 𝑡𝜃 satisfies 𝑠𝑡 ≥ 𝑠𝜃 for 𝑡 ≥ 𝑡𝜃
and 𝑠𝑡 < 𝑠𝜃 for 𝑡 < 𝑡𝜃 , where 𝑠𝜃 represents the threshold for the
accident probability score. Across all possible thresholds 𝑠𝜃 ∈ [0, 1],
mTTA is the average of all TTAs, i.e.,𝑚𝑇𝑇𝐴 = 1

𝑛

∑
𝑠𝜃
𝑇𝑇𝐴.

Accident Object Localization Accuracy (AOLA). AOLA assesses
the accuracy of the model in predicting the occurrence of accidents
for all detected objects. For a total of 𝑁𝑉 videos, each containing 𝑓
frames and 𝑁𝑂 objects per frame, AOLA is defined as follows:

𝐴𝑂𝐿𝐴 =

∑𝑁𝑉

𝑖=1
∑𝑓

𝑗=1 𝑛𝑜∑𝑁𝑉

𝑖=1
∑𝑓

𝑗=1 𝑁𝑂
(13)

Figure 5: Comparative analysis of trends in AP and mTTA
metrics during training between DSTA (a) and our proposed
model (b). The performance metrics are recorded at every
half-epoch interval.

Table 1: Comparison of models seeking balance between
mTTA and AP on three datasets. Bold and underlined values
represent the best and second-best performance in each cat-
egory. Instances where values are not available are marked
with a dash (“-”).

Model
DAD CCD A3D

AP(%)↑mTTA(s)↑AOLA↑AP(%)↑mTTA(s)↑AP(%)↑mTTA(s)↑
DSA [7] 48.1 1.34 - 98.7 3.08 92.3 2.95

ACRA [51] 51.4 3.01 - 98.9 3.32 - -
AdaLEA [40] 52.3 3.43 - 99.2 3.45 92.9 3.16
UString [1] 53.7 3.53 - 99.5 3.74 93.2 3.24
DSTA [23] 56.1 3.66 - 99.6 3.87 93.5 2.87
GSC [45] 60.4 2.55 - 99.4 3.68 94.9 2.62
Ours 69.2 4.26 0.89 99.7 3.93 96.4 3.48

where 𝑛𝑜 denotes the number of correctly predicted objects per
frame.

6.3 Implementation Details
In this study, Pytorch is used for the implementation, and training
and testing are performed on an A40 48G GPU. For the pre-trained
model, we use MobileNetv2, from which 1280 feature dimensions
are extracted. For the model hyperparameters, we set the number
of dynamic routing iterations within the Dynamic Object Attention
mechanism to 8, with a maximum of 19 objects detected per frame.
For the loss function parameters, we set a decay coefficient 𝜆 =

20 and a loss function ratio coefficient 𝜂 = 10. For the training
parameters, we set the model learning rate to 1 × 10−4, with a
batch size of 16. We use ReduceLROnPlateau as the learning rate
scheduler to ensure that each model is trained for at least 10 epochs.
See Appendix for more implementation details.

6.4 Comparison to State-of-the-art (SOTA)
We conduct extensive experiments on the DAD, CCD, and A3D
datasets. Our model demonstrates superior performance in both
AP and mTTA metrics, as detailed in Table 1. Notably, on the DAD
dataset, our model achieved a remarkable 14.6% improvement in AP
and a 16.4% increase in mTTA compared to the second-performing
model. While enhancements on the CCD and A3D datasets were
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Table 2: Comparison of models for the best AP on DAD
datasets. TTA@80 means the value of mTTA at recall equals
to 80%. Bold and underlined values represent the best and
second-best performance of each category. Instances where
values are not available are marked with a dash (“-”).

Model Backbone Publication AP(%)↑ mTTA(s)↑ TTA@R80(s)↑
ACRA[51] VGG-16 ACCV’16 51.40 - -
DSA [7] VGG-16 ACCV’16 63.50 1.67 1.85

UniFormerv2 [25] Transformer ICCV’23 65.24 - -
VideoSwin [31] Transformer CVPR’22 65.45 - -
MVITv2 [11] Transformer CVPR’21 65.45 - -
DSTA [23] VGG-16 TITS’22 66.70 1.52 2.39
UString [1] VGG-16 ACMMM’20 68.40 1.63 2.18
GSC [45] VGG-16 TIV’23 68.90 1.33 2.14
Ours MobileNetv2 - 69.20 4.26 4.33

Table 3: Ablation studies of differentmodules onDADdataset.
DIA, DOA, AAM, and ALM represent Dual Vision Attention,
Dynamic Object Attention, Accident Anticipation Module,
and Accident Localization Module, respectively.

Model
Component Evaluation Metric

DIA DOA AAM ALM AP(%)↑ mTTA(s)↑ AOLA↑
A ✘ ✔ ✔ ✔ 61.4 4.17 0.81
B ✔ ✘ ✔ ✔ 56.8 3.69 0.72
C ✔ ✔ ✘ ✔ 65.3 2.46 0.86
D ✔ ✔ ✔ ✘ 59.5 4.01 0.65

original ✔ ✔ ✔ ✔ 69.2 4.26 0.89

more modest, this can be attributed to the already near-optimal
performance of competing models on these datasets. Additionally,
as indicated in Table 2, our model secured the top scores across both
AP andmTTAmetrics. Our analysis revealed that, unlike competing
models which faced challenges in optimizing the trade-off between
AP and mTTA, our model adeptly maintains this balance through-
out the training process. Table 5 illustrates that while other models,
such as DSTA, peaked in AP at the 20th epoch before experiencing
a rapid decline, our model reaches peak performance by the 2nd
epoch and maintains a minimal decline in performance thereafter,
highlighting its rapid convergence and resilience to overfitting.

Furthermore, our model undergoes rigorous multi-class accuracy
(AOLA) testing on the DAD dataset, achieving an accuracy rate of
nearly 90%. This test involves classifying each video frame into one
of 19 possible object categories, demonstrating themodel’s accuracy
in recognizing and classifying a wide range of objects in complex
traffic scenes. Achieving such a high accuracy rate, especially in a
multi-class setting, underscores the effectiveness and adaptability
of our model and sets a new benchmark in accident anticipation
and localization for autonomous driving systems.

6.5 Ablation Studies
Ablation Studies ofDifferentComponents. Table 3 presents our
ablation study for four key components: dual vision attention, dy-
namic object attention, accident anticipation module, and accident
localisation module, highlighting their indispensability within our
model framework. Model A, lacking dual vision attention, shows

Table 4: Ablation studies of the Dynamic Object Attention
on iterations. Num-iteration means the number of iterations
that Dynamic Route used during the training and testing
process. TC means the time consumption during training.
During the training process, the time consumption by the
model with Num-iteration=1 is set as a baseline of 1.

Index
Num-iteration Evaluation Metrics

Train Test AP(%)↑ mTTA(s)↑ AOLA↑ TC(%)↓
1 2 2 63.1 3.95 0.82 1.02
2 4 4 66.8 4.10 0.85 1.04
3 6 6 69.2 4.26 0.89 1.07
4 8 8 68.7 4.28 0.88 1.12
5 10 10 67.4 4.23 0.86 1.15

6 6 1 66.4 4.16 0.82 -
7 6 2 67.1 4.20 0.85 -
8 6 3 68.3 4.22 0.87 -
9 6 4 68.9 4.23 0.88 -
10 6 5 69.0 4.25 0.88 -
11 6 6 69.2 4.26 0.89 -

decreases in AP, mTTA and AOLA metrics, highlighting the im-
portance of incorporating learnable attention weights in global
image processing. Model B, devoid of dynamic object attention,
experiences a significant decrease in all three metrics due to the
absence of key object features, further highlighting the importance
of computing fine-grained correlations between detected objects to
focus the model on accident-relevant traffic agents for more accu-
rate anticipation. Furthermore, Model C, which omits the output of
probability scores and focuses solely on binary accident prediction,
maintains its AP score but experiences reduced performance in
mTTA. Finally, Model D, which excludes the accident localization
module, results in a significant decrease in the AOLA metric and
a decrease in both AP and mTTA scores. This indicates that the
prediction of accident-involved traffic agents not only improves the
model’s accuracy (AP), but also its timeliness (mTTA). In summary,
the results of these ablation studies confirm the effectiveness of
each model component. Together, these components synergistically
perform the tasks of accident anticipation and localisation with
improved accuracy and timeliness. See Appendix for more details
on ablation studies.
Ablation Studies of Dynamic Object Attention. This study in-
troduces the dynamic object attention mechanism that leverages
noise generated by a Markov chain of diffusion model. Through
multiple iterations, this mechanism progressively learns the corre-
lations between different detected entities and iteratively updates
their feature representations. To validate the importance of multi-
layer iterations and the efficacy of incorporating diffusion noise,
we conduct a series of ablation experiments. As illustrated in Table
4, Experiments 1-5 demonstrate that the model achieves optimal
Average Precision (AP) and ALOA metrics when the number of
iterations, Num-iteration, is set to 6. An increase or decrease in the
number of iterations respectively leads to overfitting or underfit-
ting. Furthermore, the duration of the process does not significantly
increase with additional iterations, making Num-iteration=6 the
optimal choice. Experiments 6-11 investigate the impact of varying
the number of test iterations while maintaining the same number
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Figure 6: Visualization of Model Performance on the DAD dataset.

of training iterations. The results indicate that model performance
is not significantly affected by reducing the number of test itera-
tions. This is due to the shared weight parameters across iterations,
which maintain effectiveness even with significantly fewer test it-
erations than in training. In addition, Table 5 further compares the
performance with and without the use of different types of noise.
Experiments 1-3 indicate that noise introduction enhances model
generalization; however, excessive noise (Experiment 3) degrades
performance. Experiments 4-5 show that linking noise across itera-
tions significantly improves outcomes, with Markov chain-based
connections proving most effective. In summary, these ablation
study results highlight the importance of multilayer iterations and
the strategic inclusion of diffusion noise in improving model accu-
racy and generalization.

6.6 Visualization
Figure 6 shows the temporal variation of the output probability
scores indicating the likelihood of an accident. As shown in Figure 6
(a), our model successfully identifies vehicles involved in accidents
(indicated by red bounding boxes) and outputs probability scores
close to 1 after the accident. Prior to the accident, the model’s
predicted probability scores exceed the threshold early, suggesting
that the model can detect changes in the target agents’ behavior in
the image and infer the increasing likelihood of an accident under
continuing conditions, thus assigning higher probability scores
in anticipation. Conversely, as shown in Figure 6 (b), the model’s
predictions do not exceed the threshold, indicating that no accident
has occurred in the video.

Table 5: Ablation studies of the dynamic object attention
on noise. “None” indicates no noise is applied, while “Same”
indicates using identical Gaussian noise for each iteration
loop. “Different” indicates using different Gaussian noise
for different iteration loops. “Linear” denotes using a simple
linear relationship between the Gaussian noise across loops.
“Markov chain” describes the method used in this study.

Index Noise
Evaluation Metrics

AP(%)↑ mTTA(s)↑ AOLA↑
1 None 63.6 4.01 0.82
2 Same 64.3 4.09 0.84
3 Different 63.8 3.86 0.81
4 Linear 67.7 4.33 0.87
5 Markov chain 69.2 4.26 0.89

7 CONCLUSION
In this study, we extend accident anticipation to accident localiza-
tion by using LLMs for detailed scene analysis, enabling precise acci-
dent warnings about what, when, and where of potential incidents,
thus significantly improving driving safety. We also present a novel
three-stage model tailored to the task of traffic anticipation and
localization. It introduces a novel attention mechanism that dynam-
ically refines feature representations, prioritizing high-risk objects
in traffic scenes. Moreover, we are the first to apply the LLMs to gen-
erate verbal accident alerts in accident anticipation, significantly
enhancing human-AI interaction. Our proposed model showcases
superior performance on key metrics in real-world datasets such
as DAD, CCD, and A3D, setting a new benchmark in this field.
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