Under review as a conference paper at ICLR 2025

CAN TRANSFORMERS IN-CONTEXT LEARN BEHAVIOR
OF A LINEAR DYNAMICAL SYSTEM?

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate whether transformers can learn to track a random process when
given observations of a related process and parameters of the dynamical system
that relates them as context. More specifically, we consider a finite-dimensional
state-space model described by the state transition matrix F', measurement ma-
trices hq, ..., hy, and the process and measurement noise covariance matrices
Q@ and R, respectively; these parameters, randomly sampled, are provided to the
transformer along with the observations y, ..., yn generated by the correspond-
ing linear dynamical system. We argue that in such settings transformers learn to
approximate the celebrated Kalman filter, and empirically verify this both for the
task of estimating hidden states T 1,2 3,..., ;v as well as for one-step prediction of
the (N + 1)%¢ observation, UN+1/1,2,3,...,N- A further study of the transformer’s
robustness reveals that its performance is retained even if the model’s parameters
are partially withheld. In particular, we demonstrate that the transformer remains
accurate at the considered task even in the absence of state transition and noise
covariance matrices, effectively emulating operations of the Dual-Kalman filter.

1 INTRODUCTION

In-context learning, in particular few-shot prompting (Yogatama et al., 2019), is a growing area of
research in natural language processing (NLP). In this framework, a large language model (LLM)
learns tasks from a relatively few examples, i.e., few demonstrations of input-output pairs. One of
the earliest works to show that LLMs are capable of being fine-tuned when provided with prompts
was by Brown et al.|(2020); there, the authors evaluated the GPT-3 model over a plethora of NLP
datasets and various “zero-shot”, “one-shot”, and “few-shot” learning tasks. In (Zhao et al.||[2021),
the authors implicate majority label bias, recency bias, and common token bias as the reasons for
instability in GPT-3’s accuracy following few-shot prompting and propose a contextual calibra-
tion procedure as a remedy. A theoretical analysis proving that language models perform implicit
Bayesian inference is presented in (Xie et al., [2021). Min et al.| (2022)) explore the reasons why
in-context learning works, show that in-context learning is not affected by the lack of ground-truth
labels, and posit that the label space and the distribution of the input text along with the format of
the prompts play a crucial role. Moreover, Schlag et al.[(2021) theoretically show that transformers
are fast weight programmers.

Early works that explore using standard transformer decoders to in-context learn auto-regressive
models include Garg et al.|(2022); there, the authors empirically investigate the ability of transform-
ers to learn classes of linear functions. They say that a model learns a function class F with domain
X ifforany f € F and forany z1, %2, ..., TN, Tguery sampled from X' in an IID fashion, the model is
able to predict the output f(zgyery) given the sequence z1, f(z1), 2, f(22), ..., TN, F(TN), Tquery-
The classes explored in |Garg et al|(2022) range from simple linear functions to sparse linear func-
tions, two-layered neural networks, and decision trees. Two parallel works, Von Oswald et al.|(2023)
and |Akytirek et al.[(2023), explored which algorithms does the transformer resemble the most as it
learns the functional classes in-context. In|[Von Oswald et al.| (2023)), the authors build on the work
of|Schlag et al.| (2021)) to elegantly show that the transformations induced by linear self-attention can
be perceived as equivalent to a gradient descent step. In other words, for a single 1-head linear self
attention layer there exist key, query, and value matrices such that a forward pass on the transformer
resembles the execution of one step of gradient descent with L2 loss on every token. |Akyiirek et al.
(2023)) take a fundamentally different approach, defining a raw operator that can be used to perform

Under review as a conference paper at ICLR 2025

various operations on the input tokens including matrix multiplication, scalar division, and read-
write; they then show that a single transformer head with appropriate key, query, and value matrices
can approximate the raw operator. This implies that by using the operations readily implemented
by the raw operator, transformers are in principle capable of implementing linear regression via
stochastic gradient descent or closed-form regression.

In this work, we investigate whether in-context learning may enable a transformer to predict states
and/or outputs of a linear dynamical system described by a state-space model with non-scalar state
transition matrix, non-zero process noise, and white measurement noise. For such systems, Kalman
filter (Kalman), |1960) is the optimal (in the mean-square error sense) linear state estimator. We in-
vestigate what algorithm the transformer most closely resembles as it learns to perform one-step
prediction when provided context in the form of observations generated by a system with arbi-
trarily sampled state transition matrix, time-varying measurement matrices, and the process and
observation noise covariance matrices. We show that Kalman filtering can be expressed in terms
of operations readily approximated by a transformer; this implies that when given the observations
and system parameters as context, the transformers can in principle emulate the Kalman filtering
algorithm. This is corroborated by extensive experimental results which demonstrate that such in-
context learning leads to behavior closely mimicking the Kalman filter when the context lengths
are sufficiently large. Interestingly, the transformer appears capable of emulating the Kalman filter
even if some of the parameters are withheld from the provided context, suggesting robustness and
potential ability to implicitly learn those parameters from the remaining context.

Prior works that investigate interplay between deep learning and Kalman filtering notably include
Deep Kalman Filters [Krishnan et al.| (2015) and Kalman Nets (Revach et al., 2021); the latter is a
framework that circumvents the need for accurate estimates of system parameters by learning the
Kalman gain in a data-driven fashion using a recurrent neural network. The follow-up work (Revach
et al., 2022) employs gated recurrent units to estimate the Kalman gain and noise statistics while
training and evaluating, as in (Revach et al., [2021), the proposed model on data generated by a sys-
tem with fixed parameters. In contrast, in our work the model parameters are randomly sampled
to generate each training example, leading transformer to learn how to perform filtering rather than
memorize input-output relationship of a specific system. Dao & Gul (2024) study the theoretical
connections between structured state space models (SSMs) and variants of attentions. The central
message of their work is that the computations of various SSMs can be re-expressed as matrix mul-
tiplication algorithms on structured matrices, an insight that can be utilized to show the relationship
between selective SSMs and attention to make the latter efficient. |Sieber et al.| (2024) introduce a
dynamical systems framework (DSF) to find a common representation unifying attention, SSMs,
Recurrent Neural Networks (RNNs) and LSTMs. However, these works bear no relevance to the
problem of state estimation, filtering, or in-context learning in general/Goel & Bartlett (2024) show
that softmax self attention can represent Nadarya-Watson smoothing estimator, and proceed to ar-
gue that this estimator approximates Kalman filter. In contrast, we explicitly focus on the problem
of in-context learning and build on the concepts proposed by |Akyiirek et al| (2023) to show that
transformers implement exact operations needed to perform Kalman filtering, supporting these ar-
guments with extensive empirical results. To the best of our knowledge, the current paper reports the
first study of the ability of transformers to in-context learn to emulate Kalman filter using examples
generated by randomly sampling parameters of an underlying dynamical system.

The remainder of this paper is organized as follows. Section 2 provides an overview of relevant
background. Section 3 lays out the system model and presents theoretical arguments that transform-
ers can in-context learn to implement Kalman filtering for white observation noise. Section 4 reports
the simulation results, including empirical studies of the robustness to missing model parameters,
while Section 5 concludes the paper.

2 BACKGROUND

2.1 TRANSFORMERS

Transformers, introduced by Vaswani et al.|(2017)), are neural networks architectures that utilize the
so-called attention mechanism to map an input sequence to an output sequence. Attention mecha-
nism facilitates learning the relationship between tokens representing the input sequence, and is a

Under review as a conference paper at ICLR 2025

key to the success of transformers in sequence-to-sequence modeling tasks. The experiments in this
paper utilize the GPT2-based (decoder-only) architecture Radford et al.|(2019).

A brief overview of the attention mechanism will help set the stage for the upcoming discussion.
Let GU=Y denote the input of the I** layer. A single transformer head, denoted by ~, consists of
key, query, and value matrices denoted by WX, W$,and Wy , respectively. The output of the head
~ is computed as

b, = Softmax ((W$G(l—1>)T(W$G<l—1>)) (WXG<Z—1>) . (1)

The softmax term in equation |1} informally stated, assigns weights to how tokens at two positions
are related to each other. The output of all the B heads are concatenated and combined using W
to form

AL = W, b, ..., U])

The resulting output is then passed to the feedforward part of the transformer block to obtain
GO = Wi (Woh (41 + GUD)) 4 Al 4 GO, 3)

where o denotes the non-linear activation function and A denotes layer normalization. For our
experiments, we use Gaussian error linear unit (GeLU |Hendrycks & Gimpel|(2016))) as the activation
function.

2.2 IN-CONTEXT LEARNING FOR LINEAR REGRESSION

Let us consider linear dynamical systems described by a finite-dimensional state-space model in-
volving hidden states x; € R™ and observations (i.e., measurements) y; € R™ related through the
system of equations

Tip1 = Fyog + q; 4
Ye = Hyxy + 1. (5)

The state equation , parameterized by the state transition matrix F; € R™*"™ and the covariance
@ of the stationary zero-mean white process noise g; € R", captures the temporal evolution of the
state vector. The measurement equation , parameterized by the measurement matrix H; € R™*"
and the covariance R of the stationary zero-mean white measurement noise 7, € R™, specifies the
acquisition of observations y; via linear transformation of states z;. Such state-space models have
proved invaluable in machine learning (Gu et al.,|2021), computational neuroscience (Barbieri et al.,
2004), control theory (Kailathl [1980), signal processing (Kailath et al.,|2000), economics (Zeng &
'Wu, 2013), and other fields. Many applications across these fields are concerned with learning the
hidden states x; given the noisy observations y; and the parameters of the state space model.

Assume a simple setting where F' = I,,»,,, @ = 0, H = hy € R*™ (i.e., scalar measurements),
and x¢ = x. Here, the state space model simplifies to
Ty =1 (6)
Yt = hpx + 1y, (7
i.e., the state equation becomes trivial and the system boils down to a linear measurement model
in equation (7). In this setting, inference of the unknown random vector z given the observations

Y1,Y2,...,yn and the measurements vectors hy, ho, hs, ..., h is an estimation problem that can
readily be solved using any of several well-known techniques including:

» Stochastic Gradient Descent. After initializing it as £y = Onx1, the state estimate is
iteratively updated by going through the measurements and recursively computing

Gy =341 — 20(hy—187_ 1 he—1 — hy1Yi—1),)

where a denotes the learning rate. Once a pre-specified convergence criterion is met, the
final estimate is set to Zsgp = T N.

Under review as a conference paper at ICLR 2025

¢ Ordinary Least Squares (OLS). Let the matrix H € RV*" be such that its rows are
measurement vectors, i.e., the ¢ — th row of H is h;; furthermore, let Y = [y1, y2, ..., yN]T.
Then the OLS estimator is found as

Torns = (IjITI?I)_lI?ITY. ©)]

* Ridge Regression. To combat overfitting and promote generalization, the ridge regression
estimator regularizes the OLS solution as

ZRidge = (ATH 4+ M,50,) THTY, (10)

where A denotes the regularization coefficient.

It is worth pointing out that if A = ‘;—j where o2 is the variance of r; and 72 is the variance
of zy = =z, ridge regression yields the lowest mean square error among all linear estimators of
z, i.e., the estimators that linearly combine measurements ¥, ..., yn to form &. Furthermore, if
xo ~ N(0,721) and 7, ~ N(0,02I), the ridge regressor yields the minimum mean square error
estimate that coincides with E[X |y1, ..., yn].

A pioneering work that explored the capability of language models to learn linear functions and
implement simple algorithms was reported by |Garg et al.| (2022). The ability of a transformer to
learn x; = x in was studied by |Akyiirek et al.| (2023)) which, building upon (Garg et al.| 2022,
explored what algorithms do GPT-2 based transformers learn to implement when trained in-context
to predict yy given the input organized into matrix

OT Y1 OT Y2 o TO YN—1 OT
B0 T 0 .. KL, 0 AL

Training the transformer in (Akyiirek et al.l 2023)) was performed by utilizing data batches compris-
ing examples that consist of randomly sampled states and parameters. It was argued there that for
limited architecture models trained on examples with small context lengths, the transformer approx-
imates the behavior of the stochastic gradient descent algorithm. For moderate context lengths less
than or equal to the state dimension and moderately sized model architectures, the transformer mim-
ics the behavior of Ridge Regression; finally, for context lengths greater than the state dimensions
and large transformer models, the transformer matches the performance of Ordinary Least Squares.

A major contribution of |Akyiirek et al.|(2023) was to theoretically show that transformers can ap-
proximate the operations necessary to implement SGD or closed-form regression. This was accom-
plished by introducing and utilizing the RAW (Read—Arithmetic—Write) operator parameterized by
W,, Wa, W and the element-wise operator o € [+, %] that maps the input to the layer I, ¢', to the

output g'*! for the index sets s, r, w, time set map I, and positions i = 1, ..., 2N according to
W,
dih = Wo | | Do alrl| oWdils] | (11)
KO,
4t = Qi g (12)

A single transformer head can approximate this operator for any W,, W,, W, and o; moreover,
there exist W, W,, W, o € {+, x} that approximate operations necessary to implement SGD and
closed-form regression including affine transformations, matrix multiplications, scalar division, dot
products, and read-write operations.

3 IN-CONTEXT LEARNING FOR FILTERING AND PREDICTION OF A
DYNAMICAL SYSTEM

Here we outline an in-context learning procedure for the generic state-space model given in @)-(3),
where we assume time-invariant state equation (i.e., F; = F # I, Q # 0). For the simplicity of
presentation, we at first consider scalar measurements. In such settings, the causal linear estima-
tor of the state sequence x; that achieves the lowest mean-square error is given by the celebrated
Kalman filter (Kalman|(1960)). Specifically, one first sets the estimate and the corresponding error

Under review as a conference paper at ICLR 2025

covariance matrix of the initial state to &7 and P;", respectively. For our work, we let 7 = 0 and
P0+ = I,,x». Then the estimates and the corresponding error covariance matrices of the subsequent
states are found recursively via the prediction and update equations of the Kalman filter as stated
below.

Prediction Step:
&, = Faf (13)
P =FP" FT +Q (14)
Update Step:
K, =P HI'(H,P H! + R)™! (15)
& =, + Ky — Hid,) (16)
PY = (I - K.H,)P~ (17)

For scalar measurements H; = h; (a row vector) and R = o (a scalar), simplifying the compu-
tationally intensive matrix inversion in (I5) into simple scalar division readily approximated by a
transformer head. Then the update equations become

Py hf
heP7hT + 02
brhfhe -
Pf ==t (19)
htP t_ h? -|- g 2
involving operations that, as argued by |Akyiirek et al.| (2023), are readily implemented by trans-
formers. To investigate how closely can a transformer mimic the behavior of the Kalman filter when

trained through in-context learning, we provide it with generic examples consisting of randomly
generated F, hy, ..., hx, 0% and Q structured as the (n + 1) x (2n + 2N + 1) matrix

0 0 o2 0O v1 0 y2 ... yn—1 O
FQOthOhQTO...Oh%

if =iy (e — haiey) (18)

(20)

The transformer, whose output is denoted by Ty (), can then be trained against the output at every
second position starting from the position 2n + 1, with the loss function

N
1
5 2 = Toh,yn, s heet g1 e, F,Q,0%))% Q1)

t=1

Recall that, as shown in (Akyiirek et al.| 2023), there exist a parametrization of a transformer head
that can approximate the operator in (L1)-(12). Below we specify operations, readily implemented
using the operator (TI)-(12), which can be used to re-state the Kalman filtering prediction and update
steps. These operations are defined on the subsets of indices of the input matrix. As an illustration of
such a subset, let us consider matrix F'; the set of indices specifying position of I’ in expression
is given by I}”p“t = [(1,0),(1,1),(1,2),...,(1,n = 1),...,(n,0), (n,1), ..., (n,n — 1)]. Further
details of such a construction are provided in the appendix. We define the operations needed to
re-state the Kalman filtering steps as follows:

1. Mul(, J, K). The transformer multiplies the matrix formed by the entries corresponding
to the indices in set I with the matrix formed by the entries corresponding to the indices in
set J, and writes the result on the indices specified by the set K.

2. Div(/, j, K). The transformer divides the entries corresponding to the indices in set I by
the scalar at the coordinate 7 and stores the result at the indices specified by the set K.

3. Aff(I, J, K, W7, W5). This operation implements the following affine transformation: The
transformer multiplies the matrix formed by the entries corresponding to the indices in set
I with W7 and adds it to W5 multiplied by the matrix formed by the entries corresponding
to the indices in set J; finally, the result is written on the indices specified by the set K.

4. Transpose(/, J). This operation finds the transpose of the matrix at / and writes it to J.

Under review as a conference paper at ICLR 2025

It is straightforward to re-state the Kalman filtering recursions using the operations specified above.
However, to do so, we first require some additional notation. We assume that a matrix consisting of
zero and identity submatrices may be prepended to the input to the transformer. Let us denote the
prepended matrix by Agppend, and let the resulting matrix be Aqq: = [Aappend, Ainput]. We denote
by Ip; the index set pointing to an n X n identity submatrix in A..;. Moreover, let Igs and Ipg
denote indices of two n X n submatrices of zeros in A.,;; let I g3 denote indices of a 1 X n submatrix
of zeros; let Ig4 and Ipg denote indices of two n x 1 submatrices of zeros; and let Igs, Igg, and
I denote indices of (scalar) zeros in A.q;. Finally, let the index sets of F, @, and 02 in A, be
denoted by Ir, Ig, I, respectively. With this notation in place, the Kalman filtering recursion can
be formally restated as Algorithm[I] Note that all this additional notation introduced above concerns
initializations and buffers to write the variables into. By concatenating them to the input matrix, we
simply create convenient space to write the state, state covariance and other intermediate variables,
ultimately arriving at Algorithm 1.

The presented framework is generalizable to non-scalar measurements with IID noise. To see this,
suppose y; € R™ and v, ~ N(0, R), where R is a diagonal m x m positive definitive matrix with

diagonal entries 07,03, ..., 02,. Let H; denote the measurement matrix at time step ¢. Furthermore,

let yi denote the j** component of y;, and let Ht(j) denote the 4t row of H;. The Kalman filter
recursions then become (Kailath et al., 2000)

A (DT
S+ _ o Py H; 1) _ (T .~
s+ — gy — 1 W — HO ;) (22)
t t Ht(l)Pt_Ht(l)T + O’% t t t
H— (DT (1)
. P H H A
Pt(1)+ o (t t t)Pt (23)

AR T + o7
Pt(j_1)+Ht(j)T

LD+ _ AU+) DT AG=1)F -
z =2z — , (—H "z) j=2,...,m (24)
t t Ht(])Pt(]—l)—i-Ht(j)T +Jj2 t t t
o pU=D+)T g7 () o
B =T o) B =2, 25)
H'PY H7W + 0]2
if = o™t (26)
P =pmt @7
The in-context learning can be performed by providing to the transformer the input formatted as
[0 0 o2 0o ¢ 0 Yy, o]
00 o2 0o 42 0 4@, o
000 o2 0 4™ 0 Lm0 o |, (28)
FqQ o HY o . HYY o HPT
oo o H™ o .. H™M o HW

allowing a straightforward extension of the algorithm to the non-scalar measurements case (omitted
for the sake of brevity).

4 SIMULATION RESULTS

For transparency and reproducibility, we build upon the code and the model released by |Garg et al.
(2022). All the results are obtained on a 16-layered transformer model with 4 heads and hidden size
512. We implement curriculum learning initialized with context length N = 10, incremented by
2 every 2000 training steps until reaching the context length of 40. The dimension of the hidden
state in all experiments was set to n = 8. Every training step is performed using Adam optimizer
Kingma (2014) with a learning rate of 0.0001 on a batch of 64 examples, where for each example

Under review as a conference paper at ICLR 2025

Algorithm 1 Formulating the Kalman filter recursions using the elementary operations imple-
mentable by transformers.

1: Input: Acot, I, Ig, 15,151, 1B2,IB3, Ip4, IBs, Ipe, IB7, IBs, Ipg
2: Initialize [< (1:7,2n)
3: fort: =1to N do
4 Iy <+ (1:n,2n+ 2i)
50 In+(l:n2n+2i—1)
6 1, + (0,2n + 2i)
7: Transpose(Ip, Ip2)
8: Mlll(IF, IXCUM, Ij(nmt)
9: Mul(Fr, Ip1, Ip1)
10: Mul(Ip1, Ip2, IB1)
11: Aff(Ip1, IQa Ip1, W1 = Lysns Wo = Lixn)
12: Transpose(l}, Ip3)
13: Mul(Ip1, I, IB4)
14 Mul(Ips, Ip4, Ips)
15: Aff(Ips, 15, IBs, W1 = 1, Wa = 1)
16: Div(Ipy4, Ipe; I54)
17: Mul(/},, IXnem ,Ip7)
18: Aff(Iy, IB7, IB7, W1 = 1, W2 = —1)
190 Mul(Ip7, Ip4, IBs)
20: Aff(IXnEzt, IBg, IXnEm, W1 = 1, W2 = 1)
21: Mul(Ipy, I3, IB9)
22: Mul(Ipy, Ip1, IB9)
23: Aff(Ip1, Ipo, Ip1, Wi = Lyxns Wo = —Inxn)
24 IX — Ichzt

Curr

25: end for

xo, H1, Hs, ..., Hy are sampled from isotropic Gaussian distributions. The process noise g; is
sampled from N (0, Q); to generate (), we randomly sample an 8 x 8 orthonormal matrix U and
form Q = UgpXqU, 5 , where Y is a diagonal matrix whose entries are sampled from the uniform

distribution [0, Jg]. For training, we implement a curriculum where 02 is steadily incremented
over 100000 steps until reaching 0.025 and kept constant from then on. Similarly, the measurement

noise is sampled from A/ (0, R) where the diagonal matrix R has entries 0%, ..., 02, sampled from

U[0,02]. As in the case of the process noise, we steadily increase o2 over 100000 training steps
until reaching 0.025. Note that () and R are sampled anew for each example, To randomly generate
the state matrix F', we explore two strategies:

1. Strategy 1: For the first set of experiments we set F' = (1 —«)I 4+ aUp, where a € U0, 1]
and Ur denotes a random orthonormal matrix. Note that the eigenvalues of matrix F’ are in
general complex valued and can thus be expressed as pe’? , where ¢ denotes the phase of
the said eigenvalue. As « increases from 0 to 1, we observe ¢ varying from 0 to 7; here ¢ is
such that the phase of the eigenvalues of F' is distributed in the interval [—¢, ¢]. For o = 0
and o = 1, all the eigenvalues lie exactly on the unit circle; for the values of « € (0, 1), the
eigenvalues may lie inside the unit circle. Note that the dynamical system is not guaranteed
to be stable since the eigenvalues of F' may lie on the unit circle. In fact, we observe that
if one sets o = 1, the transformer’s loss does not decrease. To train the transformer, we
steadily increase « from 0 to 1 over 50000 steps and then keep it constant.

2. Strategy 2: We further explore the setting with F' = UpXp UI:,C, where Ur denotes a ran-
dom orthonormal matrix and the diagonal matrix X has its entries drawn from /[—1, 1].
The dynamical system with state matrix F' defined this way is guaranteed to be stable.

To compare the transformer’s performance with that of other algorithms, we utilize the mean-
squared prediction difference (MSPD) which relates the performance of two algorithms A; and
As given the same context D as

MSPD(A1, As) = Ep_,... .ty Jon(D) (i) (A1 (D) (Hy) — A2(D)(Hy))?. (29

Under review as a conference paper at ICLR 2025

For evaluation, we utilize a randomly sampled batch of 5000 examples. Unless stated otherwise,
the parameters of the state and measurement noise covariance are set to o; = o7 = 0.025. Finally,
for the Kalman filter used as the baseline, we set the estimate of the initial state to zero and the
corresponding error covariance matrix to identity.

Before we delve into in-context learning, a natural question to ask would be whether the transformers
can perform explicit state estimation given the input in the form of expression (67). To this end,
we train the transformer to output the state for scalar measurements and Strategy 1 using the loss
function

— Ty(h1, 41y oo Be—1, Y- 1, he, F, Q, 02))2. (30)

Mz

t:l

—— Transformer and Kalman Filter
Transformer and SGD 0.01
Transformer and Ridge 0.01
Transformer and SGD 0.05
Transformer and Ridge 0.05
Transformer and OLS

1/n Mean Square Error
o
w

o
N
L

0.1+

0.0 T T T T T T T T
5 10 15 20 25 30 35 40
Context Length

Figure 1: The results of experiments testing the performance of various methods on the task of
estimating states of a linear dynamical system. The plots compare the difference in the achieved
mean-squared error between the transformer and other methods.

The mean-squared error between the estimate of z returned by the transformer and other algo-
rithms is shown in Figure [6] The algorithms include the Kalman filter, stochastic gradient descent
with learning rates of 0.01 and 0.05, ridge regression with regularization parameter A set to 0.01
and 0.05, and Ordinary Least Squares. A discussion addressing the choice of learning rates is pro-
vided in the appendix. It can be observed that as the context length increases, performance of the
transformer approaches that of Kalman filter while diverging away from the Ridge Regression and
the OLS; this is unsurprising since the latter two methods focus only on the measurement equation
while remaining unaware of the internal state dynamics. In fact, when the context length equals the
state dimension, the MSPD between the transformer and ridge regression is an order of magnitude
higher than that between the transformer and Kalman filter; for better visualization/resolution, we
thus limit the values on the vertical axis of this and other presented figures (leading to clipping in
some of the plots).

Next, we focus on the problem of in-context learning where the model must make a one-step pre-
diction of the system output given the context. The results are presented in Figure[2] For shorter
contexts, the in-context learning performs closest to the stochastic gradient descent with learning
rate 0.01, but as the context length increases, the performance of in-context learning approaches
that of the Kalman filter. Note that when the stability is guaranteed, i.e., all the eigenvalues of F
are between 0 and 1 (Strategy 2), the performance gaps are smaller than when the stability may be
violated.

To test the robustness of the transformers in face of partially missing context, we investigate what
happens if the covariance matrices R and () are omitted from the context and repeat the previous
experlments The results are reported in Figure[3] Interestingly, there appears to be no deterioration
in the performance for Strategy 1 (see Figure 3a)), and an improvement in the MSPD between the
transformer performing in-context learning (ICL) and Kalman filter for Strategy 2 (Figure[3b). This
may be implying that the transformer implicitly learns the missing context en route to mimicking

Under review as a conference paper at ICLR 2025

10 10

—— ICL and Kalman Filter —— ICL and Kalman Filter
ICL and SGD 0.01 ICL and SGD 0.01
—— ICL and Ridge 0.01 —— ICL and Ridge 0.01
08 —— ICL and SGD 0.05 08 —— ICL and SGD 0.05
—— ICL and Ridge 0.05 —— ICL and Ridge 0.05

—— ICL and OLS

ICL and OLS

0.6 4 0.6 q

1/n MSPD
1/n MSPD

0.4 0.4

0.2 q 0.2 q

oo 5 15 20 25 3 35 Py oo 5 10 5 20 25 3 3 P
Context Length Context Length
(a) Strategy 1 (b) Strategy 2

Figure 2: Mean-squared prediction difference (MSPD) between in-context learning (ICL) with a
transformer and several algorithms including Kalman filter, SGD, Ridge Regression, and OLS
(scalar measurements).

Kalman filter. Note that in these experiments the Kalman filter is still provided information about
the noise statistics. If it were not, one would need to employ a technique such as the computationally
intensive expectation-maximization algorithm to infer the missing noise covariance matrices.

10 1.0

—— ICL and Kalman Filter
ICL and SGD 0.01
—— ICL and Ridge 0.01
—— ICL and SGD 0.05
—— ICL and Ridge 0.05
—— ICL and OLS

—— ICL and Kalman Filter
ICL and SGD 0.01

ICL and Ridge 0.01
ICL and SGD 0.05
ICL and Ridge 0.05
ICL and OLS

0.8 4 0.8 4

0.6 q

=4
o

1/n MSPD
1/n MSPD

0.4

14
FS

0.2 1 0.2

R ——

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

0.0

Context Length Context Length
(a) Strategy 1 (b) Strategy 2

Figure 3: Mean-squared prediction difference (MSPD) between in-context learning (ICL) with a
transformer and several algorithms including Kalman filter, SGD, Ridge Regression, and OLS
(scalar measurements). ICL is conducted without information about the covariances R and Q).

We next investigate in-context learning for non-scalar measurements (dimension = 2) with white
noise. The input to the transformer, formatted according to expression (28), includes all the param-
eters of the state space model. The results, presented in Figure 4} show that transformer is able to
mimic Kalman filter following in-context learning and performs one-step prediction in the consid-
ered non-scalar measurements case.

Our final set of experiments investigates the setting where we withhold from the transformer the
information about both the state transition matrix and noise covariances (for simplicity, we are back
to the scalar measurements case). The results, plotted in Figure[35] show that the transformer starts
emulating the Kalman filter for sufficiently large context lengths. In the appendix we provide the-
oretical arguments that in the case of scalar measurements, the transformer is able to implement
operations of the Dual-Kalman Filter (Wan & Nelson, |1996)), which allows implicit estimation of
both the state and state transition matrix.

It is relatively straightforward to extend the presented results to the systems with control inputs
and to certain classes of non-linear systems; for the latter, it can be shown that the transformer
can implement operations of the Extended Kalman Filter (EKF). Relevant experimental results are

Under review as a conference paper at ICLR 2025

10 10
—— ICL and Kalman Filter
ICL and SGD 0.01
—— ICL and Ridge 0.01
08 —— ICL and SGD 0.05
—— ICL and Ridge 0.05

—— ICL and Kalman Filter
ICL and SGD 0.01
—— ICL and Ridge 0.01
—— ICL and SGD 0.05
—— ICL and Ridge 0.05
—— ICL and OLS

0.8 4

ICL and OLS

0.6 4 0.6 q

1/n MSPD
1/n MSPD

0.4 0.4

0.2 q 0.2 q

0.0

0.0 T T T T T T T T T T T T T T T T
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

Context Length Context Length
(a) Strategy 1 (b) Strategy 2

Figure 4: Mean-squared prediction difference (MSPD) between in-context learning (ICL) with a
transformer and several algorithms including Kalman filter; SGD, Ridge Regression, and OLS with
the measurements of dimension 2. Note that for these experiments, all system parameters are avail-
able to the transformer.

10 1.0

—— ICL and Kalman Filter
ICL and SGD 0.01
—— ICL and Ridge 0.01
—— ICL and SGD 0.05
—— ICL and Ridge 0.05
— ICLand OLS

—— ICL and Kalman Filter
ICL and SGD 0.01

ICL and Ridge 0.01
ICL and SGD 0.05

ICL and Ridge 0.05
ICL and OLS

0.8 0.8 4

0.6

=4
o

1/n MSPD
1/n MSPD

0.4 4

o
=

0.2 0.2

0.0

T T T T T T T T 0.0 T T T T T T T T
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

Context Length Context Length
(a) Strategy 1 (b) Strategy 2

Figure 5: Mean-squared prediction difference (MSPD) between in-context learning (ICL) with a
transformer and several algorithms including Kalman filter, SGD, Ridge Regression, and OLS. All
the information about the model parameters is withheld from the transformer.

presented in the appendix. There, we also demonstrate robustness of in-context learning to variations
in state dimensions or model parameter distributions as compared to those seen during training.

5 CONCLUSION

In this paper, we explored the capability of transformers to emulate the behavior of Kalman filter
when trained in-context with the randomly sampled parameters of a state space model and the cor-
responding observations. We provided analytical arguments in support of the transformer’s ability
to do so, and presented empirical results of the experiments that demonstrate close proximity of the
transformer and Kalman filter when the transformer is given sufficiently long context. Notably, the
transformer keeps closely approximating Kalman filter even when important context — namely, noise
covariance matrices and even state transition matrix (all required by the Kalman filter) — is omitted,
demonstrating robustness and implying the ability to implicitly learn missing context. Future work
includes extensions to temporally correlated noise and further investigation of robustness to missing
model parameters.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023.

Riccardo Barbieri, Loren M Frank, David P Nguyen, Michael C Quirk, Victor Solo, Matthew A
Wilson, and Emery N Brown. Dynamic analyses of information encoding in neural ensembles.
Neural computation, 16(2):277-307, 2004.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In Forty-first International Conference on Machine Learning, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583-30598, 2022.

Gautam Goel and Peter Bartlett. Can a transformer represent a kalman filter? In 6th Annual Learning
for Dynamics & Control Conference, pp. 1502—-1512. PMLR, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Thomas Kailath. Linear systems, volume 156. Prentice-Hall Englewood Cliffs, NJ, 1980.
Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear estimation. Prentice Hall, 2000.
Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters (2015). arXiv preprint
arXiv:1511.05121, 2015.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Guy Revach, Nir Shlezinger, Ruud JG Van Sloun, and Yonina C Eldar. Kalmannet: Data-driven
kalman filtering. In ICASSP 2021-2021 IEEFE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3905-3909. IEEE, 2021.

Guy Revach, Nir Shlezinger, Xiaoyong Ni, Adria Lopez Escoriza, Ruud JG Van Sloun, and Yonina C
Eldar. Kalmannet: Neural network aided kalman filtering for partially known dynamics. IEEE
Transactions on Signal Processing, 70:1532-1547, 2022.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
9355-9366. PMLR, 18-24 Jul 2021. URL https://proceedings.mlr.press/v139/
schlag2la.htmll

11

https://proceedings.mlr.press/v139/schlag21a.html
https://proceedings.mlr.press/v139/schlag21a.html

Under review as a conference paper at ICLR 2025

Jerome Sieber, Carmen Amo Alonso, Alexandre Didier, Melanie N Zeilinger, and Antonio Orvieto.
Understanding the differences in foundation models: Attention, state space models, and recurrent
neural networks. arXiv preprint arXiv:2405.15731, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvint-
sev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient de-
scent. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning Research, pp. 35151-35174. PMLR, 23-29
Jul 2023. URL https://proceedings.mlr.press/v202/von-oswald23a.html.

Eric Wan and Alex Nelson. Dual kalman filtering methods for nonlinear predic-
tion, smoothing and estimation. In M.C. Mozer, M. Jordan, and T. Petsche
(eds.), Advances in Neural Information Processing Systems, volume 9. MIT Press,
1996. URL https://proceedings.neurips.cc/paper_files/paper/1996/
file/147702db07145348245dc5a2f2fe5683-Paper.pdfl

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Dani Yogatama, Cyprien de Masson d’ Autume, Jerome Connor, Tomas Kocisky, Mike Chrzanowski,
Lingpeng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu, Chris Dyer, et al. Learning and evalu-
ating general linguistic intelligence. arXiv preprint arXiv:1901.11373, 2019.

Yong Zeng and Shu Wu. State-space models: Applications in economics and finance, volume 1.
Springer, 2013.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pp.
12697-12706. PMLR, 2021.

12

https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.neurips.cc/paper_files/paper/1996/file/147702db07145348245dc5a2f2fe5683-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/147702db07145348245dc5a2f2fe5683-Paper.pdf

Under review as a conference paper at ICLR 2025

A DUAL KALMAN FILTER - REVIEW

Consider the state-space model

Ty = Froe + g (3D
= Htl‘t + T, (32)
and consider the setting where we need to estimate both the state x; and the state transition matrix

F;. A solution is given in the form of the Dual Kalman Filter, proposed by Wan & Nelson| (1996).
This approach alternates between estimation of the state given the estimate of the state transition

. . 2
matrix and vice versa. Let f; € R™ denote the vectorized form of the state transition matrix, and
let the n x n? matrix X, be defined as

@0 .0 0

0 & 0 0
Xy =) (33)

0 0 #Hh0

0 0 0 ity
Then the following state space model can be set up for f;:

f t = fi—1 (34)
=Hyifio1+ 1y, (35)

where Hy; = Hy X, and ry, = Hyq; + r4; moreover, 7y, ~ N (0, Ry) where Ry = H.QH! + R.
The prediction and update equations for the estimates of f; are as follows.

Prediction Step:

fr =1 (36)
Pr =Pl (37)
Update Step:
Kyy =Py HE (Hp Py HE + Ryp) ™! (38)
ff = F7 + Kpalye = Hpof) (39)
P, =(I—K;Hpy)Pp, (40)

In case of scalar measurements, Hy, tP Ht e and HtQHtT and R are scalar; consequently, we can

express (38) as

1 ~
K= P HF,. 41)
M Hp P HT 4Ry T

B TRANSFORMER CAN LEARN TO PERFORM DUAL KALMAN FILTERING
IN-CONTEXT FOR A SYSTEM WITH SCALAR MEASUREMENTS

Consider the following context provided to the transformer as input:

0 02 0 y1 0 Yy ... Yn_1 0_ (42)
Q 0o K o K 0o .. 0 A%

One can show in a manner analogous to the proof for the canonical Kalman filter that the transformer
can in-context learn to perform implicit state estimation even in the absence of the state transition
matrix. To this end, in addition to Mul(J, J, K). Div(l, j, K), Aff(I, J, K, W1, W2), and Transpose(,
J) defined in the main text, we define MAP(I,J) which transforms the vectors formed by the entries
at index set [to a matrix of the form in equation to be copied and stored at the index set J.

13

Under review as a conference paper at ICLR 2025

In addition to A.q¢, Ir, IQ7 1,,1B1,1p9,1Ip3,IB4, IBs, Igs, IB7, IBs, I g9 defined in the main text,
we let Ip1(denote indices of an n x n? sub-matrix of zeros in A.q; let Ig11 denote indices of a
1 x n? sub-matrix of zeros in A.q; Ig13 and I Frowt denote indices of an n? x 1 sub-matrices of
zeros; and I 512 and I 514 denotes indices of an n? x n? sub-matrices of zeros. With this notation, we
can re-write the Dual Kalman filter using the elementary operations implementable by transformers
as Algorithm 2.

Algorithm 2 Formulating the Dual Kalman filter recursions using the elementary operations imple-
mentable by transformers

1: Input: Acot, Ir, 10, 1o, 151,12, IB3, IB4, IB5, IB6, IB7, IB8: IBY, IB10, IB11, IB12, IB13, IB14, 1

2: Initialize I +— (1:n,2n)
Curr

3: fori =1to N do

4 Iy < (1:n,2n+ 2i)

50 In«(1:m,2n+2i—1)

6 I, (0,2n + 2i)

7: Transpose(/r, Ip>)

8: Mul(IF’ IXCurr, Ileemt)

9: Mul(If, I1, Ip1)

10: Mul(Igi, IB2, IB1)

11: Aff(Ip, IQ,IB1, Wi = Inxns Wo = Iyxn)
12: Transpose(l;, Ip3)

13: Mul(Ip1, Iy, Ips)

14: Mul(Ip3, Ip4, Ips)

15: Aff(Ips, I55 Ips, W1 =1, Wa = 1)

16: Div(Ip4, Ips, IB4)

17 Mul(lp, I . Ip7)

18: Aff(ly, Ip7, Ip7, W1 = 1, W = —1)

19: Mul(Ig7, Iy, IBg)
20: Aff(IXneu’ Ips, IXMM, Wi=1,Wy=1)
21: Mul(Ipy,Ip3, IBg)
22: Mul(Igg, I1, IB9)
23: Aff([Bl, IBg, IBl,Wl = In><n9 W2 - _Inxn)
24 MAP(Ix . Ipio)
25: Mul(Ips, Ip10,IB11)
26: Transpose(Ipi1,Ip13)
27 Mul(Ipi1,Ii2,IB11)
28: Mul(Ig11, 13, Ins)
29: Mul(Ipi2,IB13,IB13)

30: Aff(IB5a Irn IB69 Wy = 1, Wy =1)

31: Div(Ip13, Ipe, IB13)

32: Mul(Ig7,Ipi3,Ips)

33 Aff(; Ips,I;
34 Mul(Ips, Ip10,IB11)
35: Mul(Ipi3,IB11,1B14)
36: Mul(Igi4,IBi12, IB14)
37 Aff(Ip12, Ip1as IB12s Wi = Lz xpzy Wo = —I2502)
38: MAP(; . Ir)

390 T, Ik,
40: end for

Wi=1L,We=1)

14

freat

Under review as a conference paper at ICLR 2025

C EXPERIMENTS WITH CONTROL INPUT

The results presented in the main body of the paper can be extended to the case of non-zero control
inputs provided that the measurement noise remains white. Specifically, for non-zero control inputs,
the state space model becomes

Tep1 = Fyry + Byug + q¢ (43)
Yy = Hyxy + 1. 44)

The derivation showing that a transformer can implement operations of Kalman filtering for this state
space model follows the same line of arguments presented in the main body of the paper for other
(simpler) state space models. We omit details for brevity and instead focus on presenting empirical
results. In particular, we carry out experiments involving scalar measurements and generate B €
R8*8as B = UgXglU g, where Up denotes a random orthonormal matrix while the diagonal matrix
¥ has entries drawn from U[—1, 1]. We sample control inputs u; € R® from a zero-mean Gaussian
distribution having identity matrix as the covariance, and then normalize them to the unit norm. The
input to the transformer for this setting is

0 0 0 ¢20 0 0 @ --- 0 0
FQBOOthu10~~'h7]C,uN

where F is generated using strategy 1. The rest of the settings remain the same as in the previous
experiments. The results, reported in Fig. 6, demonstrate that the transformer achieves mean-square
error performance similar to that of Kalman filter in this setting as well.

(45)

1.0

0.8 q

0.6 1

1/n MSPD

0.4 1

ICL and Kalman Filter
ICL and SGD 0.01

ICL and Ridge 0.01
ICL and SGD 0.05

ICL and Ridge 0.05
ICL and OLS

0.2 9

L T

T T T T T T T T
5 10 15 20 25 30 35 40
Context Length

0.0

Figure 6: The results of experiments with control inputs.

D MISCELLANEOUS EXPERIMENTS AND FURTHER DETAILS

D.1 DETAILED ILLUSTRATION OF ALGORITHM 1

We illustrate the working of Algorithm 1 for scalar measurements. Let the state dimension be n and
let the measurements be scalar. Let Agppend =

By By By BI By Bs Onxi Onxi Onxi

O1xn Oixn Oixn O O 0O Bs Bs Bz (46)
For n = 2, this can be visualized as A,ppend =
10 00000 O0OO0OTO0OTFDQO
01 0 0 0 O0OO0OO0OO0OO0OO0TO0 (¢
000 00O O0OO0OO0OUO0ODO0OTVOOUO

Under review as a conference paper at ICLR 2025

Consequently, with Acq: = [Aappend Ainput]), We obtain Ig; = {(0,),(,0),(0,1),(1,1)},
Ipy = {(072)v(1a2)7(0’3)5(1 3)} Ipy = {(0’4)7() () (1’5)}7 B3 = {(a6),(176)}7
Tps = {(0,7), (1,1}, Ino = {(0,8), (1,8)}, Ins = {(2,9)}, Ipe = {(2,10)}, Inr = {(2,11)},
Ir = {(1712)7(1,13),(2712) () 3)} IQ = {(1 14),(1 15) (14)7(715)}’ c = {(716)

and so on.

Next, we walk through the first iteration of the FOR loop in Algorithm|I]

1. Initialization: I¢ < (1 : n,2n). We start by initializing ig‘ = 0. We simply use the

urr

zeros below the variances as denoted below

0 0 0'2 0 Y1 0 Yz ... YN-1 0 (48)
F Q Zcur=0 nT 0 nl 0o .. 0 Y|

2. I L (1 : n,2n + 24). For the first iteration, ¢ = 1, this points to the elements just
below the first measurement

0 0 o? 0 m 0 Y2 ... YnN_1 0] 49)

[F Q Fcurr=0 AT Fpewe=0 KT 0 .. 0 A%

3. I, + (1 :n,2n + 2i — 1) This points to AT in A;y,,u: Likewise, I, < (0,2n + 2i) points
toy;.
4. Transpose(Ir, I p2) This writes £ to matrix By. The matrix A,ppenq becomes

B, FT' By BI By Bs Onxi Onxi Opxi

Otxn Oixn Oixn O O O Bs Bs B (50)

5. Mul(Ip, IXC s Iz f). This calculates F'Z ¢y and writes to [¢ - Ainpur becomes

0 0 o2 0 Y1 0 vy ... yn—1 O

F Q &cumr=0 KT Ficyr=0 hY 0 .. 0 &% D

6. Mul(Ir, Ig1, IB1). For the first iteration, B1 =]50+ = I This operation calculates FPOJr
and writes it to B;. The resulting Agppenqd becomes

FPO+ FT By BBT By Bs Onxi Onxi Onxa

O1xn Oi1xn O1xn 0 O 0 Bs Bs By (52)
7. Mul(Ip1, Ipa, I31). This calculates FP;" FT and writes to I 3.
FPfFT FT By BT By Bs Onxi Onxi Onxi (53)

Oixn Oixn Oixn 0 0O 0 Bs Bg By

8. Aff(I51, 1o, 51, Wi = Lnxn, Wa = Ixn). This calculates P, = FPFT + Q and
writes to I g

Pl_ FT BQ Bg B4 BS 0n><1 O’I’L><1 On><1

Oxn O1xn Oixm O O 0 Bs Bg B (54)
9. Transpose(/}, I p3) This transposes th and writes to Bs which yields
P FT By AT By Bg Opxi Onxi Opsa (55)
O1xn Oixn Oixn, O O O Bs Bg By
10. Mul(Ig1, I1, IB4). This evaluates 151_ th and writes it to 4 which yields
Pr FT By AT PIhT Bg Onxi Onxi Onxi (56)

O1xn Oixn Oixn O 0 0 DBy Bg By

16

Under review as a conference paper at ICLR 2025

11. Mul(Ig3, IB4, Igs5). This evaluates scalar]5{ hf and writes to I g5 yielding
pl_ FT Bg h,{ pl_ h,{ BS OiLxl 0n><1 0n>< 1 (57)
O1xn Oixn Oixn O 0 0 hP Rl Bs By
12. Aff(Igs, I, Igg, W1 = 1, W5 = 1) This evaluates h1151_ th + 02 and writes the resulting
scalar to I g resulting in
Pl_ FT By h? Pl_h? Bsg Ollxl R Onx1 Opnx1 (58)
O1xn Oixn O1xn O 0 0 mhiP hl mPrhl +0*> B
13. Div(Ip4, Is, I54) This divides the entries in P;”hT by the scalar hy P, hT + o2 to com-
pute the Kalman Gain K and writes the results to Ip4 giving
P FT By h{ Ki= WP{ h{ Bs Opxi Onx1 Onx1 o
Oixn Oixn Oixn O 0 0 hPrRT mPTRT +02 By
14. Mul({, IXnm ,Ip7) This evaluate h 1 &] = h1F£*t0 = hy FZcy,r and writes the result-
ing scalar to I 7.
Py F" By b Ki Bs Opa Onsa Onx1 (g0
len 01><n O1><n 0 0 0 hlpl_h? hlpl_h,{+0'2 hli'l_
15. Aff(ly, Ip7, Ip7, W1 = 1, Wy = —1) This evaluates y; — h127 and writes it to Iy
]51_ FT By Wl K; Bsg Onx1 Onxa Onx1 61)
len Ol><n O1><n 0 0 0 hlljl_hz1 hlpl_h,%1 + 0'2 Yy — hli'l_
16. Mul(Ip7, Ip4, I pg) This multiplies the Kalman gain with the error to yield
Pr FT By Al Ki Ki(yi —hid]) Onx1 Onxa Onx1
01><n 01><n 01><n 0 O O hlpfh{ hlpfh’{‘i‘a'g Y1 _h1i;
(62)
17. Aff(Iy; ., Ips, Iy, ., Wi =1, Wy = 1) This calculates the posterior estimate 27 =
1 + Ki(y1 — h127) and writes it to I modifying Ainput to
0 0 o? 0 0 vy2 ... yn—1 O (63)
F Q dcur=0 I 2f BT 0 .. 0 &}
18. Mul(I 4, IB3, IBg) This evaluates the n x n matrix hy K and writes it to Igg giving us
Pr FT' mK, b K1 Ki(yi —hidy) Onx1 Onxa Onx1
Oixn Oixn Oixn 0 0 0 hiPrhT haPrhi +0% g1 — iy
(64)
19. Mul(I gy, IB1,Ipg): This calculates and writes to Igg the matrix A1 K 15{
]5; FT h1K1Pf K Ki(yr — hay) 011,)(1 A0n><1 Onx1
Oixn Oixn Oixn 0 0 0 hPTRT hPrRT +0% oy — hady
(65)
20. Aff(Ig1, Iy, Ig1, W1 = I,,xn, Wo = —1I,,«,,) This calculates the error covariance of the
posterior estimate P;” = P;” — hy K1 P;” and writes the results to I g
pl_ FT [:’1+ r{ K1 Ki(yi — hd]) Olle Onxa Onx1
01><n 01><n 01><n 0 O 0 hlpfh{ hlpfh’{‘i‘a'g Y1 _h1.’i;
(66)
21. Iy, < 1Ix Thisupdates the pointer Iy to point towards indices [yielding
0 0 o2 0 U1 0O vy .. yn—1 O 67)
F Q@ 0 i 2cyr=27 BT 0 ... 0 AL|"

17

Under review as a conference paper at ICLR 2025

D.2 JUSTIFICATION OF THE CHOICE OF LEARNING RATES FOR SGD

To find the optimal set of learning rates for the experiments, we fix context length to 40 and the state
dimension to 8. We generate F’ using Strategy 1. The rest of the simulation settings remain the same
as before. We compare the MSPD between the transformer’s output and the SGD for various values
of o (learning rates). We present the results in Table|T]

o 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1

MSPD 1.0087 09999 0.9753 0.8882 0.8789 0.4766 0.2997 0.2887 2.8923

Table 1: MSPD corresponding to different o

As can be seen, the optimal MSPD is obtained for @ = 0.01 and o = 0.05. Consequently, through-
out this work we report the results for these two learning rates only.

D.3 MEAN SQUARE ERROR (MSE) WITH RESPECT TO THE GROUND TRUTH

In the main section of the paper, we omit the MSE of the output of the transformer, Kalman filter,
and other baseline algorithms evaluated with respect to the ground truth. Here we present the MSE,
normalized by the state dimension, for the default simulation setting with F' generated using Strategy
1; note that the results for Strategy 2 and varied parameters differ very little from the presented ones.
As can be seen in Fig. [/] the MSE curves closely follow those for the normalized MSPD presented
in the main paper.

3.5 1
—— Transformer

Kalman Filter
SGD 0.01
SGD 0.05
Ridge 0.01
Ridge 0.05

3.0 1

2.5 4

2.0

1/n MSE

154

1.0

0.0 1

T T
5 10 15 20 25 30 35 40
Context Length

Figure 7: The MSE between the output and the ground truth for various algorithms.

D.4 RESULTS ACROSS DIFFERENT STATE DIMENSIONS

To evaluate the performance of transformer as the state dimension varies, we train the transformer
model under the default settings using Strategy 1 to generate F. For evaluation, we fix the context
length to 40 and vary state dimension from 2 to 8; we utilize Strategy 1 to generate F, while the
remaining simulation parameters remain as same as before. The results in Fig. [§|present the MSPD
normalized by the state dimension vs. varying state dimension. As can be seen there, the gap
between the transformer and Kalman filter remains constant implying that the performance of the
transformer remains consistent regardless of the state dimension. At the same time, the MSPD
between the transformer and the SGD / Ridge Regression increases as the performances of the latter
two algorithms deteriorate with increasing state dimension.

18

Under review as a conference paper at ICLR 2025

0.200 -

0.175

0.150 -

ICL and Kalman Filter
ICL and SGD 0.01

ICL and Ridge 0.01
ICL and SGD 0.05

ICL and Ridge 0.05
ICL and OLS

0.125

1/n MSPD

0.100 -

0.075

0.050 -

0.025

2 3 4 5
State Dimension

o 4
~
@

Figure 8: Results for the fixed context length and varying state dimension

D.5 AN ILLUSTRATION OF THE PERFORMANCE ON OUT-OF-SAMPLE PARAMETERS

To evaluate the performance of the transformer on systems with parameters sampled from a distribu-
tion different from the one seen during the training, we train the transformer with F’ generated using
Strategy 1 as previously described but then evaluate the trained model in experiments conducted
under following changes:

1. The measurement noise variance and the entries of X, are sampled from #/[0.01, 0.05]
instead of U[0, 0.025];

2. entries of H; are sampled from ¢[—2, 2], /[0, 3] and U1, 4] instead of A/(0, 1);

3. the state transition matrix F' is generated via Strategy 2.

The results, presented in Fig. 0] demonstrate robustness of in-context learning to out-of-distribution
parameters generated in the aforementioned way.

E AN INVESTIGATION OF NON-LINEAR SYSTEMS

In this section, we consider systems with non-linear state space models of the form

Tiy1 = fn(®e) + @ (68)
y¢ = Hyxy + 14, (69)
where f,() is a non-linear function parameterized by the set of parameters 7 = [11,...,7w]. To
estimate the states, we can linearize the system and perform Extended Kalman Filtering.
Prediction Step:
By o= fa(@4) (70)
Py =F,P F'+Q (71)
Update Step:
K, = PrH/ (HPH] + R)™! (72)
af =&y + Ki(ye — Hidy) (73)
P = (I - K:H,)P, (74)

where F, is the Jacobian of f, () with respect to Z;" ;.

19

Under review as a conference paper at ICLR 2025

5
—— ICL and Kalman Filter
—— IcLand SGD 0.01
—— ICL and Ridge 0.01
3 —— ICLand SGD 0.05

—— ICL and Ridge 0.05
—— ICLand OLS

1/n MSPD

., - —o o

5 10 15 20 25 30 35 40
Context Length

(a) Results for out-of-distribution noise vari-

ance.
10° § — >
ICL and Kalman Filter \CL and Kalman Filter
— ICLand SGD 0.01 —— ICLand SGD 0.01
—— ICL and Ridge 0.01 —— ICL and Ridge 0.01
102 4 —— ICLand SGD 0.05 4 —— ICL and SGD 0.05
—— ICL and Ridge 0.05 —— IcL and Ridge 0.05
— CLand OLS — icLand OLs
3
o 104 e
g i
& 2
= <
B e
10° 4
1
1071 4 - T
M .
~ H 0 15 20 25 30 33 4
10 Context Length

5 10 15 20 25 30 35 40
Context Length

(c) Results when the entries of H; are sam-
(b) Results when the entries of H; are sam-pled from ulo, 3]
pled from U [—2, 3].

—— ICL and Kalman Filter
—— ICL and SGD 0.01
—— ICL and Ridge 0.01
41 — ICLand SGD 0.05
—— ICL and Ridge 0.05
— IcLand oLS

1/n MSPD

—_— ~—~—

5 10 15 20 25 30 35 40
Context Length

(d) Results when the entries of H; are sam-
pled from U[1, 4]

1044
—— ICL and Kalman Filter
—— ICL and SGD 0.01
10% 4 —— ICL and Ridge 0.01
—— ICLand SGD 0.05
—— ICL and Ridge 0.05
102 3 —— ICLand OLS
e
g 014
10° 4
107y
10723

5 10 15 20 25 30 35 40
Context Length

(e) Results for model trained under Strategy
1 evaluated on systems with F' generated us-
ing Strategy 2.

Figure 9: Evaluating trained transformer on systems with parameters drawn from distribution dif-
ferent from the one seen during the training.

20

Under review as a conference paper at ICLR 2025

For this work, we choose f,)(x) = [n1tanh(n2x1), ..., nr tanh(nzxy)] with y, 72 ~ U[—1, 1]. For
this transition function, we can write the Jacobian as

F, = mmnadiag([(1 — tanh?(nex1)), ..., (1 — tanh?(n2z,))]).

For this system, we show that the transformer can theocratically implement equations of an Extended
Kalman Filter given the input of the form

m 712 0 0'2 0 Y1 e YN-1 0 (75)
0 0 Q 0 nf 0o .. 0 AL|"

In |Akytirek et al.| (2023)), the authors utilized the properties of GeLU non-linearity to show that
GeLU can be used to perform scalar multiplication or for a sufficiently large additive bias term the
identity function. Likewise, we can show in an analogous manner that

@:p tanh(z + cz®) ~ GeLU(\/Zx) — GeLU(\/ng + Np) + Ny (76)

where N, >> 1 is a large bias term and the constant ¢ = 044157 Since the softmax layer can be
bypassed by adding a large additive bias term, it is straightforward to show that a single transformer

attention head can output \/2;6 tanh(z + cx®) for the input x given appropriate parameters. More-
over, the simulation settings ensure that 2 + cx® ~ x, and consequently, raw operator’s emulation
of Mul() Div(), and Aff() operations can be invoked to argue that the transformer can implement
tanh(x) using multiple attention heads. It is then trivial to extend the method for the previously
discussed linear dynamical systems case to show that the transformer can perform extended Kalman

filtering for the non-linear dynamical system under consideration.

Given this setting, we run simulations with the parameters of the state and measurement noise co-
variance set to 02 = o2 = (0.0125. We compare the performance of the transformer with that of the
Extended Kalman Filter and present the results in Fig. [I0} As can be seen there, the transformer
performs closer to the Extended Kalman Filter than it does to other baseline algorithms. We leave
investigation for other classes of non-linear systems to future work.

10

—— ICL and Extended Kalman Filter 10° —— ICL and Extended Kalman Filter
ICL and SGD 0.01 ICL and SGD 0.01

—— ICL and Ridge 0.01 102 § —— ICL and Ridge 0.01

—— ICL and SGD 0.05 —— ICL and SGD 0.05

—— ICL and Ridge 0.05 —— ICL and Ridge 0.05

—— ICL and OLS —— ICLand OLS

1071 4
" \\\R
o \\\’\/\d\ds/\

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Context Length Context Length

0.8

0.6

1/n MSPD
1/n MSPD

0.4

0.2 1

0.0

(a) Results formy; = 1,72 = 1. (b) Results for n1,n2 ~ U[—1,1].

Figure 10: Results of in-context learning for f,(x) = [nitanh(n2x1), ..., prtanh(nzxy)].

21

	Introduction
	Background
	Transformers
	In-context Learning for Linear Regression

	In-Context Learning for Filtering and Prediction of a Dynamical System
	Simulation Results
	Conclusion
	Dual Kalman Filter - Review
	Transformer can learn to perform Dual Kalman Filtering In-context for a system with scalar measurements
	Experiments with Control Input
	Miscellaneous Experiments and Further Details
	Detailed Illustration of Algorithm 1
	Justification of the choice of learning rates for SGD
	Mean Square Error (MSE) with respect to the Ground Truth
	Results across different state dimensions
	An illustration of the performance on out-of-sample parameters

	An Investigation of Non-Linear Systems

