
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAN TRANSFORMERS IN-CONTEXT LEARN BEHAVIOR
OF A LINEAR DYNAMICAL SYSTEM?

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate whether transformers can learn to track a random process when
given observations of a related process and parameters of the dynamical system
that relates them as context. More specifically, we consider a finite-dimensional
state-space model described by the state transition matrix F , measurement ma-
trices h1, . . . , hN , and the process and measurement noise covariance matrices
Q and R, respectively; these parameters, randomly sampled, are provided to the
transformer along with the observations y1, . . . , yN generated by the correspond-
ing linear dynamical system. We argue that in such settings transformers learn to
approximate the celebrated Kalman filter, and empirically verify this both for the
task of estimating hidden states x̂N |1,2,3,...,N as well as for one-step prediction of
the (N + 1)st observation, ŷN+1|1,2,3,...,N . A further study of the transformer’s
robustness reveals that its performance is retained even if the model’s parameters
are partially withheld. In particular, we demonstrate that the transformer remains
accurate at the considered task even in the absence of state transition and noise
covariance matrices, effectively emulating operations of the Dual-Kalman filter.

1 INTRODUCTION

In-context learning, in particular few-shot prompting (Yogatama et al., 2019), is a growing area of
research in natural language processing (NLP). In this framework, a large language model (LLM)
learns tasks from a relatively few examples, i.e., few demonstrations of input-output pairs. One of
the earliest works to show that LLMs are capable of being fine-tuned when provided with prompts
was by Brown et al. (2020); there, the authors evaluated the GPT-3 model over a plethora of NLP
datasets and various “zero-shot”, “one-shot”, and “few-shot” learning tasks. In (Zhao et al., 2021),
the authors implicate majority label bias, recency bias, and common token bias as the reasons for
instability in GPT-3’s accuracy following few-shot prompting and propose a contextual calibra-
tion procedure as a remedy. A theoretical analysis proving that language models perform implicit
Bayesian inference is presented in (Xie et al., 2021). Min et al. (2022) explore the reasons why
in-context learning works, show that in-context learning is not affected by the lack of ground-truth
labels, and posit that the label space and the distribution of the input text along with the format of
the prompts play a crucial role. Moreover, Schlag et al. (2021) theoretically show that transformers
are fast weight programmers.

Early works that explore using standard transformer decoders to in-context learn auto-regressive
models include Garg et al. (2022); there, the authors empirically investigate the ability of transform-
ers to learn classes of linear functions. They say that a model learns a function class F with domain
X if for any f ∈ F and for any x1, x2, ..., xN , xquery sampled fromX in an IID fashion, the model is
able to predict the output f(xquery) given the sequence x1, f(x1), x2, f(x2), ..., xN , f(xN), xquery.
The classes explored in Garg et al. (2022) range from simple linear functions to sparse linear func-
tions, two-layered neural networks, and decision trees. Two parallel works, Von Oswald et al. (2023)
and Akyürek et al. (2023), explored which algorithms does the transformer resemble the most as it
learns the functional classes in-context. In Von Oswald et al. (2023), the authors build on the work
of Schlag et al. (2021) to elegantly show that the transformations induced by linear self-attention can
be perceived as equivalent to a gradient descent step. In other words, for a single 1-head linear self
attention layer there exist key, query, and value matrices such that a forward pass on the transformer
resembles the execution of one step of gradient descent with L2 loss on every token. Akyürek et al.
(2023) take a fundamentally different approach, defining a raw operator that can be used to perform

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

various operations on the input tokens including matrix multiplication, scalar division, and read-
write; they then show that a single transformer head with appropriate key, query, and value matrices
can approximate the raw operator. This implies that by using the operations readily implemented
by the raw operator, transformers are in principle capable of implementing linear regression via
stochastic gradient descent or closed-form regression.

In this work, we investigate whether in-context learning may enable a transformer to predict states
and/or outputs of a linear dynamical system described by a state-space model with non-scalar state
transition matrix, non-zero process noise, and white measurement noise. For such systems, Kalman
filter (Kalman, 1960) is the optimal (in the mean-square error sense) linear state estimator. We in-
vestigate what algorithm the transformer most closely resembles as it learns to perform one-step
prediction when provided context in the form of observations generated by a system with arbi-
trarily sampled state transition matrix, time-varying measurement matrices, and the process and
observation noise covariance matrices. We show that Kalman filtering can be expressed in terms
of operations readily approximated by a transformer; this implies that when given the observations
and system parameters as context, the transformers can in principle emulate the Kalman filtering
algorithm. This is corroborated by extensive experimental results which demonstrate that such in-
context learning leads to behavior closely mimicking the Kalman filter when the context lengths
are sufficiently large. Interestingly, the transformer appears capable of emulating the Kalman filter
even if some of the parameters are withheld from the provided context, suggesting robustness and
potential ability to implicitly learn those parameters from the remaining context.

Prior works that investigate interplay between deep learning and Kalman filtering notably include
Deep Kalman Filters Krishnan et al. (2015) and Kalman Nets (Revach et al., 2021); the latter is a
framework that circumvents the need for accurate estimates of system parameters by learning the
Kalman gain in a data-driven fashion using a recurrent neural network. The follow-up work (Revach
et al., 2022) employs gated recurrent units to estimate the Kalman gain and noise statistics while
training and evaluating, as in (Revach et al., 2021), the proposed model on data generated by a sys-
tem with fixed parameters. In contrast, in our work the model parameters are randomly sampled
to generate each training example, leading transformer to learn how to perform filtering rather than
memorize input-output relationship of a specific system. Dao & Gu (2024) study the theoretical
connections between structured state space models (SSMs) and variants of attentions. The central
message of their work is that the computations of various SSMs can be re-expressed as matrix mul-
tiplication algorithms on structured matrices, an insight that can be utilized to show the relationship
between selective SSMs and attention to make the latter efficient. Sieber et al. (2024) introduce a
dynamical systems framework (DSF) to find a common representation unifying attention, SSMs,
Recurrent Neural Networks (RNNs) and LSTMs. However, these works bear no relevance to the
problem of state estimation, filtering, or in-context learning in general.Goel & Bartlett (2024) show
that softmax self attention can represent Nadarya-Watson smoothing estimator, and proceed to ar-
gue that this estimator approximates Kalman filter. In contrast, we explicitly focus on the problem
of in-context learning and build on the concepts proposed by Akyürek et al. (2023) to show that
transformers implement exact operations needed to perform Kalman filtering, supporting these ar-
guments with extensive empirical results. To the best of our knowledge, the current paper reports the
first study of the ability of transformers to in-context learn to emulate Kalman filter using examples
generated by randomly sampling parameters of an underlying dynamical system.

The remainder of this paper is organized as follows. Section 2 provides an overview of relevant
background. Section 3 lays out the system model and presents theoretical arguments that transform-
ers can in-context learn to implement Kalman filtering for white observation noise. Section 4 reports
the simulation results, including empirical studies of the robustness to missing model parameters,
while Section 5 concludes the paper.

2 BACKGROUND

2.1 TRANSFORMERS

Transformers, introduced byVaswani et al. (2017), are neural networks architectures that utilize the
so-called attention mechanism to map an input sequence to an output sequence. Attention mecha-
nism facilitates learning the relationship between tokens representing the input sequence, and is a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

key to the success of transformers in sequence-to-sequence modeling tasks. The experiments in this
paper utilize the GPT2-based (decoder-only) architecture Radford et al. (2019).

A brief overview of the attention mechanism will help set the stage for the upcoming discussion.
Let G(l−1) denote the input of the lth layer. A single transformer head, denoted by γ, consists of
key, query, and value matrices denoted by WK

γ , WQ
γ , and WV

γ , respectively. The output of the head
γ is computed as

blγ = Softmax
(
(WQ

γ G(l−1))T (WK
γ G(l−1))

)(
WV

γ G(l−1)
)
. (1)

The softmax term in equation 1, informally stated, assigns weights to how tokens at two positions
are related to each other. The output of all the B heads are concatenated and combined using WF

to form

Al = WF [bl1, b
l
2, ..., b

l
B]. (2)

The resulting output is then passed to the feedforward part of the transformer block to obtain

G(l) = W1σ
(
W2λ

(
Al +G(l−1)

))
+Al +G(l−1), (3)

where σ denotes the non-linear activation function and λ denotes layer normalization. For our
experiments, we use Gaussian error linear unit (GeLU Hendrycks & Gimpel (2016)) as the activation
function.

2.2 IN-CONTEXT LEARNING FOR LINEAR REGRESSION

Let us consider linear dynamical systems described by a finite-dimensional state-space model in-
volving hidden states xt ∈ Rn and observations (i.e., measurements) yt ∈ Rm related through the
system of equations

xt+1 = Ftxt + qt (4)
yt = Htxt + rt. (5)

The state equation (4), parameterized by the state transition matrix Ft ∈ Rn×n and the covariance
Q of the stationary zero-mean white process noise qt ∈ Rn, captures the temporal evolution of the
state vector. The measurement equation (5), parameterized by the measurement matrix Ht ∈ Rm×n

and the covariance R of the stationary zero-mean white measurement noise rt ∈ Rm, specifies the
acquisition of observations yt via linear transformation of states xt. Such state-space models have
proved invaluable in machine learning (Gu et al., 2021), computational neuroscience (Barbieri et al.,
2004), control theory (Kailath, 1980), signal processing (Kailath et al., 2000), economics (Zeng &
Wu, 2013), and other fields. Many applications across these fields are concerned with learning the
hidden states xt given the noisy observations yt and the parameters of the state space model.

Assume a simple setting where F = In×n, Q = 0, H = ht ∈ R1×n (i.e., scalar measurements),
and x0 = x. Here, the state space model simplifies to

xt = x (6)
yt = htxt + rt, (7)

i.e., the state equation becomes trivial and the system boils down to a linear measurement model
in equation (7). In this setting, inference of the unknown random vector x given the observations
y1, y2, ..., yN and the measurements vectors h1, h2, h3, ..., hN is an estimation problem that can
readily be solved using any of several well-known techniques including:

• Stochastic Gradient Descent. After initializing it as x̂0 = 0n×1, the state estimate is
iteratively updated by going through the measurements and recursively computing

x̂t = x̂t−1 − 2α(ht−1x̂
T
t−1ht−1 − ht−1yt−1), (8)

where α denotes the learning rate. Once a pre-specified convergence criterion is met, the
final estimate is set to x̂SGD = x̂N .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Ordinary Least Squares (OLS). Let the matrix H̄ ∈ RN×n be such that its rows are
measurement vectors, i.e., the i−th row of H̄ is hi; furthermore, let Ȳ = [y1, y2, ..., yN]T .
Then the OLS estimator is found as

x̂OLS = (H̄T H̄)−1H̄T Ȳ. (9)

• Ridge Regression. To combat overfitting and promote generalization, the ridge regression
estimator regularizes the OLS solution as

x̂Ridge = (H̄T H̄+ λIn×n)
−1H̄T Ȳ, (10)

where λ denotes the regularization coefficient.

It is worth pointing out that if λ = σ2

τ2 , where σ2 is the variance of rt and τ2 is the variance
of x0 = x, ridge regression yields the lowest mean square error among all linear estimators of
x, i.e., the estimators that linearly combine measurements y1, ..., yN to form x̂. Furthermore, if
x0 ∼ N (0, τ2I) and rt ∼ N (0, σ2I), the ridge regressor yields the minimum mean square error
estimate that coincides with E[X|y1, ..., yN].

A pioneering work that explored the capability of language models to learn linear functions and
implement simple algorithms was reported by Garg et al. (2022). The ability of a transformer to
learn xt = x in (7) was studied by Akyürek et al. (2023) which, building upon (Garg et al., 2022),
explored what algorithms do GPT-2 based transformers learn to implement when trained in-context
to predict yN given the input organized into matrix[

0 y1 0 y2 ... 0 yN−1 0
hT
1 0 hT

2 0 ... hT
N−1 0 hT

N

]
.

Training the transformer in (Akyürek et al., 2023) was performed by utilizing data batches compris-
ing examples that consist of randomly sampled states and parameters. It was argued there that for
limited architecture models trained on examples with small context lengths, the transformer approx-
imates the behavior of the stochastic gradient descent algorithm. For moderate context lengths less
than or equal to the state dimension and moderately sized model architectures, the transformer mim-
ics the behavior of Ridge Regression; finally, for context lengths greater than the state dimensions
and large transformer models, the transformer matches the performance of Ordinary Least Squares.

A major contribution of Akyürek et al. (2023) was to theoretically show that transformers can ap-
proximate the operations necessary to implement SGD or closed-form regression. This was accom-
plished by introducing and utilizing the RAW (Read–Arithmetic–Write) operator parameterized by
Wo,Wa,W and the element-wise operator ◦ ∈ [+, ∗] that maps the input to the layer l, ql, to the
output ql+1 for the index sets s, r, w, time set map K, and positions i = 1, . . . , 2N according to

ql+1
i,w = Wo

 Wa

|K(i)|
∑

k∈K(i)

qlk[r]

 ◦Wqli[s]

 , (11)

ql+1
i,j /∈w = qli,j /∈w. (12)

A single transformer head can approximate this operator for any Wo, Wa, W , and ◦; moreover,
there exist Wo,Wa,W, ◦ ∈ {+, ∗} that approximate operations necessary to implement SGD and
closed-form regression including affine transformations, matrix multiplications, scalar division, dot
products, and read-write operations.

3 IN-CONTEXT LEARNING FOR FILTERING AND PREDICTION OF A
DYNAMICAL SYSTEM

Here we outline an in-context learning procedure for the generic state-space model given in (4)-(5),
where we assume time-invariant state equation (i.e., Ft = F ̸= I , Q ̸= 0). For the simplicity of
presentation, we at first consider scalar measurements. In such settings, the causal linear estima-
tor of the state sequence xt that achieves the lowest mean-square error is given by the celebrated
Kalman filter (Kalman (1960)). Specifically, one first sets the estimate and the corresponding error

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

covariance matrix of the initial state to x̂+
0 and P̂+

0 , respectively. For our work, we let x̂+
0 = 0 and

P̂+
0 = In×n. Then the estimates and the corresponding error covariance matrices of the subsequent

states are found recursively via the prediction and update equations of the Kalman filter as stated
below.
Prediction Step:

x̂−
t = Fx̂+

t−1 (13)

P̂−
t = FP̂+

t−1F
T +Q (14)

Update Step:

Kt = P̂−
t HT

t (HtP̂
−
t HT

t +R)−1 (15)

x̂+
t = x̂−

t +Kt(yt −Htx̂
−
t) (16)

P̂+
t = (I −KtHt)P̂

−
t (17)

For scalar measurements Ht = ht (a row vector) and R = σ2 (a scalar), simplifying the compu-
tationally intensive matrix inversion in (15) into simple scalar division readily approximated by a
transformer head. Then the update equations become

x̂+
t = x̂−

t +
P̂−
t hT

t

htP̂
−
t hT

t + σ2
(yt − htx̂

−
t) (18)

P̂+
t = (I − P̂−

t hT
t ht

htP̂
−
t hT

t + σ2
)P̂−

t , (19)

involving operations that, as argued by Akyürek et al. (2023), are readily implemented by trans-
formers. To investigate how closely can a transformer mimic the behavior of the Kalman filter when
trained through in-context learning, we provide it with generic examples consisting of randomly
generated F , h1, ..., hN , σ2 and Q structured as the (n+ 1)× (2n+ 2N + 1) matrix[

0 0 σ2 0 y1 0 y2 ... yN−1 0
F Q 0 hT

1 0 hT
2 0 ... 0 hT

N

]
. (20)

The transformer, whose output is denoted by Tθ(), can then be trained against the output at every
second position starting from the position 2n+ 1, with the loss function

1

N

N∑
t=1

(yt − Tθ(h1, y1, ..., ht−1, yt−1, ht, F,Q, σ2))2. (21)

Recall that, as shown in (Akyürek et al., 2023), there exist a parametrization of a transformer head
that can approximate the operator in (11)-(12). Below we specify operations, readily implemented
using the operator (11)-(12), which can be used to re-state the Kalman filtering prediction and update
steps. These operations are defined on the subsets of indices of the input matrix. As an illustration of
such a subset, let us consider matrix F ; the set of indices specifying position of F in expression (67)
is given by IinputF = [(1, 0), (1, 1), (1, 2), ..., (1, n − 1), ..., (n, 0), (n, 1), ..., (n, n − 1)]. Further
details of such a construction are provided in the appendix. We define the operations needed to
re-state the Kalman filtering steps as follows:

1. Mul(I, J,K). The transformer multiplies the matrix formed by the entries corresponding
to the indices in set I with the matrix formed by the entries corresponding to the indices in
set J , and writes the result on the indices specified by the set K.

2. Div(I, j,K). The transformer divides the entries corresponding to the indices in set I by
the scalar at the coordinate j and stores the result at the indices specified by the set K.

3. Aff(I, J,K,W1,W2). This operation implements the following affine transformation: The
transformer multiplies the matrix formed by the entries corresponding to the indices in set
I with W1 and adds it to W2 multiplied by the matrix formed by the entries corresponding
to the indices in set J ; finally, the result is written on the indices specified by the set K.

4. Transpose(I, J). This operation finds the transpose of the matrix at I and writes it to J .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

It is straightforward to re-state the Kalman filtering recursions using the operations specified above.
However, to do so, we first require some additional notation. We assume that a matrix consisting of
zero and identity submatrices may be prepended to the input to the transformer. Let us denote the
prepended matrix byAappend, and let the resulting matrix beAcat = [Aappend,Ainput]. We denote
by IB1 the index set pointing to an n × n identity submatrix in Acat. Moreover, let IB2 and IB9

denote indices of two n×n submatrices of zeros inAcat; let IB3 denote indices of a 1×n submatrix
of zeros; let IB4 and IB8 denote indices of two n × 1 submatrices of zeros; and let IB5, IB6, and
IB7 denote indices of (scalar) zeros in Acat. Finally, let the index sets of F , Q, and σ2 in Acat be
denoted by IF , IQ, Iσ respectively. With this notation in place, the Kalman filtering recursion can
be formally restated as Algorithm 1. Note that all this additional notation introduced above concerns
initializations and buffers to write the variables into. By concatenating them to the input matrix, we
simply create convenient space to write the state, state covariance and other intermediate variables,
ultimately arriving at Algorithm 1.

The presented framework is generalizable to non-scalar measurements with IID noise. To see this,
suppose yt ∈ Rm and rt ∼ N (0, R), where R is a diagonal m ×m positive definitive matrix with
diagonal entries σ2

1 , σ
2
2 , . . . , σ

2
m. Let Ht denote the measurement matrix at time step t. Furthermore,

let yjt denote the jth component of yt, and let H(j)
t denote the jth row of Ht. The Kalman filter

recursions then become (Kailath et al., 2000)

x̂
(1)+
t = x̂−

t +
P̂−
t H

(1)T
t

H
(1)
t P̂−

t H
(1)T
t + σ2

1

(y
(1)
t −H

(1)T
t x̂−

t) (22)

P̂
(1)+
t = (I − P̂−

t H
(1)T
t H

(1)
t

H
(1)
t P̂−

t H
(1)T
t + σ2

1

)P̂−
t (23)

x̂
(j)+
t = x̂

(j−1)+
t +

P̂
(j−1)+
t H

(j)T
t

H
(j)
t P̂

(j−1)+
t H

(j)T
t + σ2

j

(y
(j)
t −H

(j)T
t x̂

(j−1)+
t) j = 2, . . . ,m (24)

P̂
(j)+
t = (I − P̂

(j−1)+
t H

(j)T
t H

(j)
t

H
(j)
t P̂

(j−1)+
t H

(j)T
t + σ2

j

)P̂
(j−1)+
t j = 2, . . . ,m (25)

x̂+
t = x̂

(m)+
t (26)

P̂+
t = P̂

(m)+
t (27)

The in-context learning can be performed by providing to the transformer the input formatted as

0 0 σ2
1 0 y

(1)
1 ... 0 y

(1)
N−1 0

0 0 σ2
2 0 y

(2)
1 ... 0 y

(2)
N−1 0

.

.

0 0 σ2
m 0 y

(m)
1 ... 0 y

(m)
N−1 0

F Q 0 H
(1)T
1 0 ... H

(1)T
N−1 0 H

(1)T
N

.

.

0 0 0 H
(m)T
1 0 ... H

(m)T
N−1 0 H

(m)T
N

, (28)

allowing a straightforward extension of the algorithm to the non-scalar measurements case (omitted
for the sake of brevity).

4 SIMULATION RESULTS

For transparency and reproducibility, we build upon the code and the model released by Garg et al.
(2022). All the results are obtained on a 16-layered transformer model with 4 heads and hidden size
512. We implement curriculum learning initialized with context length N = 10, incremented by
2 every 2000 training steps until reaching the context length of 40. The dimension of the hidden
state in all experiments was set to n = 8. Every training step is performed using Adam optimizer
Kingma (2014) with a learning rate of 0.0001 on a batch of 64 examples, where for each example

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Formulating the Kalman filter recursions using the elementary operations imple-
mentable by transformers.

1: Input: Acat, IF , IQ, Iσ, IB1, IB2, IB3, IB4, IB5, IB6, IB7, IB8, IB9

2: Initialize IX̂Curr
← (1 : n, 2n)

3: for i = 1 to N do
4: IX̂next

← (1 : n, 2n+ 2i)

5: Ih ← (1 : n, 2n+ 2i− 1)
6: Iy ← (0, 2n+ 2i)
7: Transpose(IF , IB2)
8: Mul(IF , IX̂Curr

, IX̂next
)

9: Mul(IF , IB1, IB1)
10: Mul(IB1, IB2, IB1)
11: Aff(IB1, IQ, IB1, W1 = In×n, W2 = In×n)
12: Transpose(Ih, IB3)
13: Mul(IB1, Ih, IB4)
14: Mul(IB3, IB4, IB5)
15: Aff(IB5, Iσ , IB6, W1 = 1, W2 = 1)
16: Div(IB4, IB6, IB4)
17: Mul(Ih, IX̂next

, IB7)
18: Aff(Iy , IB7, IB7, W1 = 1, W2 = −1)
19: Mul(IB7, IB4, IB8)
20: Aff(IX̂next

, IB8, IX̂next
, W1 = 1, W2 = 1)

21: Mul(IB4, IB3, IB9)
22: Mul(IB9, IB1, IB9)
23: Aff(IB1, IB9, IB1, W1 = In×n, W2 = −In×n)
24: IX̂Curr

← IX̂next

25: end for

x0, H1, H2, . . . ,HN are sampled from isotropic Gaussian distributions. The process noise qt is
sampled from N (0, Q); to generate Q, we randomly sample an 8 × 8 orthonormal matrix UQ and
form Q = UQΣQU

T
Q , where ΣQ is a diagonal matrix whose entries are sampled from the uniform

distribution U [0, σ2
q]. For training, we implement a curriculum where σ2

q is steadily incremented
over 100000 steps until reaching 0.025 and kept constant from then on. Similarly, the measurement
noise is sampled from N (0, R) where the diagonal matrix R has entries σ2

1 , ..., σ
2
m sampled from

U [0, σ2
r]. As in the case of the process noise, we steadily increase σ2

r over 100000 training steps
until reaching 0.025. Note that Q and R are sampled anew for each example, To randomly generate
the state matrix F , we explore two strategies:

1. Strategy 1: For the first set of experiments we set F = (1−α)I+αUF , where α ∈ U [0, 1]
and UF denotes a random orthonormal matrix. Note that the eigenvalues of matrix F are in
general complex valued and can thus be expressed as pejϕ , where ϕ denotes the phase of
the said eigenvalue. As α increases from 0 to 1, we observe ϕ varying from 0 to π; here ϕ is
such that the phase of the eigenvalues of F is distributed in the interval [−ϕ, ϕ]. For α = 0
and α = 1, all the eigenvalues lie exactly on the unit circle; for the values of α ∈ (0, 1), the
eigenvalues may lie inside the unit circle. Note that the dynamical system is not guaranteed
to be stable since the eigenvalues of F may lie on the unit circle. In fact, we observe that
if one sets α = 1, the transformer’s loss does not decrease. To train the transformer, we
steadily increase α from 0 to 1 over 50000 steps and then keep it constant.

2. Strategy 2: We further explore the setting with F = UFΣFU
T
F , where UF denotes a ran-

dom orthonormal matrix and the diagonal matrix ΣF has its entries drawn from U [−1, 1].
The dynamical system with state matrix F defined this way is guaranteed to be stable.

To compare the transformer’s performance with that of other algorithms, we utilize the mean-
squared prediction difference (MSPD) which relates the performance of two algorithms A1 and
A2 given the same context D as

MSPD(A1,A2) = ED=[H1,...,HN−1]∼p(D),hN∼p(h)(A1(D)(HN)−A2(D)(HN))2. (29)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

For evaluation, we utilize a randomly sampled batch of 5000 examples. Unless stated otherwise,
the parameters of the state and measurement noise covariance are set to σ2

q = σ2
r = 0.025. Finally,

for the Kalman filter used as the baseline, we set the estimate of the initial state to zero and the
corresponding error covariance matrix to identity.

Before we delve into in-context learning, a natural question to ask would be whether the transformers
can perform explicit state estimation given the input in the form of expression (67). To this end,
we train the transformer to output the state for scalar measurements and Strategy 1 using the loss
function

1

N

N∑
t=1

(xt − Tθ(h1, y1, ..., ht−1, yt−1, ht, F,Q, σ2))2. (30)

Figure 1: The results of experiments testing the performance of various methods on the task of
estimating states of a linear dynamical system. The plots compare the difference in the achieved
mean-squared error between the transformer and other methods.

The mean-squared error between the estimate of xN returned by the transformer and other algo-
rithms is shown in Figure 6. The algorithms include the Kalman filter, stochastic gradient descent
with learning rates of 0.01 and 0.05, ridge regression with regularization parameter λ set to 0.01
and 0.05, and Ordinary Least Squares. A discussion addressing the choice of learning rates is pro-
vided in the appendix. It can be observed that as the context length increases, performance of the
transformer approaches that of Kalman filter while diverging away from the Ridge Regression and
the OLS; this is unsurprising since the latter two methods focus only on the measurement equation
while remaining unaware of the internal state dynamics. In fact, when the context length equals the
state dimension, the MSPD between the transformer and ridge regression is an order of magnitude
higher than that between the transformer and Kalman filter; for better visualization/resolution, we
thus limit the values on the vertical axis of this and other presented figures (leading to clipping in
some of the plots).

Next, we focus on the problem of in-context learning where the model must make a one-step pre-
diction of the system output given the context. The results are presented in Figure 2. For shorter
contexts, the in-context learning performs closest to the stochastic gradient descent with learning
rate 0.01, but as the context length increases, the performance of in-context learning approaches
that of the Kalman filter. Note that when the stability is guaranteed, i.e., all the eigenvalues of F
are between 0 and 1 (Strategy 2), the performance gaps are smaller than when the stability may be
violated.

To test the robustness of the transformers in face of partially missing context, we investigate what
happens if the covariance matrices R and Q are omitted from the context and repeat the previous
experiments. The results are reported in Figure 3. Interestingly, there appears to be no deterioration
in the performance for Strategy 1 (see Figure 3a), and an improvement in the MSPD between the
transformer performing in-context learning (ICL) and Kalman filter for Strategy 2 (Figure 3b). This
may be implying that the transformer implicitly learns the missing context en route to mimicking

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Strategy 1 (b) Strategy 2

Figure 2: Mean-squared prediction difference (MSPD) between in-context learning (ICL) with a
transformer and several algorithms including Kalman filter, SGD, Ridge Regression, and OLS
(scalar measurements).

Kalman filter. Note that in these experiments the Kalman filter is still provided information about
the noise statistics. If it were not, one would need to employ a technique such as the computationally
intensive expectation-maximization algorithm to infer the missing noise covariance matrices.

(a) Strategy 1 (b) Strategy 2

Figure 3: Mean-squared prediction difference (MSPD) between in-context learning (ICL) with a
transformer and several algorithms including Kalman filter, SGD, Ridge Regression, and OLS
(scalar measurements). ICL is conducted without information about the covariances R and Q.

We next investigate in-context learning for non-scalar measurements (dimension = 2) with white
noise. The input to the transformer, formatted according to expression (28), includes all the param-
eters of the state space model. The results, presented in Figure 4, show that transformer is able to
mimic Kalman filter following in-context learning and performs one-step prediction in the consid-
ered non-scalar measurements case.

Our final set of experiments investigates the setting where we withhold from the transformer the
information about both the state transition matrix and noise covariances (for simplicity, we are back
to the scalar measurements case). The results, plotted in Figure 5, show that the transformer starts
emulating the Kalman filter for sufficiently large context lengths. In the appendix we provide the-
oretical arguments that in the case of scalar measurements, the transformer is able to implement
operations of the Dual-Kalman Filter (Wan & Nelson, 1996), which allows implicit estimation of
both the state and state transition matrix.

It is relatively straightforward to extend the presented results to the systems with control inputs
and to certain classes of non-linear systems; for the latter, it can be shown that the transformer
can implement operations of the Extended Kalman Filter (EKF). Relevant experimental results are

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Strategy 1 (b) Strategy 2

Figure 4: Mean-squared prediction difference (MSPD) between in-context learning (ICL) with a
transformer and several algorithms including Kalman filter, SGD, Ridge Regression, and OLS with
the measurements of dimension 2. Note that for these experiments, all system parameters are avail-
able to the transformer.

(a) Strategy 1 (b) Strategy 2

Figure 5: Mean-squared prediction difference (MSPD) between in-context learning (ICL) with a
transformer and several algorithms including Kalman filter, SGD, Ridge Regression, and OLS. All
the information about the model parameters is withheld from the transformer.

presented in the appendix. There, we also demonstrate robustness of in-context learning to variations
in state dimensions or model parameter distributions as compared to those seen during training.

5 CONCLUSION

In this paper, we explored the capability of transformers to emulate the behavior of Kalman filter
when trained in-context with the randomly sampled parameters of a state space model and the cor-
responding observations. We provided analytical arguments in support of the transformer’s ability
to do so, and presented empirical results of the experiments that demonstrate close proximity of the
transformer and Kalman filter when the transformer is given sufficiently long context. Notably, the
transformer keeps closely approximating Kalman filter even when important context – namely, noise
covariance matrices and even state transition matrix (all required by the Kalman filter) – is omitted,
demonstrating robustness and implying the ability to implicitly learn missing context. Future work
includes extensions to temporally correlated noise and further investigation of robustness to missing
model parameters.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023.

Riccardo Barbieri, Loren M Frank, David P Nguyen, Michael C Quirk, Victor Solo, Matthew A
Wilson, and Emery N Brown. Dynamic analyses of information encoding in neural ensembles.
Neural computation, 16(2):277–307, 2004.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In Forty-first International Conference on Machine Learning, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Gautam Goel and Peter Bartlett. Can a transformer represent a kalman filter? In 6th Annual Learning
for Dynamics & Control Conference, pp. 1502–1512. PMLR, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Thomas Kailath. Linear systems, volume 156. Prentice-Hall Englewood Cliffs, NJ, 1980.

Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear estimation. Prentice Hall, 2000.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters (2015). arXiv preprint
arXiv:1511.05121, 2015.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Guy Revach, Nir Shlezinger, Ruud JG Van Sloun, and Yonina C Eldar. Kalmannet: Data-driven
kalman filtering. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3905–3909. IEEE, 2021.

Guy Revach, Nir Shlezinger, Xiaoyong Ni, Adria Lopez Escoriza, Ruud JG Van Sloun, and Yonina C
Eldar. Kalmannet: Neural network aided kalman filtering for partially known dynamics. IEEE
Transactions on Signal Processing, 70:1532–1547, 2022.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
9355–9366. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
schlag21a.html.

11

https://proceedings.mlr.press/v139/schlag21a.html
https://proceedings.mlr.press/v139/schlag21a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jerome Sieber, Carmen Amo Alonso, Alexandre Didier, Melanie N Zeilinger, and Antonio Orvieto.
Understanding the differences in foundation models: Attention, state space models, and recurrent
neural networks. arXiv preprint arXiv:2405.15731, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvint-
sev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient de-
scent. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning Research, pp. 35151–35174. PMLR, 23–29
Jul 2023. URL https://proceedings.mlr.press/v202/von-oswald23a.html.

Eric Wan and Alex Nelson. Dual kalman filtering methods for nonlinear predic-
tion, smoothing and estimation. In M.C. Mozer, M. Jordan, and T. Petsche
(eds.), Advances in Neural Information Processing Systems, volume 9. MIT Press,
1996. URL https://proceedings.neurips.cc/paper_files/paper/1996/
file/147702db07145348245dc5a2f2fe5683-Paper.pdf.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome Connor, Tomas Kocisky, Mike Chrzanowski,
Lingpeng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu, Chris Dyer, et al. Learning and evalu-
ating general linguistic intelligence. arXiv preprint arXiv:1901.11373, 2019.

Yong Zeng and Shu Wu. State-space models: Applications in economics and finance, volume 1.
Springer, 2013.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pp.
12697–12706. PMLR, 2021.

12

https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.neurips.cc/paper_files/paper/1996/file/147702db07145348245dc5a2f2fe5683-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/147702db07145348245dc5a2f2fe5683-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DUAL KALMAN FILTER - REVIEW

Consider the state-space model

xt+1 = Ftxt + qt (31)
yt = Htxt + rt, (32)

and consider the setting where we need to estimate both the state xt and the state transition matrix
Ft. A solution is given in the form of the Dual Kalman Filter, proposed by Wan & Nelson (1996).
This approach alternates between estimation of the state given the estimate of the state transition
matrix and vice versa. Let ft ∈ Rn2

denote the vectorized form of the state transition matrix, and
let the n× n2 matrix Xt be defined as

Xt =

x̂+T
t−1 0 . . . 0 0

0 x̂+T
t−1 . . . 0 0

.

.
0 0 . . . x̂+T

t−1 0

0 0 . . . 0 x̂+T
t−1

 . (33)

Then the following state space model can be set up for ft:

ft = ft−1 (34)
yt = Hf,tft−1 + rf,t, (35)

where Hf,t = HtXt and rf,t = Htqt + rt; moreover, rf,t ∼ N (0, Rf) where Rf = HtQHT
t +R.

The prediction and update equations for the estimates of ft are as follows.

Prediction Step:

f̂−
t = f̂+

t−1 (36)

P̂−
f,t = P̂+

f,t−1 (37)

Update Step:

Kf,t = P̂−
f,tH

T
t,f (Hf,tP̂

−
f,tH

T
t,f +Rf)

−1 (38)

f̂+
t = f̂−

t +Kf,t(yt −Hf,tf̂
−
t) (39)

P̂+
f,t = (I −Kf,tHf,t)P̂

−
f,t (40)

In case of scalar measurements, Hf,tP̂
−
f,tH

T
t,f , and HtQHT

t and R are scalar; consequently, we can
express (38) as

Kf,t =
1

Hf,tP̂
−
f,tH

T
t,f +Rf

P̂−
f,tH

T
t,f . (41)

B TRANSFORMER CAN LEARN TO PERFORM DUAL KALMAN FILTERING
IN-CONTEXT FOR A SYSTEM WITH SCALAR MEASUREMENTS

Consider the following context provided to the transformer as input:[
0 σ2 0 y1 0 y2 ... yN−1 0
Q 0 hT

1 0 hT
2 0 ... 0 hT

N

]
. (42)

One can show in a manner analogous to the proof for the canonical Kalman filter that the transformer
can in-context learn to perform implicit state estimation even in the absence of the state transition
matrix. To this end, in addition to Mul(I, J, K). Div(I, j, K), Aff(I, J, K, W1, W2), and Transpose(I,
J) defined in the main text, we define MAP(I,J) which transforms the vectors formed by the entries
at index set I to a matrix of the form in equation (33) to be copied and stored at the index set J .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

In addition to Acat, IF , IQ, Iσ, IB1, IB2, IB3, IB4, IB5, IB6, IB7, IB8, IB9 defined in the main text,
we let IB10 denote indices of an n × n2 sub-matrix of zeros in Acat; let IB11 denote indices of a
1 × n2 sub-matrix of zeros in Acat; IB13 and If̂next

denote indices of an n2 × 1 sub-matrices of
zeros; and IB12 and IB14 denotes indices of an n2×n2 sub-matrices of zeros. With this notation, we
can re-write the Dual Kalman filter using the elementary operations implementable by transformers
as Algorithm 2.

Algorithm 2 Formulating the Dual Kalman filter recursions using the elementary operations imple-
mentable by transformers

1: Input: Acat, IF , IQ, Iσ, IB1, IB2, IB3, IB4, IB5, IB6, IB7, IB8, IB9, IB10, IB11, IB12, IB13, IB14, If̂next

2: Initialize IX̂Curr
← (1 : n, 2n)

3: for i = 1 to N do
4: IX̂next

← (1 : n, 2n+ 2i)

5: Ih ← (1 : n, 2n+ 2i− 1)
6: Iy ← (0, 2n+ 2i)
7: Transpose(IF , IB2)
8: Mul(IF , IX̂Curr

, IX̂next
)

9: Mul(IF , IB1, IB1)
10: Mul(IB1, IB2, IB1)
11: Aff(IB1, IQ, IB1, W1 = In×n, W2 = In×n)
12: Transpose(Ih, IB3)
13: Mul(IB1, Ih, IB4)
14: Mul(IB3, IB4, IB5)
15: Aff(IB5, Iσ , IB6, W1 = 1, W2 = 1)
16: Div(IB4, IB6, IB4)
17: Mul(Ih, IX̂next

, IB7)
18: Aff(Iy , IB7, IB7, W1 = 1, W2 = −1)
19: Mul(IB7, IB4, IB8)
20: Aff(IX̂next

, IB8, IX̂next
, W1 = 1, W2 = 1)

21: Mul(IB4, IB3, IB9)
22: Mul(IB9, IB1, IB9)
23: Aff(IB1, IB9, IB1, W1 = In×n, W2 = −In×n)
24: MAP(IX̂next

, IB10)
25: Mul(IB3, IB10, IB11)
26: Transpose(IB11, IB13)
27: Mul(IB11, IB12, IB11)
28: Mul(IB11, IB13, IB5)
29: Mul(IB12, IB13, IB13)
30: Aff(IB5, Iσ , IB6, W1 = 1, W2 = 1)
31: Div(IB13, IB6, IB13)
32: Mul(IB7, IB13, IB8)
33: Aff(If̂next

, IB8, If̂next
, W1 = 1, W2 = 1)

34: Mul(IB3, IB10, IB11)
35: Mul(IB13, IB11, IB14)
36: Mul(IB14, IB12, IB14)
37: Aff(IB12, IB14, IB12, W1 = In2×n2 , W2 = −In2×n2)
38: MAP(If̂next

, IF)
39: IX̂Curr

← IX̂next

40: end for

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C EXPERIMENTS WITH CONTROL INPUT

The results presented in the main body of the paper can be extended to the case of non-zero control
inputs provided that the measurement noise remains white. Specifically, for non-zero control inputs,
the state space model becomes

xt+1 = Ftxt +Btut + qt (43)
yt = Htxt + rt. (44)

The derivation showing that a transformer can implement operations of Kalman filtering for this state
space model follows the same line of arguments presented in the main body of the paper for other
(simpler) state space models. We omit details for brevity and instead focus on presenting empirical
results. In particular, we carry out experiments involving scalar measurements and generate B ∈
R8×8 as B = UBΣBU

T
B , where UB denotes a random orthonormal matrix while the diagonal matrix

ΣB has entries drawn from U [−1, 1]. We sample control inputs ut ∈ R8 from a zero-mean Gaussian
distribution having identity matrix as the covariance, and then normalize them to the unit norm. The
input to the transformer for this setting is

0 0 0 σ2 0 0 0 y1 · · · 0 0
F Q B 0 0 hT

1 u1 0 · · · hT
N uN

(45)

where F is generated using strategy 1. The rest of the settings remain the same as in the previous
experiments. The results, reported in Fig. 6, demonstrate that the transformer achieves mean-square
error performance similar to that of Kalman filter in this setting as well.

Figure 6: The results of experiments with control inputs.

D MISCELLANEOUS EXPERIMENTS AND FURTHER DETAILS

D.1 DETAILED ILLUSTRATION OF ALGORITHM 1

We illustrate the working of Algorithm 1 for scalar measurements. Let the state dimension be n and
let the measurements be scalar. Let Aappend =

B1 B2 B9 BT
3 B4 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 B5 B6 B7
(46)

For n = 2, this can be visualized as Aappend =

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

(47)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Consequently, with Acat = [Aappend Ainput], we obtain IB1 = {(0, 0), (1, 0), (0, 1), (1, 1)},
IB2 = {(0, 2), (1, 2), (0, 3), (1, 3)}, IB9 = {(0, 4), (1, 4), (0, 5), (1, 5)}, IB3 = {(0, 6), (1, 6)},
IB4 = {(0, 7), (1, 7)}, IB9 = {(0, 8), (1, 8)}, IB5 = {(2, 9)}, IB6 = {(2, 10)}, IB7 = {(2, 11)},
IF = {(1, 12), (1, 13), (2, 12), (2, 13)}, IQ = {(1, 14), (1, 15), (2, 14), (2, 15)}, Iσ = {(0, 16)}
and so on.

Next, we walk through the first iteration of the FOR loop in Algorithm 1.

1. Initialization: IX̂Curr
← (1 : n, 2n). We start by initializing x̂+

0 = 0. We simply use the
zeros below the variances as denoted below

[
0 0 σ2 0 y1 0 y2 ... yN−1 0
F Q x̂Curr = 0 hT

1 0 hT
2 0 ... 0 hT

N

]
. (48)

2. IX̂next
← (1 : n, 2n + 2i). For the first iteration, i = 1, this points to the elements just

below the first measurement

[
0 0 σ2 0 y1 0 y2 ... yN−1 0
F Q x̂Curr = 0 hT

1 x̂next = 0 hT
2 0 ... 0 hT

N

]
. (49)

3. Ih← (1 : n, 2n+ 2i− 1) This points to hT
1 in Ainput Likewise, Iy ← (0, 2n+ 2i) points

to y1.
4. Transpose(IF , IB2) This writes F to matrix B2. The matrix Aappend becomes

B1 FT B9 BT
3 B4 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 B5 B6 B7
(50)

5. Mul(IF , IX̂Curr
, IX̂next

). This calculates Fx̂Curr and writes to IX̂next
. Ainput becomes

[
0 0 σ2 0 y1 0 y2 ... yN−1 0
F Q x̂Curr = 0 hT

1 Fx̂Curr = 0 hT
2 0 ... 0 hT

N

]
. (51)

6. Mul(IF , IB1, IB1). For the first iteration, B1 = P̂+
0 = I This operation calculates FP̂+

0
and writes it to B1. The resulting Aappend becomes

FP̂+
0 FT B9 BT

3 B4 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 B5 B6 B7
(52)

7. Mul(IB1, IB2, IB1). This calculates FP̂+
0 FT and writes to IB1.

FP̂+
0 FT FT B9 BT

3 B4 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 B5 B6 B7
(53)

8. Aff(IB1, IQ, IB1, W1 = In×n, W2 = In×n). This calculates P̂−
1 = FP̂+

0 FT + Q and
writes to IB1

P̂−
1 FT B9 BT

3 B4 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 B5 B6 B7
(54)

9. Transpose(Ih, IB3) This transposes hT
1 and writes to B3 which yields

P̂−
1 FT B9 hT

1 B4 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 B5 B6 B7
(55)

10. Mul(IB1, Ih, IB4). This evaluates P̂−
1 hT

1 and writes it to IB4 which yields

P̂−
1 FT B9 hT

1 P̂−
1 hT

1 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 B5 B6 B7
(56)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

11. Mul(IB3, IB4, IB5). This evaluates scalar h1P̂
−
1 hT

1 and writes to IB5 yielding

P̂−
1 FT B9 hT

1 P̂−
1 hT

1 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 h1P̂
−
1 hT

1 B6 B7
(57)

12. Aff(IB5, Iσ , IB6, W1 = 1, W2 = 1) This evaluates h1P̂
−
1 hT

1 + σ2 and writes the resulting
scalar to IB6 resulting in

P̂−
1 FT B9 hT

1 P̂−
1 hT

1 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 h1P̂
−
1 hT

1 h1P̂
−
1 hT

1 + σ2 B7
(58)

13. Div(IB4, IB6, IB4) This divides the entries in P̂−
1 hT

1 by the scalar h1P̂
−
1 hT

1 + σ2 to com-
pute the Kalman Gain K1 and writes the results to IB4 giving

P̂−
1 FT B9 hT

1 K1 = 1

h1P̂
−
1 hT

1 +σ2
P̂−
1 hT

1 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 h1P̂
−
1 hT

1 h1P̂
−
1 hT

1 + σ2 B7

(59)

14. Mul(Ih, IX̂next
, IB7) This evaluate h1x̂

−
1 = h1Fx̂+0 = h1Fx̂Curr and writes the result-

ing scalar to IB7.

P̂−
1 FT B9 hT

1 K1 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 h1P̂
−
1 hT

1 h1P̂
−
1 hT

1 + σ2 h1x̂
−
1

(60)

15. Aff(Iy , IB7, IB7, W1 = 1, W2 = −1) This evaluates y1 − h1x̂
−
1 and writes it to IB7

P̂−
1 FT B9 hT

1 K1 B8 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 h1P̂
−
1 hT

1 h1P̂
−
1 hT

1 + σ2 y1 − h1x̂
−
1

(61)

16. Mul(IB7, IB4, IB8) This multiplies the Kalman gain with the error to yield

P̂−
1 FT B9 hT

1 K1 K1(y1 − h1x̂
−
1) 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 h1P̂
−
1 hT

1 h1P̂
−
1 hT

1 + σ2 y1 − h1x̂
−
1

(62)

17. Aff(IX̂next
, IB8, IX̂next

, W1 = 1, W2 = 1) This calculates the posterior estimate x̂+
1 =

x̂−
1 +K1(y1 − h1x̂

−
1) and writes it to IX̂next

modifying Ainput to[
0 0 σ2 0 y1 0 y2 ... yN−1 0
F Q x̂Curr = 0 hT

1 x̂+
1 hT

2 0 ... 0 hT
N

]
. (63)

18. Mul(IB4, IB3, IB9) This evaluates the n× n matrix h1K1 and writes it to IB9 giving us

P̂−
1 FT h1K1 hT

1 K1 K1(y1 − h1x̂
−
1) 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 h1P̂
−
1 hT

1 h1P̂
−
1 hT

1 + σ2 y1 − h1x̂
−
1

(64)

19. Mul(IB9, IB1, IB9): This calculates and writes to IB9 the matrix h1K1P̂
−
1

P̂−
1 FT h1K1P̂

−
1 hT

1 K1 K1(y1 − h1x̂
−
1) 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 h1P̂
−
1 hT

1 h1P̂
−
1 hT

1 + σ2 y1 − h1x̂
−
1

(65)
20. Aff(IB1, IB9, IB1, W1 = In×n, W2 = −In×n) This calculates the error covariance of the

posterior estimate P̂+
1 = P̂−

1 − h1K1P̂
−
1 and writes the results to IB9

P̂−
1 FT P̂+

1 hT
1 K1 K1(y1 − h1x̂

−
1) 0n×1 0n×1 0n×1

01×n 01×n 01×n 0 0 0 h1P̂
−
1 hT

1 h1P̂
−
1 hT

1 + σ2 y1 − h1x̂
−
1

(66)

21. IX̂Curr
← IX̂next

This updates the pointer IX̂Curr
to point towards indices IX̂next

yielding[
0 0 σ2 0 y1 0 y2 ... yN−1 0
F Q 0 hT

1 x̂Curr = x̂+
1 hT

2 0 ... 0 hT
N

]
. (67)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.2 JUSTIFICATION OF THE CHOICE OF LEARNING RATES FOR SGD

To find the optimal set of learning rates for the experiments, we fix context length to 40 and the state
dimension to 8. We generate F using Strategy 1. The rest of the simulation settings remain the same
as before. We compare the MSPD between the transformer’s output and the SGD for various values
of α (learning rates). We present the results in Table 1

α 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1
MSPD 1.0087 0.9999 0.9753 0.8882 0.8789 0.4766 0.2997 0.2887 2.8923

Table 1: MSPD corresponding to different α

As can be seen, the optimal MSPD is obtained for α = 0.01 and α = 0.05. Consequently, through-
out this work we report the results for these two learning rates only.

D.3 MEAN SQUARE ERROR (MSE) WITH RESPECT TO THE GROUND TRUTH

In the main section of the paper, we omit the MSE of the output of the transformer, Kalman filter,
and other baseline algorithms evaluated with respect to the ground truth. Here we present the MSE,
normalized by the state dimension, for the default simulation setting with F generated using Strategy
1; note that the results for Strategy 2 and varied parameters differ very little from the presented ones.
As can be seen in Fig. 7, the MSE curves closely follow those for the normalized MSPD presented
in the main paper.

Figure 7: The MSE between the output and the ground truth for various algorithms.

D.4 RESULTS ACROSS DIFFERENT STATE DIMENSIONS

To evaluate the performance of transformer as the state dimension varies, we train the transformer
model under the default settings using Strategy 1 to generate F. For evaluation, we fix the context
length to 40 and vary state dimension from 2 to 8; we utilize Strategy 1 to generate F, while the
remaining simulation parameters remain as same as before. The results in Fig. 8 present the MSPD
normalized by the state dimension vs. varying state dimension. As can be seen there, the gap
between the transformer and Kalman filter remains constant implying that the performance of the
transformer remains consistent regardless of the state dimension. At the same time, the MSPD
between the transformer and the SGD / Ridge Regression increases as the performances of the latter
two algorithms deteriorate with increasing state dimension.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 8: Results for the fixed context length and varying state dimension

D.5 AN ILLUSTRATION OF THE PERFORMANCE ON OUT-OF-SAMPLE PARAMETERS

To evaluate the performance of the transformer on systems with parameters sampled from a distribu-
tion different from the one seen during the training, we train the transformer with F generated using
Strategy 1 as previously described but then evaluate the trained model in experiments conducted
under following changes:

1. The measurement noise variance and the entries of Σq are sampled from U [0.01, 0.05]
instead of U [0, 0.025];

2. entries of Hi are sampled from U [− 5
4 ,

5
4], U [0, 3] and U [1, 4] instead of N (0, 1);

3. the state transition matrix F is generated via Strategy 2.

The results, presented in Fig. 9, demonstrate robustness of in-context learning to out-of-distribution
parameters generated in the aforementioned way.

E AN INVESTIGATION OF NON-LINEAR SYSTEMS

In this section, we consider systems with non-linear state space models of the form

xt+1 = fη(xt) + qt (68)
yt = Htxt + rt, (69)

where fη() is a non-linear function parameterized by the set of parameters η = [η1, ..., ηw]. To
estimate the states, we can linearize the system and perform Extended Kalman Filtering.

Prediction Step:

x̂−
t = fη(x̂

+
t−1) (70)

P̂−
t = F̃xP̂

+
t−1F̃

T
x +Q (71)

Update Step:

Kt = P̂−
t HT

t (HtP̂
−
t HT

t +R)−1 (72)

x̂+
t = x̂−

t +Kt(yt −Htx̂
−
t) (73)

P̂+
t = (I −KtHt)P̂

−
t (74)

where Fx is the Jacobian of fη() with respect to x̂+
t−1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Results for out-of-distribution noise vari-
ance.

(b) Results when the entries of Hi are sam-
pled from U [− 5

4
, 5
4
].

(c) Results when the entries of Hi are sam-
pled from U [0, 3]

.

(d) Results when the entries of Hi are sam-
pled from U [1, 4]

.

(e) Results for model trained under Strategy
1 evaluated on systems with F generated us-
ing Strategy 2.

Figure 9: Evaluating trained transformer on systems with parameters drawn from distribution dif-
ferent from the one seen during the training.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For this work, we choose fη(x) = [η1tanh(η2x1), ..., η1tanh(η2xn)] with η1, η2 ∼ U [−1, 1]. For
this transition function, we can write the Jacobian as

F̃x = η1η2diag([(1− tanh2(η2x1)), ..., (1− tanh2(η2xn))]).

For this system, we show that the transformer can theocratically implement equations of an Extended
Kalman Filter given the input of the form[

η1 η2 0 σ2 0 y1 ... yN−1 0
0 0 Q 0 hT

1 0 ... 0 hT
N

]
. (75)

In Akyürek et al. (2023), the authors utilized the properties of GeLU non-linearity to show that
GeLU can be used to perform scalar multiplication or for a sufficiently large additive bias term the
identity function. Likewise, we can show in an analogous manner that√

π
2x

2
tanh(x+ cx3) ≈ GeLU(

√
π

2
x)−GeLU(

√
π
2x

2
+Nb) +Nb (76)

where Nb >> 1 is a large bias term and the constant c = 0.044715π
2 . Since the softmax layer can be

bypassed by adding a large additive bias term, it is straightforward to show that a single transformer

attention head can output
√

π
2 x

2 tanh(x+ cx3) for the input x given appropriate parameters. More-
over, the simulation settings ensure that x + cx3 ≈ x, and consequently, raw operator’s emulation
of Mul() Div(), and Aff() operations can be invoked to argue that the transformer can implement
tanh(x) using multiple attention heads. It is then trivial to extend the method for the previously
discussed linear dynamical systems case to show that the transformer can perform extended Kalman
filtering for the non-linear dynamical system under consideration.

Given this setting, we run simulations with the parameters of the state and measurement noise co-
variance set to σ2

q = σ2
r = 0.0125. We compare the performance of the transformer with that of the

Extended Kalman Filter and present the results in Fig. 10. As can be seen there, the transformer
performs closer to the Extended Kalman Filter than it does to other baseline algorithms. We leave
investigation for other classes of non-linear systems to future work.

(a) Results for η1 = 1, η2 = 1. (b) Results for η1, η2 ∼ U [−1, 1].

Figure 10: Results of in-context learning for fη(x) = [η1tanh(η2x1), ..., η1tanh(η2xn)].

21

	Introduction
	Background
	Transformers
	In-context Learning for Linear Regression

	In-Context Learning for Filtering and Prediction of a Dynamical System
	Simulation Results
	Conclusion
	Dual Kalman Filter - Review
	Transformer can learn to perform Dual Kalman Filtering In-context for a system with scalar measurements
	Experiments with Control Input
	Miscellaneous Experiments and Further Details
	Detailed Illustration of Algorithm 1
	Justification of the choice of learning rates for SGD
	Mean Square Error (MSE) with respect to the Ground Truth
	Results across different state dimensions
	An illustration of the performance on out-of-sample parameters

	An Investigation of Non-Linear Systems

