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Towards Multimodal-augmented Pre-trained Language Models
via Self-balanced Expectation-Maximization Iteration

Anonymous Authors

ABSTRACT
Pre-trained language models (PLMs) that rely solely on textual
corpus may present limitations in multimodal semantics compre-
hension. Existing studies attempt to alleviate this issue by incor-
porating additional modal information through image retrieval
or generation. However, these methods: (1) inevitably encounter
modality gaps and noise; (2) treat all modalities indiscriminately;
and (3) ignore visual or acoustic semantics of key entities. To tackle
these challenges, we propose a novel principled iterative framework
for multimodal-augmented PLMs termed MASE, which achieves
efficient and balanced injection of multimodal semantics under the
proposed Expectation Maximization (EM) based iterative algorithm.
Initially, MASE utilizes multimodal proxies instead of explicit data
to enhance PLMs, which avoids noise and modality gaps. In E-step,
MASE adopts a novel information-driven self-balanced strategy
to estimate allocation weights. Furthermore, MASE employs het-
erogeneous graph attention to capture entity-level fine-grained
semantics on the proposed multimodal-semantic scene graph. In
M-step, MASE injects global multimodal knowledge into PLMs
through a cross-modal contrastive loss. Experimental results show
that MASE consistently outperforms competitive baselines on mul-
tiple tasks across various architectures. More impressively, MASE is
compatible with existing efficient parameter fine-tuning methods,
such as prompt learning.

CCS CONCEPTS
• Theory of computation→ Theory and algorithms for application
domains; Machine learning theory.

KEYWORDS
Multimodal-augmented, Pre-trained LanguageModels, Self-balancing
optimization, Entity-level enhancements

1 INTRODUCTION
Leveraging self-supervised techniques, pre-trained language mod-
els (PLMs) such as BERT [9], T5 [30], GPT [3], have achieved strong
progress towards comprehending human language. The paradigm
of fine-tuning PLMs has achieved tremendous success in various
downstream NLP tasks [3, 26, 28]. However, most existing PLMs
rely predominantly on contextual learning which only takes the
textual context as self-supervision [25, 38]. These language learners
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Uniform Weighted
Representation

Video modality
Image modality

Text modality

(a) Representation Space of other Methods (b) Representation Space of our MASE

Modality Gap Features of Diverse Modality Data noise

Figure 1: Comparison between our MASE and other methods.
Most existing methods treat various modal information in-
discriminately and inevitably encounter modality gaps and
noise. Our MASE can achieve a uniform representation space
while achieving self-balancing weighting of various modal
information.

overlook the potential of learning from multimodal corpora, e.g.,
image, audio and video [2] and cannot well capture multimodal-
grounded semantics, e.g., visual commonsense [17]. Moreover, prior
studies have proved that these PLMs exhibit human biases [12] and
lack general multimodal knowledge [50], e.g., color and shape.

To overcome the above challenges, existing methods mainly
enhance the visual comprehension ability of PLMs by retrieving
or synthesizing real images. These methods employ images to en-
hance PLMs during the pre-training [39, 43] or the fine-tuning
stage [15, 25], or leverage images to bolster the zero-shot capa-
bilities of PLMs [48]. Despite the notable progress achieved by
these studies, we identify several key issues: (1) Modality Gap
and Noise: As shown in Figure 1, they necessitate labor-intensive
image retrieval or generation and are prone to introducing irrel-
evant noise, which can degrade the performance. Furthermore, it
is widely recognized that a large semantic gap [21] exists between
different modalities, which will further hinder modal aggregation.
(2) Modality Imbalance: They focus exclusively on image infor-
mation while overlooking audio and video modalities, and handle
all modal information indiscriminately. Recent work [7, 15] reveals
that the relevance of various modal types varies across specific NLP
tasks, and not all information from additional modalities proves
beneficial. Consequently, the indiscriminate treatment of all modal
information is suboptimal. (3) Ignoring Entity-level Multimodal
Semantics: As shown in Figure 2, from the perspective of the scene
graph, we discover that key entities are highly correlated with ad-
ditional modal information, such as ‘dog’ corresponding to visual
features, and ‘called’ corresponding to audio features. Previous
work overlooked fine-grained visual or acoustic semantics corre-
lated with these key objects, which are crucial for improving the
multimodal understanding of entities in PLMs.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: We parse the corpus into a semantic scene graph
(left) and realize the absence of entity-level multimodal se-
mantics. To capture multimodal-semantic fusion represen-
tations, our MASE innovatively constructs an entity-level
multimodal-semantic scene graph (right).

In this paper, we propose a novel principled EM-based itera-
tion framework for self-balancing multimodal-augmented PLMs
(MASE). As illustrated in Figure 1, MASE tackles the above chal-
lenges through proposed strategies in the following three aspects:

(1) MASE utilizes multimodal proxies as a bridge for in-
formation transmission and employs an EM-based iteration
for optimization. MASE initially leverages textual instances to
obtain implicit modal proxies through multimodal contrastive pre-
training models (MC-PTMs) (e.g., CLIP [29], AudioCLIP [16] and
CLIP-ViP [47], etc.). These proxies are intrinsically aligned with
real-world data and enable the circumvention of noise and modality
gaps. Subsequently, MASE conceptualizes the balance and efficient
injection of multimodal information from proxies as a probabilistic
problem, and adopts the EM algorithm [8] for optimization.

(2)MASE utilizes a novel information-driven strategy for
allocation estimation. Specifically, MASE modals information
allocationweights as latent variables under our iteration framework,
adopts the proposed mutual information (MI) based method to
estimate the contribution of various modalities to the targets in the
E-step. By our MI-based estimation approach, we can calculate a
specified posterior probability of assigned weights to explore the
intrinsic structure of multimodal information, achieve multimodal
balance in the optimization process.

(3) MASE achieves entity-level multimodal information
enhancement via the proposed multimodal-semantic scene
graph (MSSG). The multimodal representation of entities (includ-
ing objects and attributes) and relations can reveal a large amount
of world-commonsense information and rich visual-spatial seman-
tics, which helps to enhance the multimodal understanding ability
of PLMs. To fully exploit fine-grained cross-modal features at the
entity level, We innovatively concatenate multimodal features with
entity nodes in the vanilla scene graph to construct MSSG, and
propose employing heterogeneous graph attention to efficiently
extract enhanced representation upon MSSG in E-step.

Following the balance and enhancement in the E-step, we utilize
cross-modal contrastive learning to achieve global optimization of
MASE in the M-step. Extensive experiments conducted on thirteen
datasets across five tasks demonstrate the effectiveness and univer-
sality of MASE. In addition, MASE can be combined with existing
efficient parameter fine-tuning strategies, such as prompt learning.
In general, our contributions are three-fold:

(Theory) We propose a principled iterative framework termed
MASE that utilizes the EM-based algorithm to inject multimodal
semantics into PLMs balance and efficiently. To our knowledge, it
is the first theoretical framework for multimodal-augmented PLMs.

(Methodology) We innovatively propose an MI-based informa-
tion allocation estimation method and an entity-level multimodal
aggregation method via the proposed MSSG to achieve modal se-
mantic balance and enhancement, respectively.

(Experiments) Extensive experiments on five tasks (including
NLP, visual reasoning, and visual question answering) demonstrate
the effectiveness and generality of MASE. More impressively, our
method is compatible with different architectures and existing effi-
cient parameter fine-tuning methods.

2 RELATEDWORK
Pre-trained Language Models. Recent advancements in large-
scale PLMs have been achieved through self-supervised learning
techniques applied to extensive text corpora [3, 9, 30]. These PLMs
exhibit robust generalization capabilities, and fine-tuning them sig-
nificantly enhances the performance of various downstream tasks,
including NLU, question answering, and text generation. It has been
observed that language models trained exclusively on textual data
may not adequately grasp multimodal contexts and world knowl-
edge, such as visual commonsense [12, 48, 50]. Moreover, recent
studies indicate that merely expanding the textual corpus does not
overcome these limitations [14, 50]. In this article, we introduce a
universal probability framework designed to enrich the multimodal
semantic integration within PLMs.

Multimodal Contrastive Pre-trained Models. MC-PTMs are
developed through training on a substantial corpus of modality-
pairing samples, enabling the mapping of various modalities into
a unified representation space. CLIP [29] undergoes pre-training
with a vast collection of image-text pairs, effectively achieving
semantic alignment between images and text. AudioCLIP [16] and
CLIP-ViP [47] expand CLIP-based approach to the audio modality
and video domain, respectively. These works inspire us to obtain
semantics aligned with real modal data through textual instances
to enhance multimodal understanding of PLMs.

Multimodal-Augmented Language Models. Most studies
focus on incorporating visual modality information into PLMs
through retrieval or image generation methods. Tan and Bansal
[39], Wang et al. [43] incorporate visual knowledge in the pre-
training phase of PLMs. Guo et al. [15], Lu et al. [25] enhance PLMs
by integrating visual information during the fine-tuning process.
Furthermore, Yang et al. [48] employs image generation or retrieval
methods to encode visual representations, aiming to improve zero-
shot NLU. As a comparison, MASE is the first theoretical framework
for MA-PLMs, which can simultaneously achieve multimodal se-
mantic injection and modal information balance.

3 METHODS
In this section, we first introduce the task setting and the multi-
modal proxy based baseline models for MA-PTMs in Section 3.1,
and then describe our proposed probabilistic model in Section 3.2
for infusing multimodal knowledge into PLMs during fine-tuning.
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Figure 3: The illustration of the proposed framework which is iteratively optimized by EM-based algorithms. In E-step, MASE
uses our MI-driven estimation strategy to estimate modal allocation weights and achieves entity-level multimodal semantics
injection via MSSG. In M-step, MASE achieves global optimization via cross-entropy and cross-modal contrastive losses.

Subsequently, we describe the EM-based iterative optimization al-
gorithm and proposed information-driven self-balanced allocation
estimation strategy in Section 3.3 and Section 3.4, respectively. Fi-
nally, we summarize our total training algorithm in Algorithm 1.

3.1 Task Settings and Baseline Models
Task Settings. In general NLP scenarios, PLMs are adapted through
fine-tuning on a specific datasetD = {𝑥𝑖 , 𝑦𝑖 }𝑛𝑖=1, aimed at executing
tasks like classification or regression, where, 𝑥𝑖 and 𝑦𝑖 is the 𝑖-th
textual instance and its label, respectively, with 𝑛 denoting the total
number of training instances. Our study focuses on devising an
efficient framework for integrating multi-modal information into
PLMs throughout the fine-tuning process. The set of modalities
engaged in this paper is denoted as M = {T, I,A,V}, representing
text, image, audio, and video modalities, correspondingly.
Proxy-based Baseline Models for MA-PLMs. As the multimodal
proxy based multimodal-augmented PLM approach has not been
studied in NLP tasks, we extend the vision-enhanced PLM approach,
namely VAWI [15], to a multimodal setting and combine with MC-
PTMs to achieve multimodal proxy based multimodal information
extraction. MC-PTMs perform contrastive learning across a large
number of cross-modal data pairs, and their text features are highly
aligned with other modal features. Thus, the text semantics of
MC-PTMs contain modal-specific representation encodings and
can serve as implicit proxies. In practice, we employ the CLIP-
based text encoder of MC-PTMs to facilitate implicit multimodal
information as ℎ𝑚

𝑖
= MC-PTMs𝑚 (𝑥𝑖 ), where,𝑚 denotes the repre-

sents a specific modality, i.e.,𝑚 ∈ M\T. In this work, we utilize
CLIP [29], AudioCLIP [16] and CLIP-ViP [47] to obtain hidden state

encodings of image, audio, and video modality proxies, respec-
tively. Subsequently, we concatenate different modal semantics (i.e.,
ℎ𝑚
𝑖
,∀𝑚 ∈ M) and feed them into a classifier or regression to obtain

predictions. We further provide theoretical analysis in supplements
about our multimodal proxy is an excellent multimodal information
transmission bridge.

3.2 Probabilistic Modeling for our MASE
Our MASE, as shown in Figure 3, adaptively assigns soft weights
to different modal semantics ℎ𝑚

𝑖
, where the lower weights resort

to weakening the negative impact of irrelevant modalities. Specifi-
cally, MASE prioritizes the weight of information assignment as a
latent variable and then constructs a general probabilistic model
for various PLMs as follows:
Latent Variables for Information Assignment. We consider
the weight of information assignment as a latent variable 𝑧𝑖 which
represents the degree of contribution of different modalities to
specific predictions. The latent variable 𝑧𝑖 = {𝑧𝑚

𝑖
} as a measure of

information allocation will directly act on the multimodal semantics
ℎ𝑚
𝑖
,∀𝑚 ∈ M to obtain the optimal representation ℎ∗

𝑖
:

ℎ∗𝑖 =
M∑︁
𝑚

𝑧𝑚𝑖 ℎ
𝑚
𝑖 . (1)

Probabilistic Model with Latent Variables. Based on the mul-
timodal representations h𝑖 = {ℎ𝑚

𝑖
} and latent variables 𝑧𝑖 , we can

optimize the model by maximizing the following log-likelihood:

argmax
Θ

ℓ (Θ, 𝑧) = argmax
Θ

∑︁
𝑖=1

log
∑︁
𝑧𝑖

𝑝 (𝑦𝑖 , 𝑧𝑖 | h𝑖 ;Θ) . (2)
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Optimizing the log-likelihood as presented in Eq. 2 poses a challenge
due to the necessity of summing across logarithmic configurations
of 𝑧𝑖 . Fortunately, this optimization problem can be elegantly solved
by maximizing a lower bound related to 𝑧𝑖 . Specifically, we define
a new discrete distribution 𝑃𝑖 (𝑧𝑖 ) satisfying as:∑︁

𝑧𝑖

𝑃𝑖 (𝑧𝑖 ) = 1, 0 ⩽ 𝑃𝑖 (𝑧𝑖 ) ⩽ 1, (3)

where Θ denotes the learnable parameters of the model. Based on
this, we can use Jensen’s inequality [19] to derive the lower bound
F (Θ, {𝑃𝑖 }𝑛𝑖=1) of the log-likelihood of Eq. 2 as:

ℓ (Θ, 𝑧 ) =
𝑛∑︁
𝑖=1

log
∑︁

𝑧𝑖 ∈{0,1}
𝑃𝑖 (𝑧𝑖 )

𝑝 (�̂�𝑖 , 𝑧𝑖 | h𝑖 ;Θ)
𝑃𝑖 (𝑧𝑖 )

⩾
𝑛∑︁
𝑖=1

∑︁
𝑧𝑖 ∈{0,1}

𝑃𝑖 (𝑧𝑖 ) log
𝑝 (�̂�𝑖 , 𝑧𝑖 | h𝑖 ;Θ)

𝑃𝑖 (𝑧𝑖 )

= F
(
Θ, {𝑃𝑖 }𝑛𝑖=1

)
,

(4)

where we abbreviate 𝑃𝑖 (𝑧𝑖 ) as 𝑃𝑖 .
Eq. 4 inspires us to optimize the latent variables 𝑧𝑖 and the model

parameters Θ by optimizing the lower bound F
(
Θ, {𝑃𝑖 }𝑛𝑖=1

)
. This

approach addresses the challenges associated with optimizing the
likelihood function ℓ (Θ, 𝑧). In this work, we propose a strategy
based on the Expectation-Maximization (EM) algorithm to optimize
this lower bound.

3.3 Overall EM-based Iteration for Optimization
MASE iteratively optimizes Θ and {𝑃𝑖 }𝑛𝑖=1 through E-step and M-
step to achieve the balance of information allocation and effective
injection of multimodal information, respectively.
E-step for Self-balanced Information Assignment. In E-step,
we keep the current parameters Θ(𝑡−1) fixed and and maximize
the lower bound F to estimate the allocation weights of different
modal information as follows:

𝑃𝑖 (𝑧𝑖 ) (𝑡 ) := 𝑝
(
𝑧𝑖 | h𝑖 , 𝑦𝑖 ;Θ(𝑡−1)

)
. (5)

Wewill specifically discuss our information-driven allocationmethod
for estimating 𝑝

(
𝑧𝑖 | h𝑖 , 𝑦𝑖 ;Θ(𝑡−1)

)
in Section 3.4.

E-step for Entity-level Information Injection. After obtaining
the balanced modal features ℎ𝑚

𝑖
,∀𝑚 ∈ M, we employ the proposed

MSSG and heterogeneous graph attention networks to obtain en-
hanced multimodal features to ℎ̂𝑚

𝑖
, as detailed in Section 3.5.

M-step for Multimodal Information Injection. In this step,
we hold 𝑃𝑖 (𝑧𝑖 ) (𝑡 ) and update Θ to maximize the lower bound for
injecting multimodal information as:

Θ(𝑡 ) = argmax
Θ

𝑛∑︁
𝑖=1

∑︁
𝑧𝑖

𝑃𝑖 (𝑧𝑖 ) (𝑡 ) log 𝑝
(
𝑦𝑖 , 𝑧𝑖 | ĥ𝑖 ;Θ

)
. (6)

In practice, MASE achieves the optimization goal of M-step in Eq. 6
by performing cross-entropy loss and cross-modal contrastive loss
on the aggregated multimodal features ℎ̂∗

𝑖
via Eq. 1. The cross-

entropy loss is used to represent prediction error as:

L𝑖ce = CE
(
𝑦𝑖 ;𝑝

(
𝑦𝑖 | ℎ̂∗𝑖 , 𝑧𝑖

))
, (7)

where CE(·) denotes the cross-entropy function. And the cross-
modal contrastive loss is used to optimize the representation be-
tween modalities, which can be represented as:

L𝑖cc =
∑︁
𝑚∈M

∑︁
𝑘∈M\{𝑚}

exp
(
ℎ̂𝑚
𝑖
· ℎ̂𝑘
𝑖
/𝜏
)

∑𝑛
𝑗=1 exp

(
ℎ̂𝑚
𝑖
· ℎ̂𝑘
𝑗
/𝜏
) , (8)

where 𝜏 is the temperature coefficient.
Specifically, we minimize the following total loss function in

M-step to inject balanced multimodal knowledge into PLMs:

L𝑀 =
1
𝑛

∑︁
𝑖

(L𝑖ce + 𝛼L𝑖cc), (9)

where 𝛼 denotes a trade-off coefficient.
The optimization loss L𝑀 incorporates strategies for allocating

multimodal information via 𝑧𝑖 to achieve an adaptive balance and
inject knowledge into PLMs effectively during the M-step phase.
During training, we initialize 𝑧𝑖 to a uniform distribution and then
iterate on E-step and M-step until convergence.

3.4 MI-driven Self-balanced Weight Allocation
In Section 3.3, it remains a crucial question of how to estimate the
distribution of multimodal information allocation latent variables
𝑝 (𝑧𝑖 | h𝑖 , 𝑦𝑖 ;Θ) in the E-step. We propose a novel MI-driven multi-
modal knowledge allocation strategy for dynamically estimating
the distribution of latent variables. Specifically, we calculate the
mutual information between different modal semantics and task
labels in E-step as a measure of modalities’ importance. This strat-
egy is based on intuition: the greater the contribution of modal
knowledge to task targets, the greater the mutual information. We
mathematically define the mutual information between specific
modal knowledge ℎ𝑚 and labels 𝑦 as:

I(ℎ𝑚, 𝑦) = HΘ (𝑦) − HΘ (𝑦 | ℎ𝑚), (10)
whereHΘ (·) denotes information entropy under the model Θ. In
practice, MASE adopts a Monte Carlo estimator to estimate the
mutual information of random variables in a batch. The mutual
information I(ℎ𝑚, 𝑦) has a lower bound and an upper bound, i.e.,
0 ≤ I(ℎ𝑚, 𝑦) ≤ HΘ (𝑦). HΘ (𝑦) is a fixed value representing the
information entropy of the task dataset labels. Based on the above
analysis, we can utilize normalized mutual information to establish
an information allocation distribution model 𝑝

(
𝑧𝑖 | h𝑖 , 𝑦𝑖 ;Θ(𝑡 )

)
for

𝑧𝑖 = {𝑧𝑚
𝑖
} as:

𝑝
(
𝑧𝑚𝑖 | h𝑖 , 𝑦𝑖 ;Θ

)
=

I(ℎ𝑚, 𝑦)∑M
𝑚 I(ℎ𝑚, 𝑦)

, (11)

where𝑚 ∈ M denotes different modalities.We achieve the dynamic
balance of multimodal information in the iterative optimization by
using our MI-driven allocation strategy (Eq. 11) in E-step.

3.5 Entity-level Information Injection via MSSG
To fully exploit fine-grained inter-modality features at the entity
level, we propose the construction of a multimodal-semantic scene
graph. This MSSG utilizes balanced multimodal features to enable
entity-level fine-grained interactions, as illustrated in Figures 2 and
3. Our MSSG is an extension of the vanilla semantic scene graph
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that represents the intrinsic relationships between entities under
textual semantics. To incorporate collaborative modality effects into
representation learning, we concatenate additional modal features
(such as video and audio features) into entities within the traditional
scene graph to obtain a structured multimodal context. Specifically,
we employ a scene graph parser [46] 1 to initially generate the
textual scene graphs GT = {ET,RT}, where ET represents entities
and RT denotes relation within textual descriptions. Subsequently,
we augment these textual entities ET by aggregating multimodal-
entity features to construct the MSSG GM = {EM,RM}, where,

• EM = {[
M\{T}

| |
𝑚

ℎ𝑚
𝑖
, 𝑒T
𝑖
]},∀𝑒T

𝑖
∈ ET, represents the entity

set aggregated with multimodal semantics, where, | | is a
concatenation operation.

• RM = RT denotes the set of the edges connecting nodes in
the scene graph.

MSSG provides key insights for achieving fine-grained, entity-
level multimodal interactions. However, the heterogeneous nature
of MSSG, featuring diverse node types (such as ‘dogs’ and ‘clothes’)
and relational edges (such as ‘above’ and ‘below’), presents chal-
lenges for traditional graph processing techniques, such as graph
convolution networks (GCN) [18, 51] or graph attention networks
(GAT) [41]. These standard approaches often struggle to capture
the diversity of nodes and edges in heterogeneous graphs [35]
To achieve fine-grained aggregation in our heterogeneous MSSG
GM, we propose utilizing heterogeneous graph attention networks
(HGAT) to distinguish specific information from different types
of nodes along different relation edges. Specifically, we feed node
features 𝐻𝑖 ∈ EM into HGAT with 𝐾 attention heads to obtain
attention scores of edge 𝑟 on the 𝑘-th head as:

F
(
𝐻𝑖 , 𝐻 𝑗

)
= a[𝑘,𝑟 ]

⊤ [
𝑊 [𝑘,𝑟 ]𝐻𝑖 ∥𝑊 [𝑘,𝑟 ]𝐻 𝑗

]
, (12)

𝛼
[𝑘,𝑟 ]
𝑖 𝑗

=
exp

(
𝜎
(
F

(
𝐻𝑖 , 𝐻 𝑗

) ) )∑
𝑗 ′∈N𝑖

exp
(
𝜎
(
F

(
𝐻𝑖 , 𝐻 𝑗 ′

) ) ) , (13)

where, | | is a concatenation operation, 𝑟 denotes the type of edge
from node 𝑗 to node 𝑖; 𝜎 represents the activation function; the set
N𝑖 is the first-order neighbors of node 𝑖 on graph GM; and a[𝑘,𝑟 ]

and𝑊 [𝑘,𝑟 ] are trainable matrix of 𝑟 on the 𝑘-th head. The core
difference between HGAT in Eq. 12 and GAT is that we assign a
learnable weight𝑊 [𝑘,𝑟 ] to each edge, rather than sharing a set
of parameters. We can further obtain the enhanced multimodal
representation as follows:

�̂�𝑖 =
𝐾

| |
𝑘=1

𝜎
©«
∑︁
𝑗∈N𝑖

𝛼
[𝑘,𝑟 ]
𝑖 𝑗

𝑊 [𝑘,𝑟 ]𝐻 𝑗
ª®¬ . (14)

Thenwe decouple the enhanced features �̂� = {�̂�𝑖 } intomodality-
specific representations ℎT, ℎI, ℎA and ℎV for M-step in Section 3.3.

We summarize the whole training process of the EM framework
in Algorithm 1. It is worth noting that our method proposes a
framework wherein probability estimation can be flexibly adapted
to suit a wide range of scenarios through various approaches.

1https://github.com/vacancy/SceneGraphParser

Algorithm 1 Training algorithm for MASE

Input: The dataset D = {𝑥𝑖 , 𝑦𝑖 }𝑛𝑖=1 for training.
Parameter: Learnable model parameters Θ.

1: Initialize {𝑃𝑖 }𝑛𝑖=1 to uniform distribution.
2: for each batch B in D do
3: Compute modal semantics {ℎ𝑚};
4: while not converged do
5: Estimate {𝑃𝑖 }𝑛𝑖=1 via Eq. 11; \\ E-step
6: Obtain ℎ̂𝑚,∀𝑚 ∈ M via Eq. 14; \\ E-step
7: Update Θ via Eq. 9. \\ M-step
8: end while
9: end for
10: return The optimal parameters Θ∗.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets.We conduct main experiments across four types of tasks:
(1) Natural Language Understanding (NLU).We evaluate our
MASE on six GLUE benchmark [42], i.e., SST-2 [34], QNLI [32],
QQP[6] , MNLI [44], MRPC [10], and STS-B [5]. (2) Question An-
swering. In the realm of question answer task, we select CSQA [37]
and SQuADv2.0 [31] to evaluate MASE. (3) Text Generation. We
utilize the CommonGen [22] as the dataset to validate MASE. (4)
Visual Reasoning. We evaluate our MASE on color reasoning (us-
ing the MemoryColor [27] and ColorTerm [4] datasets) and shape
reasoning (using ObjectShape [50] dataset) tasks. (5) Visual Ques-
tion Answering.We further evaluate our MASE on cross-modal
question-answering tasks on VQA 2.0 benchmark [13].
Baselines. We compare MASE with the pre-trained language mod-
els (PLMs), the multimodal proxy based baselines (MPB), multi-
modal contrastive pre-trained models (MC-PTMs), and visually-
augmented pre-trained language models (VA-PLMs). (1) PLMs: We
utilize BERT [9], RoBERTa [23], XLNet [49], and T5 [30] as the back-
bones, and directly fine-tune them as baselines. (2) MPB: We use
the methods described in Section 3.1 as the baseline of multimodal
proxy based MA-PLMs. (3) MC-PTMs: CLIP [29], AudioCLIP [16]
and CLIP-ViP [47] are selected as baselines. (4) VA-PLMs: We select
VOKEN [38], iACE [25], and VAWI [14] as baselines.
Implementation Details.We implement all methods2 based on
Huggingface Transformers [45]. The number of iterations for the
EM algorithm is set to 10. We set the learning rate as 1e-4 on GLUE
benchmark, 3e-5 on CSQA and SQuADv2.0 datasets, and 2e-5 on
CommonGen.We utilize Adam as the optimizer and train all models
for 3 epochs. {𝑃𝑖 }𝑛𝑖=1 is initialized as a uniform distribution, i.e., the
initial weight of each modality is 0.25 for four modalities. The ex-
perimental details on VQA2.0 are consistent with ConceptBert [11].
More details and experiments can be found in supplements.

4.2 Main Results
Evaluation on NLU Tasks. Experimental results on GLUE are
shown in Table 1, from which we have several observations:

(1) The integration of additional multimodal information signif-
icantly bolsters the predictive capabilities of PLMs in NLU tasks.

2All the source code and models will be released after review.

https://github.com/vacancy/SceneGraphParser
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Table 1: Comparison of accuracy and learnable parameter size on the GLUE benchmark, with the best results highlighted in
bold. “T, I, A, V” indicates four distinct modalities: text, image, audio, and video, respectively. We gradually add different modal
semantics to MASE. “+None” denotes we directly fine-tune the base model. The results of VOKEN, iACE and VAWI on GLUE are
reported from Lu et al. [25] and Guo et al. [14]. More results on other base models are provided in the supplements.

Base Model Method Modality SST-2 QNLI QQP MNLI MRPC STS-B Average Param.

BERT-base [9]

+None T 89.3 87.9 87.2 79.4 81.7 84.4 84.98 110M
+VOKEN [38] T+I 92.2 88.6 88.6 82.6 83.5 86.0 86.83 121M
+iACE [25] T+I 91.7 88.6 89.1 82.8 85.8 86.6 87.43 568M
+VAWI [14] T+I 92.4 89.1 89.7 83.0 85.6 86.9 87.78 156M

+MPB T+I+A+V 91.0 89.1 88.5 82.3 83.4 85.7 86.67 118M
+MASE T+I 93.1 89.7 90.7 83.4 87.0 87.6 88.58 135M
+MASE T+I+A 93.4 91.5 91.1 84.0 87.2 87.7 89.15 135M
+MASE T+I+A+V 93.9 91.4 91.6 84.5 87.5 88.4 89.55 135M

RoBERTa-base [23]

+None T 89.2 87.5 86.2 79.0 81.4 85.4 84.78 355M
+VOKEN [38] T+I 90.5 89.2 87.8 81.0 87.0 86.9 87.06 367M
+iACE [25] T+I 91.6 89.1 87.9 82.6 87.7 86.9 87.06 738M
+VAWI [14] T+I 91.6 90.6 87.9 82.4 88.5 88.3 88.21 402M

+MPB T+I+A+V 90.8 89.7 88.1 81.4 85.6 86.7 87.05 363M
+MASE T+I 93.1 91.5 88.6 84.0 89.1 89.0 89.22 383M
+MASE T+I+A 93.2 91.8 89.2 84.7 89.5 89.9 89.72 383M
+MASE T+I+A+V 93.7 92.6 89.8 85.1 90.3 89.5 90.12 383M

Table 2: Performance comparison on CommonGen, with the
best results highlighted in bold.WeuseT5-3b as the backbone.
“+Image” denotes we utilize retrieval-based methods through
Bing web API similar to Table 1.

Method BLUE-4 METOR Rouge-L CIDER

T5-3b [30] 36.2 32.7 59.3 17.7
+Image 35.8 32.1 59.0 17.6
+MASE 38.3 34.1 62.4 18.9

MPB, VA-PLMs and our MASE achieve substantial performance
gains consistently across all backbone networks. This indicates
that introducing general object knowledge (e.g., color and shape)
through additional modalities can markedly improve PLMs.

(2) MASE demonstrates superior performance compared to MPB
and all VA-PLM baselines when the same number of additional
modalities are incorporated. We attribute this to (i) the efficient in-
jection of semantics and the balance of modal information through
our MASE framework; (ii) the strategy of incorporating multimodal
information extracted through multimodal proxy based methods to
avoid the inclusion of noise and modality gaps.

(3) Furthermore, MASE surpasses all baselines in terms of PLM
performance gains across all backbone networks, which demon-
strates the effectiveness and generality of our MASE.
Evaluation on Text Generation Tasks.We conduct experiments
on the CommonGen dataset as results shown in Table 2. We use
T5-3B as the backbone network and replace the optimization objec-
tive of M-step with the text generation objective. We can observe
that MASE performs better in all metrics than the base model and
retrieved-based methods. This suggests that our method can aggre-
gate multimodal information into PLMs for better text generation.

Evaluation on Question Answering Tasks.We present our ex-
perimental results on CSQA and SQuAD v2 datasets in Table 3. For
comparison with the retrieval-based methods, we adopt Bing Image
Search3 for image retrieval and utilize the CLIP image encoder to
extract visual features. We also evaluate different approaches in
low-resource settings. Analysis of Table 3 yields several insights:

(1) MASE significantly improves performance at low-resource
settings (i.e., with only 5% of data available). This demonstrates
that MASE can integrate balanced additional information into PLM,
effectively countering the adverse effects of data scarcity.

(2)We can observe that the performance gain obtained by retrieval-
based methods is lower than MASE. Employing our multimodal
enhancement proves to be more efficient and low-cost compared
to retrieval-based strategies.

(3) In the realm of QA,MASE can achieve significant performance
gains across a variety of datasets and multiple foundational models,
including BERT, RoBERTa, and XLNet. This further validates that
MASE offers a twofold advantage: it can introduce additional modal
information in a balanced and efficient manner and it is compatible
with different architectures and various scenarios.
Evaluation on Visual Reasoning Tasks. We utilize color and
shape reasoning datasets, i.e., theMemoryColor [27], ColorTerm [4],
and ObjectShape [50] datasets, for evaluating visual knowledge
transfer of our MASE, as results shown in Table 4. Based on these
results, we observe that MASE positively contributes to the un-
derstanding of object colors and shapes for PLMs, demonstrating
the effectiveness of our approach in enhancing the multimodal
comprehension abilities of PLMs.
Evaluation on Visual Question Answering Tasks. To verify
the effectiveness of our MASE on cross-modal QA, we conduct

3https://learn.microsoft.com/en-us/azure/cognitive-services/bing-image-
search/overview

https://learn.microsoft.com/en-us/azure/cognitive-services/bing-image-search/overview
https://learn.microsoft.com/en-us/azure/cognitive-services/bing-image-search/overview


697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Towards Multimodal-augmented Pre-trained Language Models via Self-balanced Expectation-Maximization Iteration ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Comparison of various methods on CSQA and SQuAD v2.0 datasets, with the best results highlighted in bold. We
randomly select 5% of the samples from datasets to evaluate different methods. “+Image” denotes we introduce retrieved images
through Bing web search API and utilize CLIP as image feature extractors.

Base Model Method Modality

CSQA SQuAD v2
5% 100% 5% 100%

Acc. F1-score Acc. F1-score Acc. F1-score Acc. F1-score

BERT-base [9]

+None T 65.6 50.3 81.6 68.6 54.8 57.9 72.1 75.2
+Image (iACE) T+I 66.7 51.2 82.3 69.9 56.5 59.1 73.4 76.0

+MPB T+I+A+V 67.6 51.8 82.3 69.6 57.4 59.6 74.8 77.5
+MASE T+I 68.5 53.6 83.7 71.5 58.8 63.2 75.6 79.1
+MASE T+I+A+V 70.9 55.2 86.8 73.3 61.7 65.3 78.4 82.3

RoBERTa-base [23]

+None T 70.9 56.6 83.3 72.6 62.6 68.5 77.6 81.2
+Image (iACE) T+I 71.3 57.0 84.0 73.6 63.3 69.1 78.0 81.7

+MPB T+I+A+V 72.1 57.5 84.3 74.0 63.1 68.7 79.7 82.9
+MASE T+I 73.4 58.6 86.2 76.1 65.3 71.5 80.6 83.9
+MASE T+I+A+V 76.2 59.8 87.7 77.8 68.6 73.3 82.8 85.7

XLNet-large [49]

+None T 75.2 61.0 86.4 75.6 68.8 72.0 79.4 82.6
+Image (iACE) T+I 76.2 61.9 87.1 76.3 69.2 73.7 79.8 82.9

+MPB T+I+A+V 76.5 61.9 88.0 76.8 70.0 74.1 80.2 83.3
+MASE T+I 77.7 63.0 88.8 77.4 72.1 76.1 81.5 84.4
+MASE T+I+A+V 79.4 64.6 89.2 78.7 73.6 77.3 83.0 86.4

Table 4: Comparison of various methods on MemoryColor,
ColorTerm, and ObjectShape datasets, with the best results
highlighted in bold.

Method MemoryColor ColorTerm ObjectShape

CLIP 27.3 24.9 19.8
BERT-base 25.1 26.7 31.5
RoBERTa-base 26.9 25.4 32.3
BERT-base + MASE 37.1 35.8 35.7

Table 5: Comparison of various methods on VQA v2.0 vali-
dation set. ‘+MASE’ denotes the addition of our MASE to the
PLMs (i.e. BERT) to introduce multimodal semantics.

Model Method Overall Yes/No Number Other

Up-Down [1] +None 59.6 80.3 42.8 55.8
XNM Net [33] +None 64.7 - - -
ReGAT [20] +None 67.2 - - -
ViLBERT [24] +None 67.9 82.6 54.3 67.2
SIMPLE [11] +None 67.9 82.7 54.4 67.2
CONCAT [11] +None 68.1 83.0 54.6 68.0

ConceptBert [11] +None 70.0 84.0 55.3 70.6

ViLBERT +MASE 68.5 84.0 54.9 70.4
ConceptBert +MASE 72.3 84.9 56.5 73.1

experiments on the VQA 2.0 benchmark and compare with base-
lines, as shown in Figure 5. We can observe significant VQA per-
formance gains brought about by our MASE, e.g., +1.6% and +2.3%
overall accuracy using ViLBERT and ConceptBert as base methods.
This validates that our MASE can inject multimodal semantics into
PLMs and improve their multimodal understanding ability, which

significantly improves the performance in the cross-modal visual
question-answering task.

4.3 Ablation Study
The Effect of the Cross-modal Contrastive Loss in M-step.We
conduct experiments to study the cross-modal contrastive loss of
MASE in M-step as illustrated in Table 6. It can be seen that the
performance of MASE significantly decreases without the cross-
modal contrastive loss to improve the information aggregation.
This verifies that (1) the optimization algorithm of MASE in M-step
is capable of injecting additional modality information sufficiently
and effectively. (2) the interaction of different modalities plays a
significant role in enhancing the expressive capabilities of PLMs.
The Effect of the Information-driven Self-balancing in E-
step.We employ BERT-base and RoBERTa-base as the backbones
and conduct experiments to study the impact of our information-
driven self-balancing strategy in E-step. Observations indicate that
the absence of our information-driven self-balancing strategy signif-
icantly diminishes performance. This suggests that our information-
driven self-balancing strategy can dynamically estimate the con-
tribution of different modalities and is effective and balanced in
transferring multimodal knowledge to PLMs.
Combined with Prompt Learning. We combined MASE with
prompt learning [36] to evaluate the effectiveness of MASE under
the parameter-efficient fine-tuning approach. As shown in Table 6,
we can observe significant performance gains fromMASE compared
to the MPB baseline using the prompt learning strategy. This shows
that MASE can be effectively compatible with existing efficient
fine-tuning methods to improve the performance of PLMs. This
experiment further demonstrates the great potential of MASE in
practical scenarios.
Dynamic Analysis of Latent Variables To study the effect of our
EM-based iteration, we visualize the changes in the latent variable
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Table 6: Ablation experiments on the GLUE benchmark. “+Prompt Learning” denotes we use prompt learning to achieve
efficient parameter fine-tuning for PLMs. “+None” denotes utilizing the text encoder of MC-PTMs for prediction.

Base Model Method SST-2 QNLI QQP MNLI MRPC STS-B Average

CLIP +None 72.4 72.6 70.2 69.1 73.9 75.1 72.22

BERT-base [9]

MPB + Prompt Learning 86.4 87.7 86.0 76.9 64.9 84.4 81.05
MASE + Prompt Learning 89.2 89.4 88.6 79.1 68.2 86.0 83.42

w/o Contrastive Loss in M-step 92.9 90.7 90.7 83.4 86.6 87.5 88.63
w/o Self-balancing in E-step 92.6 89.0 90.3 82.7 85.8 86.8 87.87

w/o Entity-level Injection in E-step 93.0 90.2 90.3 83.1 86.2 87.3 88.35
Full MASE 93.9 91.4 91.6 84.5 87.5 88.4 89.55

RoBERTa-base [23]

MPB + Prompt Learning 85.5 88.8 85.7 77.5 67.2 84.9 81.60
MASE + Prompt Learning 88.7 90.3 87.6 80.7 70.3 86.2 83.97

w/o Contrastive Loss in M-step 92.9 91.4 88.8 84.0 89.0 87.9 89.00
w/o Self-balancing in E-step 92.6 91.6 88.3 83.5 88.5 88.1 88.77

w/o Entity-level Injection in E-step 93.0 91.3 88.0 83.8 88.7 88.4 88.87
Full MASE 93.7 92.6 89.8 85.1 90.3 89.5 90.12

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

MASE on CSQA

0 2 4 6 8

MASE on SST-2

The number of iterations of our MASE

Th
e 

va
lu

e 
of

 la
te

nt
 v

ar
ia

bl
es

Video Audio Text Image

Figure 4:We visually demonstrate the changes inmodal infor-
mation allocation weights during the optimization process
of our MASE on the CSQA (left) and SST-2 (right) dataset.

during each E-step of the training process on CSQA and SQuAD v2
datasets. We use RoBERT-base as the base model. Specifically, we
report the latent variables averaged over four different modalities
as shown in Figure 4, and observe several important phenomena:

(1) The contribution of each modality to the task varies. We can
observe that the weights of different modalities are different on
CSQA and SST-2 datasets. This indicates that optimizing the bal-
ance of modal information is crucial for improving the multimodal
understanding ability of PLMs.

(2) The weight of information allocation will undergo dynamic
changes during the iteration stage. In the early stage of EM iteration,
there is a significant change in the allocation of weights, which is
due to insufficient optimization of model parameters in the early
stage. After the model parameters are fully optimized, the rate of
change of the latent variables becomes gentle, which proves that
the modal allocation has reached equilibrium.
Feature Visualization We perform T-SNE visualization on the
classification and specific-modal features of different methods at the
representation level, and observe that: (1) Our MASE can achieve
the improvement of intra-class consistency and inter-class discrim-
ination of representations by introducing multimodal knowledge,

Class 0 in MNLI Class 1 in MNLI Class 2 in MNLI Class 0 in QNLI Class 1 in QNLI

(a) Visualization of MPB (left) and MASE (right) on MNLI and QNLI.
Text Modality Image Modality

(b) Visualization of real images (left) and our proxies (right) on CSQA.

Figure 5: T-SNE visualization [40] of feature discriminative
(a) and modality gaps (b) with RoBERTa as the base model.

as shown in Figure 5a. (2) Our method can effectively alleviate
modality gaps, such as images and texts, as shown in Figure 5b.

5 CONCLUSION
In this paper, we present a novel principled self-balancing proba-
bilistic framework, MASE, designed for injecting multimodal se-
mantics into PLMs. MASE assigns weights to modal information
as latent variables and adopts an EM-based iterative algorithm to
iteratively optimize the two objectives of multimodal information
injection and balance. Furthermore, we propose a novel MI-driven
allocation estimation method and achieve entity-level multimodal
interactions via MSSG. The experimental results show that MASE
can effectively improve the performance of PLMs on multiple tasks,
and is compatible with efficient fine-tuning strategies.
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