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Abstract
In real-world environments, ranging from urban disastrous scenes to underground mining tunnels, autonomous mobile robots 
are being deployed in harsh and cluttered environments, having to deal with perception and communication issues that limit 
their facilitation for data sharing and coordination with other robots. In these scenarios, mobile robot inference can be used 
to increase spatial awareness and aid decision-making in order to complete tasks such as navigation, exploration, and map-
ping. This is advantageous as inference enables robots to plan with predicted information that is otherwise unobservable, 
thus, reducing the replanning efforts of robots by anticipating future states of both the environment and teammates during 
execution. While detailed reviews have explored the use of inference during human–robot interactions, to-date none have 
explored mobile robot inference in unknown environments and with cooperative teams. In this survey paper, we present the 
first extensive investigation of mobile robot inference problems in unknown environments with limited sensor and commu-
nication range and propose a new taxonomy to classify the different environment and task inference methods for single- and 
multi-robot systems. Furthermore, we identify the open research challenges within this emerging field and discuss future 
research directions to address them.
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1 Introduction

Mobile robots are needed to explore and navigate various 
environments for applications such as warehouse and retail 
automation [1, 2], planetary exploration [3], espionage [4], 
mining and excavation [5], patrolling [6], material handling 
and transportation [7], and search and rescue [8]. However, 
these real-world scenarios can often be unknown prior to 
robot deployment as well as partially observable to the robots 
during execution due to limited perception and communica-
tion between multiple robots. For example, when navigat-
ing an initially unknown environment, robot path planners 
mainly use iteratively obtained sensor readings to generate 

feasible collision-free paths. However, these approaches only 
consider the spatial layout of what is directly observed by the 
robot [9], which can result in slower navigation speeds and 
less efficient paths due to the lack of occupancy anticipation 
for the spatial layout in unobserved parts of the environ-
ment (e.g., upcoming corners and turns). Furthermore, when 
multiple robots are cooperatively exploring an environment 
together, they require explicit sharing of information such 
as goal locations and navigation costs to jointly agree on an 
overall allocation plan [10]. Thus, during communication 
dropout as a result of connectivity or communication range 
issues, robot teams can become uncoordinated and execute 
redundant tasks that can degrade overall team performance 
[11]. In such scenarios where robot perception and com-
munication are limited, mobile robot inference can be used 
to enhance robot reasoning and awareness by predicting the 
unknown layout of the environment and the intentions of 
teammates to successfully achieve task completion [12].
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Existing survey papers on the topic of inference [13–21] 
have mainly focused on: 1) computational agents in 
human–machine interaction (HMI) applications [13–16] 
such as smart homes [22, 23], surveillance [24], decision 
support systems [25], and dialogue interpretation [26]; or 
2) physical human–robot interactions (HRI) in social set-
tings [17–21] such as domestic assistance [27, 28], medical 
rehabilitation [29, 30], and social compliant navigation [31, 
32]. In the first set of applications, a computational agent 
observes a human and makes predictions about the activity, 
plan, or goal of the human [14]. In particular, activity pre-
diction involves predicting human actions [22], while plan 
prediction is focused on inferring the actions that a human 
intends to execute next (i.e., the plan) to achieve their goals 
[24, 25]. Lastly, goal prediction infers the overall objective 
of a human to understand his/her intention in achieving a 
specific goal [23, 26]. However, these methods typically 
assume a static observer that is not acting on the observed 
environment and situations where the observed human is not 
aware that he/she is being observed [14].

With respect to survey papers on robots in HRI appli-
cations, inference has been used to predict human inten-
tions (i.e., object to pick up, walking direction) in order 
for robots to effectively collaborate or coexist with their 
human counterparts [33], utilizing inputs such as human 
action habits [34], gaze direction [35], haptics [36, 37] 
and natural language processing [38]. In particular, 
human–robot collaboration surveys have explored human 
intention prediction for robot manipulators [17–19] 
engaged in object hand-over [39], manipulation [40], and/
or carrying [41] tasks. Whereas human–robot coexist-
ence surveys have investigated socially compliant mobile 
robot navigation in human-centered environments based 
on constraints imposed by human comfort levels (i.e., 
interpersonal distances) and social norms (i.e., right of 
way) [20, 21]. As a result, existing HRI surveys have been 
limited to robots inferring only short-term human inten-
tions such as body part motion and walking direction with 
the aim of: 1) providing robot manipulator assistance on 
a joint task [17–19], or 2) safely navigating in crowds 
of people in known environments [20, 21], respectively. 
However, mobile robots, whether a single robot or a robot 
in a robot team, that need to operate in unknown and 
partially observable environments with communication-
limitations address a different problem, where they infer 
the spatial configurations of unobserved regions (environ-
ment inference) in order to plan beyond the sensor horizon 
to improve spatial awareness of unknown environments 
[42]. Furthermore, mobile robot teams can infer long-term 
teammate intentions that describe high-level tasks such as 
exploration goals (task inference) in order to coordinate 
their efforts and increase robot team awareness in com-
munication-limited environments. Thus, the objective of 

teammate intention inference in a cooperative multi-robot 
scenario is to predict long-term mobile robot goals (con-
trary to short-term human actions in existing HRI surveys) 
in order to prevent redundant task allocation among team 
members.

Currently, there has not yet been an encompassing sur-
vey paper that investigates the use of inference for mobile 
robotics, where robots use predicted information about the 
unknown environment and team member intentions for tasks 
such as navigation, search, and exploration in unknown 
structured and unstructured environments using single and/
or multi-robot teams. Both environment and task inference 
are important challenges to address in the mobile robotics 
community for robots working in unconstrained and unstruc-
tured environments, where robot perception can be occluded 
and uncertain (due to harsh illumination challenges and nat-
ural weather elements), and/or communication is unreliable 
and limited [43]. Common mobile robot environment and 
task inference methods include: 1) heuristics that exploit 
characteristics of known environments (i.e., rectilinear 
walls) and tasks (i.e., location), 2) statistical methods that 
utilize previously acquired maps or Bayesian estimation to 
predict occupancy distribution over the unexplored environ-
ment and possible tasks, and 3) learning methods that extract 
non-linear combinations of environmental and task features 
during offline training to complete partially occluded maps, 
and allocate tasks amongst the team, during mobile robot 
environment and task inference. Motivated by this gap in 
the literature, we present the first comprehensive survey 
of environment and task inference from the perspective of 
mobile robots to enhance robot task completion. Our novel 
contributions include: 1) the development of the first clas-
sification taxonomy for mobile robot inference to address the 
deployment of autonomous robots in unknown and partially 
observable environments with communication limitations; 
and 2) the identification and discussion of open challenges in 
mobile robot inference to inform future research directions 
in this emerging area. The objective of this survey paper is to 
provide a new perspective on the use of inference strategies 
for mobile robots. To the best of our knowledge, we are the 
first to present an extensive investigation of inference meth-
ods for single robot and multi-robot teams and to introduce a 
novel taxonomy to classify existing inference methods using 
a systematic approach that allows for distinct classifications 
and comparisons to be made within this emerging field.

The manuscript is organized as follows: Sect. 2 defines 
the mobile robot inference problem and presents our pro-
posed classification taxonomy. Section 3 presents and dis-
cusses the inference methodologies for single robot envi-
ronment inference, focusing on both map and topology 
prediction. Section 4 presents and discusses the methods 
used for multi-robot task inference. Section 5 provides a 
detailed discussion on the current open challenges and future 
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research directions for inference in the context of mobile 
robotics. Lastly, Sect. 6 provides a summary of the important 
topics discussed in this paper.

2  Mobile Robot Inference

Mobile robot inference can be defined as the prediction of 
unknown information, given partial observations of a robot’s 
environment layout and/or teammates' actions [14]. In par-
ticular, mobile robot applications typically involve tasks that 
are spatially distributed; thus, requiring robots to navigate 
and explore the environment in order to successfully com-
plete these tasks, whether it be in teams or on their own. 
Thus, there are two main types of unknown information, 
which are: 1) the environment configuration and 2) team-
mates’ intentions during robot execution. These problems 
are addressed, by considering the use of environment infer-
ence or task inference when considering the actions of the 
robots. In environment inference, the goal is to predict the 
unknown geometry and topology configuration of the unob-
served environment during robot deployment to enhance 
spatial awareness and reasoning [44, 45]. Task inference 
considers the intentions of robot teammates (with respect to 
the execution of their goals) to achieve effective cooperation 
with limited communication [46, 47]. Both these types of 
inference can be further categorized based on the specific 
approaches used.

Existing robot inference classification taxonomies focus 
on the prediction of low-level, short-term human intentions 
in known environments in human–robot collaboration tasks 
[17–19], and in human–robot coexistence scenarios [20, 21]. 
In particular, for human–robot collaboration, robot inference 
approaches have been categorized based on: 1) the type of 
communication between humans and robots (explicit vs. 
implicit) [17], 2) shared human–robot control and autonomy 
[18], 3) types of sensors used to measure human intent [19], 
and 4) robot planning methods [17, 19]. As human–robot 
coexistence addresses the social compliant navigation 
problem; robot inference approaches have been mainly cat-
egorized based on: 1) coupled or decoupled human intent 

prediction and robot path planning methods [21], 2) robot 
performance metrics (i.e., human comfort levels) [20], and 
3) human intent prediction methods based on human trajec-
tories [20]. Both human–robot collaboration and coexistence 
scenarios focus on known environments without communi-
cation dropout between humans and robots. To the best of 
our knowledge, there currently does not exist a classification 
taxonomy for both mobile robot environment and task infer-
ence for high-level robot intentions during mobile robot/
muti-robot task completion (i.e., exploration) in unknown, 
partially observable environments with communication 
limitations.

Our methodology for this survey consisted of conduct-
ing a two stage search on environment and task inference 
for wheeled mobile robots. For the first stage, a systematic 
search was conducted using a meta-search engine which 
included such databases as Compendex, IEEE Explore, 
and Inspec. The keywords used in our search consisted of 
mobile robots, exploration, navigation, multi-robot systems, 
environment inference, map inference/prediction, topology 
inference/prediction, multi-robot task allocation, intention 
inference/prediction, and global goal recognition. For the 
second stage, the following inclusion criteria were consid-
ered for article selection: 1) inference methods for mobile 
robots with wheel actuation (i.e., differential drive), and 2) 
inference methods to address mobile robotic tasks such as 
exploration, mapping, and navigation. Over 150 scholarly 
articles were identified, for which an in-depth study was 
completed to design an inference classification taxonomy 
on the current state of inference for mobile robot tasks. The 
findings were also combined to identify research challenges 
and future directions for this field.

Figure 1 presents the inference classification taxonomy 
for mobile robots that we have developed to encompass the 
various classes of methods. Namely, environment inference 
can be classified using map and topology-based inference 
approaches, where the former predicts the geometric con-
figuration of unexplored regions and the latter predicts the 
semantic label and spatial relationships in unknown regions 
of a partially explored environment. Within map inference, 
global and local inference strategies can be used to predict 

Fig. 1  Proposed taxonomy for 
mobile robot(s) inference
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the spatial configuration of an environment (Global Map 
Inference) and missing observations within each robot's 
immediate vicinity (Local Map Inference), respectively. 
Global map inference methods can be further categorized 
by map database, representative lines, and data-driven 
approaches, while local map inference techniques are cate-
gorized by semantic-based and geometric-based approaches. 
For task inference, either explicit or implicit strategies can 
be used. For explicit task inference strategies, robot task 
inference and allocation are decoupled where mobile robots 
use probabilistic or role-based approaches to first predict 
teammates’ intended tasks to execute. Then, the predicted 
teammate intentions are subsequently utilized for task allo-
cation. Whereas in implicit task inference strategies, robot 
task inference and allocation are coupled, where teammate 
intentions are predicted and incorporated as a property of 
the resultant task allocation. This is achieved through either 
rule-based or learning-based approaches. The following sec-
tions will discuss the details of each of the classes repre-
sented within our proposed taxonomy.

3  Environment Inference for Mobile Robots

The environment inference problem for mobile robots is 
defined as the prediction of unexplored regions based on 
observations of explored regions in the same environment 
[44, 45]. Namely, environment inference provides both 1) 
geometric and 2) topological information to improve spa-
tial reasoning in mobile robot tasks such as exploration and 
navigation [12, 48, 49].

Geometric information is represented by the spatial 
boundaries and shape of the environment [50]. Thus, the 
inferred geometric information regarding unexplored regions 
can be used to improve: 1) the selection of exploration goals 
to reduce the overall exploration time and 2) the coverage of 
inaccessible regions [44, 51–53]. Mobile robots can utilize 
the predicted geometric information to select exploration 
goals that lead to higher information gain as well as map 
regions that are not physically accessible. Furthermore, it 
can also be used to predict potential loop closures during 
simultaneous localization and mapping (SLAM) to minimize 
uncertainty in robot states. This creates more accurate maps 
compared to traditional non-predictive SLAM approaches 
[54] such as GMapping [55], Hector [56], and Cartographer 
[57]. In mobile robot navigation tasks, geometric informa-
tion helps to anticipate obstacles in unknown regions in the 
environment during path planning [12, 58]. This is advan-
tageous for robot tasks with perception occlusions such 
as search and rescue [43], and planetary exploration [59], 
where such environments are cluttered, obstructive, and 
unknown prior to robot deployment [9].

Topological information is represented by spatial seman-
tic labels such as room types (office, reception area) in a 
building and the relationships between these labels such 
as proximity and travel distances [50]. This information is 
important for mobile robot spatial awareness and reason-
ing in human-centric environments as human-defined con-
cepts such as rooms are essential for: 1) high-level search 
policies (i.e., mugs are in the cupboard in the kitchen), and 
2) human–robot interactions (i.e., the person to provide a 
reminder to is asleep on a bed in the bedroom) [60].

In general, environment inference is a challenging prob-
lem to solve as unknown environments can be: 1) stochastic 
due to variability in their configurations and layouts, such as 
in human structural designs, natural habitats, and disastrous 
scenes; and 2) dynamic due to mobile humans and objects. 
Furthermore, as environment inference is dependent on the 
observed information from the explored regions, noisy sen-
sory readings can further amplify uncertainties regarding 
the unexplored regions; making environment inference an 
even more challenging problem [61, 62]. As a result, exist-
ing environment inference methods have focused on single 
robot systems deployed in structured and repetitive envi-
ronments, where geometric and topological information of 
the unobserved regions are predicted using structural cues 
from the observed regions. These methods can be catego-
rized into either: 1) map inference [9, 12, 44, 45, 49, 51–54, 
58, 63–70], or 2) topology inference [48, 60, 71].

3.1  Map Inference

Map inference is used by mobile robots to predict geometric 
information such as the occupancy and shape of unexplored 
regions within a partially explored map [9, 52]. The prob-
lem is similar to the scene completion problem in computer 
vision applications, where the objective is to construct par-
tially occluded scenes with high-resolution surfaces based 
on dense volumetric and semantically annotated data [72, 
73]. However, scene completion methods cannot be directly 
transferred to the robotic map inference problem, as they do 
not consider: 1) real-time execution, 2) the dynamics of the 
mobile robots as they complete navigation and exploration 
tasks, and 3) require careful selection of object views for 
training [12, 49, 58]. Alternatively, robotic map inference 
methods predict the geometry and occupancy of unknown 
regions in real-time at either a global [44, 45, 51–54, 63–65], 
or local [9, 12, 49, 58, 66–70] level, as shown in Fig. 2. 
At the global level, existing inference methods primarily 
utilized 2D maps for prediction [34, 44, 51–54, 63–65], 
whereas local inference methods have utilized either 2D 
maps [9, 58, 66, 68–70] or 3D RGB-D sensory informa-
tion from robot ego-centric perspectives [12, 49, 67] for 
prediction.
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3.1.1  Global Map Inference Strategies

Global inference methods represent strategies that predict 
the 2D geometric information of all unexplored regions 
within the entire environment [65]. Global inference strat-
egies are mainly used in mobile robot exploration tasks, 
where mobile robots make decisions regarding goal loca-
tions to visit to maximize coverage. Thus, using the inferred 
2D map for the unknown regions of an environment can aid 
in the selection of goal locations based on metrics such as 
inferred information gain [53], and the potential for loop 
closures [54]. As a result, global map inference can improve 
exploration performance by 1) reducing the total exploration 
time required by maximizing coverage, and 2) improving 
map accuracy by minimizing robot state uncertainty dur-
ing localization, using the predicted geometric information 
when compared to traditional non-predictive exploration 
approaches such as frontier and utility-based methods [44, 
51, 52, 63]. Existing global inference approaches for mobile 
robots, Fig. 3, can be categorized as: 1) map database [54, 
63, 64], 2) representative lines [53], and/or 3) data-driven 
[44, 45, 51, 52, 65] techniques.

Map Database Approaches Map Database inference is con-
tingent on the assumption that the target unknown regions 
share strong similarities in terms of geometric features with 
the observed regions of the environment [54]. Therefore, 
they are advantageous in environments with repetitive struc-
tural features such as room/region shapes and passages. In 

map database approaches, each mobile robot is equipped 
with a database of previously acquired 2D maps that are sim-
ilar to the environment of interest, and inference is achieved 
using this database through a two-stage approach [54, 63, 
64]. In the first stage, a target unknown region is compared 
with the stored maps to find a reference map. Specifically, 
1) visual features such as walls and corners [54, 63] or 2) 
2D laser scan features such as range data [64] are utilized to 
query the database for a similar map. To quantify similar-
ity, the metrics considered are: 1) discrete feature vectors 
obtained from the visual bag-of-words approach using Fast 
Appearance Based Mapping (FabMAP2) [54], 2) the number 
of overlapping occupied cells [63] and 3) the map with the 
highest probability of generating the same features as the 
target region [64]. The highest similarity map in the data-
base is selected as the reference map. In the second stage, a 
candidate for the target unknown region is generated based 
on this reference map. This is achieved by merging the refer-
ence map with the target region using either: 1) RANSAC-
based alignment of the underlying Voronoi graphs [54], 2) 
spatial alignment via homogenous transform matrices [63], 
and 3) Gaussian filtering to improve cohesiveness [64] when 
merging the reference map with the target region. Since a 
target unknown region can be anywhere within the entire 
environment, database methods are therefore global infer-
ence techniques.

The aforementioned map inference methods have been 
utilized in robot exploration of structured environments and 
compared against more traditional approaches to highlight 

Fig. 2  Mobile robot(s) environ-
ment inference methods

Fig. 3  Mobile robot(s) global 
map inference methods
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their benefits. For example, in [54], the RANSAC-based map 
inference approach was incorporated with a utility-based 
single-robot exploration method. This was achieved with 
the breadth-first search of the underlying Voronoi graph of 
the environment to find goal locations that lead to potential 
loop closures to reduce robot state uncertainty with respect 
to its world during execution. This approach was compared 
against a traditional nearest frontier approach [74] in simula-
tions of Roman Catacomb environments. The results showed 
that the nearest frontier approach was not able to complete 
exploration due to robot sensor drift during mapping which 
caused the robot to become stuck in a room. On the other 
hand, the reduced robot state uncertainty with respect to the 
explored environment in the database map inference-based 
exploration resulted in less sensor drift, which enabled it to 
finish the exploration of the entire environment and generate 
an accurate map.

In [63], an inference method using homogenous transform 
matrices was combined with a mapping method that uses a 
Rao-Blackewellized particle filter [75], where the inferred 
map was used to update the particle weights for robot locali-
zation in unknown regions prior to the robot entering these 
regions. This approach was compared with a non-predictive 
SLAM approach (using just Rao-Blackewellized particle fil-
ter) for mobile robot exploration of structured, indoor office 
environments. The results showed that map inference was 
able to: 1) generate a more accurate map in terms of visual 
similarity with the ground truth of the environment when 
using the same number of particles for robot state estimation 
during exploration, and 2) reduce the overall exploration 
time by 33% by using the predicted map to finish explora-
tion early.

In [64], a Gaussian filtering-based inference method was 
utilized to estimate the expected information gain at goal 
locations. This information was used to inform goal selec-
tion in an auction-based multi-robot exploration method for 
real-world office environments. The experiments showed 
that the mobile robot team could explore and complete 
mapping using the inference method with the GMappings 
SLAM approach [55]. Additionally, the authors noted that 
by using a laser-feature-based approach, they were able to 
complete the reference map query in real-time, while the 
visual feature-based approaches used in [54, 63] could not 
be performed in real-time due to higher computational costs 
associated with visual feature matching.

Representative Lines Approach The representative lines 
approach can be used for environments with rectilinear 
walls, where the wall lines from a partially explored 2D 
map can be extended to predict the structural layout of 
unexplored regions [76]. As an assumption, this approach 
requires the presence of walls in the environment of interest 
and can be applied for mobile robot exploration in unknown 

indoor structured environments such as offices and homes. 
This approach was first presented in [76], where wall lines 
were forecasted and denoted as representative lines in order 
to divide a partially explored map by a mobile robot into 
multiple regions. Each region was either fully observed, 
partially observed, or unknown. To infer the missing shape 
of a partially explored region, a set of adjacent regions in 
the vicinity of the target unknown region were combined to 
generate the prediction. The prediction was evaluated with 
respect to the rest of the map using an objective function 
that considered 1) consistency in terms of the number of 
walls shared with neighboring rooms, 2) a simplicity metric 
based on the area and convex hull of the room layout, and 3) 
the number of walls to determine the final prediction. In this 
case, map inference can target all unknown regions within 
a partially explored environment, making the approach a 
global map inference technique.

The representative lines map inference approach was 
incorporated to aid with single-robot frontier-based explo-
ration in [53] by accounting for the estimated information 
gain using the predicted map at each frontier location. Simu-
lations were conducted in indoor structured floor plans and 
compared against a traditional frontier-based exploration 
without map inference [77]. The representative lines map-
inference-based approach was approximately 12.8% faster in 
exploration time than the traditional frontier-based approach.

Data‑driven Approaches Data-driven approaches can be 
used to infer the global geometry of a partially explored 
environment by extracting salient features (e.g., edges and 
contours) from structural information (e.g.., walls and cor-
ners) in the 2D map of the explored environment to make 
informed predictions about the unexplored regions [9, 51, 
69]. Compared to the database and representative lines 
approaches, data-driven approaches do not require: 1) pre-
loaded map databases to generate predictions during execu-
tion, or 2) the presence of walls within the environment. 
Instead, data-driven approaches utilize representative map 
data from the environment of interest, to learn to complete 
partially explored maps during offline training, without 
searching through a database during online execution. These 
approaches also target all unknown regions within the envi-
ronment during inference; thereby, making them global 
inference strategies. They are based on either: 1) deep learn-
ing [44, 51, 52, 65] or 2) matrix completion [45] techniques.

The common deep learning approach used for map infer-
ence has been U-Net models [78]. These models include 
an encoder and a decoder network to generate map predic-
tions for unknown regions within the environment based on 
2D map images. The encoder network can utilize either 1) 
ResNet modules [52], or 2) traditional convolutional layers 
[44, 51, 65], to downsample and capture the spatial context 
such as room geometry in the input image. Compared to 
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traditional convolutional layers, the ResNet modules utilize 
skip connections to enhance the map reconstruction per-
formance in succeeding layers and address the challenges 
of exploding/vanishing gradients during the optimization 
process [79]. The decoder network is a mirrored version of 
the encoder network and is used to generate a prediction for 
the unexplored regions of the environment by reconstructing 
the encoded map features from the encoder. To train the pro-
posed U-Net models, the loss function utilized is either: 1) 
cross-entropy and Kullback–Leibler Divergence [44, 52], 2) 
a custom topological loss function with persistent homology 
theory to match the predicted graph with the ground truth 
[51], or 3) Jensen-Shannon divergence between the U-Net 
generator and the training data distributions within a genera-
tive adversarial network (GAN) framework [65].

As an alternative to using deep neural networks for map 
inference, a partially completed 2D map can be represented 
as a matrix where the missing cell values can be recovered 
using low-rank matrix completion (LRMC) methods [45]. 
More specifically, an incomplete matrix that has both 1) a 
rank value smaller than its dimension, and 2) a coherence 
value close to zero, has been proven to be recoverable by 
solving the underlying non-convex optimization problem 
[80, 81]. Using this principle, in [45] a standard iterative-
based Singular Value Decomposition [82] solver was applied 
to recover the missing matrix values within the robot map. 
While LRMC methods require less training data than deep 
learning methods [81], deep learning methods can be applied 
to a wider range of environments as robot maps are not con-
strained to configurations imposed by the rank and coher-
ence value assumptions. Thus, deep neural network methods 
are more flexible, given representative training data from the 
environment of interest.

Both deep learning and LRMC methods have been trained 
with either indoor floor plans of office buildings [44, 52, 65], 
procedurally generated roads [45], or subterranean tunnel 
networks for mobile robot tasks such as: 1) exploration [44, 
52], 2) mapping [65] and 3) coverage planning [45]. For the 
exploration tasks, the inferred map was incorporated with 
existing exploration strategies such as Hector exploration 
[44], and cost-utility [44, 52] to aid in robot goal selection. 
Simulations in indoor, domestic environments showed that 

the deep learning methods from [44, 52], had faster explora-
tion completion time and lower travel distance compared to 
traditional exploration methods [56, 74, 83]. Furthermore, 
the inferred map was used for both the mapping and cover-
age planning tasks, where the map accuracy was improved 
compared to GMapping [55], and increased environment 
coverage was achieved with fewer action steps versus exist-
ing planners using myopic (short horizon) [84], and non-
myopic (long horizon) [85] methods.

3.1.2  Local Map Inference Strategies

Local map inference is used to predict missing sensory infor-
mation surrounding a robot as a result of occlusions that 
cause certain regions within this area to be unobservable 
[12, 71]. Compared to global inference, local inference is 
conducted at a smaller scale where the goal is to expand the 
robot’s current field of view to gain greater spatial awareness 
in the immediate vicinity of the robot [12, 49, 67]. Local map 
inference methods have generally been used for mobile robot 
tasks such as semantic mapping, exploration, and navigation 
in unknown structured indoor [12, 49, 66–69] and open space 
[9, 12, 58, 70], environments. Existing local inference meth-
ods, Fig. 4, primarily utilize data-driven techniques that can 
be further categorized into: 1) semantic-based [49, 66–68] or 
2) geometric-based [9, 12, 58, 69, 70] methods.

Semantic‑based Approaches Semantic-based approaches 
have mainly been used in unknown human-centric environ-
ments as they use human denotations for objects and regions 
within the robot’s environment to achieve local map infer-
ence. Namely, local map inference is achieved in a two-stage 
manner. In the first stage, mobile robot sensory information 
such as RGB images [68], RGB-D data [49, 67] and/or 2D 
laser scan readings [66] are used to predict the semantic 
label of partially observed 1) objects such as furniture [49, 
67] and doors [68], and 2) spaces like offices and corridors 
[66]. This is achieved using learning-based models such 
as YOLOv4 [86], U-Net [78], and Sum Product Networks 
(SPN) [87]. The former two models utilize convolutional 
layers to perform object recognition [68], and semantic  

Fig. 4  Mobile robot local map 
inference methods
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segmentation [49, 67], while the latter utilizes directed 
acyclic graphs that compute probabilistic distributions 
over the available semantic spatial categories based on 
2D laser scan readings [66]. Then, in the second stage, 
map inference is performed using semantic cognition 
from the first stage to infer the missing geometric obser-
vations within the local sensory information [49, 67]. 
This is achieved with 1) a pre-defined dimension estima-
tion heuristic [68], 2) end-to-end reconstruction using the 
trained convolution-based models [49, 67], or 3) most 
probable explanation (MPE) inference over the predicted 
distribution from the SPN [66]. Since semantic-based 
methods only target occluded information within the 
mobile robot's sensory range; they are considered local 
inference strategies. These two-stage local map inference 
methods have been used in simulated domestic and office 
environments for mobile robot exploration [68], mapping  
[49, 66], and navigation [67] tasks.

In [68], YOLOv4 model was used for local map infer-
ence during single robot exploration to estimate the expected 
information gain behind closed doors to enhance robot goal 
selection. The results showed lower exploration time and 
distance compared to a Rapidly-exploring Random Tree-
based exploration method [83], where goal selection did 
not anticipate the map in the unobserved region of the 
environment.

In [49], the U-Net map inference model was combined 
with active neural SLAM [88] for single robot semantic 
mapping. This resulted in a higher number of correctly 
predicted pixels (in terms of semantic labels with respect 
to the ground truth) when compared to a baseline mapping 
approach which used the deep high-resolution representation 
network (HRNetV2) [89] for semantic segmentation without 
map prediction. In [66], the SPN model was evaluated for 
its inference accuracy against a common image completion 
approach using generative adversarial networks (GANs) 
during single robot mapping [90]. The results showed com-
parable accuracy between the two approaches; however, 
SPN utilized 75% less computation than the GANs-based 
approach as it only required a single up/down pass through 
the network instead of hundreds of iterations as in GANs, 
making the SPN-based approach more suitable for real-time 
robot execution.

In [67], the U-Net map inference model was used to gen-
erate an uncertainty map that was subsequently utilized to 
learn a mobile robot navigation policy with Deep Q Net-
works (DQN) [91]. Simulation results in unknown, indoor 
domestic environments showed on average 15 times higher 
success rate in terms of reaching the desired destination 
when compared to navigation approaches without map infer-
ence, such as the Self Adaptive Visual Navigation (SAVN) 
[92] and Goal Oriented Semantic Exploration (GOSE) [93] 
strategies.

Geometric‑based Approaches Geometric-based approaches 
for local map inference have been used for mobile robot 
exploration and navigation applications in structured, indoor 
environments [9, 12, 58, 69, 70]. In geometric-based meth-
ods, missing occupancy information within an incomplete 
map is inferred directly from the structural layout and shape 
of the partially explored map [69]. For mobile robots, 
local geometric-based inference is utilized to incorporate 
the predicted occupancy information during path planning 
and exploration goal selection to anticipate obstacles and 
potential information gain, respectively, in unseen/occluded 
regions of the environment. Thus, the focus is on predict-
ing the spatial geometry in regions where the mobile robot 
will navigate next. This is typically achieved using either: 
1) autoencoder networks [12, 58, 69, 70], or 2) conditional 
neural processes (CNPs) [9]. Similar to the data-driven 
approaches, autoencoder networks, autoencoder networks 
used herein also include encoder and decoder networks that 
utilize convolutional downsampling and upsampling layers 
for input encoding and decoding to generate missing obser-
vations during spatial reconstruction [69]. The input data 
typically includes partially observed 2D maps [9, 58, 69, 
70], and/or RGB-D images from robot egocentric perspec-
tives [12]. On the other hand, CNPs are stochastic processes 
that have been used to approximate the distribution of occu-
pancy prediction functions on unobserved regions that are 
conditioned on the occupancy of the explored regions [9]. 
As a result, CNPs require less training data than autoencoder 
networks, as they can exploit prior knowledge from training 
data during testing, which makes them more applicable for 
mobile robot environments where training data is limited or 
costly to acquire [94].

Both types of deep learning models have been trained 
for local map inference using real-world sensor data of 3D 
indoor structured environments from publicly available 
datasets such as Gibson [95], Matterport3D [96], Google 
Cartographer [57], and KTH [48], and applied for mobile 
robot navigation [9, 12, 58, 70], and exploration tasks [12, 
69]. In mobile robot navigation tasks, the autoencoder-based 
methods were incorporated within learning-based planners 
to anticipate the geometry of upcoming regions during nav-
igation using deep reinforcement learning [12], or classi-
cal planners that optimized robot trajectory with respect to 
travel time and localization uncertainty [58, 70]. Whereas 
CNP has been incorporated with a classical planner to con-
sider dynamic constraints when planning minimal time tra-
jectories [9]. Experimental results showed that navigation 
with geometric map inference yielded a higher success rate 
and lower travel time and distance when compared against 
naïve and conservative path planning benchmarks that antic-
ipated unknown regions by assuming they were occupied. 
In mobile robot exploration tasks, the inferred map from the 
autoencoder-based methods has been incorporated with an 
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information-theoretic exploration strategy [69] or within a 
deep reinforcement learning framework such as Proximal 
Policy Optimization (PPO) [97] to learn an exploration pol-
icy that maps RGB-D images to exploration actions [12]. 
Simulation results showed higher map accuracy [12], and 
less travel distance [69], compared to traditional explora-
tion strategies that do not consider the inferred map from 
unexplored regions of the environment.

3.2  Topology Inference

In topology inference, the environment is represented as an 
undirected graph where nodes define the semantic categories 
of spatial concepts with human denotations such as the types 
of rooms, area, and corridor, while edges define the distance 
between rooms [50]. Therefore, the topology inference prob-
lem can be defined as the prediction of both the semantic 
labels of nodes in the unexplored portion of an environment 
and the edges that connect them to the explored environ-
ment [48]. As a result, topology inference differs from map 
inference, as the objective of the former is to predict the 
spatial relationships between regions in the environment, 
rather than to predict the overall geometry of the unknown 
spatial configuration. Therefore, topology inference meth-
ods are primarily designed for human-centric environments 
and are used for mobile robot exploration tasks [60, 71], 
where spatial semantic labels are critical for mobile robot 
reasoning. To date, the existing topology inference methods 
for mobile robotics have primarily utilized a database-based 
approach for prediction [48, 60, 71], Fig. 5.

Similar to the database approaches used in global map 
inference strategies database approaches for topology pre-
diction can be applied in environments where a priori knowl-
edge of similar environments (but not necessarily the current 
environment) is known. Robots make predictions about edit 
operations (i.e., node and edge additions) for unexplored 
regions of the environment using a partially explored graph 
during deployment, which is based on graph-based topo-
logical structures stored in a database [48, 71]. Common 
databases used have typically included 2D indoor floor plans 

of office environments from the MIT [50], KTH [48], and 
COLD-Stockholm [98] datasets. Prediction of the semantic 
labels of nodes and the edges that define how to incorporate 
new nodes in partially complete graphs has been achieved 
using three main methods: 1) frequency-based [48], 2) prob-
abilistic-based [48, 60] and 3) sampling-based [71].

The frequency-based method [48] uses a naïve strategy, 
where topological map candidates are created by first mak-
ing eligible edit operations (i.e., the addition of nodes and 
edges), to the input graph. The frequency of the resultant 
edited graph within the database is then used to select the 
final topological map prediction [48].

In the probabilistic-based methods [48, 60], the prob-
ability of an edit operation is determined based on statistics 
from the database in two ways. The first is to decompose 
the input graph into smaller subgraphs, and then find the 
discrete probability distribution of each edit operation using 
a subset of the database with subgraphs from the input graph 
[48]. Then, the edit operation with the highest probability 
is selected to generate the final topological map prediction 
[48]. The second approach uses a probabilistic chain graph 
to represent the topological structure of the environment and 
then converts the structure to a factor graph where the pre-
diction is made using Loopy Belief Propagation [60, 99]. 
Both approaches incorporate the probability of edit opera-
tions using existing topological maps within the database.

Lastly, in the sampling-based method [71], the input 
graph is utilized to first find similar graphs within the data-
base. A similarity index is calculated by the dot product 
between these graphs [100], using convolutional graph ker-
nels such as Weisfeiler-Lehman Subtree Kernel [101], and 
Graph Hopper Kernel [102]. Then, prediction of the node 
and edge additions to the input graph is achieved by sam-
pling subgraphs from clusters of similar graphs within the 
database using Monte Carlo Markov Chain sampling [103] 
and then connecting the sampled subgraphs to the input 
graph to generate the final prediction [71].

The proposed topology inference methods in [48, 71] have 
been evaluated based on their prediction accuracy for mobile 
robot exploration in structured indoor environments using 
the MIT [50] and KTH [48] datasets. The results showed that 

Fig. 5  Mobile robot topology 
inference method
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the probabilistic-based approach obtained higher accuracy 
in terms of correctly predicted semantic labels and edges, 
compared to the frequency-based approach [48]. In [71], 
the predicted graphs from the probabilistic approach were 
compared with the ground truth and found to have negligible 
differences in terms of the average centrality and standard 
deviation. In [60], the sampling-based inference approach 
was incorporated within a mobile robot semantic mapping 
system that utilized both a support vector machine (SVM) 
[104] for room shape, size, appearance categorization, and 
Scale-Invariant Feature Transform (SIFT) [105] for object 
recognition in structured indoor environments. The results 
from trials in real-world environments, where a mobile robot 
was manually driven to complete mapping, showed a suc-
cessful prediction of room categories in unexplored regions 
and their relation to the explored regions.

3.3  Discussions on Environment Inference Methods

Environment inference methods provide mobile robots with 
geometric and topologic information in unknown regions of 
partially explored environments, using either map and topol-
ogy inference approaches, respectively. This is beneficial 
for mobile robot reasoning in unknown environments, as it 
extends a mobile robot’s awareness of the structural layout 
and semantic knowledge beyond the robot’s available sen-
sory range [12]. When compared to traditional methods for 
navigation (i.e., optimal travel time, distance planners [58, 
70]), and exploration (i.e., nearest-frontier [74], utility-based 
[106, 107]) where mobile robot decisions only consider the 
observable part of the robot’s surroundings, environment 
inference enables robots to anticipate the spatial configura-
tion in the unobserved (due to sensor range and occlusion) 
regions beyond the robot’s surroundings during planning 
[48, 51]. Table 1 provides a summary overview of the afore-
mentioned environment inference methods, in terms of their 
approach, application and environment types.

Global map inference strategies have the advantage of 
targeting multiple regions within a mobile robot’s environ-
ment, thereby making them appropriate for mobile robot 
exploration tasks where the potential information gain of 
exploration goal candidates can be estimated using the 
inferred map. Database approaches used in Global map 
inference are only computationally tractable for simple and 
repetitive environments as the search space for reference 
maps is proportional to the number of maps and map fea-
tures within the database; whereas representative lines are 
limited to mobile robot applications in environments with 
rectilinear walls. However, data-driven approaches can be 
applied to any type of unknown environment; though data 
collection and labeling for training can be costly and time-
consuming due to manually having to label the data. On the 
other hand, local map inference strategies focus on inferring 

missing observations due to sensor occlusions within the 
mobile robot’s immediate vicinity. Thus, these strategies 
are mainly used for mobile robot mapping and navigation 
tasks in order to predict occluded objects in the environment 
and anticipate approaching obstacles and turns to achieve 
safe and smooth robot trajectories. Semantic-based local 
map inference approaches utilize a multi-stage prediction 
pipeline; thus, creating opportunities for errors to cascade 
(i.e., map prediction accuracy is contingent on the seman-
tic classification accuracy) [67]. Similar to the data-driven 
approaches in global map inference strategies, geometric-
based approaches mainly utilize deep learning methods; 
which can use upwards of 35,000 floor plans during train-
ing [58, 70]. Therefore, geometric-based methods have been 
limited to unknown indoor structured environments where 
public datasets are available [50, 48].

In topology inference methods, predictions are based on 
graphical representations of the environment where nodes 
and edges symbolize spatial semantic categories. Existing 
methods typically utilize a database-based approach where 
the unexplored nodes and edges are predicted using sta-
tistical methods from similar floor plans that are acquired 
a priori. Therefore, topology inference methods are well-
suited for robot tasks such as semantic mapping [60] and 
exploration [71] of human-centric environments. As such, 
existing topology inference methods are limited in their 
generalizability, since predictions are generated based on 
the topological graphs available within the robot’s database. 
Thus, topology inference methods cannot be easily applied 
to unstructured outdoor terrains, as spatial similarities of 
regions can be non-existent from region to region.

4  Task Inference for Multi‑robot System

Multi-robot task inference is defined as the prediction of 
a robot’s expected task by another robot based on com-
plete or partial observations of its behavior during task 
allocation [46]. Subsequently, multi-robot task inference is 
closely related to multi-robot task allocation (MRTA), which 
describes the assignment of tasks to robots working in a team 
to cooperatively complete a global objective [108]. Mobile 
robot tasks are typically spatially distributed and require the 
navigation and exploration of the environment. Tradition-
ally, MRTA describes an explicit cooperation approach as 
task and teammate information is deliberately exchanged for 
task allocation [10]. This is typically achieved with market-
based [109–111], optimization-based [112–116], and sto-
chastic model-based [8, 117–119] approaches. However, 
explicit cooperation approaches are dependent on the direct 
information exchange between robots, and/or with a central 
controller to create an overall task allocation plan [120]. As 
a result, mobile robot teams that utilize explicit cooperation 
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approaches can become uncoordinated if they cannot agree 
on the team allocation plan when information exchange is 
unreliable/unavailable due to poor communication infra-
structure (i.e., network routers), and/or hardware limitations 
(i.e., transmission range) [121].

Mobile robot teams that utilize task inference can 
predict the expected tasks of their teammates (i.e., their 

intentions) when explicit information exchange is not 
possible [122]. Therefore, MRTA with task inference 
describes an implicit cooperation approach, where coordi-
nation is maintained by robots that make independent and 
complementary decisions regarding which task to execute 
[123]. Task inference is important in mobile robot appli-
cations where communication can be limited, unreliable, 

Table 1  Summary of Environment Inference Methods

Inference Type Approach Type Approach Application Type Environment Type Ref

Global Map Inference
  Map Database Heuristics Spatial alignment with Gaussian 

filtering
Multi-robot exploration Structured indoor environments [64]

Spatial alignment with 
RANSAC-based approach

Mobile robot exploration Structured outdoor environ-
ments

[54]

Spatial alignment with homoge-
neous transform matrices

Structured indoor environments [63]

  Representative lines Forecasting wall lines [53]
  Data-driven Deep learning Variational Autoencoder [44]

Convolutional autoencoder with 
skip connections

[52]

Convolutional layers with U-Net 
architecture

Grid world environments [51]

Generative adversarial networks Structured indoor environments [65]
Statistical Low-rank matrix completion Grid world environments [45]

Local Map Inference
  Semantic-based Deep learning Multi-modality imagination 

unit with Resnet18 and U-Net 
architecture

Mobile robot mapping Structured indoor environments [49]

A deep generative spatial model 
with sum-product networks

[66]

A framework of segmentation, 
completion, and confidence 
neural networks

Mobile robot navigation [67]

Heuristics-based dimension 
estimation using YOLOv4 for 
object recognition

Mobile robot exploration [68]

  Geometric-based A multi-modal model with 
U-Net architecture

[12]

U-Net architecture with skip 
connections

[69]

Obstacle prediction network 
with U-Net architecture and 
Atrous Spatial Pyramid Pool-
ing

Mobile robot navigation Structured indoor environments [58]

Conditional Neural Process [9]
Conditional Generative Model [70]

Topology Inference
  Database-based Statistical Frequency-based and probabilis-

tic based approaches
Mobile robot exploration Structured indoor environments [48]

Probabilistic chain graph model 
with Loopy Belief Propagation

Mobile robot mapping [60]

Classical learning Generative model based on 
constructive machine learning 
approach

Mobile robot exploration [71]
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and/or costly [122]. Additionally, task inference can also 
improve the scalability of multi-robot systems by reducing 
the communication and computation overhead associated 
with increasing robot team size as less information needs 
to be exchanged and processed if they can be predicted 
[124]. However, task inference is a difficult problem to 
solve in an unconstrained environment where the number 
of tasks and the steps to complete the tasks are extensive 
and can be unknown prior to deployment [14]. Existing 
methods for multi-robot task inference, Fig. 6, can be cat-
egorized into two main strategies, namely: 1) explicit [122, 
124–126], and 2) implicit [10, 123, 127–133].

In explicit task inference strategies, task inference and 
task allocation are completed separately in a two-stage 
manner, where robot teammate intentions are first pre-
dicted, and then subsequently incorporated for task allo-
cation [134]. In contrast, in implicit task inference strat-
egies, task inference and allocation are completed in an 
end-to-end manner by mapping robot observations directly 
to task allocation in the form of robot actions [130]. Thus, 
in the latter teammate intentions are predicted and incor-
porated as a property of the resultant task allocation plan. 
Both strategies utilize the inferred teammate intentions for 
MRTA, with the difference being 1) explicit task inference 
strategies are decoupled from MRTA while 2) implicit task 
inference strategies are coupled with MRTA. Multi-robot 
task inference has been used for mobile robot tasks such as 
exploration of unknown indoor environments [125–128], 
landmark-based navigation [130–133], active monitoring 

of an environment [122, 124] object search and retrieval 
[123], and robotic soccer [10, 129].

4.1  Explicit Task Inference Strategies

In explicit task inference strategies, the intentions of team-
mates are explicitly predicted by directly determining the 
most likely task a robot teammate intends to execute. This 
is achieved by reasoning about the available tasks based on 
a priori knowledge of domain information such as the envi-
ronment size [124, 125], and teammate policies [122, 126]. 
MRTA is achieved subsequently using the inferred teammate 
tasks for multi-robot coordination. Explicit task inference 
strategies, Fig. 7, can be categorized into: 1) probabilistic 
[124, 125] and 2) role-based [122, 126] approaches, where 
robots using the former strategy compute a probability dis-
tribution over the available tasks, whereas robots in the latter 
utilize their teammate’s policy to directly determine their 
teammate’s intentions.

4.1.1  Probabilistic Approaches

Probabilistic approaches target robot applications with spa-
tially distributed tasks, where task completion is achieved 
by a mobile robot navigating to a specific location in the 
environment. Hence, probabilistic approaches typically 
utilize statistical inference methods to compute a prob-
ability distribution over all available locations within the 
environment in order to predict robot teammate intentions. 

Fig. 6  Multi-robot task infer-
ence methods

Fig. 7  Multi-robot explicit task 
inference methods
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These probability distributions are determined for team-
mate goal locations conditioned on either 1) teammates’ 
current states (locations) [124], or 2) the time elapsed 
since the last observation of teammates’ locations [125].

In [124], a presence mass distribution is used to model 
individual robot locations at a future time step in order to 
indicate the tasks that they intend to execute, based on the 
current global state of all teammates. The presence mass 
distributions for each teammate robot are subsequently 
combined to create a single statistic measure that embodies 
the aggregate effect of all teammate intentions. In [125], 
the likelihood of a teammate robot navigating to a par-
ticular goal location is estimated using a wavefront propa-
gation algorithm that iterates over every state within the 
environment to update future state values based on the last 
known teammates’ positions and the time elapsed since 
observing these positions. In both of these approaches, 
the predicted teammates’ tasks are subsequently used with 
planning-based MRTA methods to discount the value of 
future states for each robot. The planning-based MRTA 
methods include sequential decision frameworks such as 
1) Multiagent Markov Decision Process (MMDP) [124], 
and 2) Decentralized Markov Decision Process (Dec-
MDP) [125], where the policy is solved online using stand-
ard MDP techniques (i.e., dynamic programming). The 
obtained robot policy is then used by each robot to select 
complementary tasks to execute to cooperatively complete 
the global task. Thus, probabilistic approaches are explicit 
task inference strategies, as task inference is completed 
prior to task allocation based on direct probabilistic esti-
mation of teammates’ intentions over the available tasks.

The existing explicit task inference approaches have 
been used in multi-robot monitoring [124], and explo-
ration [125] of 2D environments, respectively. For the 
multi-robot monitoring task, “dirt” is randomly placed 
throughout the simulated environment, and the robots 
are required to navigate to the dirt locations in order 
to clean them [124]. The probabilistic task inference 
method using MMDP showed near-optimal solutions 
when compared with a standard optimal solver (Stochas-
tic Planning using Decision Diagrams [135]) in terms of 
the average expected discounted reward for each start-
ing state. Furthermore, the MMDP approach was able to 
scale to larger 6 × 6 grid world environments and team 
sizes of 6 robots, while the standard optimal solver was 
limited to 3 × 3 grid world environments with up to 3 
robots. The probabilistic task inference approach with 
Dec-MDP [125], was evaluated in both simulation and 
real-world structured, unknown environments for multi-
robot exploration. Results showed a reduction in both 
exploration time and local interactions between robots 
when compared to a traditional utility-based exploration 
method [136].

4.1.2  Role‑based Approaches

Role-based approaches for task inference have been designed 
for heterogeneous robot teams, where individual robot 
members can have different sensory, computation, and/or 
actuation systems to fulfill their distinct roles [137]. Each 
robot's role is described by a policy, which determines the 
robot’s behavior by mapping robot observations to actions. 
Thus, role-based approaches achieve explicit task inference 
by first using teammates’ policies to directly predict team-
mates’ intended tasks to execute and then complete MRTA 
thereafter using the predicted tasks of the teammates. This 
is achieved using two sequential decision-making methods; 
namely, Partially Observable Markov Decision Process 
(POMDP) [122] and Decentralized Multi-policy Decision 
Making (D-MPDM) [126]. In both methods, a fixed set of 
manually designed policies based on a priori domain and 
task knowledge is available to all robots within a team. For 
task inference, individual robots first estimate their team-
mates’ belief states and locations by using Bayesian estima-
tion [122], or a particle filter [126]. This allows the robots 
to obtain their teammates’ expected tasks to execute through 
forward simulation by passing the estimated belief states 
and locations through the respective teammates’ policies 
to obtain their action outputs. The predicted tasks of the 
teammates are then utilized for MRTA by either using a 
policy: 1) that takes as input the robot’s observation as well 
as teammates’ expected task to execute [122], or 2) with the 
minimal time to goal after performing multiple forward sim-
ulations across all available policies [126]. Since task alloca-
tion is achieved separately from task inference, role-based 
approaches describe an explicit task inference strategy.

Similar to probabilistic approaches, role-based 
approaches have also been used for multi-robot monitor-
ing and exploration tasks under communication limitations 
in 2D environments [122, 126]. In both applications, the 
role-based POMDP and D-MPDM based methods achieved 
higher task completion rates and needed fewer timesteps 
than traditional POMDP and depth-first search methods 
which do not consider teammate intentions during commu-
nication dropouts.

4.2  Implicit Task Inference Strategies

In implicit task inference strategies, mobile robot inten-
tions are indirectly predicted and incorporated as part of 
the MRTA process; without directly predicting the expected 
tasks of robot teammates [129]. This can be achieved 
through rule-based and learning based methods, Fig. 8. For 
rule-based strategies, robot intentions are implicitly inferred 
using handcrafted heuristics based on what robots have 
already completed (i.e., their progress) or how well they 
can accomplish a given task (i.e., their performance) [123, 
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127–129]. Furthermore, for learning-based strategies robot 
teammate intentions are learned from both robot experiences 
and labeled data from human demonstrations during offline 
training [10, 130–133]. In both rule-based and learning-
based approaches, task inference is achieved as part of task 
allocation where robot observations are mapped directly to 
action selection. Thus, individual robots make decisions 
regarding the tasks to execute while teammate intentions 
are incorporated implicitly within the resultant task decision; 
thereby, coupling task inference and allocation. Compared 
to explicit task inference strategies, implicit task inference 
strategies are advantageous in that they do not: 1) need to 
iteratively compute a probability distribution over the availa-
ble tasks, which thus reduces the computational burden with 
the increasing number of tasks compared to probabilistic 
approaches (Sect. 4.1.1), and 2) require a priori knowledge 
of teammate policies for task inference that can limit robots 
to simple manually designed behaviors as in role-based 
approaches (Sect. 4.1.2).

4.2.1  Rule‑based Approaches

In rule-based approaches, task inference is achieved via 
manually designed heuristics that leverage teammate 
information using progress [127, 128], and performance 
[123, 129] measures, as a proxy for their intended task to 
execute. Namely, robot progress describes the tasks that 
have been completed [128], while performance describes a 
robot’s ability to complete an incomplete task [123]. Rule-
based approaches have been used in multi-robot explo-
ration [127, 128], search and retrieval of objects [123], 
and robotic soccer [129] applications, to predict future 
robot intentions. In multi-robot exploration [127, 128], 
each robot uses a greedy heuristic to select an exploration 
goal candidate from unknown regions within the gener-
ated maps of other teammates in order to reduce over-
lap in mapping effort. Teammate intentions are implicitly 
inferred during goal selection as coordination is achieved 
by robots selecting complementary goals based on what 
their teammates are likely to explore next (conditioned on 
what they have already explored) in order to maximize 

coverage. Mobile robot performance measures are typi-
cally represented by a travel cost, which includes either: 
1) travel distance [123] or 2) travel time [129], required 
to complete a task. In object search and retrieval applica-
tions, travel distance cost can be estimated using an A* 
graph search between an observed teammate position 
and the known task location [123]. Whereas, in robotic 
soccer, travel time cost to regain ball possession can be 
estimated using machine learning models such as model 
trees and neural networks, trained with manually collected 
data including robot velocity, distance, and heading angles 
[129]. Since robots are expected to minimize cost during 
execution, their intention to execute a task is indirectly 
predicted based on their ability to complete the task. As a 
result, a robot selects a task to execute, based on knowing 
that its teammates cannot complete the selected task at a 
lower cost using the estimated performance measure.

In terms of experiments, the proposed rule-based 
approaches have been evaluated in 2D simulation envi-
ronments [123, 127, 128], real-world structured indoor 
lab environments [128], and soccer fields [129]. For 
multi-robot exploration, the progress-based approach 
showed successful exploration to complete coverage 
of the unknown environment [127, 128]. In the robot 
object search and retrieval application [123], colored 
blocks were randomly distributed throughout an ini-
tially unknown environment, where a multi-robot team 
was expected to locate the blocks and return them to a 
designated area. The performance measure approach 
using travel distance as a cost [123] yielded a faster 
completion time when compared to a traditional auc-
tion-based approach [138]. A 95% success rate was 
achieved in assigning the correct robot to regain ball 
possession in robotic soccer when using travel time 
as a cost for the performance measure [129]. Further-
more, in [129], the choice of travel time versus travel 
distance as the performance measure was investigated 
to facilitate effective coordination without explicit 
information exchange. The results showed that using 
travel distance, the robots only achieved an 81% suc-
cess rate in correct allocations.

Fig. 8  Multi-robots implicit task 
inference methods

73   Page 14 of 24 Journal of Intelligent & Robotic Systems (2022) 106:73



1 3

4.2.2  Learning‑based Approaches

In learning-based approaches, task inference is learned 
using Learning from Demonstration (LfD) [10], or Deep 
Reinforcement Learning (DRL) [130–133], techniques. 
In both techniques, task inference and allocation are com-
pleted in an end-to-end manner, where robots make action 
selection decisions directly from observations. Compared 
to rule-based approaches, learning-based approaches do not 
require handcrafted heuristics but instead rely on training 
data to learn robot action selection. More specifically, in 
LfD methods, human operators remotely control each robot 
in parallel within a team to complete different tasks. Dur-
ing training, each robot learns from human demonstration 
the necessary actions for multi-robot coordination, using 
observations of teammate positions/locations and actions 
to implicitly learn their intentions. Namely, in [10], the 
LfD approach utilized Case-Based Reasoning (CBR) [139], 
which describes a high-level planning approach that gener-
ates the tasks to execute based on past experiences obtained 
from observations and human control during training. For 
the DRL methods, mobile robots directly interact with the 
task environment repeatedly to learn an end-to-end policy 
that maps sensory inputs directly to robot actions [140]. In 
DRL, the policy is parameterized by a neural network func-
tion approximator, where the weights are optimized with 
respect to a manually defined reward function designed to 
encourage robots to achieve the desired cooperative behavior 
in the given task environment [141]. Therefore, teammates’ 
intentions are implicitly predicted and incorporated as a 
property within the hidden states of the robot’s policy [47]. 
The DRL techniques considered in implicit task inference 
include Dueling Deep Q Networks (DDQN) [130, 131], and 
Deep Deterministic Policy Gradients (DDPG) [132, 133]. 
The learned policy utilizes sensory inputs including the 
robot’s position and speed, as well as partial observations 
of teammate positions and their goal locations to generate 
discrete [130, 131] or continuous [132, 133] robot actions; 
thereby, achieving task allocation without directly predict-
ing teammates’ intended tasks. This is true for both LfD and 
DRL methods, where task inference is achieved implicitly 
and incorporated as a property of the task allocation plan; 
therefore, learning-based approaches are implicit task infer-
ence strategies.

Learning-based approaches have been used for robotic 
soccer [10] as well as landmark-based navigation [130–133]. 
In robot soccer, the LfD task inference approach was evalu-
ated in a 2D simulated soccer field [10]. The results showed 
successful cooperation behaviors between mobile robots in 
a team in evading defender robots and scoring. In landmark-
based navigation, goal locations were distributed through-
out 2D open space environments, where the objective of 
each mobile robot was to navigate to unique locations using 

either DDQN or DDPG DRL methods without arriving at 
other robots’ goals [130–133]. Experiments were conducted 
with both static and dynamic obstacles with fixed bounda-
ries. In general, the DDQN and DDPG based task infer-
ence approach resulted in lower travel distances and higher 
success rates in terms of cooperatively arriving at unique 
locations when compared against traditional planning-based 
navigation approaches [142] and alternative DRL architec-
tures such as DQN and DDQN [143].

4.3  Discussions on Task Inference Methods

The objective of task inference for multi-robot systems is 
to predict the task intentions of robot teammates in order 
to achieve effective task allocation without the continuous 
exchange of information between robot teammates [46, 47]. 
Therefore, MRTA methods using explicit [122, 124–126], or 
implicit [10, 123, 127–133], task inference strategies allow 
robots to make independent decisions regarding the tasks to 
be executed while accounting for what their teammates are 
likely to do next, in order to complete complementary tasks 
in communication-limited environments. Thus, enabling 
robot teams to operate in realistic environments where infor-
mation exchanges between robots are neither permanent nor 
free of cost [144]. In addition, task inference also reduces 
the computation and communication overhead in multi-robot 
systems, leading to better scalability of robot team size as a 
result of lower communication bandwidth, and information 
processing [126]. Table 2 provides a summary overview of 
the task inference methods discussed herein, in terms of their 
approach, application and environment types.

In explicit task inference strategies, teammates' intended 
tasks are first predicted, and then incorporated for task alloca-
tion. This is achieved using either probabilistic or role-based 
approaches. Both approaches have the advantage of interpret-
ability in terms of the prediction result being quantitative 
and understandable to the human designer [145]. However, 
as mobile robot tasks are spatially distributed, probabilistic 
approaches are only computationally tractable for small envi-
ronments. This is due to the number of robot tasks increas-
ing proportionally with environment size, making iterating 
over every possible task to obtain a probability distribution 
computational expensive. Conversely, role-based approaches 
require a priori knowledge of all robot teammate policies to 
predict their intentions. However, existing policies have been 
limited to manually designed heuristics, where predictions are 
centered around high-level robot intentions such as whether a 
robot will act greedily or randomly or a binary classification of 
whether a robot has completed a task that is defined by its role. 
This limits the classification of teammate intentions to a pre-
defined selection of high-level intentions which are independ-
ent of environment size. As a result, role-based approaches are 
better suited for larger environments (i.e., higher number of 
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tasks) compared to probabilistic approaches, where the num-
ber of teammate intentions are dependent on the environment 
size.

In implicit task inference strategies, task inference and 
allocation are coupled, as teammate intentions are captured as 
a property of task allocation. Rule-based and learning-based 
approaches have been used to map robot sensor observations 
directly to robot action in an end-to-end manner. Rule-based 
approaches require domain expert knowledge to select appro-
priate robot features such as the progress and performance 
measures used to achieve implicit task inference, resulting in 
the loss of critical information regarding the true underlying 
robot and environment states [146]. Conversely, learning-
based approaches can learn complex task inference strategies 
from high-dimensional sensory data; however, they require 
offline training which can be time-consuming and require 
expert knowledge to obtain and create labeled datasets.

5  Open Challenges and Future Research 
Directions

To date, existing environment and task inference methods 
have been used to address single robot and multi-robot 
system challenges in unknown environments. While envi-
ronment inference has aided with navigation [58], explo-
ration [54], and mapping [66] tasks, task inference has 
focused on improving robot coordination and cooperation 
for task allocation in scenarios where robots have limited 
communication and perception [10, 122], highlighting the 
potential of using inference for mobile robotics and MRTA 
problems. However, many open challenges still remain. 
For example, current environment inference methods have 
focused on single robot applications, and have not yet been 
extended to multi-robot systems. Furthermore, they have 
mainly considered static features such as walls and corners 

Table 2  Summary of Task Inference Methods

Inference Type Approach Type Approach Application Type Environment Type Ref

Explicit Task Inference
  Probabilistic-based Heuristics Presence mass distribution Multi-robot task coopera-

tion
Grid world environments [124]

Wavefront propagation 
algorithm

Multi-robot exploration Structured indoor environ-
ments

[125]

  Role-based Statistical Bayesian estimation of 
belief state

Grid world environments [122]

Forward simulation of 
policy with particle filter 
estimation

[126]

Implicit Task Inference
  Rule-based Heuristics Locally shared 2D maps Multi-robot exploration Structured indoor environ-

ments
[127, 128]

Travel cost estimation with 
A*

Multi-robot task coopera-
tion

[123]

Travel cost estimation with 
model trees and neural 
networks

Multi-robot task coopera-
tion

Structured outdoor environ-
ment

[129]

  Learning-based Classical learning Case-based reasoning [10]
Deep learning Deep Q Network and 

Dueling architecture
Multi-robot navigation Grid world environments [130]

Enhanced deep determinis-
tic policy gradient

[132]

Multi-modal Deep Q 
Network and Dueling 
architecture

Unstructured outdoor envi-
ronments

[131]

Deep deterministic policy 
gradient

Structured indoor environ-
ments

[133]
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for map and topology inference in unknown indoor struc-
tured environments [52]; and have not considered features 
that can be obtained from teammate robot actions. Simi-
larly, existing task inference methods do not yet account 
for task abandonment during robot execution where a 
robot's actions can be suboptimal due to environmental 
(i.e., stochastic action outcome) and hardware (i.e., per-
ception uncertainty) factors [147]. We discuss these two 
important challenges below and propose potential research 
directions that can be explored to address them.

5.1  Challenge 1: Multi‑robot map inference using 
teammate actions

In existing map inference methods, a single robot’s predic-
tion of unknown regions is contingent solely on the geo-
metric information obtained via its onboard sensors (i.e., 
camera, rangefinder) from the observed regions within the 
partially explored environment [69]. In general, multi-robot 
systems provide improved robustness, reliability, and overall 
performance gains in terms of task completion efficiency 
due to better spatial distribution compared to single robot 
systems [148]. Therefore, map inference methods should 
leverage information from multiple robots that operate in a 
shared space by using observations of their actions to pro-
vide high-level contextual information for map inference 
[149]. Consider a navigation task, where observations of a 
teammate robot emerging from behind an obstacle can be 
used to infer the existence of a traversable pathway behind 
the obstacle [150]. Similarly, in an exploration task, obser-
vations of a teammate robot making a U-turn at the end of a 
corridor suggest the absence of information gain at the end 
of the corridor (i.e., dead-end). In both of these examples, 
teammate robot actions contribute contextual information 
for map inference that enables a high-level understanding 
of the robot’s environment which can reduce robot replan-
ning efforts during execution [151]. To our knowledge, there 
exists only one multi-robot map inference method [64], how-
ever, the method only utilizes geometric information from 
2D laser scans of the robot’s static environment to infer the 
spatial layout of the unexplored regions. Teammate robots 
were considered subsequently during the goal assignment 
stage for multi-robot exploration, which utilized an auction 
mechanism for explicit cooperation. Thus, map inference 
was achieved without the consideration of teammate robots 
deployed within the shared space.

In order to incorporate teammate actions for the purpose 
of map inference, teammates can be modeled as dynamic 
sensors that take as input the environment geometry and 
output their actions, respectively. Therefore, a robot can 
treat its teammates as mobile sensors in the environment and 
incorporate both environmental contextual and geometric 
information from them during inference. This concept has 

been recently explored in self-driving car applications with 
nearby drivers modeled as sensors using K-means cluster-
ing and conditional variational autoencoders to map discrete 
driver action classes (i.e., slowing down, speeding up) [152], 
and past vehicle trajectories in order to make geometric pre-
dictions for occluded regions. However, since the proposed 
methods have focused on autonomous driving, they are 
limited by: 1) simple and controlled traffic scenarios where 
road agents (i.e., vehicles and pedestrians) follow specific 
navigation rules, 2) predictions focused only on pre-defined 
regions that are commonly occluded due to incoming traffic 
at crosswalks and intersections, and 3) driver actions con-
strained by vehicle kinodynamics. As a result, these methods 
cannot be easily transferred to address the map inference 
problem in cluttered and unknown environments. Potential 
research fields include image [153–155] and video inpaint-
ing [156–158] to address the problem of incorporating static 
and dynamic features from the known environment during 
prediction. Namely, image inpainting completes a partially 
occluded image by predicting missing pixel values based on 
spatial and semantic context from the non-occluded regions 
of the image [153]. Thus, image inpainting methods can 
target arbitrary regions during prediction by considering 
static features (i.e., obstacle placement/geometry) from the 
known environment. On the other hand, video inpainting 
methods extend the image inpainting task to incorporate spa-
tial and temporal coherence with respect to prior consecutive 
image inputs during prediction. Therefore, video inpainting 
methods can be utilized to incorporate dynamic information 
(i.e., teammate trajectories) within the robot’s environment 
during map prediction. However, existing video inpainting 
methods have not been applied in robotics, as they are lim-
ited to scenes without significant appearance changes where 
the subject (i.e., robot teammate) experiences simple linear 
motion across consecutive frames [159]. Therefore, a prom-
ising research direction is to address temporal consistency 
with complex motions from challenging mobile robot tra-
jectories in unstructured and cluttered environments, where 
the spatial configuration can change significantly between 
consecutive decision timesteps during robot navigation/
exploration tasks.

5.2  Challenge 2: Multi‑robot global plan inference 
to predict robot task abandonment

Task inference methods for multi-robot teams have mainly 
focused on the prediction of teammate robot goals by assum-
ing all observed actions contribute to the completion of their 
predicted tasks [14]. However, several reasons can prevent 
rational mobile robots from executing optimal actions such 
as mechanical and electrical failure, being flipped over, 
uncertainty, stochastic action outcomes, and noisy sen-
sor readings [160]. In these scenarios, robots can execute 
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sub-optimal actions that deviate from their plan without 
changing their intended task. Therefore, robots in the team 
need to be able to infer whether a teammate robot intends to 
complete their original predicted task or has abandoned it 
for another task due to failure, by considering observations 
of the robot’s actions and its plan. This is especially critical 
for multi-robot cooperation, where successful completion of 
the overall global task by the team requires individual robots 
to be committed to completing their delegated tasks [147]. 
As a result, knowing whether a robot has abandoned a task 
is vital for replanning and maintaining team performance.

In order to predict task abandonment or deviation, indi-
vidual robots must be able to infer the tasks and plans 
of teammates [161]. In mobile robotics, a robot’s plan 
to complete a task is described by the global trajectory 
it intends to execute to arrive at its goal location. Thus, 
addressing the proposed challenge requires solving global 
robot trajectory inference conditioned on the robot’s goals 
using observations of its action history as well as the envi-
ronment configuration. This is a complex problem as: 1) 
robot trajectories depend on a multitude of factors from 
interaction with the environment itself and other robots 
[162], and 2) robot trajectories are multi-modal, where 
given the same action history, goal, and environment 
configuration, there can exist several trajectories [163]. 
Addressing the multi-robot trajectory inference problem, 
allows robots in a team to replan in order to reduce perfor-
mance loss (i.e., the time elapsed and energy consumed) 
incurred from teammates abandoning their tasks [147]. 
For example, a mobile robot with a warning of a low bat-
tery may suddenly take an alternative route that is less 
demanding in terms of power requirements, towards its 
goal during exploration, or go back to its home base. An 
observing robot that does not have direct communication 
with this robot can infer this robot’s future global trajec-
tory conditioned on its goal, to decide whether the robot 
has abandoned its goal and if replanning of the team is 
necessary to maintain global team performance.

Trajectory inference methods have been proposed for 
both autonomous vehicles and pedestrians to account for 
the semantic context of an environment [164–166], and 
interactions between road agents (i.e., vehicles and pedes-
trians) [162, 167–170] in controlled traffic scenarios. How-
ever, autonomous vehicle inference methods focus only 
on short-term trajectory predictions (up to 5 s) to avoid 
immediate collisions with nearby vehicles and pedestri-
ans [171] due to the dynamic nature of the environment. 
They do not consider inference for global plans towards 
achieving long-term goals (destinations) such as travel 
between destinations in different cities, etc. [172]. On the 
other hand, pedestrian-based methods have considered 
global goal conditions [168, 173–175]; however, they 
typically require either a static overhead (i.e., surveillance 

camera) or birds-eye-view perspectives with a fixed frame 
of view [176], with pedestrians following social norms 
[177]. These requirements are distinctly different than for 
mobile robot teams deployed in unstructured environments 
where predictions must account for: 1) camera ego-motion 
from first-person perspectives, 2) unconstrained goals and 
plans based on robot task-specific objectives (i.e., optimal 
time vs. coverage), and 3) varying environment travers-
ability configurations. Potential future research fields in 
multi-robot global plan inference include: 1) multi-robot 
trajectory forecasting [167, 175, 179] to infer short-term 
trajectories of future teammates to avoid imminent colli-
sions, and 2) multi-robot trajectory planning [177, 178, 
180] to plan long-term team trajectories between initial 
and final robot positions. However, both research fields 
individually cannot address the global plan inference prob-
lem as existing forecasting methods are limited to short-
term trajectories, while planning methods require access 
to global information (i.e., environment configuration and 
teammate states). Thus, a promising research direction 
includes integrating multi-robot trajectory planning dur-
ing trajectory forecasting to extend the inference horizon 
to long-term global team trajectories for prediction of task 
abandonment.

6  Conclusion

In this survey paper, we present a novel mobile robot infer-
ence taxonomy to classify both environment and task infer-
ence for single and multiple robots deployed in partially 
observable and communication-limited unknown environ-
ments. For each inference class, we identify and discuss 
the existing problems, applications, and solution methods. 
While there has been significant progress made in the past 
decade in the area of mobile robot inference, existing infer-
ence approaches are still in their early stages and have been 
limited in their implementation on mainly robots navigat-
ing, exploring, and mapping structured indoor environments 
with unknown regions. Therefore, we provide an analysis 
of open research challenges in the context of multi-robot 
coordination for unstructured environments and provide 
future research directions to tackle these challenges for this 
promising field.
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