

REWARD-GUIDED FLOW MERGING VIA IMPLICIT DENSITY OPERATORS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Unprecedented progress in large-scale flow and diffusion modeling for scientific
 012 discovery recently raised two fundamental challenges: *(i)* reward-guided
 013 adaptation of pre-trained flows, and *(ii)* integration of multiple models, i.e., model
 014 merging. While current approaches address them separately, we introduce a unifying
 015 probability-space framework that subsumes both as limit cases, and enables
 016 *reward-guided flow merging*. This captures generative optimization tasks requiring
 017 information from multiple pre-trained flows, as well as task-aware flow merging
 018 (e.g., for maximization of drug-discovery utilities). Our formulation renders pos-
 019 sible to express a rich family of *implicit* operators over generative models densities,
 020 including intersection (e.g., to enforce safety), union (e.g., to compose diverse
 021 models) and interpolation (e.g., for discovery in data-scarce regions). Moreover,
 022 it allows to compute complex logic expressions via *generative circuits*. Next, we
 023 introduce **Reward-Guided Flow Merging (RFM)**, a theory-backed mirror-descent
 024 scheme that reduces reward-guided flow merging to a sequential fine-tuning
 025 problem that can be tackled via scalable, established methods. Then, we provide
 026 first-of-their-kind theoretical guarantees for reward-guided and *pure* flow merging
 027 via RFM. Ultimately, we showcase the capabilities of the proposed method on illus-
 028 trative settings providing visually interpretable insights, and apply our method to
 029 [high-dimensional de-novo molecular design and low-energy conformer generation](#).

1 INTRODUCTION

030 Large-scale generative modeling has recently progressed at an unprecedented pace, with flow (Lipman
 031 et al., 2022; 2024) and diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho
 032 et al., 2020) delivering high-fidelity samples in chemistry (Hoogeboom et al., 2022), biology (Corso
 033 et al., 2022), and robotics (Chi et al., 2023). However, adoption in real-world applications like
 034 scientific discovery led to two fundamental algorithmic challenges: *(i)* reward-guided fine-tuning,
 035 i.e., adapting pre-trained models to maximize downstream utilities (e.g., binding affinity) (e.g.,
 036 Domingo-Enrich et al., 2024; Uehara et al., 2024b; De Santi et al., 2025b), and *(ii)* model merging
 037 - integrating multiple pre-trained models (Song et al., 2023; Ma et al., 2025), e.g., to incorporate
 038 safety constraints (Dai et al., 2023), or unify diverse priors (Ma et al., 2025). The former now
 039 benefits from principled and scalable control theoretic or reinforcement learning (RL) methods,
 040 with successes in image generation (Domingo-Enrich et al., 2024), molecular design (Uehara et al.,
 041 2024b), and protein engineering (Uehara et al., 2024b). By contrast, current merging approaches
 042 remain mostly heuristic, training-heavy, and act in weight-space with limited interpretability of the
 043 merging operations (Ma et al., 2025; Song et al., 2023). Crucially, these two problems have been
 044 treated via distinct formulations and methods. On the contrary, in this work we ask:
 045

046 *Can we fine-tune a pre-trained flow model to optimize a given reward function while integrating
 047 information from (i.e., merge) multiple pre-trained flows?*

048 Answering this would contribute to the algorithmic-theoretical foundations of *flow adaptation* and
 049 enable rich applications in highly relevant areas such as scientific discovery and generative design.

050 **Our approach** To address this challenge, we first introduce a probability-space optimization
 051 framework (see Fig. 1b) that recovers reward-guided fine-tuning and *pure* model merging as limit
 052 cases, and provably enables *reward-guided model merging* (Sec. 3). Our formulation allows to
 053 express a rich family of *implicit* operators over generative models that cover practical needs such
 as enforcing safety (e.g., via intersection), composing diverse models (e.g., via union), and discovery

054 in data-scarce regions (e.g., via interpolation). However, these operators are expressed via non-linear
 055 functionals that cannot be optimized via classic RL or control schemes, as shown by [De Santi et al. \(2025b\)](#). To overcome this challenge, we introduce **Reward-Guided Flow Merging** (RFM),
 056 a mirror descent (MD) ([Nemirovskij & Yudin, 1983](#)) scheme that solves reward-guided and pure flow
 057 merging via a sequential adaptation process implementable via established fine-tuning methods (e.g.,
 058 [Domingo-Enrich et al., 2024; Uehara et al., 2024b](#)) (Sec. 4). Next, we extend the algorithm proposed,
 059 to operate on the space of entire flow processes, enabling scalable and stable computation of the
 060 intersection operator (Sec. 5). We provide a rigorous convergence analysis of RFM, yielding
 061 first-of-its-kind theoretical guarantees for reward-guided and pure flow merging (Sec. 6). Ultimately,
 062 we showcase our method’s capabilities on illustrative settings, as well as on a molecular design task
 063 for control and optimization of quantum-mechanical properties [and conformer generation](#) (Sec. 7).
 064

065 **Our contributions** To sum up, in this work we contribute

- 066 • A formalization of *reward-guided flow merging* via *implicit operators*, which generalizes recent
 067 reward-guided fine-tuning and pure flow merging formulations via an operator viewpoint (Sec. 3).
- 068 • **Reward-Guided Flow Merging** (RFM), a principled algorithm which provably solves arbitrary
 069 reward-guided flow merging problems via probability-space optimization over the space of data-
 070 level marginal densities induced by flow models (Sec. 4), and a stability-enhancing extension for
 071 flow intersection following a mirror-descent scheme on the space of joint flow processes (Sec. 5).
- 072 • A theoretical analysis of the presented algorithms providing convergence guarantees both under
 073 simplified and realistic assumptions leveraging recent understanding of mirror flows (Sec. 6).
- 074 • An experimental evaluation of RFM showcasing its practical relevance on both synthetic, yet
 075 illustrative settings and on a scientific discovery task, showing it can effectively intersect pre-
 076 trained flow models for molecular conformers generation. (Sec. 7).

077 2 BACKGROUND AND NOTATION

078 **General Notation.** We denote with $\mathcal{X} \subseteq \mathbb{R}^d$ an arbitrary set. Then, we indicate the set of Borel
 079 probability measures on \mathcal{X} with $\mathbf{P}(\mathcal{X})$, and the set of functionals over $\mathbf{P}(\mathcal{X})$ as $\mathbf{F}(\mathcal{X})$.

080 **Generative Flow Models.** Generative models aim to approximately sample novel data points from a
 081 data distribution p_{data} . Flow models tackle this problem by transforming samples $X_0 = x_0$ from a
 082 source distribution p_0 into samples $X_1 = x_1$ from the target distribution p_{data} ([Lipman et al., 2024;](#)
 083 [Farebrother et al., 2025](#)). Formally, a *flow* is a time-dependent map $\psi : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}$ such that $\psi : (t, x) \rightarrow \psi_t(x)$. A *generative flow model* is a continuous-time Markov process $\{X_t\}_{0 \leq t \leq 1}$ obtained
 084 by applying a flow ψ_t to $X_0 \sim p_0$ as $X_t = \psi_t(X_0)$, $t \in [0, 1]$, such that $X_1 = \psi_1(X_0) \sim p_{data}$. In
 085 particular, the flow ψ can be defined by a *velocity field* $u : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$, which is a vector field
 086 related to ψ via the following ordinary differential equation (ODE), typically referred to as *flow ODE*:

$$087 \quad \frac{d}{dt} \psi_t(x) = u_t(\psi_t(x)) \quad (1)$$

088 with initial condition $\psi_0(x) = x$. A flow model $X_t = \psi_t(X_0)$ induces a probability path of *marginal*
 089 *densities* $p = \{p_t\}_{0 \leq t \leq 1}$ such that at time t we have that $X_t \sim p_t$. We denote by p^u the probability
 090 path of marginal densities induced by the velocity field u . Flow matching (FM) ([Lipman et al.,](#)
 091 [2024](#)) can estimate a velocity field u^θ s.t. the induced marginal densities p^{u^θ} satisfy $p_0^{u^\theta} = p_0$ and
 092 $p_1^{u^\theta} = p_{data}$, where p_0 denotes the source distribution, and p_{data} the target data distribution. Typically
 093 FM are rendered tractable by defining p_t^u as the marginal of a conditional density $p_t^u(\cdot | x_0, x_1)$, e.g.:

$$094 \quad X_t \mid X_0, X_1 = \kappa_t X_0 + \omega_t X_1 \quad (2)$$

095 where $\kappa_0 = \omega_1 = 1$ and $\kappa_1 = \omega_0 = 0$ (e.g. $\kappa_t = 1 - t$ and $\omega_t = t$). Then u^θ can be learned
 096 by regressing onto the conditional velocity field $u(\cdot | x_1)$ ([Lipman et al., 2022](#)). As diffusion
 097 models ([Song & Ermon, 2019](#)) (DMs) admit an equivalent ODE formulation with identical marginal
 098 densities ([Lipman et al., 2024](#), Ch. 10), our contributions extend directly to DMs.

100 **Continuous-time Reinforcement Learning.** We formulate finite-horizon continuous-time RL as a
 101 specific class of optimal control problems ([Wang et al., 2020; Jia & Zhou, 2022; Treven et al., 2023;](#)
 102 [Zhao et al., 2024](#)). Given a state space \mathcal{X} and an action space \mathcal{A} , we consider the transition dynamics
 103 governed by the following ODE:

$$104 \quad \frac{d}{dt} \psi_t(x) = a_t(\psi_t(x)) \quad (3)$$

105 where $a_t \in \mathcal{A}$ is a selected action. We consider a state space $\mathcal{X} := \mathbb{R}^d \times [0, 1]$, and denote by (Marko-
 106 vian) deterministic policy a function $\pi_t(X_t) := \pi(X_t, t) \in \mathcal{A}$ mapping a state $(x, t) \in \mathcal{X}$ to an action
 107 $a \in \mathcal{A}$ such that $a_t = \pi(X_t, t)$, and denote with p_t^π the marginal density at time t induced by policy π .

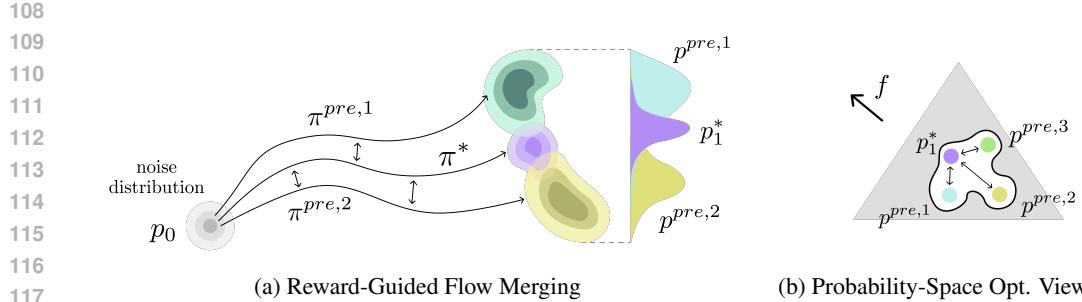


Figure 1: (1a) Pre-trained and fine-tuned policies inducing $\{p_1^{pre,i}\}_{i=1}^n$ and opt. density p_1^* via reward-guided flow merging. (1b) Probability-space optimization viewpoint on reward-guided merging.

Pre-trained Flow Models as an RL policy. A pre-trained flow model with velocity field u^{pre} can be interpreted as an action process $a_t^{pre} := u^{pre}(X_t, t)$, where a_t^{pre} is determined by a continuous-time RL policy via $a_t^{pre} = \pi^{pre}(X_t, t)$ (De Santi et al., 2025a). Therefore, we can express the flow ODE induced by a pre-trained flow model by replacing a_t with a_t^{pre} in Eq. equation 3, and denote the pre-trained model by its policy π^{pre} , which induces a density $p_1^{pre} := p_1^{\pi^{pre}}$ approximating p_{data} .

3 REWARD-GUIDED FLOW MERGING VIA IMPLICIT DENSITY OPERATORS

In this section, we introduce the general problem of *reward-guided flow merging* via *implicit density operators*. Formally, we wish to implement an operator $\mathcal{O}: \Pi \times \dots \times \Pi \rightarrow \Pi$ that, given pre-trained generative flow models $\{\pi^{pre,i}\}_{i \in [n]}$, returns a merged flow π^* inducing an ODE:

$$\frac{d}{dt} \psi_t(x) = a_t^*(\psi_t(x)) \quad \text{with} \quad a_t^* = \pi^*(x, t), \quad (4)$$

such that it controllably merges prior information within the n pre-trained generative models, while potentially steering its density $p_1^* := p_1^{\pi^*}$ towards a high-reward region according to a given scalar reward function $f(x) : \mathcal{X} \rightarrow \mathbb{R}$. We tackle this problem by fine-tuning an initial flow $\pi^{init} \in \{\pi^{pre,i}\}_{i \in [n]}$ according to the following optimization formulation, visually portrayed in Fig. 1b.

Reward-Guided Flow Merging via Implicit Density Operators

$$\mathcal{O}: (\pi^{pre,1}, \dots, \pi^{pre,n}) \rightarrow \pi^* \text{ s.t. } \pi^* \in \arg \max_{\pi: p_0^{\pi} = p_0^{pre}} \mathbb{E}_{x \sim p_1^{\pi}} [f(x)] - \sum_{i=1}^n \alpha_i \mathcal{D}_i(p_1^{\pi} \| p_1^{pre,i}) \quad (5)$$

Here, each \mathcal{D}_i is an arbitrary divergence, $\alpha_i > 0$ are model-specific weights, and $p_0^{\pi} = p_0^{pre}$ enforces that the marginal density at $t = 0$ must match the pre-trained model marginal. This formulation recovers reward-guided fine-tuning (e.g., Domingo-Enrich et al., 2024) when $n = 1$ and $\mathcal{D}_1 = D_{KL}$, and provides a formal framework for *pure* flow merging (e.g., Poole et al., 2022; Song et al., 2023) with interpretable objectives, when the reward f is constant (e.g., $f(x) = 0 \forall x \in \mathcal{X}$). In this case, Eq. 5 formalizes flow merging as computing a flow π^* that minimizes a weighted sum of divergences to the priors $\{\pi^{pre,i}\}_{i \in [n]}$. Varying the divergences $\{\mathcal{D}_i\}_{i \in [n]}$ yields different merging strategies.

In-Distribution Flow Merging. Given pre-trained flow models $\{\pi^{pre,i}\}_{i \in [n]}$, we denote by *in-distribution* merging when the merged model generates samples from regions with sufficient prior density. Practically relevant instances include the *intersection operator* \mathcal{O}_{\wedge} (i.e., a logical AND), and the *union operator* \mathcal{O}_{\vee} (i.e., a logical OR). Formally, these operators can be defined via:

\mathcal{O}_{\wedge} : Intersection (\wedge) Operator

$$\pi^* \in \arg \min_{\pi: p_0^{\pi} = p_0^{pre}} \sum_{i=1}^n \alpha_i D_{KL}(p_1^{\pi} \| p_1^{pre,i}) \quad (6)$$

\mathcal{O}_{\vee} : Union (\vee) Operator

$$\pi^* \in \arg \min_{\pi: p_0^{\pi} = p_0^{pre}} \sum_{i=1}^n \alpha_i D_{KL}^R(p_1^{\pi} \| p_1^{pre,i}) \quad (7)$$

The D_{KL} divergences in Eq. 6 heavily penalize density allocation in any region with low prior density for any model $\pi^{pre,i}$, leading to an optimal flow model π^* inducing $p_1^*(x) \propto \prod_{i=1}^n p_1^{pre,i}(x)^{\alpha_i}$ (cf. Heskes, 1997). Similarly, the reverse KL divergence $D_{KL}^R(p \| q) := D_{KL}(q \| p)$ in Eq. 7 induces a mode-covering behaviour implying a flow model π^* with density $p_1^* \propto \sum_{i=1}^n \alpha_i p_1^{pre,i}(x)$ (cf. Banerjee et al., 2005) sufficiently covering all regions with enough prior density, for any $p_1^{pre,i}$, $i \in [n]$.

162 **Out-of-Distribution Flow Merging.** We denote by *out-of-distribution*, the case where π^* samples
 163 from regions insufficiently covered by all priors. An example is the *interpolation operator* \mathcal{O}_{W_p} (see
 164 Eq. 8), which induces p_1^* equal to the prior densities Wasserstein Barycenter (Cuturi & Doucet, 2014).
 165

166 **\mathcal{O}_{W_p} : Interpolation (Wasserstein- p Barycenter) Operator**

$$167 \arg \min_{\pi} \sum_{i=1}^n \alpha_i W_p(p_1^{\pi} \| p_1^{pre,i}) := \sum_{i=1}^n \alpha_i \inf_{\gamma \in \Gamma(p_1^{\pi}, p_1^{pre})} \mathbb{E}_{(x,y) \sim \gamma} [d(x, y)^p]^{\frac{1}{p}} \quad (8)$$

170 **Straightforward Generalizations.** While we presented a few practically relevant operators, the
 171 framework in Eqs. 5 is not tied to them: it trivially admits any new operator defined via other
 172 divergences (e.g., MMD, Rényi, Jensen–Shannon), and allows diverse D_i for each prior flow models
 173 $\pi^{pre,i}$. Moreover, sequential composition of these operators makes it possible to implement arbitrarily
 174 complex logical operations over generative models. For instance, as later shown in Sec. 7, one
 175 can obtain $\pi^* = (\pi^{pre,1} \vee \pi^{pre,2}) \wedge \pi^{pre,3}$ by first computing $\pi_{1,2} := \mathcal{O}_{\vee}(\pi^{pre,1}, \pi^{pre,2})$ and then
 176 $\pi^* := \mathcal{O}_{\wedge}(\pi_{1,2}, \pi^{pre,3})$. We denote such operators by *generative circuits*, and illustrate one in Fig. 3d.
 177

178 While being of high practical relevance, the presented framework entails optimizing non-linear distri-
 179 butional utilities (see Eq. 5) beyond the reach of standard RL or control schemes, as shown by De Santi
 180 et al. (2025b). In the next section, we show how to reduce the introduced problem to sequential
 181 fine-tuning for maximization of rewards automatically determined by the choice of operator \mathcal{O} .
 182

4 ALGORITHM: REWARD-GUIDED FLOW MERGING

183 In this section, we introduce **Reward-Guided Flow Merging** (RFM), see Alg. 1, which provably solves
 184 Problem 5. RFM implements general operators \mathcal{O} (see Sec. 3) by solving the following problem:
 185

186 **Reward-Guided Flow Merging as Probability-Space Optimization**

$$187 \quad 188 \quad 189 \quad p_1^{\pi^*} \in \arg \max_{p_1^{\pi}} \mathcal{G}(p_1^{\pi}) \quad \text{with} \quad \mathcal{G}(p_1^{\pi}) := \mathbb{E}_{x \sim p_1^{\pi}} [f(x)] - \sum_{i=1}^n \alpha_i \mathcal{D}_i(p_1^{\pi} \| p_1^{pre,i}) \quad (9)$$

190 Given an initial flow model $\pi^{init} \in \{\pi^{pre,i}\}_{i \in [n]}$, RFM follows a mirror descent (MD) scheme (Ne-
 191 mirovskij & Yudin, 1983) for K iterations by sequentially fine-tuning π^{init} to maximize surrogate
 192 rewards g_k determined by the chosen operator, i.e., \mathcal{G} . To understand how RFM computes the
 193 surrogate rewards $\{g_k\}_{k=1}^K$ guiding the optimization process in Eq. 9, we first recall the notion
 194 of first variation of \mathcal{G} over a space of probability measures (cf. Hsieh et al., 2019). A functional
 195 $\mathcal{G} \in \mathbf{F}(\mathcal{X})$ has a first variation at $\mu \in \mathbf{P}(\mathcal{X})$ if there exists a function $\delta\mathcal{G}(\mu) \in \mathbf{F}(\mathcal{X})$ such that:

$$196 \quad \mathcal{G}(\mu + \epsilon\mu') = \mathcal{G}(\mu) + \epsilon\langle \mu', \delta\mathcal{G}(\mu) \rangle + o(\epsilon).$$

197 holds for all $\mu' \in \mathbf{P}(\mathcal{X})$, where the inner product is an expectation. At iteration $k \in [K]$, given the cur-
 198 rent generative model π^{k-1} , RFM fine-tunes it according to the following standard entropy-regularized
 199 control or RL problem, solvable via any established method (e.g., Domingo-Enrich et al., 2024)

$$200 \quad 201 \quad \arg \max_{\pi} \langle \delta\mathcal{G}(p_1^{\pi^{k-1}}), p_1^{\pi} \rangle - \frac{1}{\gamma_k} D_{KL}(p_1^{\pi} \| p_1^{\pi^{k-1}}) \quad (10)$$

202 Thus, we introduce a surrogate reward function $g_k : \mathcal{X} \rightarrow \mathbb{R}$ defined for all $x \in \mathcal{X}$ such that:

$$203 \quad 204 \quad g_k(x) := \delta\mathcal{G}(p_1^{\pi^{k-1}})(x) \quad \text{and} \quad \mathbb{E}_{x \sim p_1^{\pi}} [g_k(x)] = \langle \delta\mathcal{G}(p_1^{\pi^{k-1}}), p_1^{\pi} \rangle \quad (11)$$

205 We now present **Reward-Guided Flow Merging** (RFM), see Alg. 1. At each iteration $k \in [K]$, RFM es-
 206 timates the gradient of the first variation at the previous policy π_{k-1} , i.e., $\nabla_x \delta\mathcal{G}(p_1^{\pi^{k-1}})$ (line 4). Then,
 207 it updates the flow model π_k by solving the reward-guided fine-tuning problem in Eq. 10 by employing
 208 $\nabla_x g_k := \nabla_x \delta\mathcal{G}(p_1^{\pi^{k-1}})$ as reward function gradient (line 5). Ultimately, RFM returns a final policy
 209 $\pi := \pi_K$. We report a detailed implementation of REWARDGUIDEDFINETUNINGSOLVER in Apx. E.2.

210 **Implementation of Intersection, Union, and Interpolation operators.** In the following, we
 211 present the specific expressions of $\nabla_x \delta\mathcal{G}(p_1^{\pi})$ for pure model merging with the intersection (\mathcal{O}_{\wedge}),
 212 union (\mathcal{O}_{\vee}), and interpolation (\mathcal{O}_{W_p}) operators introduced in Sec. 3.

$$213 \quad 214 \quad 215 \quad \nabla_x \delta\mathcal{G}(p_1^{\pi})(x) = \begin{cases} -\sum_{i=1}^n \alpha_i s^{k-1}(x, t=1) + \sum_{i=1}^n \alpha_i s^{\pi^{pre,i}}(x, t=1) & \text{Intersection } (\mathcal{O}_{\wedge}) \\ -\sum_{i=1}^n \nabla_x \exp(\phi_i^*(x) - 1), \phi_i^* \text{ as by Eq. 45} & \text{Union } (\mathcal{O}_{\vee}) \\ -\sum_{i=1}^n \nabla_x \phi_i^*(x), \phi_i^* = \arg \max_{\phi: \|\nabla_x \phi\| \leq 1} \langle \phi, p^{\pi} - p^{pre,i} \rangle & \text{Interpol. } (\mathcal{O}_{W_1}) \end{cases}$$

Algorithm 1 Reward-Guided Flow Merging (RFM)

1: **input:** $\{\pi^{pre,i}\}_{i \in [n]}$: pre-trained flows, $\{\mathcal{D}_i\}_{i \in [n]}$: arbitrary divergences, f : reward, $\{\alpha_i\}_{i \in [n]}$: weights, K : iterations number, $\{\gamma_k\}_{k=1}^K$ stepsizes, $\pi^{init} \in \{\pi^{pre,i}\}_{i \in [n]}$: initial flow model

2: **Init:** $\pi_0 := \pi^{init}$

3: **for** $k = 1, 2, \dots, K$ **do**

4: Estimate $\nabla_x g_k = \nabla_x \delta\mathcal{G}(p_1^{\pi^{k-1}})$ with:

5:
$$\mathcal{G}(p_1^{\pi^{k-1}}) = \begin{cases} \mathbb{E}_{x \sim p_1^{\pi^{k-1}}} [f(x)] - \sum_{i=1}^n \alpha_i \mathcal{D}_i(p_1^{\pi^{k-1}} \parallel p_1^{pre,i}) & \text{(Reward-Guided Flow Merging)} \\ - \sum_{i=1}^n \alpha_i \mathcal{D}_i(p_1^{\pi^{k-1}} \parallel p_1^{pre,i}) & \text{(Flow Merging)} \end{cases}$$

6: Compute π_k via standard reward-guided fine-tuning (e.g., Domingo-Enrich et al., 2024):

$$\pi_k \leftarrow \text{REWARDGUIDEDFINETUNINGSOLVER}(\nabla_x g_k, \gamma_k, \pi_{k-1})$$

7: **end for**

8: **output:** policy $\pi := \pi_K$

Where by $s^{k-1}(x, t) := \nabla \log p_t^{\pi^{k-1}}(x)$ we denote the score of model π^{k-1} at point x and time t , and $s^{pre,i} := s^{\pi^{pre,i}}$. For diffusion models, a learned neural score network is typically available; for flows, the score follows from a linear transformation of $\pi(X_t, t)$ (e.g., Domingo-Enrich et al., 2024, Eq. 8):

$$s_t^\pi(x) = \frac{1}{\kappa_t(\frac{\dot{\omega}_t}{\omega_t} \kappa_t - \dot{\kappa}_t)} \left(\pi(x, t) - \frac{\dot{\omega}_t}{\omega_t} x \right) \quad (13)$$

For the union operator, gradients are defined via critics $\{\phi_i^*\}_{i=1}^n$ learned with the standard variational form of reverse KL, as in f-GAN training of neural samplers (Nowozin et al., 2016). For W_1 interpolation, each ϕ_i^* plays the role of a Wasserstein-GAN discriminator with established learning procedures (Arjovsky et al., 2017). In both cases, each critic compares the fine-tuned density to a prior density $p_1^{pre,i}$, seemingly requiring one critic per prior. We prove that, surprisingly, this is unnecessary for the union operator, and conjecture that analogous results hold for other divergences.

Proposition 1 (Union operator via Pre-trained Mixture Density Representation). *Given $\bar{p}_1^{pre} = \sum_{i=1}^n \alpha_i p_1^{pre,i} / \sum_{i=1}^n \alpha_i$, i.e., the α -weighted mixture density of pre-trained models, the following hold:*

$$\pi^* \in \arg \min_{\pi} \sum_{i=1}^n \alpha_i D_{KL}^R(p_1^\pi \parallel p_1^{pre,i}) = \left(\sum_{i=1}^n \alpha_i \right) D_{KL}^R(p_1^\pi \parallel \bar{p}_1^{pre}) \quad (14)$$

Prop. 1, which is proved in Apx. D implies that the union operator in Eq. 7 over n prior models can be implemented by learning a single critic ϕ^* , as shown in Sec. 7. In Apx. C.2, we report the gradient expressions above, and present a brief tutorial to derive the first variations for any new operator.

Crucially, the score in Eq. 13 for the intersection gradient diverges at $t = 1$ ($\kappa_1 = 0$). While prior works attenuate the issue by evaluating the score at $1 - \epsilon$ (De Santi et al., 2025a), this trick hardly scales well to high-dimensional settings. In the following, we propose a principled solution to this problem by leveraging weighted score estimates along the entire noised flow process, i.e., $t \in [0, 1]$.

5 TRULY SCALABLE INTERSECTION VIA FLOW PROCESS OPTIMIZATION

Towards tackling the aforementioned issue, we lift the problem in Eq. 6 from the probability space associated to the last time-step marginal p_1^π , where the score diverges, to the entire flow process:

Intersection Operator \mathcal{O}_\wedge via Flow Process Optimization

$$\pi^* \in \arg \max_{\pi: p_0^\pi = p_0^{pre}} \mathcal{L}_\wedge(\mathbf{Q}^\pi) := \int_0^1 \lambda_t \sum_{i=1}^n \alpha_i D_{KL}(p_t^\pi \parallel p_t^{pre,i}) dt \quad (15)$$

Here, $\mathbf{Q}^\pi = \{p_t^\pi\}_{t \in [0,1]}$ denotes the entire joint flow process induced by policy π over $\mathcal{X}^{[0,1]}$. Under general regularity assumptions, an optimal policy π^* for Problem 15 is optimal also w.r.t. Eq. 6. Interestingly, an optimal flow π^* for Problem 15 can be computed via a MD scheme acting over the space of joint flow processes $\mathbf{Q}^\pi = \{p_t^\pi\}_{t \in [0,1]}$ determined by the following update rule:

270
271
272
273
274**Reward-Guided Flow Merging (Mirror Descent) Step**

$$\mathbf{Q}^k \in \arg \max_{q: p_0 = p_0^{k-1}} \langle \delta \mathcal{L}_\wedge(\mathbf{Q}^{k-1}), \mathbf{Q} \rangle + \frac{1}{\gamma^k} D_{KL}(\mathbf{Q} \| \mathbf{Q}^{k-1}) \quad (16)$$

First, we state the following Lemma 5.1, which allows to express the first variation of \mathcal{L}_\wedge w.r.t. the entire flow process \mathbf{Q}^π as an integral of first variations w.r.t. the marginal densities p_t^π .

Lemma 5.1 (First Variation of Flow Process Functional). *For objective \mathcal{L}_\wedge in Eq. 15 it holds:*

$$\langle \delta \mathcal{L}_\wedge(\mathbf{Q}^k), q \rangle = \int_0^1 \lambda_t \mathbb{E}_{\mathbf{Q}} \left[\delta \sum_{i=1}^n \alpha_i D_{KL}(p_t^\pi \| p_t^{pre,i}) \right] dt. \quad (17)$$

This factorization of $\langle \delta \mathcal{L}_\wedge(\mathbf{Q}^k), q \rangle$ shows that a flow π_{k+1} inducing an optimal process \mathbf{Q}^k w.r.t. the update step in Eq. 16 can be computed by solving a control-affine optimal control problem via the same REWARDGUIDEDFINETUNINGSOLVER oracle used in Alg. 1, by introducing the running cost term:

$$f_t(x) := \delta \left(\sum_{i=1}^n \alpha_i D_{KL}(p_t^\pi \| p_t^{pre,i}) \right) (x, t), \quad t \in [0, 1) \quad (18)$$

This algorithmic idea, which allows to control the score scale at $t \rightarrow 1$ via λ_t , thus enhancing RFM, trivially extends to reward-guided merging, and is accompanied by a detailed pseudocode in Apx. E.2.

6 GUARANTEES FOR REWARD-GUIDED FLOW MERGING

In this section, we aim to establish rigorous theoretical guarantees for RFM, ensuring its reliability.

Central Challenge. Score functions s^π leveraged in Sec. 4 to express gradients of first variations are readily available for pretrained models used to initialize RFM. It is far less clear whether they remain accessible throughout subsequent iterations. In particular, the process returned by REWARDGUIDEDFINETUNINGSOLVER is in general unrelated to the score.

Score Retention via Stochastic Optimal Control. Our key observation is that, under a standard approximation, most fine-tuning schemes retain score information. Specifically, we consider fine-tuning through the lens of *stochastic optimal control* (SOC) (cf. Bellman, 1954)), which encompassing many existing methods including Adjoint Matching (Domingo-Enrich et al., 2024), which we employ in Sec. 7. Formally, SOC addresses the following problem defined over SDEs (see Appendix B):

$$\min_{u \in \mathcal{U}} \mathbb{E} \left[\int_0^1 \frac{1}{2} \|u(X_t^u, t)\|^2 dt - g(X_1^u) \right] \text{ s.t. } dX_t^u = (b(X_t^u, t) + \sigma(t)u(X_t^u, t)) dt + \sigma(t) dB_t \quad (19)$$

where $X_0^u \sim p_0$, \mathcal{U} is the set of admissible controls, and g is a terminal reward, corresponding the g_k 's in Algorithm 1. The corresponding *uncontrolled* dynamics (up to a minus sign),

$$dX_t^u = -b(X_t^u, t) dt + \sigma(t) dB_t, \quad (20)$$

coincide with the *forward process* in diffusion-modeling (Song et al., 2020). We show that the model returned by REWARDGUIDEDFINETUNINGSOLVER via SOC necessarily encodes score information.

Theorem 6.1 (SOC Retains Score Information). *Suppose the forward process in Equation (20) maps any distribution to standard Gaussian noise (i.e., a standard assumption in diffusion model literature). Then the solution to Equation (19) is $u^*(x, t) := \sigma(t) \nabla \log p_t^k(x)$, where p_t^k denotes the marginal distribution of the forward process in Equation (20), initialized at $p_1^{\pi_k}$. In other words, REWARDGUIDEDFINETUNINGSOLVER exactly recovers the score function.*

Leveraging the established connection between Eq. 19 and *mirror descent* (Tang, 2024), Theorem 6.1 enables us to reinterpret Algorithm 1 as generating *approximate mirror iterates*, a framework that has proven effective for sampling and generative modeling (Karimi et al., 2024; De Santi et al., 2025a;b).

Robust Convergence under Inexact Updates. Thanks to Theorem 6.1, we can now develop a rigorous convergence theory for Algorithm 1 under the realistic condition that REWARDGUIDEDFINETUNINGSOLVER (see Sec. 4) is implemented *approximately*. Let \mathcal{G} be the objective in Eq. 9. Via π^k , the iterates generated by Algorithm 1 induce a sequence of stochastic processes, denoted by \mathbf{Q}^k , which satisfy $\mathbf{Q}^k = p_1^{\pi^k}$. Each iterate \mathbf{Q}^k is understood as an approximation to the *idealized* mirror descent step:

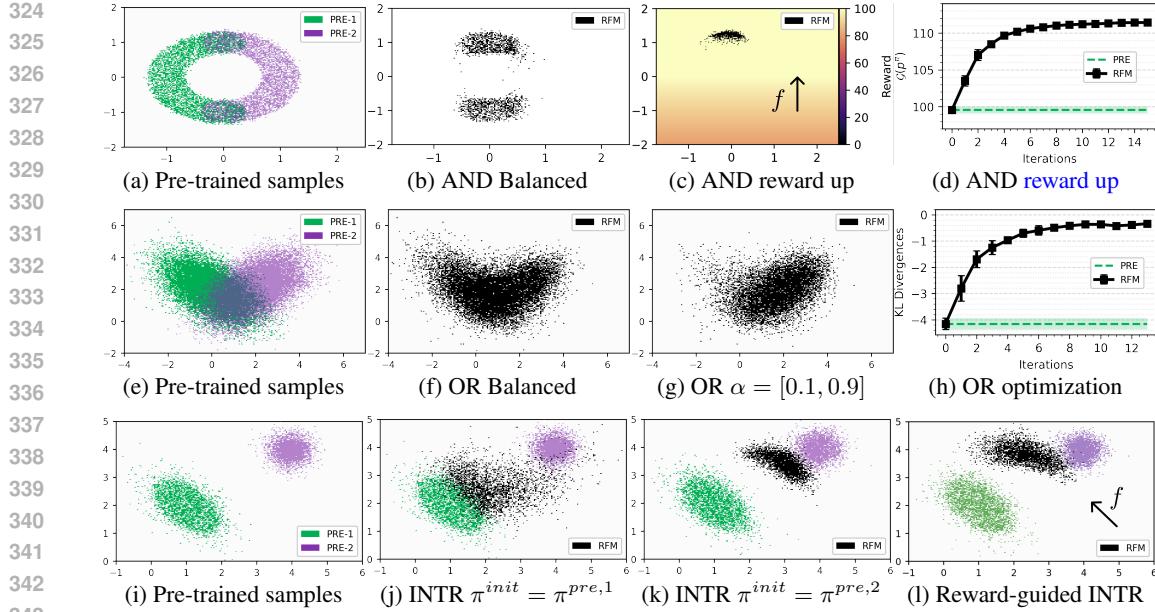


Figure 2: Illustrative settings with visually interpretable results. (top) Flow model balanced pure intersection (2b), and reward-guided intersection (2c), (mid) Flow balanced and unbalanced union, (bottom) Flow model pure and reward-guided interpolation. Crucially, RFM can correctly implement these practically relevant and diverse operators with high degree of expressivity (e.g., α , reward-guidance).

$$\mathbf{Q}_{\sharp}^k \in \arg \max_{\mathbf{Q}: p_0 = p_0^{pre}} \left\{ \langle \delta \mathcal{G}(p_1^{\pi_k}), \mathbf{Q} \rangle - \frac{1}{\gamma^k} D_{KL}(\mathbf{Q} \parallel \mathbf{Q}^{k-1}) \right\}. \quad (21)$$

which serves as the exact reference point for our analysis. To quantify the discrepancy between \mathbf{Q}^k and \mathbf{Q}_{\sharp}^k , let \mathcal{T}_k denote the history up to step k , and decompose the error as

$$b_k := \mathbb{E}[\delta \mathcal{G}(p_1^{\pi_k}) - \delta \mathcal{G}((\mathbf{Q}_{\sharp}^k)_1) \mid \mathcal{T}_k], \quad (22)$$

$$U_k := \delta \mathcal{G}(p_1^{\pi_k}) - \delta \mathcal{G}((\mathbf{Q}_{\sharp}^k)_1) - b_k. \quad (23)$$

Here, b_k captures systematic approximation error, while U_k represents a zero-mean fluctuation conditional on \mathcal{T}_k . Under mild assumptions controlling noise and bias (see Appendix B.2), the long-term behavior of the iterates can be rigorously characterized.

Theorem 6.2 (Asymptotic convergence under inexact updates (Informal)). *Assume the oracle has bounded variance and diminishing bias, and the step sizes $\{\gamma^k\}$ satisfy the Robbins–Monro conditions ($\sum_k \gamma^k = \infty$, $\sum_k (\gamma^k)^2 < \infty$). Then the sequence $\{p_1^{\pi_k}\}$ generated by Algorithm 1 converges almost surely to the optimum in the weak sense:*

$$p_1^{\pi_k} \rightharpoonup p_1^* \quad a.s., \quad (24)$$

where $p_1^* = \mathbf{Q}_1^*$, $\mathbf{Q}^* \in \arg \max_{\mathbf{Q}: \mathbf{Q}_0 = p_0^{pre}} \mathcal{G}(\mathbf{Q}_1)$.

7 EXPERIMENTAL EVALUATION

We evaluate RFM for the reward-guided flow merging problem (see Eq. 5) by tackling two types of experiments: (i) illustrative settings with visually interpretable insights, showcasing the correctness and high expressivity of RFM, and (2) high-dimensional molecular design tasks generating low-energy molecular conformers. Additional experimental details are reported in Appendix G.2

Intersection Operator \mathcal{O}_{\wedge} (AND). We consider pre-trained flow models inducing densities $p_1^{pre,1}$ (green) and $p_1^{pre,2}$ (violet) - as shown in Fig. 2a. We fine-tune $\pi^{\text{init}} := \pi^{pre,1}$ via RFM to compute the policy π^* resulting from diverse intersection operations $\pi^* = \mathcal{O}_{\wedge}(\pi^{pre,1}, \pi^{pre,2})$. First, in Fig. 2b, we show p^* (black) obtained by RFM with $\alpha = [0.5, 0.5]$, i.e., *balanced* (B). One can notice that the flow model p^* covers mostly the intersecting regions between $p_1^{pre,1}$ and $p_1^{pre,2}$ (see Fig. 2a).

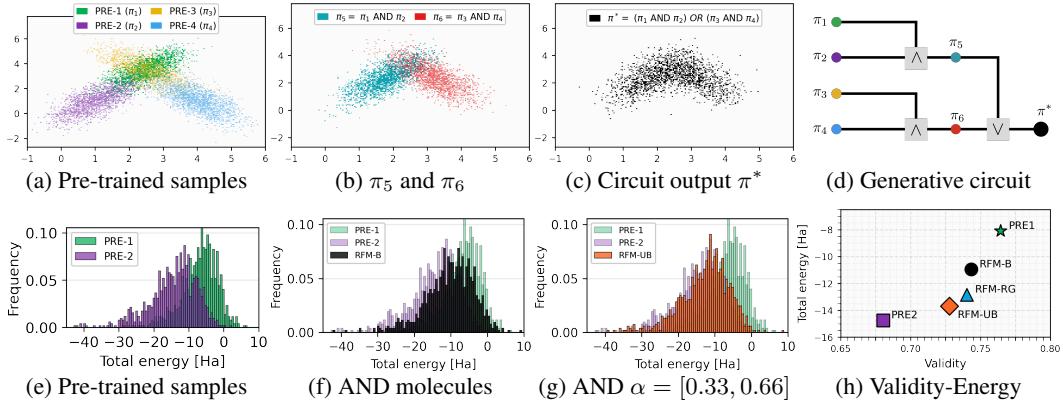


Figure 3: (top) RFM can implement generative circuits (3d) computing sequential operators (3a-3c). (middle) RFM computes a flows intersection π^* generating drug molecules with desired energy levels.

In Fig. 2c we report an instance of reward-guided intersection (RG) for a reward function maximized upward. As one can see, RFM computes a policy π^* placing density over the highest-reward region among the intersecting ones, i.e., the top intersecting area. This reward-guided flow merging process is carried out via maximization over $K = 15$ iterations of the objective \mathcal{G} illustrated in Fig. 2d.

Union Operator \mathcal{O}_\vee (OR). We fine-tune the pre-trained flow model $\pi^{init} = \pi^{pre,1}$ with density illustrated in Fig. 2e (green) via RFM to implement balanced (i.e., $\alpha = [0.5, 0.5]$) and unbalanced (i.e., $\alpha = [0.1, 0.9]$ (UB)) versions of the union operator, namely computing $\pi^* = \mathcal{O}_\vee(\pi^{pre,1}, \pi^{pre,2})$. As shown in Fig. 2f and 2g RFM can successfully compute optimal policies π^* implementing both operators via optimization of the functional \mathcal{G} , corresponding to sum of weighted KL-divergences (see Eq. 7) evaluated for iterations $k \in [K]$ with $K = 13$ in Fig. 2h.

Interpolation Operator \mathcal{O}_{W_1} (Wasserstein-1 Barycenter). We use RFM to compute flow models π^* inducing densities p_1^* corresponding to diverse interpolations between the the pre-trained models' densities illustrated in Fig. 2i. Although the optimal policy to which RFM converges asymptotically is invariant w.r.t. the initial flow model π^{init} chosen for fine-tuning, here we show that this choice can actually be used to control the algorithm execution over few iterations (i.e., $K = 6$). As one can expect, Fig. 2j and 2k show that the result density after $K = 6$ iterations is closer to the flow model chosen as π^{init} , namely $\pi^{pre,1}$ (green) in Fig. 2j and $\pi^{pre,2}$ (violet) in Fig. 2k. We illustrate in Fig. 2l the density (black) obtained via reward-guided interpolation, with a reward function maximized upwards.

Complex Logic Expressions via Generative Circuits. We consider 4 flow models $\{\pi_{pre,i}\}_{i=1}^4$ illustrated in Fig. 3a, which we aim to merge into a unique flow π^* determined by the logical expression $\pi^* = (\pi_1 \wedge \pi_2) \vee (\pi_3 \wedge \pi_4)$. In particular, we implement the generative circuit shown in Fig. 3d via sequential use of RFM. First, we compute $\pi_5 := \mathcal{O}_\wedge(\pi^{pre,1}, \pi^{pre,2})$ and $\pi_6 := \mathcal{O}_\wedge(\pi^{pre,3}, \pi^{pre,4})$, shown in Fig. 3b, and subsequently $\pi^* := \mathcal{O}_\vee(\pi^{pre,3}, \pi^{pre,4})$ - this is illustrated in Fig. 3c. Crucially, this illustrative experiments confirms that RFM can implement complex logical expressions over generative models via generative circuits, as the simple one just presented.

Low-Energy Molecular Design via Flow Merging Next, we address a de-novo molecular design task. Efficiently navigating the vast chemical space to discover novel structures with targeted physicochemical properties is a central goal of data-driven molecular design. A generative model must therefore be capable of producing diverse, chemically valid structures that follow specified property profiles and constraints. We base our case study on two FlowMol models $\pi^{pre,1}$ and $\pi^{pre,2}$ (Dunn & Koes, 2024) pre-trained on GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022) with different levels of single-point total energy at the GFN1-xTB level of theory (Friede et al., 2024), -14.8 and -8.1 Ha respectively as shown in Fig. 3e. We aim to compute a flow model that generates molecules whose total energy matches that of molecules likely under both generative models. To this end, we run RFM to compute the flow π^* returned by the intersection operator (see Eq. 6), with parameters detailed in Apx. G.2. We report in Fig. 3f the

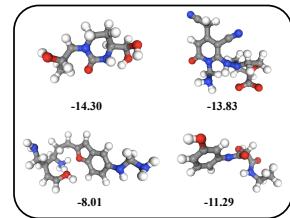


Figure 4: Drug molecules generated by π_{AND}^* flow.

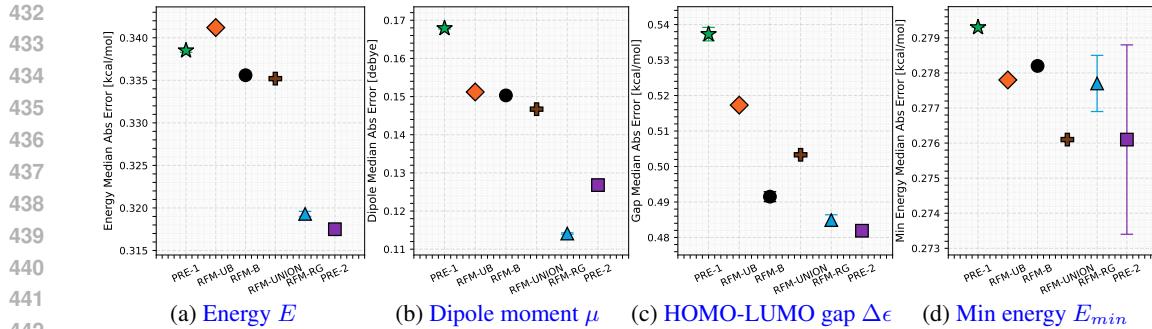


Figure 5: RFM can perform balanced (B), unbalanced (UB), reward-guided (RG) intersections, as well as unions (UNION) of prior ETFlow (Hassan et al., 2024) conformer generation models. We evaluate the resulting flow models in terms of energy (5a), dipole moment (5b), HOMO–LUMO gap (5c), and minimum energy (5d). These results demonstrate the ability of RFM to compute new flow models whose properties predictably interpolate those of the available pre-trained flows.

density p^* (black) computed via balanced merging (i.e., $\alpha_1 = \alpha_2 = 1$) and in Fig. 3g the one obtained via unbalanced merging (i.e., $\alpha_1 = 1, \alpha_2 = 2$). In the former case, p^* correctly places the majority of its density on energy levels within $[-20, 0]$ Ha (see Fig. 3f) corresponding to the overlapping region between the two priors. Moreover, the estimated mean energy of π^* (black) i.e., -10.95 ± 0.28 Ha, reported along with validity in 3h, nearly-perfectly matches the energy value of maximal overlap between $\pi^{pre,1}$ and $\pi^{pre,2}$, as one can see in 3e. Furthermore, adding reward-guidance leads to lower energy values in comparison to the balanced merging model while keeping its high validity. We show in Fig. 4 a sample of molecules generated via π^* , along with their total energy. In the unbalanced case, RFM shifts the density slightly leftwards, effectively implementing the α -weighted intersection. We report energy-validity metrics resulting from balanced and unbalanced intersection in Fig. 3h, and compare them with their reward-guided counterpart in Table 1. Next, we compute via RFM the union operator over two FlowMol pre-trained on the QM9 dataset (Ramakrishnan et al., 2014). We parametrize critics ϕ_i^* (see Sec. 1) via the FlowMol latent representation with an MLP readout layer. Figure 7 shows that the estimated mean of the model π^* obtained via RFM matches the average total energy of $\pi^{pre,1}$ and $\pi^{pre,2}$ as predicted by the closed-form expression for union from Sec. 3.

Flow Merging of Conformer Generation Models Lastly, we tackle a conformer generation task. Deriving 3D conformers from the molecule’s topology is a key prerequisite for many computational chemistry applications spanning molecular docking (McNutt et al., 2023), thermodynamic property prediction (Pracht & Grimme, 2021), and modeling reaction pathways for catalyst design (Schmid et al., 2025), among others. Given a molecular graph, a good conformer generator should predict 3D structures that (i) cover the entire ensemble of chemically valid structures that can be observed in nature for that molecule and (ii) generate those structures at their local energy minimum. In this work, we leverage the pre-trained GEOM-QM9 ETFlow model (denoted PRE-1) (Hassan et al., 2024). Due to ETFlows’ already high coverage, we choose to evaluate our method on energetic ensemble properties, as presented in Hassan et al. (2024). Specifically, for a given molecule we generate a set of conformers and measure the difference in energy, dipole moment, HOMO-LUMO gap and minimum energy of the generated structure ensemble compared to the equilibrium ensemble.

We obtain a lower-energy model PRE-2 via AM fine-tuning on the negative GFN1-xTB total energy, like in our de-novo molecular design case study (see G.3). Afterwards, we use RFM initialized from PRE-2, to compute its balanced (B), unbalanced (UB), reward-guided (RG) intersection, and union variants. Figure 5a shows that the median absolute error (MAE) on the total energy E smoothly interpolates between PRE-1 (≈ 0.3385 kcal/mol) and PRE-2 (≈ 0.3175 kcal/mol): RFM-B and RFM-UNION achieve intermediate errors of ≈ 0.3356 and 0.3352 kcal/mol as expected. On the other hand, the reward-guided variant reaches ≈ 0.3193 kcal/mol, close to PRE-2, and the unbalanced variant ($\alpha_1 = 0.7, \alpha_2 = 0.3$) remains near PRE-1 at 0.3412 kcal/mol. These numerical results further validate the ability of RFM to perform unbalanced (UB) and reward-guided (RG) intersection, leading to flows with properties controllably interpolating the ones of available flow models. A similar pattern appears for the dipole moment μ in Fig. 5b where PRE-1 and PRE-2 attain MAEs of ≈ 0.1679 and 0.1268 debye respectively. The merged models lie between these values, with

486 RFM-RG further reducing the error to ≈ 0.1141 debye. Analogous results are reported in Fig. 5c and
 487 5d for the HOMO–LUMO gap $\Delta\epsilon$, and minimum energy E_{\min} . This evaluation indicates that RFM
 488 can compute new flow models for conformer generation, whose physical properties controllably and
 489 predictably interpolate between, or slightly improve upon, the two available pre-trained flow models.
 490

491 Ultimately, in Apx. F, we briefly investigate the computational cost of Reward-Guided Flow Merging.
 492

493 8 RELATED WORK

494 In the following, we present relevant work in related areas, including flow model fine-tuning via
 495 optimal control, flow model merging and composition, convex RL, and probability-space optimization.
 496

497 **Flow and diffusion models fine-tuning via optimal control.** Several works have framed fine-tuning
 498 of flow and diffusion models to maximize expected reward functions under KL regularization as
 499 an entropy-regularized optimal control problem (e.g., Uehara et al., 2024a; Tang, 2024; Uehara et al.,
 500 2024b; Domingo-Enrich et al., 2024). More recently, De Santi et al. (2025b) introduced a framework
 501 for distributional fine-tuning. The reward-guided flow merging problem in Eq. 5 extends a specific
 502 sub-class of distributional fine-tuning to the case of multiple (i.e., $n > 1$) pre-trained models. This
 503 generalization allows the use of scalable control theoretic or RL schemes for flow model merging,
 504 and enables reward-guided model merging, where reward-guided fine-tuning and model merging
 505 can be performed simultaneously via unified formulations and algorithms, such as RFM.
 506

507 **Diffusion and flow model merging and inference-time composition.** While recent works in
 508 inference-time flow and diffusion model composition introduced theory-backed schemes (e.g., Skreta
 509 et al., 2024; Bradley et al., 2025; Du et al., 2023), this is arguably not the case for flow merging,
 510 with a few exceptions (e.g., Song et al., 2023). Our framework provides a formal probability-space
 511 viewpoint enabling interpretable merging operators (see Sec. 3) for highly expressive compositions
 512 (e.g., via generative circuits), provably implemented by RFM. To our knowledge, the theoretical
 513 guarantees in Sec. 6 are first-of-their-kind for model merging. Specializing them to specific operators
 514 e.g., intersection, yields highly relevant insights, such as generative models safety guarantees via
 515 intersection with a prior safe model.
 516

517 **Convex and general utilities reinforcement learning.** Convex and General (Utilities) RL (Hazan
 518 et al., 2019; Zahavy et al., 2021; Zhang et al., 2020) generalizes RL to the case where one wishes to
 519 maximize a concave (Hazan et al., 2019; Zahavy et al., 2021), or general (Zhang et al., 2020; Barakat
 520 et al., 2023) functional of the state distribution induced by a policy over a dynamical system’s state
 521 space. Recent works tackled the finite samples budget setting (e.g., Mutti et al., 2022b;a; De Santi
 522 et al., 2024). Similarly to previous optimization schemes for diffusion and flow models (De Santi
 523 et al., 2025a;b), our framework (in Eq. 5) is related to Convex and General RL, with p_1^π representing
 524 the state distribution induced by policy π over a subset, or the entire flow process state space.
 525

526 **Optimization over probability measures via mirror flows.** Recently, there has been a growing
 527 interest in devising theoretical guarantees for probability-space optimization problems in diverse
 528 fields of application. These include optimal transport (Aubin-Frankowski et al., 2022; Léger, 2021;
 529 Karimi et al., 2024), kernelized methods (Dvurechensky & Zhu, 2024), GANs (Hsieh et al., 2019),
 530 and manifold exploration (De Santi et al., 2025a) among others. To our knowledge, we present
 531 the first use of this theoretical framework to establish guarantees for large-scale flow and diffusion
 532 models merging, shedding new light on this highly practically relevant generative modeling task.
 533

534 9 CONCLUSION

535 This work introduces a formal probability-space optimization framework for reward-guided flow merging,
 536 strictly generalizing existing formulations. This allows to express a rich class of practically relevant
 537 merging operators over generative models (e.g., intersection, union, interpolation, as well as their
 538 reward-guided counterparts), as well as complex logical expressions via generative circuits. We then
 539 propose Reward-Guided Flow Merging, a mirror-descent algorithm that reduces complex merging
 540 tasks to a sequence of standard reward-guided fine-tuning steps, each solvable by scalable off-the-shelf
 541 methods. Leveraging recent advances in mirror flows theory, we provide first-of-their kind guarantees
 542 for (reward-guided) flow model merging. Empirical results on diverse visually interpretable settings,
 543 molecular design as well as conformer generation tasks demonstrate that our approach can steer pre-
 544 trained models to implement diverse reward-guided merging objectives of high practical relevance.
 545

540 10 REPRODUCIBILITY STATEMENT
541

542 We provide details explanation of the method proposed in Sec. 4 and conditions under which it work
 543 in Sec. 3. We include in Appendix E.2 a detailed implementation, which we used to carry our the
 544 experiments in Sec. 7. Moreover, we report parameter choices for experimental evaluations in Apx.
 545 G.2. Ultimately, notice that our implemented version of RFM is based on Adjoint Matching (Domingo-
 546 Enrich et al., 2024), which is a established scheme for reward-guided fine-tuning.

548 REFERENCES
549

550 Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their*
 551 *Applications*, 12(3):313–326, 1982.

552 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017. URL <https://arxiv.org/abs/1701.07875>.

555 Pierre-Cyril Aubin-Frankowski, Anna Korba, and Flavien Léger. Mirror descent with relative smooth-
 556 ness in measure spaces, with application to sinkhorn and em. *Advances in Neural Information*
 557 *Processing Systems*, 35:17263–17275, 2022.

558 Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
 559 for property prediction and molecular generation. *Scientific Data*, 9(1):185, 2022.

561 Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with bregman
 562 divergences. *Journal of machine learning research*, 6(Oct):1705–1749, 2005.

564 Anas Barakat, Ilyas Fatkhullin, and Niao He. Reinforcement learning with general utilities: Simpler
 565 variance reduction and large state-action space. In *International Conference on Machine Learning*,
 566 pp. 1753–1800. PMLR, 2023.

567 Richard Bellman. The theory of dynamic programming. *Bulletin of the American Mathematical*
 568 *Society*, 60(6):503–515, 1954.

570 Michel Benaïm. Dynamics of stochastic approximation algorithms. In *Seminaire de probabilités*
 571 *XXXIII*, pp. 1–68. Springer, 2006.

573 Arwen Bradley, Preetum Nakkiran, David Berthelot, James Thornton, and Joshua M Susskind.
 574 Mechanisms of projective composition of diffusion models. *arXiv preprint arXiv:2502.04549*,
 575 2025.

576 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
 577 ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *arXiv preprint*
 578 *arXiv:2303.04137*, 2023.

580 Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:
 581 Diffusion steps, twists, and turns for molecular docking. *arXiv preprint arXiv:2210.01776*, 2022.

582 Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In *International*
 583 *conference on machine learning*, pp. 685–693. PMLR, 2014.

585 Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
 586 Yaodong Yang. Safe rlhf: Safe reinforcement learning from human feedback. *arXiv preprint*
 587 *arXiv:2310.12773*, 2023.

588 Riccardo De Santi, Manish Prajapat, and Andreas Krause. Global reinforcement learning: Beyond lin-
 589 ear and convex rewards via submodular semi-gradient methods. *arXiv preprint arXiv:2407.09905*,
 590 2024.

592 Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, and Andreas Krause.
 593 Provable maximum entropy manifold exploration via diffusion models. In *Proc. International*
 594 *Conference on Machine Learning (ICML)*, June 2025a.

594 Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, and Andreas Krause.
 595 Flow density control: Generative optimization beyond entropy-regularized fine-tuning. In *The*
 596 *Exploration in AI Today Workshop at ICML 2025*, 2025b.

597

598 Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
 599 Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
 600 *arXiv preprint arXiv:2409.08861*, 2024.

601 Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
 602 Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Composi-
 603 tional generation with energy-based diffusion models and mcmc. In *International conference on*
 604 *machine learning*, pp. 8489–8510. PMLR, 2023.

605 Ian Dunn and David Ryan Koes. Mixed continuous and categorical flow matching for 3d de novo
 606 molecule generation. *ArXiv*, pp. arXiv–2404, 2024.

607

608 Pavel Dvurechensky and Jia-Jie Zhu. Analysis of kernel mirror prox for measure optimization. In
 609 *International Conference on Artificial Intelligence and Statistics*, pp. 2350–2358. PMLR, 2024.

610 Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and Ahmed
 611 Touati. Temporal difference flows. *arXiv preprint arXiv:2503.09817*, 2025.

612

613 Marvin Friede, Christian Hölzer, Sebastian Ehlert, and Stefan Grimme. dxtb—an efficient and fully
 614 differentiable framework for extended tight-binding. *The Journal of Chemical Physics*, 161(6),
 615 2024.

616 Majdi Hassan, Nikhil Shenoy, Jungyoon Lee, Hannes Stärk, Stephan Thaler, and Dominique Beaini.
 617 Et-flow: Equivariant flow-matching for molecular conformer generation. *Advances in Neural*
 618 *Information Processing Systems*, 37:128798–128824, 2024.

619

620 Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
 621 exploration. In *International Conference on Machine Learning*, 2019.

622 Tom Heskes. Selecting weighting factors in logarithmic opinion pools. *Advances in neural informa-*
 623 *tion processing systems*, 10, 1997.

624

625 Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. *Fundamentals of convex analysis*. Springer
 626 Science & Business Media, 2004.

627

628 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 629 *neural information processing systems*, 33:6840–6851, 2020.

630

631 Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
 632 for molecule generation in 3d. In *International conference on machine learning*, pp. 8867–8887.
 633 PMLR, 2022.

634

635 Ya-Ping Hsieh, Chen Liu, and Volkan Cevher. Finding mixed nash equilibria of generative adversarial
 636 networks. In *International Conference on Machine Learning*, pp. 2810–2819. PMLR, 2019.

637

638 Yanwei Jia and Xun Yu Zhou. Policy evaluation and temporal-difference learning in continuous time
 639 and space: A martingale approach. *Journal of Machine Learning Research*, 23(154):1–55, 2022.

640

641 Mohammad Reza Karimi, Ya-Ping Hsieh, and Andreas Krause. Sinkhorn flow as mirror flow: A
 642 continuous-time framework for generalizing the sinkhorn algorithm. In *International Conference*
 643 *on Artificial Intelligence and Statistics*, pp. 4186–4194. PMLR, 2024.

644

645 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.(2009),
 646 2009.

647

648 Flavien Léger. A gradient descent perspective on sinkhorn. *Applied Mathematics & Optimization*, 84
 649 (2):1843–1855, 2021.

650

651 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 652 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

648 Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
 649 David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv preprint*
 650 *arXiv:2412.06264*, 2024.

651 Qianli Ma, Xuefei Ning, Dongrui Liu, Li Niu, and Linfeng Zhang. Decouple-then-merge: Finetune
 652 diffusion models as multi-task learning. In *Proceedings of the Computer Vision and Pattern*
 653 *Recognition Conference*, pp. 23281–23291, 2025.

654 Andrew T McNutt, Fatimah Bisiriyu, Sophia Song, Ananya Vyas, Geoffrey R Hutchison, and
 655 David Ryan Koes. Conformer generation for structure-based drug design: How many and how
 656 good? *Journal of Chemical Information and Modeling*, 63(21):6598–6607, 2023.

657 Panayotis Mertikopoulos, Ya-Ping Hsieh, and Volkan Cevher. A unified stochastic approximation
 658 framework for learning in games. *Mathematical Programming*, 203(1):559–609, 2024.

659 Alexander Mielke and Jia-Jie Zhu. Hellinger-kantorovich gradient flows: Global exponential decay
 660 of entropy functionals. *arXiv preprint arXiv:2501.17049*, 2025.

661 Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. *Econometrica*, 70(2):
 662 583–601, 2002.

663 Mirco Mutti, Riccardo De Santi, Piersilvio De Bartolomeis, and Marcello Restelli. Challenging com-
 664 mon assumptions in convex reinforcement learning. *Advances in Neural Information Processing*
 665 *Systems*, 35:4489–4502, 2022a.

666 Mirco Mutti, Riccardo De Santi, and Marcello Restelli. The importance of non-markovianity in
 667 maximum state entropy exploration. In *International Conference on Machine Learning*, pp.
 668 16223–16239. PMLR, 2022b.

669 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
 670 efficiency in optimization. 1983.

671 Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
 672 using variational divergence minimization. *Advances in neural information processing systems*, 29,
 673 2016.

674 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 675 diffusion. *arXiv preprint arXiv:2209.14988*, 2022.

676 Philipp Pracht and Stefan Grimme. Calculation of absolute molecular entropies and heat capacities
 677 made simple. *Chemical science*, 12(19):6551–6568, 2021.

678 John David Pressman, Katherine Crowson, and Simulacra Captions Contributors. Simulacra aesthetic
 679 captions. Technical Report Version 1.0, Stability AI, 2022. url <https://github.com/JD-P/simulacra-aesthetic-captions> .

680 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 681 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

682 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical*
 683 *statistics*, pp. 400–407, 1951.

684 Stefan P Schmid, Henrik Seng, Thibault Kläy, and Kjell Jorner. Rapid generation of transition-state
 685 conformer ensembles via constrained distance geometry. 2025.

686 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 687 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 688 open large-scale dataset for training next generation image-text models. *Advances in Neural*
 689 *Information Processing Systems*, 35:25278–25294, 2022.

690 Marta Skreta, Lazar Atanackovic, Avishek Joey Bose, Alexander Tong, and Kirill Neklyudov. The su-
 691 perposition of diffusion models using the $\text{it}^\wedge \text{o}$ density estimator. *arXiv preprint arXiv:2412.17762*,
 692 2024.

702 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 703 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 704 pp. 2256–2265. PMLR, 2015.

705

706 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 707 *Advances in neural information processing systems*, 32, 2019.

708

709 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 710 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 711 *arXiv:2011.13456*, 2020.

712

713 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

714

715 Wenpin Tang. Fine-tuning of diffusion models via stochastic control: entropy regularization and
 716 beyond. *arXiv preprint arXiv:2403.06279*, 2024.

717

718 Lenart Treven, Jonas Hübotter, Bhavya Sukhija, Florian Dorfler, and Andreas Krause. Efficient ex-
 719 ploration in continuous-time model-based reinforcement learning. *Advances in Neural Information*
 720 *Processing Systems*, 36:42119–42147, 2023.

721

722 Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
 723 Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-time
 724 diffusion models as entropy-regularized control. *arXiv preprint arXiv:2402.15194*, 2024a.

725

726 Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
 727 Diamant, Alex M Tseng, Sergey Levine, and Tommaso Biancalani. Feedback efficient online
 728 fine-tuning of diffusion models. *arXiv preprint arXiv:2402.16359*, 2024b.

729

730 Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement learning in continuous time
 731 and space: A stochastic control approach. *Journal of Machine Learning Research*, 21(198):1–34,
 732 2020.

733

734 Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is enough
 735 for convex mdps. *Advances in Neural Information Processing Systems*, 34:25746–25759, 2021.

736

737 Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Vari-
 738 ational policy gradient method for reinforcement learning with general utilities. In
 739 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 740 ral Information Processing Systems*, volume 33, pp. 4572–4583. Curran Associates, Inc.,
 741 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/30ee748d38e21392de740e2f9dc686b6-Paper.pdf.

742

743

744 Hanyang Zhao, Haoxian Chen, Ji Zhang, David D Yao, and Wenpin Tang. Scores as actions: a
 745 framework of fine-tuning diffusion models by continuous-time reinforcement learning. *arXiv*
 746 *preprint arXiv:2409.08400*, 2024.

747

748

749

750

751

752

753

754

755

756	A APPENDIX	
757		
758	CONTENTS	
759		
760		
761	B Proofs for Section 6	16
762	B.1 Proof of Theorem 6.1	16
763	B.2 Rigorous Statement and Proof of Theorem 6.2	17
764		
765		
766	C Derivations of Gradients of First Variation	19
767	C.1 A brief tutorial on first variation derivation	19
768	C.2 Derivation of First Variations used in Sec. 4	19
769		
770		
771	D Proof of Proposition 1	21
772		
773	E Reward-Guided Flow Merging (RFM) Implementation	22
774	E.1 Implementation of REWARDGUIDEDFINETUNINGSOLVER	22
775	E.2 Implementation of REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS	22
776		
777		
778	F Reward-Guided Flow Merging (RFM): Computational Complexity, Cost, and Approximate Fine-Tuning Oracles	24
779		
780		
781	G Experimental Details	25
782		
783	G.1 Illustrative Examples Experimental Details	25
784	G.2 Molecular Design Case Study	25
785	G.3 Conformer Generation Case Study	26
786		
787		
788	H Beyond Molecules: Reward-Guided Flow Merging of Pre-Trained Image Models	27
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 B PROOFS FOR SECTION 6
811812 B.1 PROOF OF THEOREM 6.1
813

814 **Stochastic Optimal Control.** We consider stochastic optimal control (SOC), which studies the
815 problem of steering a stochastic dynamical system to optimize a specified performance criterion.
816 Formally, let $(X_t^u)_{t \in [0,1]}$ be a controlled stochastic process satisfying the stochastic differential
817 equation (SDE)

$$818 \quad dX_t^u = b(X_t^u, t) dt + \sigma(t) u(X_t^u, t) dt + \sigma(t) dB_t, \quad X_0^u \sim p_0,$$

819 where $u \in \mathcal{U}$ is an admissible control and B_t is standard Brownian motion. The objective is to select
820 u to minimize the cost functional

$$822 \quad \mathbb{E} \left[\int_0^1 \frac{1}{2} \|u(X_t^u, t)\|^2 dt - g(X_1^u) \right], \quad (25)$$

823 where $\frac{1}{2} \|u(\cdot, t)\|^2$ represents the running cost and g is a terminal reward. A standard application
824 of Girsanov's theorem shows that Equation (25) is equivalent to the mirror descent iterate in Equation
825 (21) with $\delta\mathcal{G}(p_1^{\pi_k}) \leftarrow g$ and $p_0 \leftarrow p^{\text{pre}}$ (Tang, 2024). In addition, it is well-known that in the
826 context of diffusion-based generative modeling, the corresponding uncontrolled dynamics

$$827 \quad dX_t = -b(X_t, t) dt + \sigma(t) dB_t$$

828 coincide with the forward noising process used in score-based models (Song et al., 2020; Domingo-
829 Enrich et al., 2024).

830 **Proof of Theorem 6.1.**

831 **Theorem 6.1** (SOC Retains Score Information). *Suppose the forward process in Equation (20)
832 maps any distribution to standard Gaussian noise (i.e., a standard assumption in diffusion model
833 literature). Then the solution to Equation (19) is $u^*(x, t) := \sigma(t) \nabla \log p_t^k(x)$, where p_t^k denotes the
834 marginal distribution of the forward process in Equation (20), initialized at $p_1^{\pi_k}$. In other words,
835 REWARDGUIDEDFINETUNINGSOLVER exactly recovers the score function.*

836 *Proof.* **Step 1.** Let \mathbf{Q}^* denote the optimal process solving Equation (19). A standard application of
837 Girsanov's theorem shows that \mathbf{Q}^* also solves the *Schrödinger bridge problem*

$$838 \quad \min_{\substack{\mathbf{Q}_0 = p^{\text{pre}} \\ \mathbf{Q}_1 = \mathbf{Q}_1^*}} D_{\text{KL}}(\mathbf{Q} \parallel \mathbf{P}), \quad (26)$$

839 where \mathbf{P} is the law of the uncontrolled dynamics

$$840 \quad dX_t = b(X_t, t) dt + \sigma(t) dB_t.$$

841 This equivalence holds because the SOC cost in Equation (19) penalizes control energy in the same
842 way that Girsanov's theorem expresses a controlled SDE as a relative entropy with respect to its
843 uncontrolled counterpart.

844 **Step 2.** Define the *forward process* $\mathbf{P}_{\text{forward}}$ by

$$845 \quad dX_t = -b(X_t, t) dt + \sigma(t) dB_t. \quad (27)$$

846 By assumption, this process maps any initial distribution to the standard Gaussian at $t = 1$. In
847 particular, starting from $X_0 \sim \mathbf{Q}_1^*$, we obtain $X_1 \sim p^{\text{pre}} = \mathcal{N}(0, I)$.

848 **Step 3.** Consider the *time-reversed Schrödinger bridge problem*

$$849 \quad \min_{\substack{\overleftarrow{\mathbf{Q}}_0 = \mathbf{Q}_1^* \\ \overleftarrow{\mathbf{Q}}_1 = p^{\text{pre}}}} D_{\text{KL}}(\overleftarrow{\mathbf{Q}} \parallel \mathbf{P}_{\text{forward}}), \quad (28)$$

850 and denote its solution by $\overleftarrow{\mathbf{Q}}^*$. Since relative entropy is invariant under bijective mappings and
851 time-reversal is bijective, the optimizers of Equation (26) and Equation (28) satisfy

$$852 \quad \overleftarrow{\mathbf{Q}}^* = \overleftarrow{\mathbf{Q}}^*$$

i.e., the optimal reversed bridge is simply the time-reversal of the forward bridge.

By Step 2, the process

$$dX_t = -b(X_t, t) dt + \sigma(t) dB_t, \quad X_0 \sim \mathbf{Q}_1^* \quad (29)$$

solves Equation (28), achieving the minimum relative entropy (zero) while satisfying the prescribed marginals. Thus, invoking the relation $\overleftarrow{\mathbf{Q}}^* = \overleftarrow{\mathbf{Q}}^*$, the solution to Equation (26)—and hence to the SOC problem Equation (19)—is given by the time-reversal of Equation (29).

Finally, applying the classical time-reversal formula (Anderson, 1982) yields that \mathbf{Q}^* is given by

$$dX_t = \left(b(\overleftarrow{X}_t, t) + \sigma^2(t) \nabla \log p_t(X_t) \right) dt + \sigma(t) dB_t,$$

where p_t is the marginal density of Equation (29). Hence, REWARDGUIDEDFINETUNINGSOLVER exactly recovers the score function. \square

B.2 RIGOROUS STATEMENT AND PROOF OF THEOREM 6.2

To prepare for the convergence analysis, we impose a few auxiliary assumptions. These assumptions are standard in the study of stochastic approximation and gradient flows, and typically hold in practical situations. Our proof strategy follows ideas that have also been employed in related works (De Santi et al., 2025a;b).

We begin with the entropy functional defined on probability measures:

$$\mathcal{H}(p) := \int p \log p. \quad (30)$$

In our analysis, \mathcal{H} serves as the *mirror map* or *distance-generating function* (Mertikopoulos et al., 2024; Hsieh et al., 2019). The first condition addresses the behavior of the corresponding dual variables.

Assumption B.1 (Precompactness of Dual Iterates). *The sequence of dual elements $\{\delta\mathcal{H}(p_1^{\pi_k})\}_k$ is precompact in the L_∞ topology.*

This compactness property ensures that the interpolated dual trajectories remain confined to a bounded region of function space. Such a condition is crucial for invoking convergence results based on asymptotic pseudotrajectories. Variants of this assumption have appeared in the literature on stochastic approximation and continuous-time embeddings of discrete algorithms (Benaïm, 2006; Hsieh et al., 2019; Mertikopoulos et al., 2024).

Assumption B.2 (Noise and Bias Conditions). *For the stochastic approximations used in the updates, we assume that almost surely:*

$$\|b_k\|_\infty \rightarrow 0, \quad (31)$$

$$\sum_k \mathbb{E}[\gamma_k^2 (\|b_k\|_\infty^2 + \|U_k\|_\infty^2)] < \infty, \quad (32)$$

$$\sum_k \gamma_k \|b_k\|_\infty < \infty. \quad (33)$$

These conditions, standard in the Robbins–Monro setting (Robbins & Monro, 1951; Benaïm, 2006; Hsieh et al., 2019), guarantee that the stochastic bias vanishes asymptotically while the cumulative noise remains under control. Together, they ensure that random perturbations do not obstruct convergence to the optimizer of the limiting objective.

With these assumptions in place, we can now state and prove the convergence guarantee.

Theorem B.1 (Convergence guarantee in the trajectory setting). *Suppose Assumptions B.1–B.2 hold, and the step sizes $\{\gamma_k\}$ follow the Robbins–Monro conditions ($\sum_k \gamma_k = \infty$, $\sum_k \gamma_k^2 < \infty$). Then the sequence $\{p_1^{\pi_k}\}$ generated by Algorithm 1 converges almost surely, in the weak topology, to the optimum:*

$$p_1^{\pi_k} \rightharpoonup p_1^* \quad a.s., \quad (34)$$

where $p_1^* = \mathbf{Q}_1^*$ for some $\mathbf{Q}^* \in \arg \max_{\mathbf{Q}: \mathbf{Q}_0 = p_0^{\text{pre}}} \mathcal{G}(\mathbf{Q}_1)$.

918 *Proof.* We analyze the continuous-time mirror flow defined by
 919

$$920 \quad \dot{h}_t = \delta \mathcal{G}(p_1^t), \quad p_1^t = \delta \mathcal{H}^*(h_t), \quad (35)$$

921 where the Fenchel conjugate of \mathcal{H} is given by $\mathcal{H}^*(h) = \log \int e^h$ (Hsieh et al., 2019; Hiriart-Urruty
 922 & Lemaréchal, 2004).

923 To link the discrete dynamics to this continuous flow, we construct a piecewise linear interpolation of
 924 the iterates:

$$926 \quad \hat{h}_t = h^{(k)} + \frac{t - \tau_k}{\tau_{k+1} - \tau_k} (h^{(k+1)} - h^{(k)}), \quad h^{(k)} = \delta \mathcal{H}(p_1^{\pi_k}), \quad \tau_k = \sum_{r=0}^k \alpha_r,$$

927 where $\{\alpha_r\}$ denotes the step-size sequence. This interpolation produces a continuous path \hat{h}_t that
 928 tracks the discrete updates as the steps shrink.

929 Let Φ_u denote the flow map of equation 35 at time u . Standard results in stochastic approximation
 930 (Benaïm, 2006; Hsieh et al., 2019; Mertikopoulos et al., 2024) imply that for any fixed horizon $T > 0$,
 931 there exists a constant $C(T)$ such that

$$935 \quad \sup_{0 \leq u \leq T} \|\hat{h}_{t+u} - \Phi_u(\hat{h}_t)\| \leq C(T) [\Delta(t-1, T+1) + b(T) + \gamma(T)],$$

937 where Δ accounts for cumulative noise, b for bias, and γ for step-size effects. Under Assumptions
 938 B.1–B.2, these quantities vanish asymptotically, ensuring that \hat{h}_t forms a precompact asymptotic
 939 pseudotrajectory (APT) of the mirror flow.

941 By the APT limit set theorem (Benaïm, 2006, Thm. 4.2), the limit set of a precompact APT is
 942 contained in the internally chain transitive (ICT) set of the underlying flow. In our case, Equation (35)
 943 corresponds to a gradient-like flow in the Hellinger–Kantorovich geometry (Mielke & Zhu, 2025),
 944 with \mathcal{G} serving as a strict Lyapunov function. As \mathcal{G} decreases strictly along non-stationary trajectories,
 945 the ICT set reduces to the collection of stationary points of \mathcal{G} .

946 Finally, because \mathcal{G} is composed of distance-like penalties (e.g., \mathbb{W}_1 or KL terms) together with a linear
 947 component, its stationary points coincide with its global maximizers. Consequently, \hat{h}_t converges
 948 almost surely to the set of maximizers of \mathcal{G} , which establishes the claim. \square

949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 **C DERIVATIONS OF GRADIENTS OF FIRST VARIATION**
 973

974 **C.1 A BRIEF TUTORIAL ON FIRST VARIATION DERIVATION**
 975

976 In this work, we focus on the functionals that are Fréchet differentiable: Let V be a normed spaces.
 977 Consider a functional $F : V \rightarrow \mathbb{R}$. There exists a linear operator $A : V \rightarrow \mathbb{R}$ such that the following
 978 limit holds

$$979 \lim_{\|h\|_V \rightarrow 0} \frac{|F(f+h) - F(f) - A[h]|}{\|h\|_V} = 0. \quad (36)$$

980

981 We further assume that V has enough structure such that every element of its dual (the space of
 982 bounded linear operator on V) admits a compact representation. For example, if V is the space of
 983 bounded continuous functions with compact support, there exists a unique positive Borel measure μ
 984 with the same support, which can be identified as the linear functional. We denote this element as
 985 $\delta F[f]$ such that $\langle \delta F[f], h \rangle = A[h]$. Sometimes we also denote it as $\frac{\delta F}{\delta f}$. We will refer to $\delta F[f]$ as
 986 the first-order variation of F at f .

987 In the following, we briefly present standard strategies to derive the first-order variation of two broad
 988 classes of functionals, including a wide variety of divergence measures, which can be employ to
 989 implement novel operators by Eq. 5. We consider: (i) those defined in closed form with respect to
 990 the density (e.g., forward KL) and, (ii) those defined via variational formulations (e.g., Wasserstein
 991 distance, reverse KL, and MMD).

992 • **Category 1: Functional defined in a closed form with respect to the density.** For this class of
 993 functionals, the first-order variations can typically be computed using its definition and chain rule.
 994 Recalling the definition of first variation (36), we can calculate the first-order variation of the mean
 995 functional, as a trivial example. Given a continuous and bounded function $r : \mathbb{R}^d \rightarrow \mathbb{R}$ and a
 996 probability measure μ on \mathbb{R}^d , define the functional $F(\mu) = \int r(x)\mu(x)dx$. Then we have:

$$997 |F(\mu + \delta\mu) - F(\mu) - \langle r, \delta\mu \rangle| = 0. \quad (37)$$

998 Therefore we obtain that: $\delta F[\mu] = r$ for all μ . In the following section, we compute similarly the
 999 first variation of the KL divergence.

1000 • **Category 2: Functionals defined through a variational formulation.** Another fundamental
 1001 subclass of functionals that plays a central role in this work is the one of functionals defined via a
 1002 variational problem

$$1003 F[f] = \sup_{g \in \Omega} G[f, g], \quad (38)$$

1004 where Ω is a set of functions or vectors independent of the choice of f , and g is optimized over the
 1005 set Ω . We will assume that the maximizer $g^*(f)$ that reaches the optimal value for $G[f, \cdot]$ is unique
 1006 (which is the case for the functionals considered in this project). It is known that one can use the
 1007 Danskin's theorem (also known as the envelope theorem) to compute

$$1011 \frac{\delta F[f]}{\delta f} = \partial_f G[f, g^*(f)], \quad (39)$$

1012 under the assumption that F is differentiable (Milgrom & Segal, 2002).

1015 **C.2 DERIVATION OF FIRST VARIATIONS USED IN SEC. 4**
 1016

1017 In the following, we derive explicitly the first variations employed in Sec. 1

1018 • **Optimal transport and Wasserstein-p distance (Category 2)** Consider the optimal transport
 1019 problem

$$1022 \text{OT}_c(u, v) = \inf_{\gamma} \left\{ \int \int c(x, y) d\gamma(x, y) : \int \gamma(x, y) dx = u(y), \int \gamma(x, y) dy = v(x) \right\} \quad (40)$$

1023 where

$$1025 \Gamma = \left\{ \gamma : \int \gamma(x, y) dx = u(y), \int \gamma(x, y) dy = v(x) \right\}$$

1026 It admits the following equivalent dual formulation
 1027

$$1028 \text{OT}_c(u, v) = \sup_{f, g} \left\{ \int f du + \int g dv : f(x) + g(y) \leq c(x, y) \right\} \quad (41)$$

1030 By taking $c(x, y) = \|x - y\|^p$, we recover $\text{OT}_c(u, v) = W_p(u, v)^p$. Let ϕ^* and g^* be the solution
 1031 to the above dual optimization problem. From the Danskin's theorem, we have
 1032

$$1033 \frac{\delta}{\delta u} W_p(u, v)^p = \phi^*. \quad (42)$$

1035 In the special case of $p = 1$, we know that $g^* = -\phi^*$ (note that the constraint can be equivalently
 1036 written as $\|\nabla \phi\| \leq 1$), in which case ϕ^* is typically known as the critic in the Wasserstein-GAN
 1037 framework (cf. Arjovsky et al., 2017).

- 1038 • **Reverse KL divergence (Category 2)** We use the variational (Fenchel-Legendre) representation
 1039 of the forward KL, $D_{KL}(p\|q)$, as in f-GAN (Nowozin et al., 2016):

$$1041 D_{KL}(p\|q) = \sup_{\phi: \mathcal{X} \rightarrow \mathbb{R}} \left\{ \mathbb{E}_p \phi(x) - \mathbb{E}_q e^{\phi(x)-1} \right\} \quad (43)$$

1043 which follows from the general f-divergence dual generator $f(u) = u \log u - u + 1$ whose conjugate
 1044 is $f^*(t) = e^{t-1}$. For fixed p and variable q , we define:
 1045

$$1046 G(q, \phi) := \mathbb{E}_p \phi(x) - \mathbb{E}_q e^{\phi(x)-1} \quad (44)$$

1048 Assuming uniqueness of a maximizer $\phi^*(p, q)$, Danskin's (or envelope) theorem yields the first
 1049 variation by differentiating G at ϕ^* :

$$1050 \frac{\delta}{\delta q(x)} D_{KL}(p\|q) = \frac{\delta}{\delta q(x)} \left(- \int q(x) e^{\phi^*(x)-1} du \right) = -e^{\phi^*(x)-1} \quad (45)$$

- 1053 • **KL divergence (Category 1)** Consider the KL functional:

$$1055 D_{KL}(p\|q) = - \int p \log \frac{p}{q}, dx \quad (46)$$

1057 By the definition of the first-order variation (see Eq. 36), we have:
 1058

$$1059 \delta D_{KL}(p\|q) = \log \frac{p}{q} + 1 \quad (47)$$

1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080 **D PROOF OF PROPOSITION 1**
10811082 **Proposition 1** (Union operator via Pre-trained Mixture Density Representation). *Given $\bar{p}_1^{pre} =$
1083 $\sum_{i=1}^n \alpha_i p_1^{pre,i} / \sum_{i=1}^n \alpha_i$, i.e., the α -weighted mixture density of pre-trained models, the following hold:*

1084
$$\pi^* \in \arg \min_{\pi} \sum_{i=1}^n \alpha_i D_{KL}^R(p_1^{\pi} \| p_1^{pre,i}) = \left(\sum_{i=1}^n \alpha_i \right) D_{KL}^R(p_1^{\pi} \| \bar{p}_1^{pre}) \quad (14)$$

1085

1086 *Proof.* We prove the statement for $n = 2$, which trivially generalizes to any n . We first rewrite the
1087 LHS optimization problem as:

1088
$$\arg \min_{\pi} \mathcal{F}(p^{\pi}) \quad (48)$$

1089

1090 where we denote p_1^{π} by p^{π} for notational concision and define $p_1 = p^{pre,1}$ and $p_2 = p^{pre,2}$. Then we
1091 have:
1092

1093
$$\mathcal{F}(p^{\pi}) = \alpha_1 \mathbb{E}_{p_1} [\log p_1 - \log p^{\pi}] + \alpha_2 \mathbb{E}_{p_2} [\log p_2 - \log p^{\pi}] \quad (49)$$

1094

1095
$$= \alpha_1 \mathbb{E}_{p_1} \log p_1 + \alpha_2 \mathbb{E}_{p_2} \log p_2 - \left(\alpha_1 \mathbb{E}_{p_1} \log p^{\pi} + \alpha_2 \mathbb{E}_{p_2} \log p^{\pi} \right) \quad (50)$$

1096

1097 We now write the following, where \bar{p} denotes \bar{p}_1^{pre} :

1098
$$\mathbb{E}_{\bar{p}} \log p^{\pi} = \int \log p^{\pi}(x) \bar{p}(x) dx \quad (51)$$

1099

1100
$$= \int \log p^{\pi}(x) \left[\frac{\alpha_1 p_1}{\alpha_1 + \alpha_2} + \frac{\alpha_2 p_2}{\alpha_1 + \alpha_2} \right] (x) dx \quad (52)$$

1101

1102
$$= \frac{1}{\alpha_1 + \alpha_2} (\log p^{\pi}(x) \alpha_1 p_1(x) + \log p^{\pi}(x) \alpha_2 p_2(x)) \quad (53)$$

1103

1104
$$= \frac{1}{\alpha_1 + \alpha_2} \left(\alpha_1 \mathbb{E}_{p_1} \log p^{\pi} + \alpha_2 \mathbb{E}_{p_2} \log p^{\pi} \right) \quad (54)$$

1105

1106 By combining Eq. 50 and 54, we obtain:
1107

1108
$$\mathcal{F}(p^{\pi}) = \alpha_1 \mathbb{E}_{p_1} \log p_1 + \alpha_2 \mathbb{E}_{p_2} \log p_2 - (\alpha_1 + \alpha_2) \mathbb{E}_{\bar{p}} \log p^{\pi} \quad (55)$$

1109

1110 Therefore,
1111

1112
$$\arg \min_{\pi} \mathcal{F}(p^{\pi}) = \arg \min_{\pi} \underbrace{\alpha_1 \mathbb{E}_{p_1} \log p_1 + \alpha_2 \mathbb{E}_{p_2} \log p_2}_{\text{constant}} - (\alpha_1 + \alpha_2) \mathbb{E}_{\bar{p}} \log p^{\pi} \quad (56)$$

1113

1114
$$= \arg \min_{\pi} -(\alpha_1 + \alpha_2) \mathbb{E}_{\bar{p}} \log p^{\pi} \quad (57)$$

1115

1116
$$= \arg \min_{\pi} -(\alpha_1 + \alpha_2) \mathbb{E}_{\bar{p}} \log p^{\pi} + \underbrace{(\alpha_1 + \alpha_2) \mathbb{E}_{\bar{p}} \log \bar{p}}_{\text{constant}} \quad (58)$$

1117

1118
$$= \arg \min_{\pi} (\alpha_1 + \alpha_2) D_{KL}(\bar{p} \| p^{\pi}) \quad (59)$$

1119

1120 (60)

1121 Which concludes the proof. \square
11221123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **E REWARD-GUIDED FLOW MERGING (RFM) IMPLEMENTATION**
1135

1136 In the following, we provide an example of detailed implementations for REWARDGUIDEDFINETUNING
1137 SOLVER employed in Sec. 4 by Reward-Guided Flow Merging, as well as REWARDGUIDEDFINE-
1138 TUNINGSOLVERRUNNINGCOSTS, leveraged in Sec. 5 to scalably implement the AND operator. While
1139 the oracle implementation we report for completeness for REWARDGUIDEDFINETUNINGSOLVER corre-
1140 sponds to classic Adjoint Matching (AM) (Domingo-Enrich et al., 2024), the one for REWARDGUIDED-
1141 FINETUNINGSOLVERRUNNINGCOSTS trivially extends AM base implementation to account for the
1142 running cost terms introduced in Eq. 17.

1143
1144 **E.1 IMPLEMENTATION OF REWARDGUIDEDFINETUNINGSOLVER**
1145

1146 Before detailing the implementations, we briefly fix notation. Both algorithms explicitly rely on
1147 the interpolant schedules κ_t and ω_t from equation 1. In the flow-model literature, these are more
1148 commonly denoted α_t and β_t . We write u^{pre} for the velocity field induced by the pre-trained policy
1149 π^{pre} , and u^{fine} for the velocity field induced by the fine-tuned policy. In essence, each algorithm first
1150 draws trajectories and then uses them to approximate the solution of a surrogate ODE; its marginals
1151 serve as regression targets for the control policy (Section 5 Domingo-Enrich et al., 2024).
1152

1153
1154 **Algorithm 2** REWARDGUIDEDFINETUNINGSOLVER via AM

1155 **Require:** Pre-trained FM velocity field u^{pre} , step size h , number of fine-tuning iterations N , gradient
1156 of reward ∇r , fine-tuning strength η_k

1157 1: Initialize fine-tuned vector fields: $u^{\text{finetune}} = u^{\text{pre}}$ with parameters θ .

1158 2: **for** $n \in \{0, \dots, N-1\}$ **do**

1159 3: Sample m trajectories $\mathbf{X} = (X_t)_{t \in \{0, \dots, 1\}}$ with memoryless noise schedule:

$$\sigma(t) = \sqrt{2\kappa_t \left(\frac{\dot{\omega}_t}{\omega_t} \kappa_t - \dot{\kappa}_t \right)} \quad (61)$$

1160 4: i.e.:

$$X_{t+h} = X_t + h \left(2u_\theta^{\text{finetune}}(X_t, t) - \frac{\dot{\omega}_t}{\omega_t} X_t \right) + \sqrt{h} \sigma(t) \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, I), \quad X_0 \sim \mathcal{N}(0, I). \quad (51)$$

1161 5: For each trajectory, solve the *lean adjoint ODE* backwards in time from $t = 1$ to 0, e.g.:

$$\tilde{a}_{t-h} = \tilde{a}_t + h \tilde{a}_t^\top \nabla_{X_t} \left(2v^{\text{base}}(X_t, t) - \frac{\dot{\omega}_t}{\omega_t} X_t \right), \quad \tilde{a}_1 = \eta_k \nabla r(X_1). \quad (52)$$

1162 6: Note that X_t and \tilde{a}_t should be computed without gradients, i.e.,

$$X_t = \text{stopgrad}(X_t) \quad (62)$$

$$\tilde{a}_t = \text{stopgrad}(\tilde{a}_t) \quad (63)$$

1163 7: For each trajectory, compute the following Adjoint Matching objective:

$$\mathcal{L}_{\text{Adj-Match}}(\theta) = \sum_{t \in \{0, \dots, 1-h\}} \left\| \frac{2}{\sigma(t)} \left(v_\theta^{\text{finetune}}(X_t, t) - u^{\text{base}}(X_t, t) \right) + \sigma(t) \tilde{a}_t \right\|^2. \quad (53)$$

1164 8: Compute the gradient $\nabla_\theta \mathcal{L}(\theta)$ and update θ using favorite gradient descent algorithm.

1165 9: **end for**

1166 **Output:** Fine-tuned vector field v^{finetune}

1167
1168 **E.2 IMPLEMENTATION OF REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS**
1169

1170 The following REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS is algorithmically identical to
1171 REWARDGUIDEDFINETUNINGSOLVER, with the only difference that the lean adjoint computation now

1188 integrates a running-cost term f_t , defined as follows (see Sec. 5):
 1189

$$1190 \quad f_t(x) := \delta \left(\sum_{i=1}^n \alpha_i D_{KL}(p_t^\pi \| p_t^{pre,i}) \right) (x, t), \quad t \in [0, 1] \quad (64)$$

1193

1194 Algorithm 3 REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS via AM with running costs

1195 **Require:** Pre-trained FM velocity field v^{base} , step size h , number of fine-tuning iterations N , $f_t =$
 1196

1197 $\nabla \delta \mathcal{G}_t(p_t^{\pi^k})$, weight γ_k , weight schedule λ

1198 1: Initialize fine-tuned vector fields: $v^{\text{finetune}} = v^{\text{base}}$ with parameters θ .

1199 2: **for** $n \in \{0, \dots, N-1\}$ **do**

1200 3: Sample m trajectories $\mathbf{X} = (X_t)_{t \in \{0, \dots, 1\}}$ with memoryless noise schedule:

$$1201 \quad \sigma(t) = \sqrt{2\kappa_t \left(\frac{\dot{\omega}_t}{\omega_t} \kappa_t - \dot{\kappa}_t \right)} \quad (65)$$

1202 4: i.e.:

$$1203 \quad X_{t+h} = X_t + h \left(2v_\theta^{\text{finetune}}(X_t, t) - \frac{\dot{\omega}_t}{\omega_t} X_t \right) + \sqrt{h} \sigma(t) \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, I), \quad X_0 \sim \mathcal{N}(0, I). \quad (40)$$

1204 5: For each trajectory, solve the *lean adjoint ODE* backwards in time from $t = 1$ to 0, e.g.:

$$1205 \quad \tilde{a}_{t-h} = \tilde{a}_t + h \tilde{a}_t^\top \nabla_{X_t} \left(2v_\theta^{\text{base}}(X_t, t) - \frac{\dot{\omega}_t}{\omega_t} X_t \right) - h \gamma_k \lambda_t f_t(X_t) \quad (66)$$

$$1206 \quad \tilde{a}_1 = -\gamma_k \lambda_1 \nabla_{X_1} \delta \mathcal{G}_1(p_1^{\pi^k})(X_1). \quad (41)$$

1207 6: Note that X_t and \tilde{a}_t should be computed without gradients, i.e.,

$$1208 \quad X_t = \text{stopgrad}(X_t) \quad (67)$$

$$1209 \quad \tilde{a}_t = \text{stopgrad}(\tilde{a}_t) \quad (68)$$

1210 7: For each trajectory, compute the Adjoint Matching objective:

$$1211 \quad \mathcal{L}_{\text{Adj-Match}}(\theta) = \sum_{t \in \{0, \dots, 1-h\}} \left\| \frac{2}{\sigma(t)} \left(v_\theta^{\text{finetune}}(X_t, t) - v^{\text{base}}(X_t, t) \right) + \sigma(t) \tilde{a}_t \right\|^2. \quad 0$$

1212 8: Compute the gradient $\nabla_\theta \mathcal{L}(\theta)$ and update θ using a gradient descent step

1213 9: **end for**

1214 **Output:** Fine-tuned vector field u^{finetune}

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

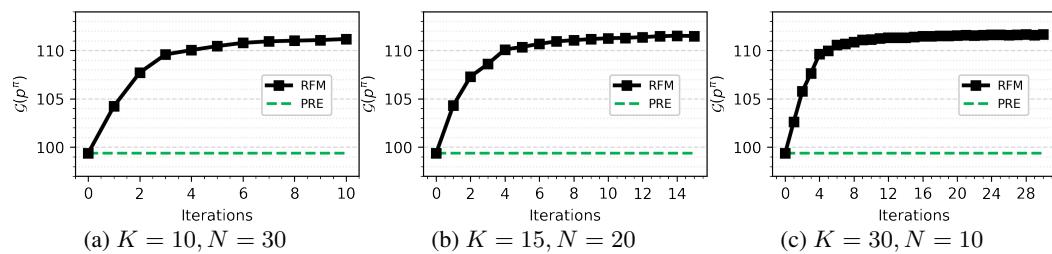
1242 **F REWARD-GUIDED FLOW MERGING (RFM): COMPUTATIONAL
1243 COMPLEXITY, COST, AND APPROXIMATE FINE-TUNING ORACLES**
1244

1245 Reward-Guided Flow Merging (RFM, see Alg. 1) is a sequential fine-tuning scheme which, at each
1246 of the (K) outer iterations, calls a reward-guided fine-tuning oracle such as REWARDGUIDEDFINE-
1247 TUNINGSOLVER (see Apx. E.2). In practice, each oracle call performs (N) gradient steps of Adjoint
1248 Matching (see Apx. E.2). At first sight, this suggests that the computational complexity of RFM scales
1249 linearly in K with respect to a standard fine-tuning run with (N) steps. However, this worst-case
1250 view does not fully capture the practical computational cost. We highlight two observations.
1251

1252 **Approximate fine-tuning oracle.** First, RFM can operate reliably with a rather *approximate fine-
1253 tuning oracle*, i.e., with relatively small values of (N). We evaluate this phenomenon by replicating
1254 the objective curve of Fig. 2d with same parameters and setting, for three different configurations of
1255 (K, N) that keep the total budget ($K \cdot N = 300$) fixed but vary the outer (i.e., K) and inner (i.e., N)
1256 iteration counts:
1257

1258

1259 - $K = 10, ; N = 30$
1260 - $K = 15, ; N = 20$ (as in Fig. 2d)
1261 - $K = 30, ; N = 10$


1264 Figure 6: (left) RFM run for reward-guided intersection with $K = 10, N = 30$, (center) RFM run for
1265 reward-guided intersection with $K = 15, N = 20$, (right) RFM run for reward-guided intersection
1266 with $K = 30, N = 10$.
1267

1268 The three corresponding curves are reported in Fig. 6. Empirically, all three settings achieve nearly
1269 identical final objective values, indicating that a more approximate oracle (smaller (N)) can be
1270 compensated by increasing the number of outer RFM iterations (K), and vice versa, as long as the
1271 total optimization budget remains comparable. We observe a similar behaviour also on real-world,
1272 higher-dimensional, experiments (see Sec. 7 and Apx. G.2), where we values of K vary from $K = 1$
1273 to $K = 37$.
1274

1275 **K/N Trade-off.** Second, the runtimes of these configurations are of the same order. On our
1276 implementation, the runs with $((K, N) = (10, 30), (15, 20), (30, 10))$ require approximately 1615
1277 s, 1643 s, and 1870 s, respectively, showing a very light increase depending on K . This further
1278 supports the view that practitioners can trade off a cheaper but less accurate inner oracle (small (N))
1279 against a slightly larger number of outer RFM steps (larger (K)), and vice versa, without incurring
1280 prohibitive additional cost. Since RFM effectively solves a convex/non-convex optimization problem
1281 in probability space, we believe that classic convex optimization provides an interpretable framework
1282 for trading-off N and K , by interpreting N as the typical step-size, or learning rate, and K as the
1283 typical number of gradient steps. Clearly, higher learning rates typically require less gradient steps
1284 and vice versa. Ultimately, one should notice that increasing N does not directly imply better solution
1285 quality of the fine-tuning oracle, as it is the case for the oracle we employ within Sec. 7 (i.e., Adjoint
1286 Matching (Domingo-Enrich et al., 2024)), for which performance can degrade for excessively high
1287 values of N .
1288

1289
1290
1291
1292
1293
1294
1295

1296
1297

G EXPERIMENTAL DETAILS

1298
1299

G.1 ILLUSTRATIVE EXAMPLES EXPERIMENTAL DETAILS

1300
1301

Numerical values in all plots shown within Sec. 7 are means computed over diverse runs of RFM via 5 different seeds. Error bars correspond to 95% Confidence Intervals.

1302
1303
1304

Shared experimental setup. For all illustrative experiments we utilize Adjoint Matching (AM) [14] for the entropy-regularized fine-tuning solver in Algorithm 1. Moreover, the stochastic gradient steps within the AM scheme are performed via an Adam optimizer.

1305

Intersection Operator. The balanced plot (see Fig. 2b) is obtained by running RFM with $\alpha = [0.1, 0.1]$, for $K = 80$ iterations, $\gamma_k = 28$, and $\lambda_t = 0.2$ for $t > 1 - 0.05$, and $\lambda_t = 0.4$ otherwise.

1308
1309
1310

For the balanced, reward-guided case in Fig. 2c, we consider a reward function that is maximized by increasing the x_2 coordinate. We run RFM with $\alpha = [0.1, 0.1]$, for $K = 15$ iterations, $\gamma_k = 1.2$, and $\lambda_t = 0.2$ for $t > 1 - 0.05$, and $\lambda_t = 0.4$ otherwise.

1311

Union Operator.

1312
1313
1314
1315

In both cases, we learn a critic via standard f-GAN (Nowozin et al., 2016) with 300 gradient steps at each iteration $k \in [K]$ and continually fine-tune the same critic over subsequent iterations. For critic learning, we use a learning rate of $5 \exp(-5)$.

1316
1317

For the balanced case, in Fig. 2f, we run RFM with $\alpha = [1.0, 1.0]$. We use $K = 13$ iterations, $\gamma_k = 0.001$.

1318
1319
1320

For the unbalanced case in Fig. 2g, we run RFM with $\alpha = [0.2, 1.8]$. Notice that up to normalization this is equivalent to $[0.1, 0.9]$ as reported in Fig. 2g for the sake of interpretability. We use $K = 13$ iterations, $\gamma_k = 0.001$.

1321
1322
1323
1324

Interpolation Operator. In both cases, we learn a critic via standard f-GAN (Nowozin et al., 2016) with 800 gradient steps at each iteration $k \in [K]$ and continually fine-tune the same critic over subsequent iterations. For critic learning, we use a learning rate of $1 \exp(-5)$, and gradient penalty of 10.0 to enforce 1-Lip. of the learned critic.

1325
1326
1327

For the case where $\pi^{init} := \pi^{pre,1}$ (i.e., left pre-trained model), in Fig. 2j, we run RFM with $\alpha = [1.0, 1.0]$. We use $K = 6$ iterations, $\gamma_k = 1.0$.

1328
1329

For the case where $\pi^{init} := \pi^{pre,2}$ (i.e., right pre-trained model), in Fig. 2k, we run RFM with $\alpha = [1.0, 1.0]$. We use $K = 6$ iterations, $\gamma_k = 1.0$.

1330
1331
1332
1333

Complex Logic Expressions via Generative Circuits. Pre-trained flows π_1 and π_2 , as well as π_1 and π_2 are intersected via RFM with $\gamma_k = 1$, for $K = 20$, and $\lambda_t = 0.1$. The union operator is implemented with $K = 30$, $\gamma_k = 0.0009$, 300 critic steps and learning rate $5 \exp(-5)$.

1334

G.2 MOLECULAR DESIGN CASE STUDY

1335

Our base model FlowMol2 CTMC (i.e., PRE-1) (Dunn & Koes, 2024) is pretrained on the GEOM-Drugs dataset (Axelrod & Gomez-Bombarelli, 2022). We obtain our second model (i.e., PRE-2) by finetuning PRE-1 with AM (Domingo-Enrich et al., 2024) to generate poses with lower single point total energy wrt. the continuous atomic positions as calculated with dxtb at the GFN1-xTB level of theory Friede et al. (2024). We then run RFM with $K = 50$, $\gamma = 0.001$ for the balanced flow merging, and $K = 20$, $\gamma = 0.005$ to obtain the unbalanced flow merging. For reward-guided flow merging (RFM-RG), we set $\gamma = 0.1$ and obtain the best model after $K = 11$. **All models start from PRE-1**, i.e., $\pi^{init} = \pi^{pre,1}$. All results for merging pre-trained models on GEOM can be found in Table 1. **Running RFM-RG with $\alpha = 3$ and $\gamma = 0.001$, we obtain a model after $K = 35$ that keeps the validity of its base models while implementing the reward-guided intersection.** We note that beyond validity, a critical step towards practical application will be to integrate molecular stability and synthesizability. Our RFM formulation straightforwardly supports these extensions in the reward functional, and we leave their implementation to future work. For our second case-study - the OR operator - we use FlowMol2 CTMC pre-trained on QM9 (Ramakrishnan et al., 2014). We limit dimensionality to reduce the problem complexity by sampling 10 atoms per molecule, and run RFM with $\gamma = 100$, $K = 37$. In particular Figure 7 shows that the estimated mean of the model

1350
1351
1352
1353
1354
1355
1356
1357
1358

Model	Mean total energy	Mean validity
	[Ha]	[%]
PRE-1	-8.09 ± 0.31	76.44 ± 1.7
RFM-B	-10.95 ± 0.28	74.34 ± 0.9
RFM-RG	-12.85 ± 0.16	74.02 ± 1.18
RFM-UB	-13.69 ± 0.28	72.78 ± 0.4
PRE-2	-14.76 ± 0.29	68.04 ± 0.8

Table 1: Mean total energy and validity with standard deviation, averaged over 5 different seeds.
Suffixes: B - balanced ; UB - unbalanced; RG - reward-guided flow merging1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379

π^* obtained via RFM matches the average total energy of $\pi^{pre,1}$ and $\pi^{pre,2}$ as predicted by the closed-form solution for the union operator presented in Sec. 3. In Fig. 7, OR denotes the final policy π^* returned by RFM.

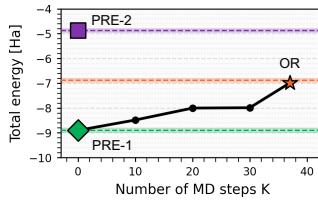


Figure 7: Union on QM9

G.3 CONFORMER GENERATION CASE STUDY

We finetune the GEOM-QM9 pre-trained ETFlow model (denoted PRE-1) with AM on the molecular system C#C[C@H](C=O)CCC to obtain PRE-2, using the same total energy objective as in the molecular design case study. This is also the molecular system we perform our evaluations on. For the subsequent merging experiments, we choose the lower-energy PRE-2 as the base model, i.e., $\pi^{init} = \pi^{pre,2}$. Balanced merging is performed with $\alpha_1 = \alpha_2 = 1$, $\gamma = 0.025$ and $K = 6$. The unbalanced merging is run with $\alpha_1 = 0.7$ and $\alpha_2 = 0.3$ and we take the model after $K = 8$ steps with $\gamma = 5e-5$. The reward-guided merging model was obtained with $\gamma = 0.025$ after $K = 6$, and the union model after $K = 1$ with $\gamma = 1e-3$ and critics with the same GNN backbone as ETFlow. We show all results for the conformer geneation case study in Tab. 2

1389
1390
1391
1392
1393
1394
1395
1396
1397
1398

Model	E [kcal/mol]	μ [debye]	$\Delta\epsilon$ [kcal/mol]	E_{min} [kcal/mol]
PRE-1	0.3385 ± 0.0002	0.1679 ± 0.0002	0.5373 ± 0.0019	0.2793
RFM-UB	0.3412	0.1512	0.5173	0.2778
RFM-B	0.3356 ± 0.0001	0.1503 ± 0.0002	0.4915 ± 0.0014	0.2782
RFM-UNION	0.3352	0.1467	0.5033	0.2761
RFM-RG	0.3193 ± 0.0003	0.1141 ± 0.0002	0.4849 ± 0.0015	0.2777 ± 0.0008
PRE-2	0.3175 ± 0.0006	0.1268 ± 0.0006	0.4819 ± 0.0010	0.2761 ± 0.0027

Table 2: Median Absolute Errors for energy E , dipole moment μ , HOMO-LUMO gap $\Delta\epsilon$, and minimum energy E_{min} across different models. We report mean and standard deviation over 5 different seeds.

Suffixes: RG - reward-guided flow merging

1404
 1405 **H BEYOND MOLECULES: REWARD-GUIDED FLOW MERGING OF**
 1406 **PRE-TRAINED IMAGE MODELS**

1407 We further showcase the capabilities of Reward-Guided Flow Merging on a small-scale, yet infor-
 1408 mative experiment for image generation. In the following, we consider pretrained CIFAR-10 image
 1409 models (Krizhevsky et al., 2009) and use the LAION aesthetics predictor V1 (Schuhmann et al.,
 1410 2022) as a reward model. Specifically, the aesthetics predictor was trained on a subset of the SAC
 1411 dataset (Pressman et al., 2022) with available ratings from 1 (low preference / aesthetics) to 10 (high
 1412 preference). The goal of this case study is to show that RFM can merge two models, PRE-1 and
 1413 PRE-2, while optimizing the aesthetics score. We perform reward-guided flow merging with PRE-2
 1414 as the base model, obtaining the model RFM-RG after $K = 11$ iterations with $\gamma = 1$ and $\alpha_i = 1$.
 1415 The numerical results in Tab. 3 show that RFM can successfully intersect multiple prior flow image
 1416 models while maximizing the aesthetic score. In particular, the fine-tuned model achieves a score of
 1417 3.64 ± 0.53 against 3.16 ± 0.66 and 3.23 ± 0.58 of PRE-1 and PRE-2 respectively. We also report
 1418 sample images of the discussed models in Fig. 8.
 1419

Model	Mean aesthetic score
PRE-1	3.16 ± 0.66
PRE-2	3.23 ± 0.58
RFM-RG	3.64 ± 0.53

1425 **Table 3:** RFM can perform reward-guided (RG) intersections of pre-trained CIFAR-10 image
 1426 models (Krizhevsky et al., 2009). We evaluate the resulting models in terms of mean aesthetic score
 1427 (i.e., the reward) over 1000 samples, and report one std.

(a) PRE-1

(b) PRE-2

(c) RFM-RG

1448 **Figure 8:** Images generated by the two pre-trained flow models (i.e., PRE-1, PRE-2), and by the flow
 1449 model obtained via reward-guided intersection (i.e., RFM-RG).