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ABSTRACT

Unprecedented progress in large-scale flow and diffusion modeling for scientific
discovery recently raised two fundamental challenges: (i) reward-guided
adaptation of pre-trained flows, and (47) integration of multiple models, i.e., model
merging. While current approaches address them separately, we introduce a uni-
fying probability-space framework that subsumes both as limit cases, and enables
reward-guided flow merging. This captures generative optimization tasks requiring
information from multiple pre-trained flows, as well as task-aware flow merging
(e.g., for maximization of drug-discovery utilities). Our formulation renders
possible to express a rich family of implicit operators over generative models
densities, including intersection (e.g., to enforce safety), union (e.g., to compose
diverse models) and interpolation (e.g., for discovery in data-scarce regions).
Moreover, it allows to compute complex logic expressions via generative circuits.
Next, we introduce Reward-Guided Flow Merging (RFM), a theory-backed
mirror-descent scheme that reduces reward-guided flow merging to a sequential
fine-tuning problem that can be tackled via scalable, established methods. Then,
we provide first-of-their-kind theoretical guarantees for reward-guided and pure
flow merging via RFM. Ultimately, we showcase the capabilities of the proposed
method on illustrative settings providing visually interpretable insights, and on
a high-dimensional drug design task generating low-energy molecular conformers.

1 INTRODUCTION

Large-scale generative modeling has recently progressed at an unprecedented pace, with flow (Lipman
et al., 2022; 2024) and diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho
et al., 2020) delivering high-fidelity samples in chemistry (Hoogeboom et al., 2022), biology (Corso
et al., 2022), and robotics (Chi et al., 2023). However, adoption in real-world applications like
scientific discovery led to two fundamental algorithmic challenges: (7) reward-guided fine-tuning,
i.e., adapting pre-trained models to maximize downstream utilities (e.g., binding affinity) (e.g.,
Domingo-Enrich et al., 2024; Uehara et al., 2024b; De Santi et al., 2025b), and (i7) model merging
- integrating multiple pre-trained models (Song et al., 2023; Ma et al., 2025), e.g., to incorporate
safety constraints (Dai et al., 2023), or unify diverse priors (Ma et al., 2025). The former now
benefits from principled and scalable control theoretic or reinforcement learning (RL) methods,
with successes in image generation (Domingo-Enrich et al., 2024), molecular design (Uehara et al.,
2024b), and protein engineering (Uehara et al., 2024b). By contrast, current merging approaches
remain mostly heuristic, training-heavy, and act in weight-space with limited interpretability of the
merging operations (Ma et al., 2025; Song et al., 2023). Crucially, these two problems have been
treated via distinct formulations and methods. On the contrary, in this work we ask:

Can we fine-tune a pre-trained flow model to optimize a given reward function while integrating
information from (i.e., merge) multiple pre-trained flows?

Answering this would contribute to the algorithmic-theoretical foundations of flow adaptation and
enable rich applications in highly relevant areas such as scientific discovery and generative design.

Our approach To address this challenge, we first introduce a probability-space optimization
framework (see Fig. 1b) that recovers reward-guided fine-tuning and pure model merging as limit
cases, and provably enables reward-guided model merging (Sec. 3). Our formulation allows to
express a rich family of implicit operators over generative models that cover practical needs such
as enforcing safety (e.g., via intersection), composing diverse models (e.g., via union), and discovery
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in data-scarce regions (e.g., via interpolation). However, these operators are expressed via non-linear
functionals that cannot be optimized via classic RL or control schemes, as shown by De Santi
et al. (2025b). To overcome this challenge, we introduce Reward-Guided Flow Merging (RFM),
a mirror descent (MD) (Nemirovskij & Yudin, 1983) scheme that solves reward-guided and pure flow
merging via a sequential adaptation process implementable via established fine-tuning methods (e.g.,
Domingo-Enrich et al., 2024; Uehara et al., 2024b) (Sec. 4). Next, we extend the algorithm proposed,
to operate on the space of entire flow processes, enabling scalable and stable computation of the
intersection operator (Sec. 5). We provide a rigorous convergence analysis of RFM, yielding
first-of-its-kind theoretical guarantees for reward-guided and pure flow merging (Sec. 6). Ultimately,
we showcase our method’s capabilities on illustrative settings, as well as on a molecular design task
for control and optimization of quantum-mechanical properties via conformer generation (Sec. 7).
Our contributions To sum up, in this work we contribute
* A formalization of reward-guided flow merging via implicit operators, which generalizes recent
reward-guided fine-tuning and pure flow merging formulations via an operator viewpoint (Sec. 3).
* Reward-Guided Flow Merging (RFM), a principled algorithm which provably solves arbitrary
reward-guided flow merging problems via probability-space optimization over the space of data-
level marginal densities induced by flow models (Sec. 4), and a stability-enhancing extension for
flow intersection following a mirror-descent scheme on the space of joint flow processes (Sec. 5).
* A theoretical analysis of the presented algorithms providing convergence guarantees both under
simplified and realistic assumptions leveraging recent understanding of mirror flows (Sec. 6).
* An experimental evaluation of RFM showcasing its practical relevance on both synthetic, yet
illustrative settings and on a scientific discovery task, showing it can effectively intersect pre-
trained flow models for molecular conformers generation. (Sec. 7).

2 BACKGROUND AND NOTATION

General Notation. We denote with X C R? an arbitrary set. Then, we indicate the set of Borel
probability measures on X’ with P(X), and the set of functionals over P(X) as F(X).

Generative Flow Models. Generative models aim to approximately sample novel data points from a
data distribution pg,¢,. Flow models tackle this problem by transforming samples Xy = x( from a
source distribution pg into samples X; = 1 from the target distribution pg,+,Lipman et al. (2024);
Farebrother et al. (2025). Formally, a flow is a time-dependent map ¢ : [0, 1] x R? — R such that 1) :
(t,x) = Pu(x). A generative flow model is a continuous-time Markov process {X; }o<;<1 obtained
by applying a flow ¢); to X ~ pg as Xy = ¢+(Xp), t € [0, 1], such that X1 = ¢)1(Xo) ~ Ddate. In
particular, the flow 1) can be defined by a velocity field u : [0,1] x R? — R?, which is a vector field
related to ¢ via the following ordinary differential equation (ODE), typically referred to as flow ODE:

d
a%(ﬂf) = u(Pe()) ey

with initial condition 1o (z) = 0. A flow model X; = v,(Xy) induces a probability path of marginal
densities p = {p: }o<t<1 such that at time ¢ we have that X; ~ p,. We denote by p* the probability
path of marginal densities induced by the velocity field u. Flow matching (FM) (Lipman et al.,
2024) can estimate a velocity field u? s.t. the induced marginal densities p*¢ satisfy pi’ = po and
P1° = Pdata, Where pg denotes the source distribution, and pg,+, the target data distribution. Typically
FM are rendered tractable by defining p} as the marginal of a conditional density p¥(-|zo, x1), €.g.,:

X | Xo, X1 = ke Xo +w Xy )

where kg = w; = land k] = wp = 0 (e.g. Ky = 1 — ¢ and w; = t). Then u’ can be learned
by regressing onto the conditional velocity field w(-|z1) (Lipman et al., 2022). As diffusion
models (Song & Ermon, 2019) (DMs) admit an equivalent ODE formulation with identical marginal
densities (Lipman et al., 2024, Ch. 10), our contributions extend directly to DMs.

Continuous-time Reinforcement Learning. We formulate finite-horizon continuous-time RL as a
specific class of optimal control problems (Wang et al., 2020; Jia & Zhou, 2022; Treven et al., 2023;
Zhao et al., 2024). Given a state space X and an action space A, we consider the transition dynamics
governed by the following ODE: d

awt(l’) = a(Yi(z)) 3)

where a; € A is a selected action. We consider a state space X' := R x [0, 1], and denote by (Marko-
vian) deterministic policy a function 7;(X) := 7(X4,t) € A mapping a state (z,¢) € X to an action
a € Asuchthat a; = 7(X4,t), and denote with p] the marginal density at time ¢ induced by policy 7.
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Figure 1: (1a) Pre-trained and fine-tuned policies inducing {p?"“*}_, and opt. density p} via reward-

guided flow merging. (1b) Probability-space optimization Vlewpomt on reward-guided merging.

Pre-trained Flow Models as an RL policy. A pre-trained flow model with velocity field uP"® can be
interpreted as an actlon process al”® == uP"¢( Xy, t), where al” is determined by a continuous-time
RL policy via al"® = 7P"¢( X}, ) (De Santi et al., 2025a). Therefore we can express the flow ODE
induced by a pre-trained flow model by replacmg ay with a’”’e in Eq eguatlon 3, and denote the
pre-trained model by its policy 77"¢, which induces a density p}"“ := pT approximating pgata-

3 REWARD-GUIDED FLOW MERGING VIA IMPLICIT DENSITY OPERATORS

In this section, we introduce the general problem of reward-guided flow merging via implicit density
operators. Formally, we wish to implement an operator O: II x ... x IT — II that, given pre-trained
generative flow models {77"“" };c,], returns a merged flow 7* inducing an ODE:

d
dt
such that it controllably merges prior information within the n pre-trained generative models, while po-
tentially steering its density p] := p] towards a high-reward region according to a given scalar reward

function f(z) : X — R. We tackle this problem by fine-tuning an initial flow 7" € {mP"®},
according to the following optimization formulation, visually portrayed in Fig. 1b.

Pi(x) = ap(Pr(x))  with af =77 (z,1), ©)

Reward-Guided Flow Merging via Implicit Density Operators

O : (aPrel ... 7PTe") & 1* st 7* € argmax Zal (T | P2 (5)

7"1’0 ppre a:Npl

Here, each D; is an arbitrary divergence, cv; > 0 are model-specific weights, and p§ = pf"“ enforces
that the marginal density at ¢ = 0 must match the pre-trained model marginal. This formulation
recovers reward-guided fine-tuning (e.g., Domingo-Enrich et al., 2024) when n = 1 and Dy = Dk,
and provides a formal framework for pure flow merging (e.g., Poole et al., 2022; Song et al., 2023)
with interpretable objectives, when the reward f is constant (e.g., f(x) = 0 Va € X). In this case,
Eq. 5 formalizes flow merging as computing a flow 7* that minimizes a weighted sum of divergences
to the priors {7P"*"},c1,,;. Varying the divergences {D; };c[,) yields different merging strategies.

In-Distribution Flow Merging. Given pre-trained flow models {wprevi}ie[n], we denote by
in-distribution merging when the merged model generates samples from regions with sufficient
prior density. Practically relevant instances include the intersection operator O, (i.e., a logical
AND), and the union operator Oy, (i.e., a logical OR). Formally, these operators can be defined via:

O, Intersection (/\) Operator Oy : Union (V) Operator

7 € argmin ZO%DKL(ZHH P (6) 7 € argmin ZaZDKL(pIH PPN (7)

pre pre

T:p5=Po i=1 T:p5=Po i=1

The D, divergences in Eq. 6 heavily penalize density allocation in any region with low prior density
for any model 7P"%%, leading to an optimal flow model 7* inducing p} (z) H?_l Pt (@) (cf.
Heskes, 1997). Slmllarly, the reverse KL divergence D%, (p||q) == Dk (q||p) in Eq. 7 induces a
mode-covering behaviour implying a flow model 7* with density p} oc Y7, a;p}” " () (cf. Baner-

jee et al., 2005) sufficiently covering all regions with enough prior density, for any p}"* l, i € [n].
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Out-of-Distribution Flow Merging. We denote by out-of-distribution, the case where 7* samples
from regions insufficiently covered by all priors. An example is the interpolation operator Oy, (see
Eq. 8), which induces pj equal to the prior densities Wasserstein Barycenter (Cuturi & Doucet, 2014).

Oy, : Interpolation (Wasserstein-p Barycenter) Operator

n

arg min W, (pT || P24 = a; inf E [d(z,y)?
LTI ED S N0

8=

®

Straightforward Generalizations. While we presented a few practically relevant operators, the
framework in Eqgs. 5 is not tied to them: it trivially admits any new operator defined via other
divergences (e.g., MMD, Rényi, Jensen—Shannon), and allows diverse D; for each prior flow models
mPret. Moreover, sequential composition of these operators makes it possible to implement arbitrarily
complex logical operations over generative models. For instance, as later shown in Sec. 7, one
can obtain 7% = (7Pre1 v 7Pre2) A 1P7e3 by first computing 1 o == Oy (7P"%1 7P7¢2) and then
7% = Op(m1,2, 7P"%3). We denote such operators by generative circuits, and illustrate one in Fig. 3d.

While being of high practical relevance, the presented framework entails optimizing non-linear distri-
butional utilities (see Eq. 5) beyond the reach of standard RL or control schemes, as shown by De Santi
et al. (2025b). In the next section, we show how to reduce the introduced problem to sequential
fine-tuning for maximization of rewards automatically determined by the choice of operator O.

4 ALGORITHM: REWARD-GUIDED FLOW MERGING

In this section, we introduce Reward-Guided Flow Merging (RFM), see Alg. 1, which provably solves
Problem 5. RFM implements general operators O (see Sec. 3) by solving the following problem:

Reward-Guided Flow Merging as Probability-Space Optimization

n

pi €argmax G(pf) with G(]):= E [f(2)] =Y aDif [|2)") )
Py

! =

Given an initial flow model 7" € {ﬂpre’i}ie[n], RFM follows a mirror descent (MD) scheme (Ne-
mirovskij & Yudin, 1983) for K iterations by sequentially fine-tuning 7" to maximize surrogate
rewards g; determined by the chosen operator, i.e., G. To understand how RFM computes the
surrogate rewards {g }5_, guiding the optimization process in Eq. 9, we first recall the notion
of first variation of G over a space of probability measures (cf. Hsieh et al., 2019). A functional
G € F(X) has a first variation at y € P(X) if there exists a function 6G () € F(X) such that:

Gp+ep') = G(p) + €', 6G (1)) + ofe).
holds forall ' € P(X’), where the inner product is an expectation. At iteration k € [K], given the cur-
rent generative model 7% !, RFM fine-tunes it according to the following standard entropy-regularized
control or RL problem, solvable via any established method (e.g., Domingo-Enrich et al., 2024)

Tl — T 1 T Th—
argmax (3G (p*™") . pT) — o Dt Ipi"™") 10)
Thus, we introduce a surrogate reward function gy : X — R defined for all x € X such that:
k—1 k—1
o) =G (p7 ) (@) and  E [ou(e)] = (66 (pT ) .p7) an

We now present Reward-Guided Flow Merging (RFM), see Alg. 1. Ateach iteration k& € [K], RFM es-
timates the gradient of the first variation at the previous policy mx_1, i.e., V,0G(pT ) (line 4). Then,
it updates the flow model ), by solving the reward-guided fine-tuning problem in Eq. 10 by employing

Vg, = V$5Q(p7fk ) as reward function gradient (line 5). Ultimately, RFM returns a final policy
T = mx. We report a detailed implementation of REWARDGUIDEDFINETUNINGSOLVER in Apx. E.2.

Implementation of Intersection, Union, and Interpolation operators. In the following, we
present the specific expressions of V,0G(pT) for pure model merging with the intersection (O, ),
union (Oy), and interpolation (Oyy, ) operators introduced in Sec. 3.

=S st (et =)+ Y as™ (= 1) Intersection (Ox)
V20G(pT)(x) = ¢ = > Vyexp (¢f (x) — 1), ¢F as by Eq. 45 Union (Oy/)

— > Vaegi(z), ¢f = arg max,, v, ¢ <1 (¢ p" — p’"*") Interpol. (Ow,)

4
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Algorithm 1 Reward-Guided Flow Merging (RFM)

—_

: input: {ﬂp"e*i}ie[n] : pre-trained flows, {D; } ;¢ : arbitrary divergences, f : reward, {c; }sc}n) : Weighs,
K : iterations number, {y }/_, stepsizes, 7" € {7""*"};c[,) : initial flow model

init

2: Init: mg ;= 7
3: fork=1,2,..., K do
4 Estimate Vogx = V.6G(p ’*’H) with:
x)] — Z i Di( [ p27")  (Reward-Guided Flow Merging)
k=1 LNpl
g (pl ) =
k—1 R
- Z aDi(p || (Flow Merging)
i=1
(12)
S: Compute 71, via standard reward-guided fine-tuning (e.g., Domingo-Enrich et al., 2024):
7k < REWARDGUIDEDFINETUNINGSOLVER(V 2 gk, Yk, Th—1)
6: end for
7: output: policy 7 := i

Where by sk ! (x t) == Vlog pf ! () we denote the score of model 7%~ at point = and time ¢, and
sPrest .= ™" For diffusion models, a learned neural score network is typically available; for flows,
the score follows from a linear transformation of 7(X4,t) (e.g., Domingo-Enrich et al., 2024, Eq. 8):

m i) 1 ( e ) I
5t (@) Ky (2 2 SRt — fit) (@ t) th (1)
For the union operator, gradients are defined via critics {¢} }"_; learned with the standard variational
form of reverse KL, as in f~GAN training of neural samplers (Nowozin et al., 2016). For W}
interpolation, each ¢ plays the role of a Wasserstein-GAN discriminator with established learning
procedures (Arjovsky et al.,, 2017). In both cases, each critic compares the fine-tuned density to
a prior density p}"“", seemingly requiring one critic per prior. We prove that, surprisingly, this is
unnecessary for the union operator, and conjecture that analogous results hold for other divergences.

Proposition 1 (Union operator via Pre-trained Mixture Density Representation). Given py"¢ =
St ™5, e, the - welghted mixture density of pre-trained models, the following hold:

7" € argmin Zaz DL (o7 I P75 (Z az) DL (o7 1777) (14)
i i=1

Prop. 1, which is proved in Apx. D implies that the union operator in Eq. 7 over n prior models can

be implemented by learning a single critic ¢*, as shown in Sec. 7. In Apx. C.2, we report the gradient

expressions above, and present a brief tutorial to derive the first variations for any new operator.

Crucially, the score in Eq. 13 for the intersection gradient diverges at ¢t = 1 (x; = 0). While prior
works attenuate the issue by evaluating the score at 1 — € (De Santi et al., 2025a), this trick hardly
scales well to high-dimensional settings. In the following, we propose a principled solution to this
problem by leveraging weighted score estimates along the entire noised flow process, i.e., ¢t € [0, 1].

5 TRULY SCALABLE INTERSECTION VIA FLOW PROCESS OPTIMIZATION

Towards tackling the aforementioned issue, we lift the problem in Eq. 6 from the probability space
associated to the last time-step marginal pT, where the score diverges, to the entire flow process:

Intersection Operator O, via Flow Process Optimization

7" € argmax La (QT) := / AtZaZDKL ||pp””)dt (15)

mipT—pETe
Here, Q™ = {p?}te[o,l] denotes the entire joint flow process induced by policy 7 over X (0.1 Under
general regularity assumptions, an optimal policy 7* for Problem 15 is optimal also w.r.t. Eq. 6.
Interestingly, an optimal flow 7* for Problem 15 can be computed via a MD scheme acting over
the space of joint flow processes Q™ = {p] }te[0,1] determined by the following update rule:
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Reward-Guided Flow Merging (Mirror Descent) Step

Q" € argmax (6LA(Q"1), Q) + ATI,CDKL (QHQk_l) (16)

a:po=pg
First, we state the following Lemma 5.1, which allows to express the first variation of £, w.r.t. the
entire flow process Q7 as an integral of first variations w.r.t. the marginal densities py .

Lemma 5.1 (First Variation of Flow Process Functional). For objective L in Eq. 15 it holds:

1 n

(0LA(QY),q) = / o E, [5 > i Dicr (7 || pi’””)} dt. (17)
0 i=1

This factorization of (§£,(Q¥), ¢) shows that a flow 7, inducing an optimal process Q" w.r.t. the

update step in Eq. 16 can be computed by solving a control-affine optimal control problem via the

same REWARDGUIDEDFINETUNINGSOLVER oracle used in Alg. 1, by introducing the running cost term:

fi(z) =0 (Z a; D (pf ||Pfre’i)> (z,t), te€l0,1) (18)
i=1

This algorithmic idea, which allows to control the score scale at ¢ — 1 via A, thus enhancing RFM,
trivially extends to reward-guided merging, and is accompanied by a detailed pseudocode in Apx. E.2.

6 GUARANTEES FOR REWARD-GUIDED FLOW MERGING
In this section, we aim to establish rigorous theoretical guarantees for RFM, ensuring its reliability.

Central Challenge. Score functions s™ leveraged in Sec. 4 to express gradients of first variations
are readily available for pretrained models used to initialize RFM. It is far less clear whether
they remain accessible throughout subsequent iterations. In particular, the process returned by
REWARDGUIDEDFINETUNINGSOLVER is in general unrelated to the score.

Score Retention via Stochastic Optimal Control. Our key observation is that, under a standard ap-
proximation, most fine-tuning schemes retain score information. Specifically, we consider fine-tuning
through the lens of stochastic optimal control (SOC) (cf. Bellman, 1954)), which encompassing
many existing methods including Adjoint Matching (Domingo-Enrich et al., 2024), which we employ
in Sec. 7. Formally, SOC addresses the following problem defined over SDEs (see Appendix B):

min E

1
weld /O %Hu(Xtu,t)HQ dt — g(X7")| s.t. dX} = (b(Xt“’t) + U(t)u(Xt“,t)) dt + o(t) dB,

(19)
where X ~ po,, U is the set of admissible controls, and g is a terminal reward, corresponding the
gi’s in Algorithm 1. The corresponding uncontrolled dynamics (up to a minus sign),

AXP = —b(X*,t)dt + o(t) dB,, (20)

coincide with the forward process in diffusion-modeling (Song et al., 2020). We show that the model
returned by REWARDGUIDEDFINETUNINGSOLVER via SOC necessarily encodes score information.

Theorem 6.1 (SOC Retains Score Information). Suppose the forward process in Equation (20)
maps any distribution to standard Gaussian noise (i.e., a standard assumption in diffusion model
literature). Then the solution to Equation (19) is u*(z,t) := o(t) V log p¥ (z), where p¥ denotes
the marginal distribution of the forward process in Equation (20), initialized at pT*. In other
words, REWARDGUIDEDFINETUNINGSOLVER exactly recovers the score function.

Leveraging the established connection between Eq. 19 and mirror descent (Tang, 2024), Theorem 6.1
enables us to reinterpret Algorithm 1 as generating approximate mirror iterates, a framework that has
proven effective for sampling and generative modeling (Karimi et al., 2024; De Santi et al., 2025a;b).
Robust Convergence under Inexact Updates. Thanks to Theorem 6.1, we can now develop a rigor-
ous convergence theory for Algorithm | under the realistic condition that REWARDGUIDEDFINETUN-
INGSOLVER (see Sec. 4) is implemented approximately. Let G be the objective in Eq. 9. Via 7%, the iter-
ates generated by Algorithm 1 induce a sequence of stochastic processes, denoted by Q*, which satisfy

Q" = pT . Each iterate Q" is understood as an approximation to the idealized mirror descent step:
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Figure 2: Illustrative settings with visually interpretable results. (top) Flow model balanced pure in-
tersection (2b), and reward-guided intersection (2c), (mid) Flow balanced and unbalanced union, (bot-
tom) Flow model pure and reward-guided interpolation. Crucially, RFM can correctly implement these
practically relevant and diverse operators with high degree of expressivity (e.g., o, reward-guidance).

Qf € argmax { (0G(p7*), Q) - F D2 (Q Q") }. @
Q:po=p;"°
which serves as the exact reference point for our analysis. To quantify the discrepancy between Q*
and Qj’f, let 7; denote the history up to step k, and decompose the error as

b = E[5G(pT*) — 6G((QM)1) | Ta] » (22)
Ur = 0G(p7*) — 6G((Q5)1) — b (23)

Here, b; captures systematic approximation error, while Uj represents a zero-mean fluctuation
conditional on 7. Under mild assumptions controlling noise and bias (see Appendix B.2), the
long-term behavior of the iterates can be rigorously characterized.

Theorem 6.2 (Asymptotic convergence under inexact updates (Informal)). Assume the oracle
has bounded variance and diminishing bias, and the step sizes {~*} satisfy the Robbins—Monro
conditions (Y, v* = 00, >°,(v*)? < 00). Then the sequence {p7*} generated by Algorithm |
converges almost surely to the optimum in the weak sense:

pit —pi as., 24)
where pi = Qf, Q" € arg maxq.q_pz G(Qu).

7 EXPERIMENTAL EVALUATION

We evaluate RFM for the reward-guided flow merging problem (see Eq. 5) by tackling two types of
experiments: (i) illustrative settings with visually interpretable insights, showcasing the correctness
and high expressivity of RFM, and (2) high-dimensional molecular design tasks generating
low-energy molecular conformers. Additional experimental details are reported in Appendix F.2

Intersection Operator Ox (AND). We consider pre-trained flow models 1nducmg densities pp re,1
(green) and pp "¢2 (violet) - as shown in Fig. 2a. We fine-tune 7"t := 7P"¢1 yia RFM to compute
the policy 7* resultlng from diverse intersection operations 7* = O, (7?1, 7P"¢2), First, in Fig.
2b, we show p* (black) obtained by RFM with o = [0.5,0.5], i.e., balanced One can notice that
the flow model p* covers mostly the intersecting regions between p ¢! and P e? (see Fig. 2a). In
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Figure 3: (top) RFM can implement generative circuits (3d) computing sequential operators (3a-3c).
(bottom) RFM computes a flows intersection 7* generating drug molecules with desired energy levels.

Fig. 2c we report an instance of reward-guided intersection for a reward function maximized upward.
As one can see, RFM computes a policy 7* placing density over the highest-reward region among the
intersecting ones, i.e., the top intersecting area. This reward-guided flow merging process is carried
out via maximization over K = 15 iterations of the objective G illustrated in Fig. 2d.

Union Operator O,, (OR). We fine-tune the pre-trained flow model 7" = 7P"¢! with density
illustrated in Fig. 2e¢ (green) via RFM to implement balanced (i.e., « = [0.5,0.5] and unbalanced
(i.e., « = [0.1,0.9]) versions of the union operator, namely computing 7* = O, (7P"¢1, wPre:2),
As shown in Fig. 2f and 2g RFM can successfully compute optimal policies 7* implementing both
operators via optimization of the functional G, corresponding to sum of weighted KL-divergences
(see Eq. 7) evaluated for iterations k € [K| with K’ = 13 in Fig. 2h.

Interpolation Operator Oy, (Wasserstein-1 Barycenter). We use RFM to compute flow models
7* inducing densities p; corresponding to diverse interpolations between the the pre-trained models’
densities illustrated in Fig. 2i. Although the optimal policy to which RFM converges asymptotically
is invariant w.r.t. the initial flow model 7" chosen for fine-tuning, here we show that this choice can
actually be used to control the algorithm execution over few iterations (i.e., K = 6). As one can expect,
Fig. 2j and 2k show that the result density after K = 6 iterations is closer to the flow model chosen as
7"t namely "¢ (green) in Fig. 2j and 7772 (violet) in Fig. 2k. We illustrate in Fig. 21 the density
(black) obtained via reward-guided interpolation, with a reward function maximized left upwards.

Complex Logic Expressions via Generative Circuits. We consider 4 flow models {m,¢,;}i;
illustrated in Fig. 3a, which we aim to merge into a unique flow 7* determined by the logical
expression m* = (w1 A m2) V (73 A m4). In particular, we implement the generative circuit shown
in Fig. 3d via sequential use of RFM. First, we compute 75 = O (7P"®1 7P72) and 75 =
O (wPre3 gPred) shown in Fig. 3b, and subsequently 7% := O (7P"¢3, wP74) - this is illustrated
in Fig. 3c. Crucially, this illustrative experiments confirms that RFM can implement complex logical
expressions over generative models via generative circuits, as the simple one just presented.

Low-Energy Molecular Design via Flow Merging We address a molecular design task where
we have access to two FlowMol models 7P7¢! and 7#P"%2 (Dunn & Koes, 2024) pre-trained on
GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022) with different lev-

els of single-point total energy at the GFN1-xTB level of theory (Friede .

et al., 2024), —14.8 and —8.1 Ha respectively as shown in Fig. 3e. ﬁg %‘
We aim to compute a flow model that generates molecules whose total ) ( :
energy matches that of molecules likely under both generative models. 1430 1383

To this end, we run RFM to compute the flow 7* returned by the inter- ; ; ‘
section operator (see Eq. 6), with parameters detailed in Apx. F.2. We w %
report in Fig. 3f the density p* (black) computed via balanced merging LA e
(i.e., 1 = ag = 1) and in Fig. 3g the one obtained via unbalanced
merging (i.e., a1 = 1, g = 2). In the former case, p* correctly places  Fjgure 4: Drug molecules
the majority of its density on energy levels within [—20, 0] (see Fig. generated by 7% 5, flow.
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3f) corresponding to the overlapping region between the two priors. Moreover, the estimated mean
energy of 7* (black) i.e., —10.95 &£ 0.28, reported along with validity in 3h, nearly-perfectly matches
the energy value of maximal overlap between 7! and 7P"*2, as one can see in 3e. We show
in Fig. 4 a sample of molecules generated via 7*, along with their total energy. In the unbalanced
case, RFM shifts the density slightly leftwards, effectively implementing the a-weighted intersection.
We report energy-validity metrics resulting from balanced and unbalanced intersection in Fig. 3h,
and compare them with their reward-guided counterpart in Table 1. Next, we compute via RFM the
union operator over two FlowMol pre-trained on the QM9 dataset (Ramakrishnan et al., 2014). We
parametrize critics ¢; (see Sec. 1) via the FlowMol latent representation with an MLP readout layer.
Figure 5 shows that the estimated mean of the model 7* obtained via RFM matches the average
total energy of wP"®! and 7P"%?2 as predicted by the closed-form expression for union from Sec. 3.

8 RELATED WORK

Flow and diffusion models fine-tuning via optimal control. Several works have framed fine-tuning
of flow and diffusion models to maximize expected reward functions under KL regularization as
an entropy-regularized optimal control problem (e.g., Uehara et al., 2024a; Tang, 2024; Uehara et al.,
2024b; Domingo-Enrich et al., 2024). More recently, De Santi et al. (2025b) introduced a framework
for distributional fine-tuning. The reward-guided flow merging problem in Eq. 5 extends a specific
sub-class of distributional fine-tuning to the case of multiple (i.e., n > 1) pre-trained models. This
generalization allows the use of scalable control theoretic or RL schemes for flow model merging,
and enables reward-guided model merging, where reward-guided fine-tuning and model merging
can be performed simultaneously via unified formulations and algorithms, such as RFM.

Diffusion and flow model merging. While recent works in inference-time flow and diffusion model
composition introduced theory-backed schemes (e.g., Skreta et al., 2024; Bradley et al., 2025; Du
et al., 2023), this is arguably not the case for flow merging, with a few exceptions (e.g., Song et al.,
2023). Our framework provides a formal probability-space viewpoint enabling interpretable merging
operators (see Sec. 3) for highly expressive compositions (e.g., via generative circuits), provably
implemented by RFM. To our knowledge, the theoretical guarantees in Sec. 6 are first-of-their-kind
for model merging. Specializing them to specific operators e.g., intersection, yields highly relevant
insights, such as generative models safety guarantees via intersection with a prior safe model.

Convex and general utilities reinforcement learning. Convex and General (Utilities) RL (Hazan
etal., 2019; Zahavy et al., 2021; Zhang et al., 2020) generalizes RL to the case where one wishes to
maximize a concave (Hazan et al., 2019; Zahavy et al., 2021), or general (Zhang et al., 2020; Barakat
et al., 2023) functional of the state distribution induced by a policy over a dynamical system’s state
space. Recent works tackled the finite samples budget setting (e.g., Mutti et al., 2022b;a; De Santi
et al., 2024). Similarly to previous optimization schemes for diffusion and flow models (De Santi
et al., 2025a;b), our framework (in Eq. 5) is related to Convex and General RL, with pT representing
the state distribution induced by policy 7 over a subset, or the entire flow process state space.

Optimization over probability measures via mirror flows. Recently, there has been a growing
interest in devising theoretical guarantees for probability-space optimization problems in diverse
fields of application. These include optimal transport (Aubin-Frankowski et al., 2022; Léger, 2021;
Karimi et al., 2024), kernelized methods (Dvurechensky & Zhu, 2024), GANs (Hsieh et al., 2019),
and manifold exploration (De Santi et al., 2025a) among others. To our knowledge, we present
the first use of this theoretical framework to establish guarantees for large-scale flow and diffusion
models merging, shedding new light on this highly practically relevant generative modeling task.

9 CONCLUSION

This work introduces a formal probability-space optimization framework for reward-guided flow
merging, strictly generalizing existing formulations. This allows to express a rich class of practically
relevant merging operators over generative models (e.g., intersection, union, interpolation), as well as
complex logical expressions via generative circuits. We then propose Reward-Guided Flow Merging,
a mirror-descent algorithm that reduces complex merging tasks to a sequence of standard fine-tuning
steps, each solvable by scalable off-the-shelf methods. Leveraging recent advances in mirror flows
theory, we provide first-of-their kind guarantees for flow model merging. Empirical results on diverse
visually interpretable settings, and molecular design tasks, demonstrate that our approach can steer pre-
trained models to implement diverse reward-guided merging objectives of high practical relevance.
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10 REPRODUCIBILITY STATEMENT

We provide details explanation of the method proposed in Sec. 4 and conditions under which it work
in Sec. 3. We include in Appendix E.2 a detailed implementation, which we used to carry our the
experiments in Sec. 7. Moreover, we report parameter choices for experimental evaluations in Apx.
F.2. Ultimately, notice that our implemented version of RFM is based on Adjoint Matching (Domingo-
Enrich et al., 2024), which is a very established scheme for reward-guided fine-tuning.
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B PROOFS FOR SECTION 6

B.1 PROOF OF THEOREM 6.1

Stochastic Optimal Control. We consider stochastic optimal control (SOC), which studies the
problem of steering a stochastic dynamical system to optimize a specified performance criterion.
Formally, let (X{*);c[0,1] be a controlled stochastic process satisfying the stochastic differential
equation (SDE)

dX} =b(Xt)dt + o(t) w(X{, t) dt + o(t) d By, Xy ~ po,
where u € U is an admissible control and B; is standard Brownian motion. The objective is to select
u to minimize the cost functional

1
1
E [ [ 3l 1P de - g0 . es)
0

where £ [|u(-,¢)||* represents the running cost and g is a terminal reward. A standard application

of Girsanov’s theorem shows that Equation (25) is equivalent to the mirror descent iterate in Equa-
tion (21) with G (p7*) < g and pg + pP"¢ (Tang, 2024). In addition, it is well-known that in the
context of diffusion-based generative modeling, the corresponding uncontrolled dynamics

dXt = _b(Xt7 t) dt + O'(t) dBt

coincide with the forward noising process used in score-based models (Song et al., 2020; Domingo-
Enrich et al., 2024).

Proof of Theorem 6.1.

Theorem 6.1 (SOC Retains Score Information). Suppose the forward process in Equation (20)
maps any distribution to standard Gaussian noise (i.e., a standard assumption in diffusion model
literature). Then the solution to Equation (19) is u*(x,t) == o(t) Vlog pf (z), where p¥ denotes the
marginal distribution of the forward process in Equation (20), initialized at p7*. In other words,
REWARDGUIDEDFINETUNINGSOLVER exactly recovers the score function.

Proof. Step 1. Let Q* denote the optimal process solving Equation (19). A standard application of
Girsanov’s theorem shows that Q* also solves the Schrodinger bridge problem

min Dx(Q|| P), (26)
Qo=p™
Q:1=Q7f
where P is the law of the uncontrolled dynamics
dXt = b()(t7 t) dt + O'(t) dBt

This equivalence holds because the SOC cost in Equation (19) penalizes control energy in the same
way that Girsanov’s theorem expresses a controlled SDE as a relative entropy with respect to its
uncontrolled counterpart.

Step 2. Define the forward process Piorwara DY
dX; = —b(Xy,t)dt + o(t) dB;. (27)
By assumption, this process maps any initial distribution to the standard Gaussian at { = 1. In
particular, starting from Xy ~ QF, we obtain X; ~ pP™ = N(0, I).
Step 3. Consider the time-reversed Schrodinger bridge problem
_min_ Die(Q || Prorvars). 28)

Qo=Q]
1=p™*

and denote its solution by Q*. Since relative entropy is invariant under bijective mappings and
time-reversal is bijective, the optimizers of Equation (26) and Equation (28) satisfy
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i.e., the optimal reversed bridge is simply the time-reversal of the forward bridge.

By Step 2, the process

dX; = —b(X,t) dt + o(t) d By, Xo ~ Q7 (29)
solves Equation (28), achieving the minimum relative entropy (zero) while satisfying the prescribed
marginals. Thus, invoking the relation Q* = Q*, the solution to Equation (26)—and hence to the
SOC problem Equation (19)—is given by the time-reversal of Equation (29).

Finally, applying the classical time-reversal formula (Anderson, 1982) yields that Q* is given by
aX, = (X1, 1) + 0%(t) Viegpi(X,) ) dt + o(t) dB,

where p; is the marginal density of Equation (29). Hence, REWARDGUIDEDFINETUNINGSOLVER
exactly recovers the score function. O

B.2 RIGOROUS STATEMENT AND PROOF OF THEOREM 6.2

To prepare for the convergence analysis, we impose a few auxiliary assumptions. These assumptions
are standard in the study of stochastic approximation and gradient flows, and typically hold in
practical situations. Our proof strategy follows ideas that have also been employed in related works
(De Santi et al., 2025a;b).

We begin with the entropy functional defined on probability measures:

H(p) = / plogp. (30)

In our analysis, H serves as the mirror map or distance-generating function (Mertikopoulos et al.,
2024; Hsieh et al., 2019). The first condition addresses the behavior of the corresponding dual
variables.

Assumption B.1 (Precompactness of Dual Iterates). The sequence of dual elements {0H (pT*) }1 is
precompact in the L, topology.

This compactness property ensures that the interpolated dual trajectories remain confined to a bounded
region of function space. Such a condition is crucial for invoking convergence results based on
asymptotic pseudotrajectories. Variants of this assumption have appeared in the literature on stochastic
approximation and continuous-time embeddings of discrete algorithms (Benaim, 2006; Hsieh et al.,
2019; Mertikopoulos et al., 2024).

Assumption B.2 (Noise and Bias Conditions). For the stochastic approximations used in the updates,
we assume that almost surely:

0k]loc — O, (31
S EZ(IkNZ + 1UlI%)] < oo, (32)
k

> llbelloe < 0. (33)
k

These conditions, standard in the Robbins—Monro setting (Robbins & Monro, 1951; Benaim, 2006;
Hsieh et al., 2019), guarantee that the stochastic bias vanishes asymptotically while the cumulative
noise remains under control. Together, they ensure that random perturbations do not obstruct
convergence to the optimizer of the limiting objective.

With these assumptions in place, we can now state and prove the convergence guarantee.

Theorem B.1 (Convergence guarantee in the trajectory setting). Suppose Assumptions B.1-B.2
hold, and the step sizes {1} follow the Robbins—Monro conditions (Y, vk = 00, >, Vi < 00).
Then the sequence {p1*} generated by Algorithm I converges almost surely, in the weak topology,
to the optimum:

pit—=pi  as., (34)

where pi = Q7 for some Q" € argmaxq.q,—prr G(Q1).
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Proof. We analyze the continuous-time mirror flow defined by

he =3G(ph),  ph= oM (hy), (35)

where the Fenchel conjugate of H is given by H*(h) = log [ e" (Hsich et al., 2019; Hiriart-Urruty
& Lemaréchal, 2004).

To link the discrete dynamics to this continuous flow, we construct a piecewise linear interpolation of
the iterates:
t— T K
he = h®) 4 —— 5 (R gy g0 = s (pTe), = ZO‘“
Tk+1 — Tk —0
where {a,.} denotes the step-size sequence. This interpolation produces a continuous path h, that
tracks the discrete updates as the steps shrink.

Let ®,, denote the flow map of equation 35 at time u. Standard results in stochastic approximation
(Benaim, 2006; Hsieh et al., 2019; Mertikopoulos et al., 2024) imply that for any fixed horizon 7" > 0,
there exists a constant C'(T") such that

sup_ e — ulhe)l| < CT) A= 1,7 +1) +b(T) ++(T)]
0<u<T
where A accounts for cumulative noise, b for bias, and y for step-size effects. Under Assumptions

B.1-B.2, these quantities vanish asymptotically, ensuring that h; forms a precompact asymptotic
pseudotrajectory (APT) of the mirror flow.

By the APT limit set theorem (Benaim, 2006, Thm. 4.2), the limit set of a precompact APT is
contained in the internally chain transitive (ICT) set of the underlying flow. In our case, Equation (35)
corresponds to a gradient-like flow in the Hellinger—Kantorovich geometry (Mielke & Zhu, 2025),
with G serving as a strict Lyapunov function. As G decreases strictly along non-stationary trajectories,
the ICT set reduces to the collection of stationary points of G.

Finally, because G is composed of distance-like penalties (e.g., W or KL terms) together with a linear

component, its stationary points coincide with its global maximizers. Consequently, h; converges
almost surely to the set of maximizers of G, which establishes the claim. O
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C DERIVATIONS OF GRADIENTS OF FIRST VARIATION

C.1 A BRIEF TUTORIAL ON FIRST VARIATION DERIVATION

In this work, we focus on the functionals that are Fréchet differentiable: Let V' be a normed spaces.
Consider a functional ' : V' — R. There exists a linear operator A : V' — R such that the following

limit holds
_|F(f +h) = F(f) - Alh)
I1]ly—0 IAllv

=0. (36)

We further assume that V' has enough structure such that every element of its dual (the space of
bounded linear operator on V') admits a compact representation. For example, if V' is the space of
bounded continuous functions with compact support, there exists a unique positive Borel measure p
with the same support, which can be identified as the linear functional. We denote this element as
dF[f] such that (§F[f], h) = A[h]. Sometimes we also denote it as %. We will refer to §F'[f] as

the first-order variation of F at f.

In the following, we briefly present standard strategies to derive the first-order variation of two broad
classes of functionals, including a wide variety of divergence measures, which can be employ to
implement novel operators by Eq. 5. We consider: (4) those defined in closed form with respect to
the density (e.g., forward KL) and, (1) those defined via variational formulations (e.g., Wasserstein
distance, reverse KL, and MMD).

» Category 1: Functional defined in a closed form with respect to the density. For this class of
functionals, the first-order variations can typically be computed using its definition and chain rule.

Recalling the definition of first variation (36), we can calculate the first-order variation of the mean
functional, as a trivial example. Given a continuous and bounded function 7 : R — R and a
probability measure 1 on RY, define the functional F(u) = [ 7(z)u(x)dx. Then we have:

|F'(p+ 6p) — F(p) — (r,6pm)| = 0. (37)
Therefore we obtain that: § F'[u] = r for all u. In the following section, we compute similarly the

first variation of the KL divergence.

» Category 2: Functionals defined through a variational formulation. Another fundamental
subclass of functionals that plays a central role in this work is the one of functionals defined via a
variational problem

F[f] = supGl[f, g, (38)
geN

where () is a set of functions or vectors independent of the choice of f, and ¢ is optimized over the
set 2. We will assume that the maximizer g*(f) that reaches the optimal value for G[f, -] is unique
(which is the case for the functionals considered in this project). It is known that one can use the
Danskin’s theorem (also known as the envelope theorem) to compute

oF
A oscing, (39)

under the assumption that F' is differentiable (Milgrom & Segal, 2002).
C.2 DERIVATION OF FIRST VARIATIONS USED IN SEC. 4
In the following, we derive explicitly the first variations employed in Sec. |

* Optimal transport and Wasserstein-p distance (Category 2) Consider the optimal transport
problem

ot (w0 =int { [ [cteaninton: [2enas =t [+@ai=ow} @0
where

I'= {7 : /v(:ay)daf = U(y%/v(w,y)dy = v(w)}
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It admits the following equivalent dual formulation
OT,.(u,v) = sup {/fdu + /gdv cflx)+g(y) < c(x,y)} 41)
f9

By taking ¢(z, y) = ||z — yl||?, we recover OT(u,v) = W, (u, v)?. Let ¢* and g* be the solution
to the above dual optimization problem. From the Danskin’s theorem, we have

g "
s Walu,0) = ¢". (42)
In the special case of p = 1, we know that g* = —¢@* (note that the constraint can be equivalently

written as ||V || < 1), in which case ¢* is typically known as the critic in the Wasserstein-GAN
framework (cf. Arjovsky et al., 2017).

* Reverse KL divergence (Category 2) We use the variational (Fenchel-Legendre) representation
of the forward KL, D 1,(pl||q), as in -GAN (Nowozin et al., 2016):

Drr(pllg) = sup {M(w)—EeW"l} 43)
o:Xx—R L P a

which follows from the general f-divergence dual generator f(u) = ulog u—u—+ 1 whose conjugate
is f*(t) = e'~1. For fixed p and variable g, we define:

G(g,6) =Eo(z) - Iqu‘W)*l (44)

Assuming uniqueness of a maximizer ¢*(p, ¢), Danskin’s (or envelope) theorem yields the first
variation by differentiating G at ¢*:

) ) x «
"D - (= (@) =11y )| = —e® (@)—1 45
53(2) xr(pllq) 5a(@) ( /q(ﬂs)e u e (45)
* KL divergence (Category 1) Consider the KL functional:

p
Drr(pllg) = */plogg,dx (46)
By the definition of the first-order variation (see Eq. 36), we have:

Dx1(pllg) = log g +1 @7)
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D PROOF OF PROPOSITION |

Proposition 1 (Union operator via Pre-trained Mixture Density Representation). Given py"¢ =
Yin "™/ |« Le., the a-weighted mixture density of pre-trained models, the following hold:

7 €argmin » oy DL (0] || 1) = (Z 0@) DL (7 1P (14)
T i=1 i=1
Proof. We prove the statement for n = 2, which trivially generalizes to any n. We first rewrite the
LHS optimization problem as:
arg min F(p”) (48)

where we denote pT by p™ for notational concision and define p; = pP"? and po = pP"*2. Then we
have:

F(p") = a1 Eflog pr —logp™] + a2 Eflog py — logp”] (49)
= a; Elogp; + as Elogps — (a1 Elogp™ + as E log”> (50)
P1 D2 p1 P2
We now write the following, where p denotes pi":
Elogp™ = /logp”(x)ﬁ(m) dx (51)
2
a1p1 Q2P2
= [ logp™(x + ) dx 52
Jrowyta) |20 e () 52
1
= 1 3 1 3 53
oL+ o (logp™ (z)a1p1(z) + log p™ (z)azpa(w)) (53)
1
= <a1 Elogp™ + as E logp”) (54
g+ a2 P1 P2

By combining Eq. 50 and 54, we obtain:

Fp")=a ;IE log p1 + az}%logm — (a1 + 042)%10gpﬂ (55)
Therefore,
arg min F(p”) = arg min oy ]]3Ei log p1 + a2 ]IE log pa — (a1 + a2) I%logp” (56)
' ’ constant
= arg;nin —(0q + ag) Ig log p™ (57)
= arg;nin —(on1 + QQ)%IOgPW + (a1 + a2) Ig,logﬁ (58)
= argmin(as + a2) Dre (Pl|p") (59)
(60)
Which concludes the proof. O
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E REWARD-GUIDED FLOW MERGING (RFM) IMPLEMENTATION

In the following, we provide an example of detailed implementations for REWARDGUIDEDFINETUN-
INGSOLVER employed in Sec. 4 by Reward-Guided Flow Merging, as well as REWARDGUIDEDFINE-
TUNINGSOLVERRUNNINGCOSTS, leveraged in Sec. 5 to scalably implement the AND operator. While
the oracle implementation we report for completeness for REWARDGUIDEDFINETUNINGSOLVER corre-
sponds to classic Adjoint Matching (AM) (Domingo-Enrich et al., 2024), the one for REWARDGUID-
EDFINETUNINGSOLVERRUNNINGCOSTS trivially extends AM base implementation to account for the
running cost terms introduced in Eq. 17.

E.1 IMPLEMENTATION OF REWARDGUIDEDFINETUNINGSOLVER

Before detailing the implementations, we briefly fix notation. Both algorithms explicitly rely on
the interpolant schedules «; and w; from equation 1. In the flow-model literature, these are more
commonly denoted a; and 3;. We write uP™ for the velocity field induced by the pre-trained policy
7P, and /" for the velocity field induced by the fine-tuned policy. In essence, each algorithm first
draws trajectories and then uses them to approximate the solution of a surrogate ODE; its marginals
serve as regression targets for the control policy (Section 5 Domingo-Enrich et al., 2024).

Algorithm 2 REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS via AM

Require: Pre-trained FM velocity field uP™, step size h, number of fine-tuning iterations NV, gradient
of reward Vr, fine-tuning strength 7y,
1: Initialize fine-tuned vector fields: »/ """ = ;P with parameters 6.
2: forn € {0,...,N —1} do
3: Sample m trajectories X = (Xt)te{07.__,1} with memoryless noise schedule:

o(t) = 2@(%@ - fct) 61)
4: i.e.,:

Xogn = X + (20 (X, 1) = 20X, ) + Vho(t) e, s ~N(O.1), Xo~N(O,I).

(5D
5: For each trajectory, solve the lean adjoint ODE backwards in time from ¢ = 1to 0, e.g.:
Gr_p = 4z + ha} Vx, (2vbaSE(Xt, t) — %Xt), iy = s Vr(X1). (52)
6: Note that X; and a; should be computed without gradients, i.e.,
X; = stopgrad(X;) (62)
a; = stopgrad(ay) (63)
7: For each trajectory, compute the following Adjoint Matching objective:
2
Lagmaan®) = - | (oo, t) - we (X0, ) + () d (53)
te{0,...,1—h}
8: Compute the gradient V£ (6) and update 6 using favorite gradient descent algorithm.

9: end for
Output: Fine-tuned vector field vfinewne

E.2 IMPLEMENTATION OF REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS

The following REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS is algorithmically identical to
REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS, with the only difference that the lean adjoint
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computation now integrates a running-cost term f;, defined as follows (see Sec. 5):

ft(x) =0 (Z Q; DKL(p;&T prre,i)> ('r’t)7 te [07 1) (64)
=1

Algorithm 3 REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS via AM with running costs

Require: Pre-trained FM velocity field v%, step size h, number of fine-tuning iterations N, f; =

VG (pfk ), weight 7k, weight schedule A
1: Initialize fine-tuned vector fields: v

finetune. _ 4,base yith parameters 6.

2: forn € {0,...,N —1} do

3: Sample m trajectories X = (Xt)te{o,...,1} with memoryless noise schedule:
o(t) = 126 (%m - m) (65)
4: 1.e.,:
Xt-‘rh :Xt+h(2vgnetune(Xtat) - % t) +\/Ed(t)€t7 &t NN(OvI)v XO NN(OaI)
(40)
5: For each trajectory, solve the lean adjoint ODE backwards in time from¢ = 1 t0 0, e.g.:
oo = @+ ha) Vx, (20(X0, 1) = 20X, ) = hyehfo(X) (66)
~ Trk
a1 = — A1 Vx,0G1(p7 )(X1). 41)
6: Note that X; and a; should be computed without gradients, i.e.,
X; = stopgrad(X;) (67)
a; = stopgrad(a) (68)
7: For each trajectory, compute the Adjoint Matching objective ??:
2
Lagmaen() = D Eo) (vS"‘””"e(Xt, t) — P (X, t)) + o(t) E”H . 0
te{0,...,1—h}
8: Compute the gradient V£ () and update 6 using a gradient descent step
9: end for

Output: Fine-tuned vector field u

finetune
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F EXPERIMENTAL DETAILS

F.1 ILLUSTRATIVE EXAMPLES EXPERIMENTAL DETAILS

Numerical values in all plots shown within Sec. 7 are means computed over diverse runs of RFM via
5 different seeds. Error bars correspond to 95% Confidence Intervals.

Shared experimental setup. For all illustrative experiments we utilize Adjoint Matching (AM) [14 ]
for the entropy-regularized fine-tuning solver in Algorithm 1. Moreover, the stochastic gradient steps
within the AM scheme are performed via an Adam optimizer.

Intersection Operator. The balanced plot (see Fig. 2b is obtained by running RFM with o =
[0.1,0.1], for K = 80 iterations, 75 = 28, and Ay = 0.2 for ¢ > 1 — 0.05, and \; = 0.4 otherwise.

For the balanced, reward-guided case in Fig. 2c, we consider a reward function that is maximized by
increasing the x5 coordinate. We run RFM with « = [0.1,0.1], for K = 15 iterations, 7 = 1.2, and
At =0.2fort > 1 —0.05, and \; = 0.4 otherwise.

Union Operator.

In both cases, we learn a critic via standard f-GAN (Nowozin et al., 2016) with 300 gradient steps at
each iteration k € [K] and continually fine-tune the same critic over subsequent iterations. For critic
learning, we use a learning rate of 5 exp(—5).

For the balanced case, in Fig. 2f, we run RFM with o = [1.0,1.0]. We use K = 13 iterations,
Ye = 0.001.

For the unbalanced case in Fig. 2g, we run RFM with & = [0.2, 1.8]. Notice that up to normalization
this is equivalent to [0.1, 0.9] as reported in Fig. 2g for the sake of interpretability. We use K = 13
iterations, v = 0.001.

Interpolation Operator. In both cases, we learn a critic via standard f-GAN (Nowozin et al., 2016)
with 800 gradient steps at each iteration k € [K] and continually fine-tune the same critic over
subsequent iterations. For critic learning, we use a learning rate of 1 exp(—5), and gradient penalty
of 10.0 to enforce 1-Lip. of the learned critic.

For the case where 7% = 7Pre!l (ie., left pre-trained model), in Fig. 2j, we run RFM with
a = [1.0,1.0]. We use K = 6 iterations, 75 = 1.0.

For the case where 7' := 7P7®2 (i.e., right pre-trained model), in Fig. 2k, we run RFM with
a = [1.0,1.0]. We use K = 6 iterations, v, = 1.0.

Complex Logic Expressions via Generative Circuits. Pre-trained flows 7, and 7o, as well as 7y
and 7o are intersected via RFM with v, = 1, for K = 20, and A\; = 0.1. The union operator is
implemented with K = 30, v;, = 0.0009, 300 critic steps and learning rate 5 exp(—5).

F.2 MOLECULAR DESIGN CASE STUDY

Our base model FlowMol2 CTMC (i.e., PRE-1) Dunn & Koes (2024) is pretrained on the GEOM-
Drugs dataset Axelrod & Gomez-Bombarelli (2022). We obtain our second model (i.e., PRE-2) by
finetuning PRE-1 with AM (Domingo-Enrich et al., 2024) to generate poses with lower single point
total energy wrt. the continuous atomic positions as calculated with dxtb at the GFN1-xTB level
of theory Friede et al. (2024). We then run RFM with K = 50, v = 0.001 for the balanced flow
merging, and K = 20, v = 0.005 to obtain the unbalanced flow merging. For reward-based flow
merging (RFM-RB), we set v = 0.1 and obtain the best model after K = 11. All results for merging
pre-trained models on GEOM can be found in Table 1. We note that, while reward-based merging
indeed leads to a lower mean total energy in comparison to the balanced pure model merging as
predicted, the validity of molecules decreases significantly. We attribute this to the multi-objective
nature of molecular design: the single-objective reward in our case-study does not penalize invalid
molecules. Beyond validity, a critical step towards practical application will be to integrate molecular
stability and synthesizability. Our RFM formulation straightforwardly supports these extensions in
the reward functional, and we leave their implementation to future work.
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Model Mean total energy [Ha] Mean validity [%]

PRE-1 —8.09+£0.31 7644+ 1.7
PRE-2 —14.76 £0.29 68.04 £ 0.8
RFM-B —10.95+£0.28 74.34+£0.9
RFM-UB —13.69 £0.28 72.78 0.4
RFM-RB —12.47+0.35 33.20+1.31

Table 1: Mean total energy and mean validity, averaged over 5 seeds.

For our second case-study - the OR operator - we use FlowMol2 CTMC pre-trained on QM9
(Ramakrishnan et al., 2014). We limit dimensionality to reduce the problem complexity by sampling
10 atoms per molecule, and run RFM with v = 100, K = 37. In particular Figure 5 shows that the
estimated mean of the model 7* obtained via RFM matches the average total energy of 77" and
7Pre2 as predicted by the closed-form solution for the union operator presented in Sec. 3. In Fig. 5,
OR denotes the final policy 7* returned by RFM.
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Figure 5: Union on QM9
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