
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REWARD-GUIDED FLOW MERGING
VIA IMPLICIT DENSITY OPERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Unprecedented progress in large-scale flow and diffusion modeling for scientific
discovery recently raised two fundamental challenges: (i) reward-guided
adaptation of pre-trained flows, and (ii) integration of multiple models, i.e., model
merging. While current approaches address them separately, we introduce a uni-
fying probability-space framework that subsumes both as limit cases, and enables
reward-guided flow merging. This captures generative optimization tasks requiring
information from multiple pre-trained flows, as well as task-aware flow merging
(e.g., for maximization of drug-discovery utilities). Our formulation renders
possible to express a rich family of implicit operators over generative models
densities, including intersection (e.g., to enforce safety), union (e.g., to compose
diverse models) and interpolation (e.g., for discovery in data-scarce regions).
Moreover, it allows to compute complex logic expressions via generative circuits.
Next, we introduce Reward-Guided Flow Merging (RFM), a theory-backed
mirror-descent scheme that reduces reward-guided flow merging to a sequential
fine-tuning problem that can be tackled via scalable, established methods. Then,
we provide first-of-their-kind theoretical guarantees for reward-guided and pure
flow merging via RFM. Ultimately, we showcase the capabilities of the proposed
method on illustrative settings providing visually interpretable insights, and on
a high-dimensional drug design task generating low-energy molecular conformers.

1 INTRODUCTION

Large-scale generative modeling has recently progressed at an unprecedented pace, with flow (Lipman
et al., 2022; 2024) and diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho
et al., 2020) delivering high-fidelity samples in chemistry (Hoogeboom et al., 2022), biology (Corso
et al., 2022), and robotics (Chi et al., 2023). However, adoption in real-world applications like
scientific discovery led to two fundamental algorithmic challenges: (i) reward-guided fine-tuning,
i.e., adapting pre-trained models to maximize downstream utilities (e.g., binding affinity) (e.g.,
Domingo-Enrich et al., 2024; Uehara et al., 2024b; De Santi et al., 2025b), and (ii) model merging
- integrating multiple pre-trained models (Song et al., 2023; Ma et al., 2025), e.g., to incorporate
safety constraints (Dai et al., 2023), or unify diverse priors (Ma et al., 2025). The former now
benefits from principled and scalable control theoretic or reinforcement learning (RL) methods,
with successes in image generation (Domingo-Enrich et al., 2024), molecular design (Uehara et al.,
2024b), and protein engineering (Uehara et al., 2024b). By contrast, current merging approaches
remain mostly heuristic, training-heavy, and act in weight-space with limited interpretability of the
merging operations (Ma et al., 2025; Song et al., 2023). Crucially, these two problems have been
treated via distinct formulations and methods. On the contrary, in this work we ask:

Can we fine-tune a pre-trained flow model to optimize a given reward function while integrating
information from (i.e., merge) multiple pre-trained flows?

Answering this would contribute to the algorithmic-theoretical foundations of flow adaptation and
enable rich applications in highly relevant areas such as scientific discovery and generative design.
Our approach To address this challenge, we first introduce a probability-space optimization
framework (see Fig. 1b) that recovers reward-guided fine-tuning and pure model merging as limit
cases, and provably enables reward-guided model merging (Sec. 3). Our formulation allows to
express a rich family of implicit operators over generative models that cover practical needs such
as enforcing safety (e.g., via intersection), composing diverse models (e.g., via union), and discovery

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

in data-scarce regions (e.g., via interpolation). However, these operators are expressed via non-linear
functionals that cannot be optimized via classic RL or control schemes, as shown by De Santi
et al. (2025b). To overcome this challenge, we introduce Reward-Guided Flow Merging (RFM),
a mirror descent (MD) (Nemirovskij & Yudin, 1983) scheme that solves reward-guided and pure flow
merging via a sequential adaptation process implementable via established fine-tuning methods (e.g.,
Domingo-Enrich et al., 2024; Uehara et al., 2024b) (Sec. 4). Next, we extend the algorithm proposed,
to operate on the space of entire flow processes, enabling scalable and stable computation of the
intersection operator (Sec. 5). We provide a rigorous convergence analysis of RFM, yielding
first-of-its-kind theoretical guarantees for reward-guided and pure flow merging (Sec. 6). Ultimately,
we showcase our method’s capabilities on illustrative settings, as well as on a molecular design task
for control and optimization of quantum-mechanical properties via conformer generation (Sec. 7).
Our contributions To sum up, in this work we contribute
• A formalization of reward-guided flow merging via implicit operators, which generalizes recent

reward-guided fine-tuning and pure flow merging formulations via an operator viewpoint (Sec. 3).
• Reward-Guided Flow Merging (RFM), a principled algorithm which provably solves arbitrary

reward-guided flow merging problems via probability-space optimization over the space of data-
level marginal densities induced by flow models (Sec. 4), and a stability-enhancing extension for
flow intersection following a mirror-descent scheme on the space of joint flow processes (Sec. 5).

• A theoretical analysis of the presented algorithms providing convergence guarantees both under
simplified and realistic assumptions leveraging recent understanding of mirror flows (Sec. 6).

• An experimental evaluation of RFM showcasing its practical relevance on both synthetic, yet
illustrative settings and on a scientific discovery task, showing it can effectively intersect pre-
trained flow models for molecular conformers generation. (Sec. 7).

2 BACKGROUND AND NOTATION

General Notation. We denote with X ⊆ Rd an arbitrary set. Then, we indicate the set of Borel
probability measures on X with P (X), and the set of functionals over P (X) as F (X).
Generative Flow Models. Generative models aim to approximately sample novel data points from a
data distribution pdata. Flow models tackle this problem by transforming samples X0 = x0 from a
source distribution p0 into samples X1 = x1 from the target distribution pdataLipman et al. (2024);
Farebrother et al. (2025). Formally, a flow is a time-dependent map ψ : [0, 1]×Rd → R such that ψ :
(t, x)→ ψt(x). A generative flow model is a continuous-time Markov process {Xt}0≤t≤1 obtained
by applying a flow ψt to X0 ∼ p0 as Xt = ψt(X0), t ∈ [0, 1], such that X1 = ψ1(X0) ∼ pdata. In
particular, the flow ψ can be defined by a velocity field u : [0, 1]× Rd → Rd, which is a vector field
related to ψ via the following ordinary differential equation (ODE), typically referred to as flow ODE:

d

dt
ψt(x) = ut(ψt(x)) (1)

with initial condition ψ0(x) = 0. A flow model Xt = ψt(X0) induces a probability path of marginal
densities p = {pt}0≤t≤1 such that at time t we have that Xt ∼ pt. We denote by pu the probability
path of marginal densities induced by the velocity field u. Flow matching (FM) (Lipman et al.,
2024) can estimate a velocity field uθ s.t. the induced marginal densities puθ satisfy puθ

0 = p0 and
puθ
1 = pdata, where p0 denotes the source distribution, and pdata the target data distribution. Typically

FM are rendered tractable by defining put as the marginal of a conditional density put (·|x0, x1), e.g.,:
Xt | X0, X1 = κtX0 + ωtX1 (2)

where κ0 = ω1 = 1 and κ1 = ω0 = 0 (e.g. κt = 1 − t and ωt = t). Then uθ can be learned
by regressing onto the conditional velocity field u(·|x1) (Lipman et al., 2022). As diffusion
models (Song & Ermon, 2019) (DMs) admit an equivalent ODE formulation with identical marginal
densities (Lipman et al., 2024, Ch. 10), our contributions extend directly to DMs.
Continuous-time Reinforcement Learning. We formulate finite-horizon continuous-time RL as a
specific class of optimal control problems (Wang et al., 2020; Jia & Zhou, 2022; Treven et al., 2023;
Zhao et al., 2024). Given a state space X and an action space A, we consider the transition dynamics
governed by the following ODE: d

dt
ψt(x) = at(ψt(x)) (3)

where at ∈ A is a selected action. We consider a state space X := Rd× [0, 1], and denote by (Marko-
vian) deterministic policy a function πt(Xt) := π(Xt, t) ∈ Amapping a state (x, t) ∈ X to an action
a ∈ A such that at = π(Xt, t), and denote with pπt the marginal density at time t induced by policy π.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Reward-Guided Flow Merging (b) Probability-Space Opt. Viewpoint

Figure 1: (1a) Pre-trained and fine-tuned policies inducing {ppre,i1 }ni=1 and opt. density p∗1 via reward-
guided flow merging. (1b) Probability-space optimization viewpoint on reward-guided merging.

Pre-trained Flow Models as an RL policy. A pre-trained flow model with velocity field upre can be
interpreted as an action process apret := upre(Xt, t), where apret is determined by a continuous-time
RL policy via apret = πpre(Xt, t) (De Santi et al., 2025a). Therefore, we can express the flow ODE
induced by a pre-trained flow model by replacing at with apre in Eq. equation 3, and denote the
pre-trained model by its policy πpre, which induces a density ppre1 := pπ

pre

1 approximating pdata.

3 REWARD-GUIDED FLOW MERGING VIA IMPLICIT DENSITY OPERATORS

In this section, we introduce the general problem of reward-guided flow merging via implicit density
operators. Formally, we wish to implement an operator O: Π× . . .×Π→ Π that, given pre-trained
generative flow models {πpre,i}i∈[n], returns a merged flow π∗ inducing an ODE:

d

dt
ψt(x) = a∗t (ψt(x)) with a∗t = π∗(x, t), (4)

such that it controllably merges prior information within the n pre-trained generative models, while po-
tentially steering its density p∗1 := pπ

∗

1 towards a high-reward region according to a given scalar reward
function f(x) : X → R. We tackle this problem by fine-tuning an initial flow πinit ∈ {πpre,i}i∈[n]
according to the following optimization formulation, visually portrayed in Fig. 1b.

Reward-Guided Flow Merging via Implicit Density Operators

O : (πpre,1, . . . , πpre,n)→ π∗ s.t. π∗ ∈ argmax
π:p∗

0=ppre
0

E
x∼pπ

1

[f(x)]−
n∑

i=1

αiDi(p
π
1 ∥ p

pre,i
1) (5)

Here, each Di is an arbitrary divergence, αi > 0 are model-specific weights, and pπ0 = ppre0 enforces
that the marginal density at t = 0 must match the pre-trained model marginal. This formulation
recovers reward-guided fine-tuning (e.g., Domingo-Enrich et al., 2024) when n = 1 and D1 = DKL,
and provides a formal framework for pure flow merging (e.g., Poole et al., 2022; Song et al., 2023)
with interpretable objectives, when the reward f is constant (e.g., f(x) = 0 ∀x ∈ X). In this case,
Eq. 5 formalizes flow merging as computing a flow π∗ that minimizes a weighted sum of divergences
to the priors {πpre,i}i∈[n]. Varying the divergences {Di}i∈[n] yields different merging strategies.

In-Distribution Flow Merging. Given pre-trained flow models {πpre,i}i∈[n], we denote by
in-distribution merging when the merged model generates samples from regions with sufficient
prior density. Practically relevant instances include the intersection operator O∧ (i.e., a logical
AND), and the union operator O∨ (i.e., a logical OR). Formally, these operators can be defined via:

O∧: Intersection (∧) Operator

π∗ ∈ argmin
π:p∗

0=ppre
0

n∑
i=1

αiDKL(p
π
1∥p

pre,i
1) (6)

O∨: Union (∨) Operator

π∗ ∈ argmin
π:p∗

0=ppre
0

n∑
i=1

αiD
R
KL(p

π
1∥p

pre,i
1) (7)

TheDKL divergences in Eq. 6 heavily penalize density allocation in any region with low prior density
for any model πpre,i, leading to an optimal flow model π∗ inducing p∗1(x) ∝

∏n
i=1 p

pre,i
1 (x)αi (cf.

Heskes, 1997). Similarly, the reverse KL divergence DR
KL(p∥q) := DKL(q∥p) in Eq. 7 induces a

mode-covering behaviour implying a flow model π∗ with density p∗1 ∝
∑n

i=1 αip
pre,i
1 (x) (cf. Baner-

jee et al., 2005) sufficiently covering all regions with enough prior density, for any ppre,i1 , i ∈ [n].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Out-of-Distribution Flow Merging. We denote by out-of-distribution, the case where π∗ samples
from regions insufficiently covered by all priors. An example is the interpolation operator OWp

(see
Eq. 8), which induces p∗1 equal to the prior densities Wasserstein Barycenter (Cuturi & Doucet, 2014).

OWp : Interpolation (Wasserstein-p Barycenter) Operator

argmin
π

n∑
i=1

αiWp(p
π
1 ∥ p

pre,i
1) :=

n∑
i=1

αi inf
γ∈Γ(pπ

1 ,p
pre
1)

E
(x,y)∼γ

[d(x, y)p]
1
p (8)

Straightforward Generalizations. While we presented a few practically relevant operators, the
framework in Eqs. 5 is not tied to them: it trivially admits any new operator defined via other
divergences (e.g., MMD, Rényi, Jensen–Shannon), and allows diverse Di for each prior flow models
πpre,i. Moreover, sequential composition of these operators makes it possible to implement arbitrarily
complex logical operations over generative models. For instance, as later shown in Sec. 7, one
can obtain π∗ = (πpre,1 ∨ πpre,2) ∧ πpre,3 by first computing π1,2 := O∨(πpre,1, πpre,2) and then
π∗ := O∧(π1,2, πpre,3). We denote such operators by generative circuits, and illustrate one in Fig. 3d.

While being of high practical relevance, the presented framework entails optimizing non-linear distri-
butional utilities (see Eq. 5) beyond the reach of standard RL or control schemes, as shown by De Santi
et al. (2025b). In the next section, we show how to reduce the introduced problem to sequential
fine-tuning for maximization of rewards automatically determined by the choice of operator O.

4 ALGORITHM: REWARD-GUIDED FLOW MERGING

In this section, we introduce Reward-Guided Flow Merging (RFM), see Alg. 1, which provably solves
Problem 5. RFM implements general operators O (see Sec. 3) by solving the following problem:

Reward-Guided Flow Merging as Probability-Space Optimization

pπ
∗

1 ∈ argmax
pπ
1

G(pπ1) with G(pπ1) := E
x∼pπ

1

[f(x)]−
n∑

i=1

αiDi(p
π
1 ∥ p

pre,i
1) (9)

Given an initial flow model πinit ∈ {πpre,i}i∈[n], RFM follows a mirror descent (MD) scheme (Ne-
mirovskij & Yudin, 1983) for K iterations by sequentially fine-tuning πinit to maximize surrogate
rewards gk determined by the chosen operator, i.e., G. To understand how RFM computes the
surrogate rewards {gk}Kk=1 guiding the optimization process in Eq. 9, we first recall the notion
of first variation of G over a space of probability measures (cf. Hsieh et al., 2019). A functional
G ∈ F (X) has a first variation at µ ∈ P (X) if there exists a function δG(µ) ∈ F (X) such that:

G(µ+ ϵµ′) = G(µ) + ϵ⟨µ′, δG(µ)⟩+ o(ϵ).

holds for all µ′ ∈ P (X), where the inner product is an expectation. At iteration k ∈ [K], given the cur-
rent generative model πk−1, RFM fine-tunes it according to the following standard entropy-regularized
control or RL problem, solvable via any established method (e.g., Domingo-Enrich et al., 2024)

argmax
π

⟨δG
(
p
πk−1

1

)
, pπ1 ⟩ −

1

γk
DKL(p

π
1 ∥ p

πk−1

1) (10)

Thus, we introduce a surrogate reward function gk : X → R defined for all x ∈ X such that:

gk(x) := δG
(
pπ

k−1

1

)
(x) and E

x∼pπ
1

[gk(x)] = ⟨δG
(
pπ

k−1

1

)
, pπ1 ⟩ (11)

We now present Reward-Guided Flow Merging (RFM), see Alg. 1. At each iteration k ∈ [K], RFM es-
timates the gradient of the first variation at the previous policy πk−1, i.e.,∇xδG(pπ

k−1

1) (line 4). Then,
it updates the flow model πk by solving the reward-guided fine-tuning problem in Eq. 10 by employing
∇xgk := ∇xδG(pπ

k−1

1) as reward function gradient (line 5). Ultimately, RFM returns a final policy
π := πK . We report a detailed implementation of REWARDGUIDEDFINETUNINGSOLVER in Apx. E.2.
Implementation of Intersection, Union, and Interpolation operators. In the following, we
present the specific expressions of ∇xδG(pπ1) for pure model merging with the intersection (O∧),
union (O∨), and interpolation (OWp

) operators introduced in Sec. 3.

∇xδG(pπ1)(x) =


−
∑n

i=1 αis
k−1(x, t = 1) +

∑n
i=1 αis

πpre,i

(x, t = 1) Intersection (O∧)
−
∑n

i=1∇x exp (ϕ
∗
i (x)− 1), ϕ∗i as by Eq. 45 Union (O∨)

−
∑n

i=1∇xϕ
∗
i (x), ϕ

∗
i = argmaxϕ:∥∇xϕ∥≤1⟨ϕ, p

π − ppre,i⟩ Interpol. (OW1
)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Reward-Guided Flow Merging (RFM)

1: input: {πpre,i}i∈[n] : pre-trained flows, {Di}i∈[n] : arbitrary divergences, f : reward, {αi}i∈[n] : weighs,
K : iterations number, {γk}Kk=1 stepsizes, πinit ∈ {πpre,i}i∈[n] : initial flow model

2: Init: π0 := πinit

3: for k = 1, 2, . . . ,K do
4: Estimate∇xgk = ∇xδG(pπ

k−1

1) with:

G
(
pπ

k−1

1

)
=


E

x∼pπ
k−1

1

[f(x)]−
n∑

i=1

αiDi(p
πk−1

1 ∥ ppre,i1) (Reward-Guided Flow Merging)

−
n∑

i=1

αiDi(p
πk−1

1 ∥ ppre,i1) (Flow Merging)

(12)
5: Compute πk via standard reward-guided fine-tuning (e.g., Domingo-Enrich et al., 2024):

πk ← REWARDGUIDEDFINETUNINGSOLVER(∇xgk, γk, πk−1)

6: end for
7: output: policy π := πK

Where by sk−1(x, t) := ∇ log pπ−1t (x) we denote the score of model πk−1 at point x and time t, and
spre,i := sπ

pre,i

. For diffusion models, a learned neural score network is typically available; for flows,
the score follows from a linear transformation of π(Xt, t) (e.g., Domingo-Enrich et al., 2024, Eq. 8):

sπt (x) =
1

κt(
ω̇t

ωt
κt − κ̇t)

(
π(x, t)− ω̇t

ωt
x

)
(13)

For the union operator, gradients are defined via critics {ϕ∗i }ni=1 learned with the standard variational
form of reverse KL, as in f-GAN training of neural samplers (Nowozin et al., 2016). For W1

interpolation, each ϕ∗i plays the role of a Wasserstein-GAN discriminator with established learning
procedures (Arjovsky et al., 2017). In both cases, each critic compares the fine-tuned density to
a prior density ppre,i1 , seemingly requiring one critic per prior. We prove that, surprisingly, this is
unnecessary for the union operator, and conjecture that analogous results hold for other divergences.

Proposition 1 (Union operator via Pre-trained Mixture Density Representation). Given ppre1 =∑n
i=1 αip

pre,i
1 /

∑n
i=1 αi, i.e., the α-weighted mixture density of pre-trained models, the following hold:

π∗ ∈ argmin
π

n∑
i=1

αiD
R
KL(p

π
1 ∥ p

pre,i
1) =

(
n∑

i=1

αi

)
DR

KL(p
π
1 ∥ p

pre
1) (14)

Prop. 1, which is proved in Apx. D implies that the union operator in Eq. 7 over n prior models can
be implemented by learning a single critic ϕ∗, as shown in Sec. 7. In Apx. C.2, we report the gradient
expressions above, and present a brief tutorial to derive the first variations for any new operator.

Crucially, the score in Eq. 13 for the intersection gradient diverges at t = 1 (κ1 = 0). While prior
works attenuate the issue by evaluating the score at 1− ϵ (De Santi et al., 2025a), this trick hardly
scales well to high-dimensional settings. In the following, we propose a principled solution to this
problem by leveraging weighted score estimates along the entire noised flow process, i.e., t ∈ [0, 1].

5 TRULY SCALABLE INTERSECTION VIA FLOW PROCESS OPTIMIZATION

Towards tackling the aforementioned issue, we lift the problem in Eq. 6 from the probability space
associated to the last time-step marginal pπ1 , where the score diverges, to the entire flow process:

Intersection Operator O∧ via Flow Process Optimization

π∗ ∈ argmax
π:pπ

0=ppre
0

L∧ (Qπ) :=

∫ 1

0

λt

n∑
i=1

αiDKL(p
π
t ∥ p

pre,i
t) dt (15)

Here, Qπ = {pπt }t∈[0,1] denotes the entire joint flow process induced by policy π over X [0,1]. Under
general regularity assumptions, an optimal policy π∗ for Problem 15 is optimal also w.r.t. Eq. 6.
Interestingly, an optimal flow π∗ for Problem 15 can be computed via a MD scheme acting over
the space of joint flow processes Qπ = {pπt }t∈[0,1] determined by the following update rule:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Reward-Guided Flow Merging (Mirror Descent) Step

Qk ∈ argmax
q:p0=pk−1

0

⟨δL∧(Qk−1),Q⟩+ 1

γk
DKL

(
Q∥Qk−1) (16)

First, we state the following Lemma 5.1, which allows to express the first variation of L∧ w.r.t. the
entire flow process Qπ as an integral of first variations w.r.t. the marginal densities pπt .
Lemma 5.1 (First Variation of Flow Process Functional). For objective L∧ in Eq. 15 it holds:

⟨δL∧(Qk), q⟩ =
∫ 1

0

λt E
Q

[
δ

n∑
i=1

αiDKL(p
π
t ∥ p

pre,i
t)

]
dt. (17)

This factorization of ⟨δL∧(Qk), q⟩ shows that a flow πk+1 inducing an optimal process Qk w.r.t. the
update step in Eq. 16 can be computed by solving a control-affine optimal control problem via the
same REWARDGUIDEDFINETUNINGSOLVER oracle used in Alg. 1, by introducing the running cost term:

ft(x) := δ

(
n∑

i=1

αiDKL(p
π
t ∥ p

pre,i
t)

)
(x, t), t ∈ [0, 1) (18)

This algorithmic idea, which allows to control the score scale at t→ 1 via λt, thus enhancing RFM,
trivially extends to reward-guided merging, and is accompanied by a detailed pseudocode in Apx. E.2.

6 GUARANTEES FOR REWARD-GUIDED FLOW MERGING

In this section, we aim to establish rigorous theoretical guarantees for RFM, ensuring its reliability.
Central Challenge. Score functions sπ leveraged in Sec. 4 to express gradients of first variations
are readily available for pretrained models used to initialize RFM. It is far less clear whether
they remain accessible throughout subsequent iterations. In particular, the process returned by
REWARDGUIDEDFINETUNINGSOLVER is in general unrelated to the score.
Score Retention via Stochastic Optimal Control. Our key observation is that, under a standard ap-
proximation, most fine-tuning schemes retain score information. Specifically, we consider fine-tuning
through the lens of stochastic optimal control (SOC) (cf. Bellman, 1954)), which encompassing
many existing methods including Adjoint Matching (Domingo-Enrich et al., 2024), which we employ
in Sec. 7. Formally, SOC addresses the following problem defined over SDEs (see Appendix B):

min
u∈U

E

[∫ 1

0

1
2∥u(X

u
t , t)∥2 dt− g(Xu

1)

]
s.t. dXu

t =
(
b(Xu

t , t) + σ(t)u(Xu
t , t)

)
dt+ σ(t) dBt

(19)
where Xu

0 ∼ p0,, U is the set of admissible controls, and g is a terminal reward, corresponding the
gk’s in Algorithm 1. The corresponding uncontrolled dynamics (up to a minus sign),

dXu
t = −b(Xu

t , t) dt+ σ(t) dBt, (20)

coincide with the forward process in diffusion-modeling (Song et al., 2020). We show that the model
returned by REWARDGUIDEDFINETUNINGSOLVER via SOC necessarily encodes score information.

Theorem 6.1 (SOC Retains Score Information). Suppose the forward process in Equation (20)
maps any distribution to standard Gaussian noise (i.e., a standard assumption in diffusion model
literature). Then the solution to Equation (19) is u⋆(x, t) := σ(t)∇ log pkt (x), where pkt denotes
the marginal distribution of the forward process in Equation (20), initialized at pπk

1 . In other
words, REWARDGUIDEDFINETUNINGSOLVER exactly recovers the score function.

Leveraging the established connection between Eq. 19 and mirror descent (Tang, 2024), Theorem 6.1
enables us to reinterpret Algorithm 1 as generating approximate mirror iterates, a framework that has
proven effective for sampling and generative modeling (Karimi et al., 2024; De Santi et al., 2025a;b).
Robust Convergence under Inexact Updates. Thanks to Theorem 6.1, we can now develop a rigor-
ous convergence theory for Algorithm 1 under the realistic condition that REWARDGUIDEDFINETUN-
INGSOLVER (see Sec. 4) is implemented approximately. Let G be the objective in Eq. 9. Via πk, the iter-
ates generated by Algorithm 1 induce a sequence of stochastic processes, denoted by Qk, which satisfy
Qk = pπ

k

1 . Each iterate Qk is understood as an approximation to the idealized mirror descent step:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Pre-trained samples (b) AND Balanced (c) AND reward up (d) AND optimization

(e) Pre-trained samples (f) OR Balanced (g) OR α = [0.1, 0.9] (h) OR optimization

(i) Pre-trained samples (j) INTR πinit = πpre,1 (k) INTR πinit = πpre,2 (l) Reward-guided INTR

Figure 2: Illustrative settings with visually interpretable results. (top) Flow model balanced pure in-
tersection (2b), and reward-guided intersection (2c), (mid) Flow balanced and unbalanced union, (bot-
tom) Flow model pure and reward-guided interpolation. Crucially, RFM can correctly implement these
practically relevant and diverse operators with high degree of expressivity (e.g., α, reward-guidance).

Qk
♯ ∈ argmax

Q:p0=ppre
0

{
⟨δG(pπk

1),Q⟩ − 1
γkDKL

(
Q ∥Qk−1)}. (21)

which serves as the exact reference point for our analysis. To quantify the discrepancy between Qk

and Qk
♯ , let Tk denote the history up to step k, and decompose the error as

bk := E
[
δG(pπk

1)− δG((Qk
♯)1)

∣∣ Tk] , (22)

Uk := δG(pπk
1)− δG((Qk

♯)1)− bk. (23)

Here, bk captures systematic approximation error, while Uk represents a zero-mean fluctuation
conditional on Tk. Under mild assumptions controlling noise and bias (see Appendix B.2), the
long-term behavior of the iterates can be rigorously characterized.

Theorem 6.2 (Asymptotic convergence under inexact updates (Informal)). Assume the oracle
has bounded variance and diminishing bias, and the step sizes {γk} satisfy the Robbins–Monro
conditions (

∑
k γ

k =∞,
∑

k(γ
k)2 <∞). Then the sequence {pπk

1 } generated by Algorithm 1
converges almost surely to the optimum in the weak sense:

pπk
1 ⇀ p∗1 a.s., (24)

where p∗1 = Q∗1,Q
∗ ∈ argmaxQ:Q0=ppre

0
G(Q1).

7 EXPERIMENTAL EVALUATION

We evaluate RFM for the reward-guided flow merging problem (see Eq. 5) by tackling two types of
experiments: (i) illustrative settings with visually interpretable insights, showcasing the correctness
and high expressivity of RFM, and (2) high-dimensional molecular design tasks generating
low-energy molecular conformers. Additional experimental details are reported in Appendix F.2

Intersection Operator O∧ (AND). We consider pre-trained flow models inducing densities ppre,11
(green) and ppre,21 (violet) - as shown in Fig. 2a. We fine-tune πinit := πpre,1 via RFM to compute
the policy π∗ resulting from diverse intersection operations π∗ = O∧(πpre,1, πpre,2). First, in Fig.
2b, we show p∗ (black) obtained by RFM with α = [0.5, 0.5], i.e., balanced. One can notice that
the flow model p∗ covers mostly the intersecting regions between ppre,11 and ppre,21 (see Fig. 2a). In

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Pre-trained samples (b) π5 and π6 (c) Circuit output π∗ (d) Generative circuit

(e) Pre-trained samples (f) AND molecules (g) AND α = [0.33, 0.66] (h) Validity-Energy

Figure 3: (top) RFM can implement generative circuits (3d) computing sequential operators (3a-3c).
(bottom) RFM computes a flows intersection π∗ generating drug molecules with desired energy levels.

Fig. 2c we report an instance of reward-guided intersection for a reward function maximized upward.
As one can see, RFM computes a policy π∗ placing density over the highest-reward region among the
intersecting ones, i.e., the top intersecting area. This reward-guided flow merging process is carried
out via maximization over K = 15 iterations of the objective G illustrated in Fig. 2d.

Union Operator O∨ (OR). We fine-tune the pre-trained flow model πinit = πpre,1 with density
illustrated in Fig. 2e (green) via RFM to implement balanced (i.e., α = [0.5, 0.5] and unbalanced
(i.e., α = [0.1, 0.9]) versions of the union operator, namely computing π∗ = O∨(πpre,1, πpre,2).
As shown in Fig. 2f and 2g RFM can successfully compute optimal policies π∗ implementing both
operators via optimization of the functional G, corresponding to sum of weighted KL-divergences
(see Eq. 7) evaluated for iterations k ∈ [K] with K = 13 in Fig. 2h.

Interpolation Operator OW1
(Wasserstein-1 Barycenter). We use RFM to compute flow models

π∗ inducing densities p∗1 corresponding to diverse interpolations between the the pre-trained models’
densities illustrated in Fig. 2i. Although the optimal policy to which RFM converges asymptotically
is invariant w.r.t. the initial flow model πinit chosen for fine-tuning, here we show that this choice can
actually be used to control the algorithm execution over few iterations (i.e.,K = 6). As one can expect,
Fig. 2j and 2k show that the result density after K = 6 iterations is closer to the flow model chosen as
πinit, namely πpre,1 (green) in Fig. 2j and πpre,2 (violet) in Fig. 2k. We illustrate in Fig. 2l the density
(black) obtained via reward-guided interpolation, with a reward function maximized left upwards.

Complex Logic Expressions via Generative Circuits. We consider 4 flow models {πpre,i}4i=1
illustrated in Fig. 3a, which we aim to merge into a unique flow π∗ determined by the logical
expression π∗ = (π1 ∧ π2) ∨ (π3 ∧ π4). In particular, we implement the generative circuit shown
in Fig. 3d via sequential use of RFM. First, we compute π5 := O∧(πpre,1, πpre,2) and π6 :=
O∧(πpre,3, πpre,4), shown in Fig. 3b, and subsequently π∗ := O∨(πpre,3, πpre,4) - this is illustrated
in Fig. 3c. Crucially, this illustrative experiments confirms that RFM can implement complex logical
expressions over generative models via generative circuits, as the simple one just presented.

Low-Energy Molecular Design via Flow Merging We address a molecular design task where
we have access to two FlowMol models πpre,1 and πpre,2 (Dunn & Koes, 2024) pre-trained on

-11.29

-13.83-14.30

-8.01

Figure 4: Drug molecules
generated by π∗AND flow.

GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022) with different lev-
els of single-point total energy at the GFN1-xTB level of theory (Friede
et al., 2024), −14.8 and −8.1 Ha respectively as shown in Fig. 3e.
We aim to compute a flow model that generates molecules whose total
energy matches that of molecules likely under both generative models.
To this end, we run RFM to compute the flow π∗ returned by the inter-
section operator (see Eq. 6), with parameters detailed in Apx. F.2. We
report in Fig. 3f the density p∗ (black) computed via balanced merging
(i.e., α1 = α2 = 1) and in Fig. 3g the one obtained via unbalanced
merging (i.e., α1 = 1, α2 = 2). In the former case, p∗ correctly places
the majority of its density on energy levels within [−20, 0] (see Fig.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

3f) corresponding to the overlapping region between the two priors. Moreover, the estimated mean
energy of π∗ (black) i.e., −10.95± 0.28, reported along with validity in 3h, nearly-perfectly matches
the energy value of maximal overlap between πpre,1 and πpre,2, as one can see in 3e. We show
in Fig. 4 a sample of molecules generated via π∗, along with their total energy. In the unbalanced
case, RFM shifts the density slightly leftwards, effectively implementing the α-weighted intersection.
We report energy-validity metrics resulting from balanced and unbalanced intersection in Fig. 3h,
and compare them with their reward-guided counterpart in Table 1. Next, we compute via RFM the
union operator over two FlowMol pre-trained on the QM9 dataset (Ramakrishnan et al., 2014). We
parametrize critics ϕ∗i (see Sec. 1) via the FlowMol latent representation with an MLP readout layer.
Figure 5 shows that the estimated mean of the model π∗ obtained via RFM matches the average
total energy of πpre,1 and πpre,2 as predicted by the closed-form expression for union from Sec. 3.

8 RELATED WORK

Flow and diffusion models fine-tuning via optimal control. Several works have framed fine-tuning
of flow and diffusion models to maximize expected reward functions under KL regularization as
an entropy-regularized optimal control problem (e.g., Uehara et al., 2024a; Tang, 2024; Uehara et al.,
2024b; Domingo-Enrich et al., 2024). More recently, De Santi et al. (2025b) introduced a framework
for distributional fine-tuning. The reward-guided flow merging problem in Eq. 5 extends a specific
sub-class of distributional fine-tuning to the case of multiple (i.e., n > 1) pre-trained models. This
generalization allows the use of scalable control theoretic or RL schemes for flow model merging,
and enables reward-guided model merging, where reward-guided fine-tuning and model merging
can be performed simultaneously via unified formulations and algorithms, such as RFM.

Diffusion and flow model merging. While recent works in inference-time flow and diffusion model
composition introduced theory-backed schemes (e.g., Skreta et al., 2024; Bradley et al., 2025; Du
et al., 2023), this is arguably not the case for flow merging, with a few exceptions (e.g., Song et al.,
2023). Our framework provides a formal probability-space viewpoint enabling interpretable merging
operators (see Sec. 3) for highly expressive compositions (e.g., via generative circuits), provably
implemented by RFM. To our knowledge, the theoretical guarantees in Sec. 6 are first-of-their-kind
for model merging. Specializing them to specific operators e.g., intersection, yields highly relevant
insights, such as generative models safety guarantees via intersection with a prior safe model.
Convex and general utilities reinforcement learning. Convex and General (Utilities) RL (Hazan
et al., 2019; Zahavy et al., 2021; Zhang et al., 2020) generalizes RL to the case where one wishes to
maximize a concave (Hazan et al., 2019; Zahavy et al., 2021), or general (Zhang et al., 2020; Barakat
et al., 2023) functional of the state distribution induced by a policy over a dynamical system’s state
space. Recent works tackled the finite samples budget setting (e.g., Mutti et al., 2022b;a; De Santi
et al., 2024). Similarly to previous optimization schemes for diffusion and flow models (De Santi
et al., 2025a;b), our framework (in Eq. 5) is related to Convex and General RL, with pπ1 representing
the state distribution induced by policy π over a subset, or the entire flow process state space.
Optimization over probability measures via mirror flows. Recently, there has been a growing
interest in devising theoretical guarantees for probability-space optimization problems in diverse
fields of application. These include optimal transport (Aubin-Frankowski et al., 2022; Léger, 2021;
Karimi et al., 2024), kernelized methods (Dvurechensky & Zhu, 2024), GANs (Hsieh et al., 2019),
and manifold exploration (De Santi et al., 2025a) among others. To our knowledge, we present
the first use of this theoretical framework to establish guarantees for large-scale flow and diffusion
models merging, shedding new light on this highly practically relevant generative modeling task.

9 CONCLUSION

This work introduces a formal probability-space optimization framework for reward-guided flow
merging, strictly generalizing existing formulations. This allows to express a rich class of practically
relevant merging operators over generative models (e.g., intersection, union, interpolation), as well as
complex logical expressions via generative circuits. We then propose Reward-Guided Flow Merging,
a mirror-descent algorithm that reduces complex merging tasks to a sequence of standard fine-tuning
steps, each solvable by scalable off-the-shelf methods. Leveraging recent advances in mirror flows
theory, we provide first-of-their kind guarantees for flow model merging. Empirical results on diverse
visually interpretable settings, and molecular design tasks, demonstrate that our approach can steer pre-
trained models to implement diverse reward-guided merging objectives of high practical relevance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

10 REPRODUCIBILITY STATEMENT

We provide details explanation of the method proposed in Sec. 4 and conditions under which it work
in Sec. 3. We include in Appendix E.2 a detailed implementation, which we used to carry our the
experiments in Sec. 7. Moreover, we report parameter choices for experimental evaluations in Apx.
F.2. Ultimately, notice that our implemented version of RFM is based on Adjoint Matching (Domingo-
Enrich et al., 2024), which is a very established scheme for reward-guided fine-tuning.

REFERENCES

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017. URL https:
//arxiv.org/abs/1701.07875.

Pierre-Cyril Aubin-Frankowski, Anna Korba, and Flavien Léger. Mirror descent with relative smooth-
ness in measure spaces, with application to sinkhorn and em. Advances in Neural Information
Processing Systems, 35:17263–17275, 2022.

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
for property prediction and molecular generation. Scientific Data, 9(1):185, 2022.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering with bregman
divergences. Journal of machine learning research, 6(Oct):1705–1749, 2005.

Anas Barakat, Ilyas Fatkhullin, and Niao He. Reinforcement learning with general utilities: Simpler
variance reduction and large state-action space. In International Conference on Machine Learning,
pp. 1753–1800. PMLR, 2023.

Richard Bellman. The theory of dynamic programming. Bulletin of the American Mathematical
Society, 60(6):503–515, 1954.

Michel Benaïm. Dynamics of stochastic approximation algorithms. In Seminaire de probabilites
XXXIII, pp. 1–68. Springer, 2006.

Arwen Bradley, Preetum Nakkiran, David Berthelot, James Thornton, and Joshua M Susskind.
Mechanisms of projective composition of diffusion models. arXiv preprint arXiv:2502.04549,
2025.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In International
conference on machine learning, pp. 685–693. PMLR, 2014.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and
Yaodong Yang. Safe rlhf: Safe reinforcement learning from human feedback. arXiv preprint
arXiv:2310.12773, 2023.

Riccardo De Santi, Manish Prajapat, and Andreas Krause. Global reinforcement learning: Beyond lin-
ear and convex rewards via submodular semi-gradient methods. arXiv preprint arXiv:2407.09905,
2024.

Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, and Andreas Krause.
Provable maximum entropy manifold exploration via diffusion models. In Proc. International
Conference on Machine Learning (ICML), June 2025a.

10

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, and Andreas Krause.
Flow density control: Generative optimization beyond entropy-regularized fine-tuning. In The
Exploration in AI Today Workshop at ICML 2025, 2025b.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
arXiv preprint arXiv:2409.08861, 2024.

Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Composi-
tional generation with energy-based diffusion models and mcmc. In International conference on
machine learning, pp. 8489–8510. PMLR, 2023.

Ian Dunn and David Ryan Koes. Mixed continuous and categorical flow matching for 3d de novo
molecule generation. ArXiv, pp. arXiv–2404, 2024.

Pavel Dvurechensky and Jia-Jie Zhu. Analysis of kernel mirror prox for measure optimization. In
International Conference on Artificial Intelligence and Statistics, pp. 2350–2358. PMLR, 2024.

Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and Ahmed
Touati. Temporal difference flows. arXiv preprint arXiv:2503.09817, 2025.

Marvin Friede, Christian Hölzer, Sebastian Ehlert, and Stefan Grimme. dxtb—an efficient and fully
differentiable framework for extended tight-binding. The Journal of Chemical Physics, 161(6),
2024.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, 2019.

Tom Heskes. Selecting weighting factors in logarithmic opinion pools. Advances in neural informa-
tion processing systems, 10, 1997.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex analysis. Springer
Science & Business Media, 2004.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pp. 8867–8887.
PMLR, 2022.

Ya-Ping Hsieh, Chen Liu, and Volkan Cevher. Finding mixed nash equilibria of generative adversarial
networks. In International Conference on Machine Learning, pp. 2810–2819. PMLR, 2019.

Yanwei Jia and Xun Yu Zhou. Policy evaluation and temporal-difference learning in continuous time
and space: A martingale approach. Journal of Machine Learning Research, 23(154):1–55, 2022.

Mohammad Reza Karimi, Ya-Ping Hsieh, and Andreas Krause. Sinkhorn flow as mirror flow: A
continuous-time framework for generalizing the sinkhorn algorithm. In International Conference
on Artificial Intelligence and Statistics, pp. 4186–4194. PMLR, 2024.

Flavien Léger. A gradient descent perspective on sinkhorn. Applied Mathematics & Optimization, 84
(2):1843–1855, 2021.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

Qianli Ma, Xuefei Ning, Dongrui Liu, Li Niu, and Linfeng Zhang. Decouple-then-merge: Finetune
diffusion models as multi-task learning. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 23281–23291, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Panayotis Mertikopoulos, Ya-Ping Hsieh, and Volkan Cevher. A unified stochastic approximation
framework for learning in games. Mathematical Programming, 203(1):559–609, 2024.

Alexander Mielke and Jia-Jie Zhu. Hellinger-kantorovich gradient flows: Global exponential decay
of entropy functionals. arXiv preprint arXiv:2501.17049, 2025.

Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. Econometrica, 70(2):
583–601, 2002.

Mirco Mutti, Riccardo De Santi, Piersilvio De Bartolomeis, and Marcello Restelli. Challenging com-
mon assumptions in convex reinforcement learning. Advances in Neural Information Processing
Systems, 35:4489–4502, 2022a.

Mirco Mutti, Riccardo De Santi, and Marcello Restelli. The importance of non-markovianity in
maximum state entropy exploration. In International Conference on Machine Learning, pp.
16223–16239. PMLR, 2022b.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems, 29,
2016.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Marta Skreta, Lazar Atanackovic, Avishek Joey Bose, Alexander Tong, and Kirill Neklyudov. The su-
perposition of diffusion models using the it\ˆ o density estimator. arXiv preprint arXiv:2412.17762,
2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Wenpin Tang. Fine-tuning of diffusion models via stochastic control: entropy regularization and
beyond. arXiv preprint arXiv:2403.06279, 2024.

Lenart Treven, Jonas Hübotter, Bhavya Sukhija, Florian Dorfler, and Andreas Krause. Efficient ex-
ploration in continuous-time model-based reinforcement learning. Advances in Neural Information
Processing Systems, 36:42119–42147, 2023.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-time
diffusion models as entropy-regularized control. arXiv preprint arXiv:2402.15194, 2024a.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Sergey Levine, and Tommaso Biancalani. Feedback efficient online
fine-tuning of diffusion models. arXiv preprint arXiv:2402.16359, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement learning in continuous time
and space: A stochastic control approach. Journal of Machine Learning Research, 21(198):1–34,
2020.

Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is enough
for convex mdps. Advances in Neural Information Processing Systems, 34:25746–25759, 2021.

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Vari-
ational policy gradient method for reinforcement learning with general utilities. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 4572–4583. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/30ee748d38e21392de740e2f9dc686b6-Paper.pdf.

Hanyang Zhao, Haoxian Chen, Ji Zhang, David D Yao, and Wenpin Tang. Scores as actions: a
framework of fine-tuning diffusion models by continuous-time reinforcement learning. arXiv
preprint arXiv:2409.08400, 2024.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/30ee748d38e21392de740e2f9dc686b6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/30ee748d38e21392de740e2f9dc686b6-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

CONTENTS

B Proofs for Section 6 15

B.1 Proof of Theorem 6.1 . 15

B.2 Rigorous Statement and Proof of Theorem 6.2 . 16

C Derivations of Gradients of First Variation 18

C.1 A brief tutorial on first variation derivation . 18

C.2 Derivation of First Variations used in Sec. 4 . 18

D Proof of Proposition 1 20

E Reward-Guided Flow Merging (RFM) Implementation 21

E.1 Implementation of REWARDGUIDEDFINETUNINGSOLVER 21

E.2 Implementation of REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS 21

F Experimental Details 23

F.1 Illustrative Examples Experimental Details . 23

F.2 Molecular Design Case Study . 23

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B PROOFS FOR SECTION 6

B.1 PROOF OF THEOREM 6.1

Stochastic Optimal Control. We consider stochastic optimal control (SOC), which studies the
problem of steering a stochastic dynamical system to optimize a specified performance criterion.
Formally, let (Xu

t)t∈[0,1] be a controlled stochastic process satisfying the stochastic differential
equation (SDE)

dXu
t = b(Xu

t , t) dt+ σ(t)u(Xu
t , t) dt+ σ(t) dBt, Xu

0 ∼ p0,
where u ∈ U is an admissible control and Bt is standard Brownian motion. The objective is to select
u to minimize the cost functional

E

[∫ 1

0

1

2
∥u(Xu

t , t)∥2 dt− g(Xu
1)

]
, (25)

where 1
2∥u(·, t)∥

2 represents the running cost and g is a terminal reward. A standard application
of Girsanov’s theorem shows that Equation (25) is equivalent to the mirror descent iterate in Equa-
tion (21) with δG(pπk

1) ← g and p0 ← ppre (Tang, 2024). In addition, it is well-known that in the
context of diffusion-based generative modeling, the corresponding uncontrolled dynamics

dXt = −b(Xt, t) dt+ σ(t) dBt

coincide with the forward noising process used in score-based models (Song et al., 2020; Domingo-
Enrich et al., 2024).

Proof of Theorem 6.1.
Theorem 6.1 (SOC Retains Score Information). Suppose the forward process in Equation (20)
maps any distribution to standard Gaussian noise (i.e., a standard assumption in diffusion model
literature). Then the solution to Equation (19) is u⋆(x, t) := σ(t)∇ log pkt (x), where pkt denotes the
marginal distribution of the forward process in Equation (20), initialized at pπk

1 . In other words,
REWARDGUIDEDFINETUNINGSOLVER exactly recovers the score function.

Proof. Step 1. Let Q⋆ denote the optimal process solving Equation (19). A standard application of
Girsanov’s theorem shows that Q⋆ also solves the Schrödinger bridge problem

min
Q0=ppre

Q1=Q⋆
1

DKL

(
Q ∥P

)
, (26)

where P is the law of the uncontrolled dynamics

dXt = b(Xt, t) dt+ σ(t) dBt.

This equivalence holds because the SOC cost in Equation (19) penalizes control energy in the same
way that Girsanov’s theorem expresses a controlled SDE as a relative entropy with respect to its
uncontrolled counterpart.

Step 2. Define the forward process Pforward by

dXt = −b(Xt, t) dt+ σ(t) dBt. (27)

By assumption, this process maps any initial distribution to the standard Gaussian at t = 1. In
particular, starting from X0 ∼ Q⋆

1, we obtain X1 ∼ ppre = N (0, I).

Step 3. Consider the time-reversed Schrödinger bridge problem

min←−
Q0=Q⋆

1←−
Q1=ppre

DKL

(←−
Q ∥Pforward

)
, (28)

and denote its solution by
←−
Q⋆. Since relative entropy is invariant under bijective mappings and

time-reversal is bijective, the optimizers of Equation (26) and Equation (28) satisfy
←−
Q⋆ =

←−−
Q⋆

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

i.e., the optimal reversed bridge is simply the time-reversal of the forward bridge.

By Step 2, the process

dXt = −b(Xt, t) dt+ σ(t) dBt, X0 ∼ Q⋆
1 (29)

solves Equation (28), achieving the minimum relative entropy (zero) while satisfying the prescribed
marginals. Thus, invoking the relation

←−
Q⋆ =

←−
Q⋆, the solution to Equation (26)—and hence to the

SOC problem Equation (19)—is given by the time-reversal of Equation (29).

Finally, applying the classical time-reversal formula (Anderson, 1982) yields that Q⋆ is given by

dXt =
(
b(
←−
X t, t) + σ2(t)∇ log pt(Xt)

)
dt+ σ(t) dBt,

where pt is the marginal density of Equation (29). Hence, REWARDGUIDEDFINETUNINGSOLVER

exactly recovers the score function.

B.2 RIGOROUS STATEMENT AND PROOF OF THEOREM 6.2

To prepare for the convergence analysis, we impose a few auxiliary assumptions. These assumptions
are standard in the study of stochastic approximation and gradient flows, and typically hold in
practical situations. Our proof strategy follows ideas that have also been employed in related works
(De Santi et al., 2025a;b).

We begin with the entropy functional defined on probability measures:

H(p) :=
∫
p log p. (30)

In our analysis, H serves as the mirror map or distance-generating function (Mertikopoulos et al.,
2024; Hsieh et al., 2019). The first condition addresses the behavior of the corresponding dual
variables.
Assumption B.1 (Precompactness of Dual Iterates). The sequence of dual elements {δH(pπk

1)}k is
precompact in the L∞ topology.

This compactness property ensures that the interpolated dual trajectories remain confined to a bounded
region of function space. Such a condition is crucial for invoking convergence results based on
asymptotic pseudotrajectories. Variants of this assumption have appeared in the literature on stochastic
approximation and continuous-time embeddings of discrete algorithms (Benaïm, 2006; Hsieh et al.,
2019; Mertikopoulos et al., 2024).
Assumption B.2 (Noise and Bias Conditions). For the stochastic approximations used in the updates,
we assume that almost surely:

∥bk∥∞ → 0, (31)∑
k

E
[
γ2k
(
∥bk∥2∞ + ∥Uk∥2∞

)]
<∞, (32)∑

k

γk∥bk∥∞ <∞. (33)

These conditions, standard in the Robbins–Monro setting (Robbins & Monro, 1951; Benaïm, 2006;
Hsieh et al., 2019), guarantee that the stochastic bias vanishes asymptotically while the cumulative
noise remains under control. Together, they ensure that random perturbations do not obstruct
convergence to the optimizer of the limiting objective.

With these assumptions in place, we can now state and prove the convergence guarantee.

Theorem B.1 (Convergence guarantee in the trajectory setting). Suppose Assumptions B.1–B.2
hold, and the step sizes {γk} follow the Robbins–Monro conditions (

∑
k γk =∞,

∑
k γ

2
k <∞).

Then the sequence {pπk
1 } generated by Algorithm 1 converges almost surely, in the weak topology,

to the optimum:
pπk
1 ⇀ p∗1 a.s., (34)

where p∗1 = Q∗1 for some Q∗ ∈ argmaxQ:Q0=ppre
0
G(Q1).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. We analyze the continuous-time mirror flow defined by

ḣt = δG(pt1), pt1 = δH⋆(ht), (35)

where the Fenchel conjugate ofH is given byH⋆(h) = log
∫
eh (Hsieh et al., 2019; Hiriart-Urruty

& Lemaréchal, 2004).

To link the discrete dynamics to this continuous flow, we construct a piecewise linear interpolation of
the iterates:

ĥt = h(k) +
t− τk

τk+1 − τk
(
h(k+1) − h(k)

)
, h(k) = δH(pπk

1), τk =

k∑
r=0

αr,

where {αr} denotes the step-size sequence. This interpolation produces a continuous path ĥt that
tracks the discrete updates as the steps shrink.

Let Φu denote the flow map of equation 35 at time u. Standard results in stochastic approximation
(Benaïm, 2006; Hsieh et al., 2019; Mertikopoulos et al., 2024) imply that for any fixed horizon T > 0,
there exists a constant C(T) such that

sup
0≤u≤T

∥ĥt+u − Φu(ĥt)∥ ≤ C(T)
[
∆(t− 1, T + 1) + b(T) + γ(T)

]
,

where ∆ accounts for cumulative noise, b for bias, and γ for step-size effects. Under Assumptions
B.1–B.2, these quantities vanish asymptotically, ensuring that ĥt forms a precompact asymptotic
pseudotrajectory (APT) of the mirror flow.

By the APT limit set theorem (Benaïm, 2006, Thm. 4.2), the limit set of a precompact APT is
contained in the internally chain transitive (ICT) set of the underlying flow. In our case, Equation (35)
corresponds to a gradient-like flow in the Hellinger–Kantorovich geometry (Mielke & Zhu, 2025),
with G serving as a strict Lyapunov function. As G decreases strictly along non-stationary trajectories,
the ICT set reduces to the collection of stationary points of G.

Finally, because G is composed of distance-like penalties (e.g., W1 or KL terms) together with a linear
component, its stationary points coincide with its global maximizers. Consequently, ĥt converges
almost surely to the set of maximizers of G, which establishes the claim.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C DERIVATIONS OF GRADIENTS OF FIRST VARIATION

C.1 A BRIEF TUTORIAL ON FIRST VARIATION DERIVATION

In this work, we focus on the functionals that are Fréchet differentiable: Let V be a normed spaces.
Consider a functional F : V → R. There exists a linear operator A : V → R such that the following
limit holds

lim
∥h∥V→0

|F (f + h)− F (f)−A[h]|
∥h∥V

= 0. (36)

We further assume that V has enough structure such that every element of its dual (the space of
bounded linear operator on V) admits a compact representation. For example, if V is the space of
bounded continuous functions with compact support, there exists a unique positive Borel measure µ
with the same support, which can be identified as the linear functional. We denote this element as
δF [f] such that ⟨δF [f], h⟩ = A[h]. Sometimes we also denote it as δF

δf . We will refer to δF [f] as
the first-order variation of F at f .

In the following, we briefly present standard strategies to derive the first-order variation of two broad
classes of functionals, including a wide variety of divergence measures, which can be employ to
implement novel operators by Eq. 5. We consider: (i) those defined in closed form with respect to
the density (e.g., forward KL) and, (ii) those defined via variational formulations (e.g., Wasserstein
distance, reverse KL, and MMD).

• Category 1: Functional defined in a closed form with respect to the density. For this class of
functionals, the first-order variations can typically be computed using its definition and chain rule.
Recalling the definition of first variation (36), we can calculate the first-order variation of the mean
functional, as a trivial example. Given a continuous and bounded function r : Rd → R and a
probability measure µ on Rd, define the functional F (µ) =

∫
r(x)µ(x)dx. Then we have:

|F (µ+ δµ)− F (µ)− ⟨r, δµ⟩| = 0. (37)

Therefore we obtain that: δF [µ] = r for all µ. In the following section, we compute similarly the
first variation of the KL divergence.

• Category 2: Functionals defined through a variational formulation. Another fundamental
subclass of functionals that plays a central role in this work is the one of functionals defined via a
variational problem

F [f] = sup
g∈Ω

G[f, g], (38)

where Ω is a set of functions or vectors independent of the choice of f , and g is optimized over the
set Ω. We will assume that the maximizer g∗(f) that reaches the optimal value for G[f, ·] is unique
(which is the case for the functionals considered in this project). It is known that one can use the
Danskin’s theorem (also known as the envelope theorem) to compute

δF [f]

δf
= ∂fG[f, g

∗(f)], (39)

under the assumption that F is differentiable (Milgrom & Segal, 2002).

C.2 DERIVATION OF FIRST VARIATIONS USED IN SEC. 4

In the following, we derive explicitly the first variations employed in Sec. 1

• Optimal transport and Wasserstein-p distance (Category 2) Consider the optimal transport
problem

OTc(u, v) = inf
γ

{∫ ∫
c(x, y)dγ(x, y) :

∫
γ(x, y)dx = u(y),

∫
γ(x, y)dy = v(x)

}
(40)

where

Γ =

{
γ :

∫
γ(x, y)dx = u(y),

∫
γ(x, y)dy = v(x)

}

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

It admits the following equivalent dual formulation

OTc(u, v) = sup
f,g

{∫
fdu+

∫
gdv : f(x) + g(y) ≤ c(x, y)

}
(41)

By taking c(x, y) = ∥x− y∥p, we recover OTc(u, v) =Wp(u, v)
p. Let ϕ∗ and g∗ be the solution

to the above dual optimization problem. From the Danskin’s theorem, we have

δ

δu
Wp(u, v)

p = ϕ∗. (42)

In the special case of p = 1, we know that g∗ = −ϕ∗ (note that the constraint can be equivalently
written as ∥∇ϕ∥ ≤ 1), in which case ϕ∗ is typically known as the critic in the Wasserstein-GAN
framework (cf. Arjovsky et al., 2017).

• Reverse KL divergence (Category 2) We use the variational (Fenchel–Legendre) representation
of the forward KL, DKL(p∥q), as in f-GAN (Nowozin et al., 2016):

DKL(p∥q) = sup
ϕ:X→R

{
E
p
ϕ(x)− E

q
eϕ(x)−1

}
(43)

which follows from the general f-divergence dual generator f(u) = u log u−u+1 whose conjugate
is f∗(t) = et−1. For fixed p and variable q, we define:

G(q, ϕ) := E
p
ϕ(x)− E

q
eϕ(x)−1 (44)

Assuming uniqueness of a maximizer ϕ∗(p, q), Danskin’s (or envelope) theorem yields the first
variation by differentiating G at ϕ∗:

δ

δq(x)
DKL(p∥q) =

δ

δq(x)

(
−
∫
q(x)eϕ

∗(x)−1du

)
= −eϕ

∗(x)−1 (45)

• KL divergence (Category 1) Consider the KL functional:

DKL(p∥q) = −
∫
p log

p

q
,dx (46)

By the definition of the first-order variation (see Eq. 36), we have:

δDKL(p∥q) = log
p

q
+ 1 (47)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D PROOF OF PROPOSITION 1

Proposition 1 (Union operator via Pre-trained Mixture Density Representation). Given ppre1 =∑n
i=1 αip

pre,i
1 /

∑n
i=1 αi, i.e., the α-weighted mixture density of pre-trained models, the following hold:

π∗ ∈ argmin
π

n∑
i=1

αiD
R
KL(p

π
1 ∥ p

pre,i
1) =

(
n∑

i=1

αi

)
DR

KL(p
π
1 ∥ p

pre
1) (14)

Proof. We prove the statement for n = 2, which trivially generalizes to any n. We first rewrite the
LHS optimization problem as:

argmin
π

F(pπ) (48)

where we denote pπ1 by pπ for notational concision and define p1 = ppre,i and p2 = ppre,2. Then we
have:

F(pπ) = α1 E
p1

[log p1 − log pπ] + α2 E
p2

[log p2 − log pπ] (49)

= α1 E
p1

log p1 + α2 E
p2

log p2 −
(
α1 E

p1

log pπ + α2 E
p2

logπ
)

(50)

We now write the following, where p̄ denotes p̄pre1 :

Ē
p
log pπ =

∫
log pπ(x)p̄(x) dx (51)

=

∫
log pπ(x)

[
α1p1

α1 + α2
+

α2p2
α1 + α2

]
(x) dx (52)

=
1

α1 + α2
(log pπ(x)α1p1(x) + log pπ(x)α2p2(x)) (53)

=
1

α1 + α2

(
α1 E

p1

log pπ + α2 E
p2

log pπ
)

(54)

By combining Eq. 50 and 54, we obtain:

F(pπ) = α1 E
p1

log p1 + α2 E
p2
log p2 − (α1 + α2) Ē

p
log pπ (55)

Therefore,

argmin
π

F(pπ) = argmin
π

α1 E
p1

log p1 + α2 E
p2

log p2︸ ︷︷ ︸
constant

−(α1 + α2) Ē
p
log pπ (56)

= argmin
π

−(α1 + α2) Ē
p
log pπ (57)

= argmin
π

−(α1 + α2) Ē
p
log pπ + (α1 + α2) Ē

p
log p̄︸ ︷︷ ︸

constant

(58)

= argmin
π

(α1 + α2)DKL(p̄∥pπ) (59)

(60)

Which concludes the proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E REWARD-GUIDED FLOW MERGING (RFM) IMPLEMENTATION

In the following, we provide an example of detailed implementations for REWARDGUIDEDFINETUN-
INGSOLVER employed in Sec. 4 by Reward-Guided Flow Merging, as well as REWARDGUIDEDFINE-
TUNINGSOLVERRUNNINGCOSTS, leveraged in Sec. 5 to scalably implement the AND operator. While
the oracle implementation we report for completeness for REWARDGUIDEDFINETUNINGSOLVER corre-
sponds to classic Adjoint Matching (AM) (Domingo-Enrich et al., 2024), the one for REWARDGUID-
EDFINETUNINGSOLVERRUNNINGCOSTS trivially extends AM base implementation to account for the
running cost terms introduced in Eq. 17.

E.1 IMPLEMENTATION OF REWARDGUIDEDFINETUNINGSOLVER

Before detailing the implementations, we briefly fix notation. Both algorithms explicitly rely on
the interpolant schedules κt and ωt from equation 1. In the flow-model literature, these are more
commonly denoted αt and βt. We write upre for the velocity field induced by the pre-trained policy
πpre, and ufine for the velocity field induced by the fine-tuned policy. In essence, each algorithm first
draws trajectories and then uses them to approximate the solution of a surrogate ODE; its marginals
serve as regression targets for the control policy (Section 5 Domingo-Enrich et al., 2024).

Algorithm 2 REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS via AM

Require: Pre-trained FM velocity field upre, step size h, number of fine-tuning iterations N , gradient
of reward ∇r, fine-tuning strength ηk

1: Initialize fine-tuned vector fields: ufinetune = upre with parameters θ.
2: for n ∈ {0, . . . , N − 1} do
3: Sample m trajectories X = (Xt)t∈{0,...,1} with memoryless noise schedule:

σ(t) =

√
2κt

(
ω̇t

ωt
κt − κ̇t

)
(61)

4: i.e.,:

Xt+h = Xt + h
(
2ufinetune

θ (Xt, t)− ω̇t

ωt
Xt

)
+
√
hσ(t) εt, εt ∼ N (0, I), X0 ∼ N (0, I).

(51)
5: For each trajectory, solve the lean adjoint ODE backwards in time from t = 1 to 0, e.g.:

ãt−h = ãt + h ã⊤t ∇Xt

(
2vbase(Xt, t)− ω̇t

ωt
Xt

)
, ã1 = ηk∇r(X1). (52)

6: Note that Xt and ãt should be computed without gradients, i.e.,

Xt = stopgrad(Xt) (62)
ãt = stopgrad(ãt) (63)

7: For each trajectory, compute the following Adjoint Matching objective:

LAdj-Match(θ) =
∑

t∈{0,...,1−h}

∥∥∥ 2
σ(t)

(
vfinetune
θ (Xt, t)− ubase(Xt, t)

)
+ σ(t) ãt

∥∥∥2 . (53)

8: Compute the gradient∇θL(θ) and update θ using favorite gradient descent algorithm.
9: end for

Output: Fine-tuned vector field vfinetune

E.2 IMPLEMENTATION OF REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS

The following REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS is algorithmically identical to
REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS, with the only difference that the lean adjoint

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

computation now integrates a running-cost term ft, defined as follows (see Sec. 5):

ft(x) := δ

(
n∑

i=1

αiDKL(p
π
t ∥ p

pre,i
t)

)
(x, t), t ∈ [0, 1) (64)

Algorithm 3 REWARDGUIDEDFINETUNINGSOLVERRUNNINGCOSTS via AM with running costs

Require: Pre-trained FM velocity field vbase, step size h, number of fine-tuning iterations N , ft =
∇δGt(pπ

k

t), weight γk, weight schedule λ
1: Initialize fine-tuned vector fields: vfinetune = vbase with parameters θ.
2: for n ∈ {0, . . . , N − 1} do
3: Sample m trajectories X = (Xt)t∈{0,...,1} with memoryless noise schedule:

σ(t) =

√
2κt

(
ω̇t

ωt
κt − κ̇t

)
(65)

4: i.e.,:

Xt+h = Xt + h
(
2vfinetune

θ (Xt, t)− ω̇t

ωt
Xt

)
+
√
hσ(t) εt, εt ∼ N (0, I), X0 ∼ N (0, I).

(40)
5: For each trajectory, solve the lean adjoint ODE backwards in time from t = 1 to 0, e.g.:

ãt−h = ãt + h ã⊤t ∇Xt

(
2vbase(Xt, t)− ω̇t

ωt
Xt

)
− hγkλtft(Xt) (66)

ã1 = −γkλ1∇X1
δG1(pπ

k

1)(X1). (41)

6: Note that Xt and ãt should be computed without gradients, i.e.,

Xt = stopgrad(Xt) (67)
ãt = stopgrad(ãt) (68)

7: For each trajectory, compute the Adjoint Matching objective ??:

LAdj-Match(θ) =
∑

t∈{0,...,1−h}

∥∥∥ 2
σ(t)

(
vfinetune
θ (Xt, t)− vbase(Xt, t)

)
+ σ(t) ãt

∥∥∥2 . ()

8: Compute the gradient∇θL(θ) and update θ using a gradient descent step
9: end for

Output: Fine-tuned vector field ufinetune

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F EXPERIMENTAL DETAILS

F.1 ILLUSTRATIVE EXAMPLES EXPERIMENTAL DETAILS

Numerical values in all plots shown within Sec. 7 are means computed over diverse runs of RFM via
5 different seeds. Error bars correspond to 95% Confidence Intervals.

Shared experimental setup. For all illustrative experiments we utilize Adjoint Matching (AM) [14]
for the entropy-regularized fine-tuning solver in Algorithm 1. Moreover, the stochastic gradient steps
within the AM scheme are performed via an Adam optimizer.

Intersection Operator. The balanced plot (see Fig. 2b is obtained by running RFM with α =
[0.1, 0.1], for K = 80 iterations, γk = 28, and λt = 0.2 for t > 1− 0.05, and λt = 0.4 otherwise.

For the balanced, reward-guided case in Fig. 2c, we consider a reward function that is maximized by
increasing the x2 coordinate. We run RFM with α = [0.1, 0.1], for K = 15 iterations, γk = 1.2, and
λt = 0.2 for t > 1− 0.05, and λt = 0.4 otherwise.

Union Operator.

In both cases, we learn a critic via standard f-GAN (Nowozin et al., 2016) with 300 gradient steps at
each iteration k ∈ [K] and continually fine-tune the same critic over subsequent iterations. For critic
learning, we use a learning rate of 5 exp(−5).
For the balanced case, in Fig. 2f, we run RFM with α = [1.0, 1.0]. We use K = 13 iterations,
γk = 0.001.

For the unbalanced case in Fig. 2g, we run RFM with α = [0.2, 1.8]. Notice that up to normalization
this is equivalent to [0.1, 0.9] as reported in Fig. 2g for the sake of interpretability. We use K = 13
iterations, γk = 0.001.

Interpolation Operator. In both cases, we learn a critic via standard f-GAN (Nowozin et al., 2016)
with 800 gradient steps at each iteration k ∈ [K] and continually fine-tune the same critic over
subsequent iterations. For critic learning, we use a learning rate of 1 exp(−5), and gradient penalty
of 10.0 to enforce 1-Lip. of the learned critic.

For the case where πinit := πpre,1 (i.e., left pre-trained model), in Fig. 2j, we run RFM with
α = [1.0, 1.0]. We use K = 6 iterations, γk = 1.0.

For the case where πinit := πpre,2 (i.e., right pre-trained model), in Fig. 2k, we run RFM with
α = [1.0, 1.0]. We use K = 6 iterations, γk = 1.0.

Complex Logic Expressions via Generative Circuits. Pre-trained flows π1 and π2, as well as π1
and π2 are intersected via RFM with γk = 1, for K = 20, and λt = 0.1. The union operator is
implemented with K = 30, γk = 0.0009, 300 critic steps and learning rate 5 exp(−5).

F.2 MOLECULAR DESIGN CASE STUDY

Our base model FlowMol2 CTMC (i.e., PRE-1) Dunn & Koes (2024) is pretrained on the GEOM-
Drugs dataset Axelrod & Gomez-Bombarelli (2022). We obtain our second model (i.e., PRE-2) by
finetuning PRE-1 with AM (Domingo-Enrich et al., 2024) to generate poses with lower single point
total energy wrt. the continuous atomic positions as calculated with dxtb at the GFN1-xTB level
of theory Friede et al. (2024). We then run RFM with K = 50, γ = 0.001 for the balanced flow
merging, and K = 20, γ = 0.005 to obtain the unbalanced flow merging. For reward-based flow
merging (RFM-RB), we set γ = 0.1 and obtain the best model after K = 11. All results for merging
pre-trained models on GEOM can be found in Table 1. We note that, while reward-based merging
indeed leads to a lower mean total energy in comparison to the balanced pure model merging as
predicted, the validity of molecules decreases significantly. We attribute this to the multi-objective
nature of molecular design: the single-objective reward in our case-study does not penalize invalid
molecules. Beyond validity, a critical step towards practical application will be to integrate molecular
stability and synthesizability. Our RFM formulation straightforwardly supports these extensions in
the reward functional, and we leave their implementation to future work.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Model Mean total energy [Ha] Mean validity [%]
PRE-1 −8.09± 0.31 76.44± 1.7
PRE-2 −14.76± 0.29 68.04± 0.8
RFM-B −10.95± 0.28 74.34± 0.9

RFM-UB −13.69± 0.28 72.78± 0.4
RFM-RB −12.47± 0.35 33.20± 1.31

Table 1: Mean total energy and mean validity, averaged over 5 seeds.

For our second case-study - the OR operator - we use FlowMol2 CTMC pre-trained on QM9
(Ramakrishnan et al., 2014). We limit dimensionality to reduce the problem complexity by sampling
10 atoms per molecule, and run RFM with γ = 100,K = 37. In particular Figure 5 shows that the
estimated mean of the model π∗ obtained via RFM matches the average total energy of πpre,1 and
πpre,2 as predicted by the closed-form solution for the union operator presented in Sec. 3. In Fig. 5,
OR denotes the final policy π∗ returned by RFM.

PRE-2

PRE-1

OR

Figure 5: Union on QM9

24

	Introduction
	Background and Notation
	Reward-Guided Flow Merging via Implicit Density Operators
	Algorithm: Reward-Guided Flow Merging
	Truly Scalable Intersection via Flow Process Optimization
	Guarantees for Reward-Guided Flow Merging
	Experimental Evaluation
	Related Work
	Conclusion
	Reproducibility Statement
	Appendix
	Proofs for sec:theory
	Proof of theorem:AMretainsScores
	Rigorous Statement and Proof of theorem:generalcaseconvergence

	Derivations of Gradients of First Variation
	A brief tutorial on first variation derivation
	Derivation of First Variations used in Sec. 4

	Proof of Proposition 1
	Reward-Guided Flow Merging (RFM) Implementation
	Implementation of RewardGuidedFineTuningSolver
	Implementation of RewardGuidedFineTuningSolverRunningCosts

	Experimental Details
	Illustrative Examples Experimental Details
	Molecular Design Case Study

