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Abstract
Recent advancements in image generation have
made significant progress, yet existing models
present limitations in perceiving and generating
an arbitrary number of interrelated images within
a broad context. This limitation becomes increas-
ingly critical as the demand for multi-image sce-
narios, such as multi-view images and visual nar-
ratives, grows with the expansion of multime-
dia platforms. This paper introduces a domain-
general framework for many-to-many image gen-
eration, capable of producing interrelated image
series from a given set of images, offering a
scalable solution that obviates the need for task-
specific solutions across different multi-image sce-
narios. To facilitate this, we present MIS, a novel
large-scale multi-image dataset, containing 12M
synthetic multi-image samples, each with 25 in-
terconnected images. Utilizing Stable Diffusion
with varied latent noises, our method produces a
set of interconnected images from a single cap-
tion. Leveraging MIS, we learn Many-to-many
Diffusion (M2M), an autoregressive model for
many-to-many generation, where each image is
modeled within a diffusion framework. Through-
out training on the synthetic MIS, the model ex-
cels in capturing style and content from preced-
ing images — synthetic or real — and generates
novel images following the captured patterns. Fur-
thermore, through task-specific fine-tuning, our
model demonstrates its adaptability to specific
multi-image generation tasks, like Visual Proce-
dure Generation.

1. Introduction
Over the past few years, the realm of image generation has
seen remarkable progress across numerous tasks, including
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Figure 1: Overview of M2M Pipeline. During training,
M2M takes sets of noised latent images and their corre-
sponding clean image features as inputs and predicts the
noise added to each noised latent image conditioned on the
previous clean image features. At inference, our model can
generate an arbitrary number of images in an auto-regressive
manner by iteratively incorporating generated images back
into the input.

super-resolution (Ho et al., 2022b; Saharia et al., 2022b),
image manipulation (Meng et al., 2021; Nichol et al., 2022;
Kawar et al., 2023; Brooks et al., 2023), text-to-image gen-
eration (Ramesh et al., 2021; Rombach et al., 2022; Ramesh
et al., 2022; Saharia et al., 2022a; Yu et al., 2022), and more.
Despite this progress, the primary focus has predominantly
been on the generation or processing of individual images.
Some studies (Li et al., 2019; Maharana et al., 2022; Pan
et al., 2022; Liu et al., 2023a) explore beyond single im-
age generation but usually with a specific focus on specific
tasks like story synthesis (Li et al., 2019), visual in-context
learning (Bar et al., 2022), novel-view synthesis (Liu et al.,
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2023c), and so on. These examples illustrate the versa-
tility of the multi-image generation paradigm, which can
also encompass video generation, essentially a sequence of
image frames. The proliferation of multimedia platforms
has increased the need for accepting multiple images and
generating multiple images that possess different types of
interconnection, catering to applications like producing the-
matically and stylistically consistent image sets for adver-
tising or displaying objects from various perspectives. Rec-
ognizing the merging demand, this paper thus underscores
the need for a holistic exploration into the general-domain
multi-image to multi-image generation paradigm, where
models are designed to perceive and generate an arbitrary
number of interrelated images within a broader context.

In this work, we present a domain-general framework for
multi-image to multi-image generation that can perceive
and generate a flexible number of interrelated images auto-
regressively, thus offering the flexibility and adaptability
needed to meet a broad range of multi-image generation
tasks. A cornerstone of this endeavor is the exposure of our
framework to a diverse collection of multi-image examples
that inherently maintain meaningful interrelations amongst
the images in each set. To facilitate this, we introduce MIS,
the first large-scale multi-image dataset comprising sets of
images interconnected by general semantic relationships.
Unlike previous multi-image datasets specialized towards
specific scenarios, such as sequential frames or images from
multiple viewpoints, MIS encapsulates more general seman-
tic interconnections among images. MIS consists of a total
of 12M synthetic multi-image set samples, each containing
25 interconnected images. Motivated by the success of dif-
fusion models in text-to-image generation (Rombach et al.,
2022; Ramesh et al., 2022; Saharia et al., 2022a; Nichol
et al., 2022), we propose to utilize Stable Diffusion to pro-
duce interconnected image sets from identical caption but
varied latent noise. This ensures that all images generated
from the same caption are drawn from the same conditional
probability distribution, underscoring their meaningful in-
ternal connections. Yet, the varied latent noise guarantees
the distinctiveness of each image within the set.

Leveraging our MIS dataset, we propose Many-to-many
Diffusion (M2M), a conditional diffusion model that can
perceive and generate an arbitrary number of interrelated
images in an auto-regressive manner, based purely on visual
inputs, without reliance on textual descriptions. M2M is
built upon latent diffusion models and we extend it into
a multi-image to multi-image generator by introducing an
Image-Set Attention module that learns to capture the intri-
cate interconnections within a set of images, thereby facili-
tating more contextually coherent multi-image generation.
Our study further explores various architectural designs for
multi-image to multi-image generation, focusing on diverse
strategies for handling preceding images. We introduce

two novel model variants: M2M with Self-encoder (M2M-
Self) and M2M with DINO encoder (M2M-DINO). M2M-
Self utilizes the same U-Net-based denoising model to si-
multaneously process preceding latent images along with
noisy latent images, enabling more refined cross-attention.
Meanwhile, M2M-DINO employs external vision models
to encode more discriminative visual features from preced-
ing images. Experimental results show that M2M learns
to capture style and content from preceding images and
generate novel images in alignment with the observed pat-
terns. Impressively, despite being trained solely on synthetic
data, M2M exhibits zero-shot generalization to real images.
Furthermore, through task-specific fine-tuning, our model
demonstrates its adaptability to specific multi-image genera-
tion tasks, like Visual Procedure Generation, suggesting its
potential to handle complex multi-image generation chal-
lenges.

Our paper makes the following contributions: (1) We intro-
duce an innovative strategy for constructing MIS, the first
large-scale multi-image dataset containing 12M synthetic
multi-image set samples, each with 25 images intercon-
nected by general semantic relationships. (2) We propose
a domain-general Many-to-many Diffusion model that can
perceive and auto-regressively generate an arbitrary number
of interrelated images. (3) We show that M2M captures
style and content from preceding images to generate novel
images following the captured patterns. It exhibits great
zero-shot generalization to real images and notable potential
for customization to specific multi-image generation tasks.

2. Related Work
2.1. Image Generation

Image generation has always been a heated topic in com-
puter vision, with demand spanning various tasks, such as
super-resolution (Ho et al., 2022b; Saharia et al., 2022b),
image manipulation (Meng et al., 2021; Nichol et al., 2022;
Kawar et al., 2023; Brooks et al., 2023), text-to-image gen-
eration (Ramesh et al., 2021; Rombach et al., 2022; Ramesh
et al., 2022; Saharia et al., 2022a; Yu et al., 2022), and so
on. Beyond the realm of single-image generation, there has
been an exploration into multi-image generation (Li et al.,
2019; Bar et al., 2022; Liu et al., 2023c) but usually with a
specific focus on specific tasks. For instance, story synthe-
sis (Li et al., 2019) aims at generating a series of images that
narrate a coherent narrative. Other tasks, such as visual in-
context learning (Bar et al., 2022) focus on generating one
target image using a query image accompanied by example
image pairs. Additionally, novel-view synthesis (Liu et al.,
2023c) aims to generate images from new viewpoints based
on a set of posed images of a particular scene or object.
Our work distinctively expands on the existing literature
by proposing a more general multi-image to multi-image
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generation framework, that can be adapted to a myriad of
scenarios in multi-image generation.

2.2. Diffusion-based Generative Models

Diffusion-based generative models(Ho et al., 2020; Song
& Ermon, 2019) have marked notable progress in the field
of generative AI. These models operate by incrementally
introducing noise to perturb the data and learning to generate
data samples from Gaussian noise through a series of de-
noising processes. Recently, diffusion models have become
prominent for generating images (Rombach et al., 2022;
Ramesh et al., 2022; Saharia et al., 2022a; Brooks et al.,
2023), as well as in other modalities such as video (Ho
et al., 2022a; Singer et al., 2022; Blattmann et al., 2023),
audio (Liu et al., 2023b; Huang et al., 2023), text (Li et al.,
2022; Gong et al., 2022; Zhang et al., 2023), 3D (Poole et al.,
2022; Gu et al., 2023; Liu et al., 2023c) and more. Given
their superior performance in image generation, we propose
to leverage the diffusion-based generative models for two
key purposes: constructing the synthetic multi-image set
dataset, MIS, and serving as the backbone architecture for
our multi-image generation framework.

3. Background
The Diffusion Probabilistic Models (Ho et al., 2020; Song
& Ermon, 2019) learns the data distribution p(x) by gradu-
ally denoising a normally distributed variable throughout a
Markov chain with length T . Specifically, diffusion models
define a forward diffusion process in a Markov chain, incre-
mentally adding Gaussian noise samples to the initial data
point x into the Gaussian noise xT over T steps, and a learn-
able reverse process that denoises xT back to the clean input
x iteratively via a sequence of time-conditioned denoising
autoencoders ϵθ(xt, t). Typically, the denoising model ϵθ
is implemented via time-conditioned U-Net (Ronneberger
et al., 2015). The diffusion model is commonly trained with
a simplified L2 denoising loss (Ho et al., 2020):

LDM = Ex,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥22

]
, (1)

where ϵ ∼ N (0, 1), t ∼ U(0, T ).

Latent Diffusion Models Latent Diffusion Models (Rom-
bach et al., 2022) improves the efficiency of diffusion mod-
els by operating in the latent representation space of a pre-
trained variational autoencoder (Kingma & Welling, 2013)
with encoder E and decoder D, such that D(E(x)) ≈ x.

Diffusion models can be conditioned on various signals
such as class labels or texts. The conditional latent diffusion
models learn a denoising model ϵθ that predicts the noise
added to the noisy latent zt given conditioning c via the

#jellyfish #blue #ocean #pretty SeaTurtle Wallpaper, Aquarius Aesthetic, Blue Aesthetic Pastel, The 
Adventure Zone, Capricorn And <PERSON>, Life Aquatic, Ocean Life, Jellyfish, Marine Life 

Figure 2: A sample image set of five distinctive images
generated using a caption from CC12M.

following objective:

LLDM = EE(x),c,ϵ,t
[
∥ϵ− ϵθ(zt, t, c)∥22

]
. (2)

During inference, classifier-free guidance (Ho & Salimans,
2021) is used to improve sample quality:

ϵ̃θ(zt, c) = ϵθ(zt,∅) + s · (ϵθ(zt, c)− ϵθ(zt,∅)), (3)

where ϵθ(zt, c) and ϵθ(zt,∅) refer to the condition and un-
conditional ϵ-predictions, and s represents the guidance
scale. Setting s = 1 disables the classifier-free guidance
while increasing s > 1 strengthens the effect of guidance.

4. Multi-Image Set Construction
Learning to process and generate multiple images requires a
diverse collection of multi-image examples for training. As
manually collecting a multi-image dataset comprising sets
of interconnected images would be resource-intensive, we
propose to leverage the capabilities of text-to-image models
(Latent Diffusion Model (Rombach et al., 2022)) for gener-
ating a multi-image dataset, which we refer to as MIS. This
dataset comprises sets of interconnected images. Specifi-
cally, we leverage the power of the Latent Diffusion Model
and its capacity to generate a diverse set of images from
the same caption by employing different latent noises. This
approach allows us to construct a set of interconnected im-
ages for each caption, recognizing that these images within
the set exhibit internal connections owing to the common
caption they were generated with. Notably, while all im-
ages generated from the same caption are drawn from the
same conditional probability distribution, underscoring their
meaningful internal connections, the introduction of varied
latent noise ensures the distinctiveness of each image within
the set.

To gather image captions, we employ Conceptual 12M
(Changpinyo et al., 2021), a large image-text pair dataset
that contains approximately 12 million web images, each
with a corresponding descriptive alt-text. For MIS gener-
ation, we exclusively utilize these alt-texts as captions for
generating interconnected images. More precisely, with
each caption, we employ the Stable Diffusion model to
generate a set of distinct images by using different latent
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noise. We employ Stable Diffusion v2-1-base 1 along with
the Euler Discrete Scheduler (Karras et al., 2022) and a
default guidance scale of 7.5 for image generation. Stable
Diffusion generates images conditioned on CLIP (Radford
et al., 2021) text embeddings. To comply with the maximum
token length allowed for the CLIP Text encoder, we filter
out captions exceeding the maximum token length of 77
tokens. This results in a curated collection of 12,237,187
captions for our multi-image generation. For each individ-
ual caption, we employ different latent noises to generate 25
distinct images. As a result, our final MIS consists of 12M
multi-image set samples, with each image set containing 25
interconnected images. Figure 2 shows an example of an
image set generated using a single caption from Conceptual
12M.

5. Many-to-many Diffusion (M2M)
We introduce the Many-to-many Diffusion (M2M) frame-
work, designed to perceive and generate an arbitrary number
of interrelated images auto-regressively, as shown in Figure
1. Our framework adpats the pre-trained Stable Diffusion, a
text-to-image latent diffusion model, which uses U-Net as
the denoising model ϵθ(·), by replacing the text-to-image
cross-attention module with our Image-Set Attention mod-
ule. This allows the model to learn and understand the
intricate interconnections within a set of images, thereby
facilitating contextual coherence in multi-image generation.

M2M explores various architectural approaches for multi-
image generation, with a focus on how preceding images
are encoded. We discuss two main model variants: the
M2M with Self-encoder (M2M-Self) in Section 5.1 and
the M2M with DINO encoder (M2M-DINO) in Section
5.2. M2M-Self leverages the U-Net-based denoising model
to simultaneously process the preceding and the noisy latent
images, enabling cross-attention mechanisms over various
spatial dimensions of the preceding images. Meanwhile,
M2M-DINO explores integrating external vision models
to encode preceding images, aiming to complement the
U-Net’s inherent capabilities for encoding images.

5.1. M2M with Self-encoder (M2M-Self)

During training, given an image set {I}Ni=1, each image
Ii is encoded individually into the latent code zi0 using a
pre-trained autoencoder zi0 = E(Ii). These image latents
are stacked to construct z1:N0 ∈ RN×C×H×W , where N
represents the number of images within each set, C is the
number of latent channels, and H and W are the spatial
dimensions of the latent space. The clean latent z1:N0 is
then noised according to the pre-defined forward diffusion
schedule to produce the noisy latent z1:Nt , where the noise

1https://huggingface.co/stabilityai/stable-diffusion-2-1-base
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Figure 3: Illustration of Image-Set Attention Module.
The query token is denoted in a white square and its corre-
sponding key/value attention region is marked by a diagonal
striped pattern.

level increases over diffusion timesteps t.

To prepare the input for M2M-Self, we concatenate the clean
and noisy latent codes, resulting in z1:N = [z1:N0 ; z1:Nt ] ∈
R2×N×C×H×W . Here, the symbol ; denotes the concatena-
tion operation and the factor 2 indicates the inclusion of both
clean and noised latent forms. M2M-Self thus processes the
concatenated tensor z1:N and predicts the noise added to
each noised latent image auto-regressively.

Image-Set Attention The core component in M2M-Self
is the Image-Set Attention module, designed for effec-
tive cross-attention from noisy latent to their preceding
clean ones. The module accepts an input tensor z ∈
RBZ×2×N×H×W×C , where BZ is the batch size. For read-
ability, the superscript 1 : N has been omitted. The input z
is first partitioned and reshaped into two components: the
noisy latent zn ∈ RBZ×(N×H×W )×C and its corresponding
clean latent zc ∈ RBZ×(N×H×W )×C . This transformation
enables a comprehensive cross-attention across the resultant
length of N ×H ×W . These two latents are then projected
and processed via cross-attention (Vaswani et al., 2017):

z′n = Attention(Q,K, V ) = Softmax(
QKT

√
d

) · V, (4)

where Q = WQzQ, K = WKzK , and V = WV zV , with
d indicating latent feature dimension. The cross-attention
operates with the noisy latents as queries zQ = zn and
the clean latents as keys and values zK = zV = zc. We
also employ multi-head cross-attention, allowing the model
to attend to information from different representation sub-
space (Vaswani et al., 2017). To ensure that each noisy
latent zin only attends to patches within its preceding clean
latents z<i

c , a causal image-set attention mask is introduced.
Figure 3(a) visualizes this process with an example of a
query token and the key/value region it allows to attend.
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The output latent z′ is formed by concatenating the original
clean latent and the updated noisy latent as z′ = [zc; z

′
n].

5.2. M2M with DINO encoder (M2M-DINO)

Alongside M2M-Self, which uses the same U-Net-based
denoising model for processing the preceding images as
internal features, M2M-DINO incorporates external vision
models to enhance the encoding of preceding images with
more discriminative visual features. Specifically, we use
DINOv2 (Oquab et al., 2023), known for its superior perfor-
mance in understanding fine-grained vision information.

Image-Set Attention In M2M-DINO, each image Ii
from a set {I}Ni=1 is encoded into the latent code zi0 us-
ing a pre-trained autoencoder zi0 = E(Ii) and DINO fea-
tures vi = Ev(Ii) with the DINO image encoder Ev(·).
These encoded forms are then stacked separately to form
z1:N0 ∈ RN×C×H×W and v1:N ∈ RN×S×D, where N is
the number of images, S the length of DINO tokens, and D
the dimensionality of DINO features. Subsequently, noisy
latents z1:Nt are constructed from z1:N0 following a prede-
fined noise addition schedule. For clarity, the superscript
1 : N will be omitted.

The Image-Set Attention module takes in the noisy la-
tent zt ∈ RBZ×N×H×W×C and the DINO features of
clean images v ∈ RBZ×N×S×W . It reshapes zt into
RBZ×(N×H×W )×C and v into RN×(N×S)×D to facilitate
the cross-attention. DINO features v act as keys and values
zK = zV = v and the noisy image latents zt as queries
zQ, enabling interaction between noisy and clean features
as depicted in Figure 3(b). Like M2M-Self, M2M-DINO
utilizes a causal image-set attention mask, permitting each
noisy latent zit to exclusively attend to its preceding DINO
features v<i.

6. Training and Inference Procedure
6.1. Initial Training and Inference

Training Objective The training process is similar to the
Latent Diffusion Model (Rombach et al., 2022). We ini-
tialize the model weights from the Stable Diffusion Model,
but intentionally exclude the pre-trained text-to-image cross-
attention layer, and initialize our Image-Set Attention mod-
ule from scratch. M2M takes the visual features of the
clean images, z1:N0 , and the noisy latent images, z1:Nt , as
inputs. The training objective is to predict the noise strength
added to each noised latent image conditioned on the pre-
vious clean image features. We employ an auto-regressive
training strategy, where the loss is accumulated over the
difference in the predicted noise of each image:

Lθ = EE(x1:N
0 ),ϵ,t

[
∥ϵ− ϵθ(z

1:N
t , z1:N0 , t)∥22

]
, (5)

where z1:N0 denotes the clean image latents in M2M-Self
and DINO features in M2M-DINO.

Inference As shown in Figure 1, M2M performs auto-
regressive image generation during inference by iteratively
incorporating the images generated in the previous itera-
tion as new inputs for next iterations. This process begins
by generating an initial image, given a set of conditional
input images, and randomly sampled noise latent codes. Af-
terward, the model incorporates the previously generated
image into the input context for the next generation cycle. In
practice, the number of context images that can be input into
the model is limited by the predefined context window W .
At inference time, with a guidance scale s ≥ 1, the output
of the model is extrapolated further in the direction of the
conditional ϵθ(zt, z1:W0 , t) and away from the unconditional
ϵθ(zt,0, t):

ϵ̃θ(zt, z
1:W
0 , t) = ϵθ(zt,0, t)

+ s · (ϵθ(zt, z1:W0 , t)− ϵθ(zt,0, t)).
(6)

Here, z1:W0 is the sequence of context images used as condi-
tional inputs in the generative process.

6.2. Task-specific Fine-tuning and Inference

Fine-tuning Building upon the initial training on MIS, we
extend M2M’s capabilities through task-specific fine-tuning
for specific multi-image generation task. This involves in-
tegrating task-specific conditions cC , such as positional
information, camera viewpoints, etc., through additional
embeddings. For M2M-Self, conditions are incorporated
into the hidden states before applying Image-Set Attention
as z1:N = z1:N + E(cC), where E(·) is a general embed-
ding strategy adapting to different conditions cC . In M2M
with DINO encoder, which uses DINO features for encoding
preceding images, a distinct conditional embedder, Ec(·),
is applied, represented by v1:N = v1:N + Ec(cC). This ap-
proach enables the model to incorporate additional contex-
tual or spatial information relevant to the task, enhancing its
capability to generate images aligned with the task-specific
requirements. Similarly, to facilitate classifier-free guidance,
we randomly zero out the task-specific conditions along with
the clean image condition z1:N0 with 10% probability.

Inference During inference, M2M employs distinct guid-
ance scales, sI for the clean image condition z1:W0 and sC
for task-specific conditions cC , enabling refined control
over image generation based on both image context and task
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(b) Style Consistency

Figure 4: Consistency Evaluation in M2M-Self and M2M-DINO: The figure shows the ability of M2M-Self and M2M-
DINO to maintain content (a) and style (b) consistency. Content consistency refers to the model’s capacity to generate
images with the same type of subject as preceding ones, while style consistency pertains to maintaining aesthetic elements
like color schemes, textures, and artistic techniques. Each subfigure contains two panels: the top for M2M-Self and the
bottom for M2M-DINO. Columns 1-4 show the conditioning images, and Columns 5-8 display generated images.

needs. Consequently, Equation 6 is adapted as follows:

ϵ̃θ(zt, z
1:W
0 , cC)

= ϵθ(zt,∅,∅)

+ sI ·
(
ϵθ(zt, z

1:W
0 ,∅)− ϵθ(zt,∅,∅)

)
+ sC ·

(
ϵθ(ztz

1:W
0 , cC)− ϵθ(zt, z

1:W
0 ,∅)

)
. (7)

7. Experimental Setup
7.1. Datasets

Pre-training Datasets For pre-training, we leverage our
introduced MIS, as detailed in Section 4. We adopt two
distinct subsets of this dataset for training two model vari-
ants: M2M with Self-encoder (M2M-Self) and M2M with
DINO encoder (M2M-DINO). Specifically, the M2M-Self
model is trained on a subset of 9M multi-image examples,
each containing a set of N = 5 images. Meanwhile, M2M-
DINO is trained on a subset consisting of 6M multi-image
examples.

Task-Specific Fine-tuning Datasets Visual Goal-Step In-
ference (VGSI) (Yang et al., 2021) consists of around 53K
wikiHow articles across various everyday tasks. Each article
contains one or more different methods to achieve it, with
each method including a series of specific steps accompa-
nied by corresponding images. We employ this dataset to
construct the visual procedure generation task where the
model generates images depicting future steps given images
from preceding steps.

7.2. Evaluation Metrics

To assess the performance of our models, we employ Fréchet
Inception Distance (FID) (Heusel et al., 2017) and inception
score (IS) (Salimans et al., 2016) to measure the quality
of generated images. Additionally, we utilize the CLIP
score (Radford et al., 2021; Hessel et al., 2021) to measure
the alignment of the generated images with their preceding
images. Our evaluation is conducted on a random selection
of 10K samples from the test split of MIS. Furthermore, we
present both qualitative evaluations from this test split and
real-world images.

8. Results and Discussion
8.1. Ability to Capture the Relationship/Patterns

In this section, we investigate the model’s capacity to cap-
ture the relationship or patterns within preceding images and
subsequently generate new images in alignment with the ob-
served patterns. Specifically, we conduct experiments evalu-
ating the following two key aspects: (1) Content consistency
and (2) Style consistency. Content consistency evaluates the
model’s ability to generate images featuring the same type
of subject as in the preceding images. Style consistency, on
the other hand, examines the model’s capability to main-
tain the aesthetic or stylistic aspects of preceding images,
including color schemes, textures, and artistic techniques.

Content Consistency In assessing content consistency,
we applied M2M to the test subset of MIS. As shown in
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Dino (synthetic)

Preceding Images Generated Images

Figure 5: Effect of Varying Preceding Images. The figure
presents the images generated from M2M-DINO when con-
ditioned on varying numbers of preceding images.

Figure 4a, the images generated from M2M-Self (upper
section) and M2M-DINO (lower section) demonstrate that
the proficiency of both model variants in preserving content
integrity across a varied range of subjects. From Row 1 to
Row 3 for each model variant, we demonstrate that M2M
adeptly maintains content consistency in images, starting
from simple objects such as a hamburger, progressing to
more complex compositions involving multiple objects (like
a pinecone, candle, and glass), and extending to detailed
indoor environments and scenes involving people.

Style Consistency Style consistency is another critical
aspect of our evaluation. As shown in Figure 4b, both
M2M-Self and M2M-DINO effectively replicate a variety of
artistic styles derived from preceding images. In each model
panel, from Row 1 through Row 3, the model consistently
maintains the styles of preceding images, ranging from
simplified style to pixel art and watercolor paintings.

8.2. Effect of Number of Preceding Images

We further investigate the effect of altering the numbers
of preceding images on multi-image generation. As illus-
trated in Figure 5, our experiment involves conditioning
M2M-DINO with a different count of preceding images,
specifically from one to four, each depicting a single ap-
ple. Initially, with only one preceding image as condition,
M2M-DINO tends to generate images featuring an arbitrary
number of apples, diverging from the single-apple pattern.
However, as the number of preceding images increases,
M2M-DINO begins to more accurately capture and repli-
cate the pattern of a single apple. Our findings indicate that
as the number of preceding images increases, the images
generated by M2M-DINO are more likely to capture and
reproduce the patterns observed in preceding images.

8.3. Generalization to Real Images

We evaluate the model’s capability for zero-shot general-
ization to real images, which is pivotal in understanding
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Figure 6: Generalization to Real Images. Columns 1-
4 display the real images from MSCOCO, serving as the
preceding images. Columns 5-8 show images generated
based on the preceding images.

Method FID ↓ IS ↑ Text-Image CLIP ↑ Image-Image CLIP ↑
M2M-Self (9M) 9.56 ± 1.21 26.19 ± 0.67 22.71 ± 0.52 76.29 ± 0.02
M2M-DINO (6M) 8.88 ± 0.87 28.07 ± 0.58 23.05 ± 0.49 77.41 ± 0.03

Table 1: Quantitative Evaluation on 10K MIS Test Sub-
set. Each metric is reported as an average score ± standard
deviation across the 10 generated images.

how well M2M can adapt to real-world scenarios beyond
the synthetic data it was trained on. For this purpose, we
employ MSCOCO (Lin et al., 2014), which contains real
images of complex everyday scenes containing common
objects. To assess the model’s capability in maintaining
content consistency across various real-world scenarios, we
group images from MSCOCO into sets based on object cat-
egories. Each set contained different images, but all shared
the same object category. Figure 6 showcases images gener-
ated (Columns 5-8) by M2M-Self and M2M-DINO, which
are based on real images from the MSCOCO (Columns 1-4).
Impressively, despite being trained solely on synthetic data,
our model exhibits zero-shot generalization to real images.
The generated images not only resemble the real images but
also maintain a high degree of content consistency.

8.4. Quantitative Evaluation

In this section, we present a comprehensive quantitative
assessment of M2M, focusing on the quality of the images
generated by the model and their visual consistency with
preceding images. Our evaluation leverages three estab-
lished metrics: Fréchet Inception Distance (FID), Inception
Score (IS), and various CLIP scores, utilizing a random
subset of 10,000 samples from the MIS test split.
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M2M is designed to accept a sequence of preceding images
and autoregressively generate subsequent images. For this
analysis, we generated 10 images using both M2M-Self and
M2M-DINO, conditioned on four preceding images. The
FID, IS, and CLIP scores were computed for every n-th im-
age generated. FID is calculated by measuring the Fréchet
distance between the multivariate Gaussian distributions
of the ‘real’ (the first preceding images) and the generated
images. To assess the consistency of the generated images
with the preceding ones, we employ two variants of CLIP
scores: text-image and image-image. The Text-Image CLIP
score is calculated by comparing each n-th generated im-
age to the common textual description associated with the
preceding images in MIS. The Image-Image CLIP score
measured the visual similarity of each n-th generated im-
age with all preceding images. Table 1 details the average
scores and standard deviations for these metrics, reported
as an average score ± standard deviation across 10 gener-
ated images. Notably, M2M-DINO outperforms M2M-Self
across all metrics, indicating a more robust capability in
generating high-quality and contextually consistent images
within a sequence.

8.5. Sampling Efficiency

We evaluate the sampling efficiency of our proposed M2M-
DINO and M2M-Self methodologies against the Stable
Diffusion-2.1-base (SD-2.1-base). Figure 7 illustrates the
comparative analysis of sampling speed, measured as the
average time required to generate a single image, across dif-
ferent model configurations, considering various numbers
of input and generated images. All the models utilize the
DDIM sampler with 50 denoising steps, and the evaluation
is performed on a single NVIDIA A40 GPU to ensure a fair
and consistent basis for comparison.

Our results indicate that M2M-DINO significantly outper-
forms M2M-Self in terms of sampling efficiency, especially
as the number of input and generated images rises. No-
tably, M2M-DINO demonstrates a sampling speed on par
with SD-2.1-base, even when M2M-DINO is set to pro-
cess multiple input images and generate multiple images.
These results highlight the robust and consistent efficiency
of M2M-DINO in many-to-many image generation.

8.6. Adaptation for Specific Multi-Image Tasks

In this section, we present M2M fine-tuning results on Vi-
sual Procedure Generation, demonstrating its potential for
customization to specific multi-image generation tasks. The
Visual Procedure Generation task challenges M2M to under-
stand and predict the sequence of visual steps in a procedure.
To equip the model with the necessary understanding of
sequence and progression, we introduce a positional embed-
der. This embedder utilizes sinusoidal encoding to capture
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Figure 7: Sampling Efficiency. The sampling speed is
measured as the average time to generate one image when
using the DDIM sampler with 50 denoising steps on a sin-
gle NVIDIA A40 GPU. The efficiency is measured across
M2M-Self and M2M-DINO when using 1, 2, and 4 input
images, and compared against the StableDiffusion-2.1-base.

Generated ImagesPreceding Images

Figure 8: Visual Procedure Generation on VGSI Columns
1-4: the sequence of historical visual steps. Columns 5 - 8:
images generated by M2M-DINO that depict future visual
steps.

the position of each image in the sequence, which is then
processed through an MLP layer. Figure 8 showcases the
model’s ability to predict future steps in a visual procedure
based solely on the sequence of input images.

9. Conclusion
We introduce MIS, a novel large-scale multi-image dataset,
containing 12M synthetic multi-image samples, each with
25 interconnected images. We propose a domain-general
Many-to-many Diffusion (M2M) model that can per-
ceive and generate sequences of interrelated images auto-
regressively. We explore two main model variants, M2M-
Self and M2M-DINO, both demonstrating strong ability in
capturing and replicating style and content from preceding
images when trained on MIS. Remarkably, our model ex-
hibits zero-shot generalization to real images despite being
trained solely on synthetic data. We further demonstrate
the model’s adaptability to specific multi-image generation
tasks, like Visual Procedure Generation, through targeted
fine-tuning, underscoring the potential of our approach to
adapt to a broad spectrum of multi-image generation tasks.
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Appendix
A. Implementation Details
For our training procedure, we adopt two configurations for M2M with Self-encoder (M2M-Self) and M2M with DINO
encoder (M2M-DINO). Both M2M-Self and M2M-DINO are trained with a total batch size of 256 on 8 × 80GB NVIDIA
A100 GPUs for one epoch. We use a learning rate of 10−5 without any learning rate warm-up. M2M is initialized from the
EMA weights of the Stable Diffusion v2-1 base 2. For other configurations, we adopt the default training settings provided
within the Stable Diffusion codebase. Regarding the encoding of preceding images in M2M with DINO encoder, we employ
DINOv2-giant 3, particularly leveraging its last hidden states. To facilitate classifier-free guidance (Ho & Salimans, 2021),
M2M is jointly trained with conditional and unconditional objectives. Training for unconditional denoising is achieved
by randomly zeroing out the clean image condition z1:N0 with 10% probability. Similarly, when performing task-specific
fine-tuning, we randomly zero out the task-specific conditions along with the clean image condition with 10% probability.
At inference time, M2M generates novel images with 50 denoising steps using the DDIM sampler (Song et al., 2020). A
guidance scale of 7.5 is employed for the preceding images unless specified otherwise.

B. Task-Specific Fine-tuning
We perform an additional task-specific fine-tuning task, Novel-View Synthesis. The Novel-View Synthesis task tests the
model’s capability to generate images from new viewpoints. This is achieved by integrating a camera embedding that
encodes information about the camera’s viewpoint. Specifically, this embedding captures the camera extrinsic for each
image using a straightforward Multilayer Perceptron (MLP) layer. We finetune the model on Objaverse (Deitke et al., 2023),
a large-scale dataset containing 800K+ 3D objects. Each object in the dataset contains 12 images of the object from different
camera viewpoints along with the associated 12 camera poses. We utilize Objaverse to evaluate the model’s performance in
adapting to the novel view synthesis task. Given several posed images of a specific object, this task aims to generate images
of the same object from novel viewpoints. Figure 9 demonstrates the images generated by M2M-DINO when conditioned on
a singular image. We show that M2M-DINO is capable of auto-gressively generating multi-view images that are consistent
with each other when conditioned on one initial preceding image.

2https://huggingface.co/stabilityai/stable-diffusion-2-1-base
3https://huggingface.co/facebook/dinov2-giant

Generated Images

Figure 9: Novel View Synthesis on Objaverse Column 1 presents a singular preceding image of an object. Columns 2 - 5
display the images generated by M2M-DINO from various novel viewpoints.
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C. Limitations
While our model achieves considerable success in multi-image generation, it is not without its limitations. Notably, it
struggles to generate human faces with high fidelity, a shortfall possibly stemming from the suboptimal quality of human
faces present in our synthetic training set. Future efforts could benefit from incorporating more advanced diffusion models
to enhance the quality of training data, particularly for human faces. Another observed challenge is the gradual decline in
image quality during the auto-regressive generation of prolonged image sequences. This performance degradation highlights
a potential area for further optimization, suggesting a need for improved strategies to maintain image quality throughout
extended generative processes, which is critical for applications requiring the continuous production of images.

D. Impact Statement
We propose MIS, a novel large-scale multi-image dataset, containing 12M synthetic multi-image set samples, each with 25
interconnected images. This dataset is distinct from previous collections that focus on specific scenarios such as sequential
frames or images from multiple viewpoints, by emphasizing a broader range of semantic interconnections. The creation
of MIS is in response to the increasing demand on multimedia platforms for generating thematically and stylistically
consistent image sets. Such capabilities are critical for applications ranging from digital advertising to virtual reality,
where presenting objects from multiple perspectives or in varying thematic contexts is essential. Our research contributes a
domain-general framework for multi-image to multi-image generation, capable of autoregressively perceiving and generating
a variable number of interrelated images. This framework is designed to be flexible and adaptable, offering the potential for
task-specific customization on various multi-image generation tasks.

E. Additional Experiments
E.1. Generation of Images Conditioned on Synthetic Images

Figures 10, 11, and 12 showcase images generated by the M2M-Self. On the other hand, Figures 13, 14, and 15 display the
images generated from the M2M-DINO. These images were generated using the conditioning images from the test subset of
the MIS dataset.

E.2. Generation of Images Conditioned on Real Images

Figure 16 and 17 present a comparative showcase of images generated by M2M-Self and M2M-DINO, respectively. These
images are generated from real-world scenes contained in the MSCOCO dataset. The first four columns (Columns 1-4)
display the original images from the MSCOCO dataset, whereas the generated images are presented in the subsequent
columns (Columns 5-8).
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Figure 10: Images generated by M2M-Self. Columns 1-4 showcase the preceding images for conditioning, and Columns
5-8 display the generated images.
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Figure 11: (Continued) Images generated by M2M-Self. Columns 1-4 showcase the preceding images for conditioning,
and Columns 5-8 display the generated images.
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Figure 12: (Continued) Images generated by M2M-Self. Columns 1-4 showcase the preceding images for conditioning,
and Columns 5-8 display the generated images.
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Figure 13: Images generated by M2M-DINO. Columns 1-4 showcase the preceding images for conditioning, and Columns
5-8 display the generated images.
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Figure 14: (Continued) Images generated by M2M-DINO. Columns 1-4 showcase the preceding images for conditioning,
and Columns 5-8 display the generated images.
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Figure 15: (Continued) Images generated by M2M-DINO. Columns 1-4 showcase the preceding images for conditioning,
and Columns 5-8 display the generated images.
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Figure 16: Generalization to Real Images. Columns 1-4 display the real images from the MSCOCO dataset, serving as the
preceding images. Columns 5-8 showcase the corresponding images generated by M2M-Self, conditioned on the preceding
images.
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Figure 17: Generalization to Real Images. Columns 1-4 display the real images from the MSCOCO dataset, serving as
the preceding images. Columns 5-8 showcase the corresponding images generated by M2M-DINO, conditioned on the
preceding images.
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