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Abstract
The reconstruction of graph representations from images (Image-to-Graph) is a frequent task, es-
pecially in the case of vessel graph extraction from biomedical images. Traditionally, this prob-
lem is tackled by a two-stage process: segmentation followed by skeletonization. However, the
ambiguity in the heuristic-based pruning of the centerline graph from the skeleta makes it hard
to achieve a compact yet faithful graph representation. Recently, Relationformer proposed an
end-to-end solution to extract graphs directly from images. However, it does not consider edge
features, particularly radius information, which is crucial in many applications such as flow sim-
ulation. Furthermore, Relationformer predicts only patch-based graphs. In this work, we address
these two shortcomings. We propose a task-specific token, namely radius-token, which explicitly
focuses on capturing radius information between two nodes. Second, we propose an efficient al-
gorithm to infer a large 3D graph from patch inference. Finally, we show experimental results on
a synthetic vessel dataset and achieve the first 3D complete graph prediction. Code is available at
https://github.com/chinmay5/vesselformer
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1. Introduction

Extracting graphs of tubular structures is an essential task in medical imaging and pre-clinical re-
sults. It involves identifying underlying structures in graphs, such as vessel or neuronal graphs,
from various imaging modalities. This image-to-graph extraction is a crucial task for a variety of
downstream applications. For example, simulating blood flow in vessels requires complete graph
information. In the case of blood vessels, the graph usually consists of nodes, which denote bi-
furcation points or vessel locations with significant curvature, and edges that correspond to the
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Figure 1: The Vesselformer pipeline (right) is shown in comparison with the conventional graph ex-
traction pipeline (left), which involves multiple stages involving segmentation, centerline
extraction, graph pruning, and feature extraction. On the other hand, Vesselformer is a
simple learnable one-stage model to extract compact, representative graphs with features.

vessel segments. Traditionally the image-to-graph problem is broken down into a handful of sub-
problems. These problems are typically vessel segmentation, center line extraction, graph pruning,
and feature extraction. Not only does this whole pipeline involve many stages it also relies on mul-
tiple hand-engineered heuristics. Further, these approaches break the end-to-end differentiability
of downstream tasks relying on the inferred graph. Hence a learnable graph extractor is crucial to
bridge the gap.

In computer vision, image-to-graph appears in different flavors. The graph structures are se-
mantics instead of structural, as in medical imaging. A recent Relationformer method (Shit et al.,
2022a) unified these two categories and proposed a general image-to-graph model. Relationformer
is a transformer-based architecture that operates end-to-end from image to graph. However, Rela-
tionformer only predicts the structural graph without any features associated with the graph. The
edge features, such as radius, in particular, are of paramount importance for vessel applications.
The radius information is indispensable for blood flow simulation (Shit et al., 2022b) and vessel
graph labeling (Sobisch et al., 2022). Additionally, Relationformer generates graphs from small
image patches. In different application scenarios, a whole graph of the complete volume, however,
is needed in order to facilitate the downstream tasks.

Our Contribution: To mitigate these two challenges, we propose Vesselformer, a transformer-
based model to predict vessel graphs with edge properties such as radius. We achieve this by learn-
ing dedicated representation of edge features with the help of proposed [rad]- token in addition to
node-to-node similarity measures for edge prediction. Second, we propose an efficient algorithm to
combine graphs extracted from image patches into a complete graph for the whole image volume.
Finally, we evaluate our method in a synthetic vessel dataset with known radius information.
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Figure 2: Overview of Vesselformer pipeline, which consists of highly parallelized patch-wise
graph-extraction and an efficient merging strategy.

2. Related Literature

Despite significant progress in image acquisition and segmentation of curvilinear structures, only a
handful of methods exist to extract graphs. Note that all of them are based on hand-engineered rules,
and no fully automated solution exists so far. We will discuss a few prominent ones in this section.
TubeTK (Aylward and Bullitt, 2002) is an open-access tool, but it only produces vessel segments as
tubes rather than a complete graph out of it. Vesselgraph (Paetzold et al., 2021) uses Voreen (Meyer-
Spradow et al., 2009), which extracts local properties in each point of centerlines and produces a
graph. This, however, reduces to a metric graph, which loses important structural information,
such as the twist and curvature of vessels. On a similar note, VesselVio (Bumgarner and Nelson,
2022) proposes a processing pipeline to extract graphs from centerlines. The common problem
all skeleton-based methods inherit is dense centerline graphs. There is no good way to prune the
graph into a compact yet structurally faithful representation that can be seamlessly transferred to the
downstream tasks. In this spirit, our objective is to learn where to place nodes in an image and how
to connect two nodes in a data-driven fashion.

Graph extraction from images is a long-standing problem in computer vision that ranges from
road network extraction (Xu et al., 2022; Can et al., 2022) or scene-graph extraction (Koner et al.,
2020). Most of these modern computer vision image-to-graph extractors are based on a transformer,
which leverages the set-prediction formulation to transit from image representation to a discrete
graph representation swiftly. Note that all these methods deal with 2D images and are not equipped
to tackle increased computational complexity in 3D.

3. Methodology

In this section, we will first briefly describe the problem statement. Subsequently, we discuss recent
set-based prediction based on transformers, specifically the recent variant, namely Relationformer.
Next, we will elaborate on our proposed Vesselformer framework. Finally, we will explain our
proposed graph merging algorithm, namely Vesselmerger.

Problem Statement. Given an image I ∈ RH×W×D×C , an image-to-graph task is to predict
G, where G = (V, E) represents a graph with vertices (or objects) V and edges (or relations) E .
Specifically, the ith vertex vi ∈ V has a node or object location specified by a location vi

node ∈ R3,
a bounding box vi

box ∈ R6 and each edge eij ∈ E has an edge features eijfeat ∈ R.
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Figure 3: Vesselformer architecture, which learns the node locations in the forms of objects, their
similarity in forms of edges, and the edge properties with the help of proposed [rad]-
token. Note that the complete pipeline is single-stage end-to-end trainable and simulta-
neously solves node prediction, edge prediction, and edge attribute prediction.

Background. Recently proposed Relationformer is a set-based predictor built upon Deformable
DETR (Zhu et al., 2021). It relies upon a backbone feature extractor to obtain image tokens. The
image tokens are then processed with a series of multi-head self-attention layers. The resultant
contextualized image tokens transfer image information to learnable [obj]- tokens and [rln]-
tokens through cross-attention. The refined [obj]- tokens produce the node coordinates, and the
tuple of two [obj]- tokens and [rln]- tokens produce the final edges through two separate heads
consisting of 3 layers multi-layer perceptron (MLP).

3.1. Vesselformer

Vesselformer originates with the aim of mitigating the shortcomings of Relationformer. A key pur-
pose is to integrate edge attributes such as radius prediction. Note that, unlike edge prediction, edge
attributes require looking into the image features more thoroughly because radius information is im-
plicit in terms of vessel thickness. Further, edge classification requires solving an affinity measure
between two nodes, while radius information is an actual physical quantity. Hence we argue that
the edge representation and edge attribute representation lie in different embedding spaces. With
this intuition, we propose the following Vesselformer architecture.

Backbone: We use a 3D fully-convolutional network to extract features from the input image. The
final features are flattened to obtain the input sequence for the transformer. A positional embedding
is added before feeding the sequence to the transformer.

Transformer: We use a transformer encoder-decoder architecture with deformable attention (Zhu
et al., 2021), which considerably speeds up the training convergence of DETR by exploiting spatial
sparsity of the image features. Our encoder remains unchanged and uses multi-scale deformable
self-attention. In the decoder, we introduce a new learnable token in addition to [obj]- tokens and
[rln]- token, namely [rad]- token.

Object Head: Object detection head consists of two components; one to predict the node location
and the other to classify whether the node is valid or background. Additionally, we consider a
hypothetical object bounding box of fixed width around the node coordinate. The classification
head is trained with cross-entropy loss, while the location head is trained with ℓ1 regression and
generalized IoU losses.
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Figure 4: A pictorial demonstration of Vesselmerger algorithm, which heavily parallelizes merging
of extracted graphs from each patch into a complete graph output.

Relation Head: The relation head is similar to Relationformer. This takes the tuple of two object
tokens concatenated with the relation token as input and classifies whether an edge exists between
two nodes. This head is trained with cross-entropy loss with stochastically sampled edges.

Radius Head: We opt for a different embedding space for the radius information and hence employ
a dedicated regression head for this task. For the radius head, we use a three-layer MLP, which takes
concatenated features of two [obj]- tokens and the [rad]- token and predicts the radius. This
head is trained with an ℓ1 regression loss.

3.2. Vesselmerger

Here we address the important task of combining patched vascular graphs into an entire connected
graph. This task is challenging but crucial because the preservation of the entire vascular network
is a prerequisite for any whole image or whole system study. In image segmentation, this task is
a trivial task because the prediction lies in the same regular grid. In graph space, this does not
hold because the node coordinates lie in real numbers instead of integers. Moreover, the patching
frequently cuts the vessels, leading to difficult scenarios. Further, for images, the overlapping of
patches is easy to handle because of the rectilinear grid. For graphs that have an overlap, it is hard
to combine because it requires solving a complex subgraph matching problem. To avoid this extra
computation, we stick to non-overlapping patches.

We observe that a non-overlapping patch creates a checkerboard pattern in 3D. Importantly, this
can be coloured using eight different subfields shown in eight different colours in Fig. 4. This
means adjacent patches will have different colours. This implies that to glue our patch graphs into
a big graph, we need to compare adjacent patches instead of matching all nodes to all other nodes.
This drastically reduces the computational requirement. Specifically, this means we can efficiently
parallelize the pairwise patch merging of different colours. To compute the node proximity for a
pair of nodes from two different colours, we leverage efficient voxelwise region growth by invoking
grey-scale dilation algorithm. Subsequently, we compute the IoU of the node regions and glue the
nodes together, which have an overlap. Finally, we collect all the nodes to be merged and compute
the mean node location as a new node. We delete all old nodes to be merged and replace with the
new node. Then we adapt the edges accordingly so that the neighbors of the old nodes are now
connected to the new node. Note that the edge features remain unchanged in this operation.
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Algorithm 1: Vesselmerger

Input: I; I ∈ RH×W×D

Parameters: wp, τ,m
Output: G
{Ii}i=1:n, {li}i=1:n ← Patchlabel(I, wp);
{Vi, Ei}i=1:n ← Vesselformer({Ii}i=1:n);
/* Initilize variables */
Mocc ← 08×H×W×D;
c← 0;
G, E ′ ← ϕ ;
/* Collect patch-graphs */
for i = 0 to n do

L← Nodelabel(Vi, wp, c);
Mocc[li]← Greydilation(L,m) ;
Add (Vi, Ei) to G;
c← c+ |Vi| ;

end
/* Merge nodes using IoU */
for (i, j) ∈ 8C2 do

M1,M2 ←Mocc[li],Mocc[lj ];
Add Nodemerge(M1,M2, τ) to E ′;

end
/* Prune duplicate nodes */
for V ′ ∈ subgraph(E ′) do
G ← Edgeprune(V ′,G) ;

end

Procedure Patchlabel(I, wp)
for i = 0 to n do

Ii ← Crop(I, i, wp);
li ← i mod 8;

end
return {Ii}i=1:n, {li}i=1:n

Procedure Nodelabel(Vi, wp, c)
L← 0wp ;
for vj ∈ Vi do

L[vj
node]← j + c;

end
return L

Procedure Nodemerge(M1,M2)
E ′ = ϕ;
for i, j ∈ U(M1)× U(M2) do

if IoU(M1[i],M2[j]) > τ then
Add (i, j) to E ′;

end
end
return E ′

Procedure Edgeprune(V ′,G)
vnew

node = mean(vnode|v ∈ V ′) ;
Add vnew to G;
Remove V ′ from G;
Add {(vnew, v)|v ∈ NG(V ′)} to G;
return G

This algorithm is shown and explained in Fig. 4 and the Algorithm 1 (Please refer to Table 4 for
description of the notations). The complexity is O(nk2) where k is the number of nodes in a patch,
and n is the number of patches. Note that the number of nodes in a patch is significantly lower than
the total number of nodes in a volume.

4. Experiments

We test our method on a publicly available dataset (Tetteh et al., 2020). The dataset consists of
synthetic images with corresponding graphs and ground truth radius information. The synthetic
data generation concept has been widely used in medical imaging literature (Schneider et al., 2012;
Menten et al., 2022; Gerl et al., 2020).

The model is trained for 150 epochs with a batch size of 48. We use AdamW optimizer
(Loshchilov and Hutter, 2017) with 1 warmup epoch and an initial learning rate of 0.0001, which
was annealed using the polynomial annealing method. A 3D adapted version of squeeze-and-excite
network (Hu et al., 2018) is used as the backbone. We use 6 attention heads for the self-attention
layer with a hidden dimension of 384. The number of [obj] tokens is fixed at 80 in our experi-
ments while we used a single [rel] token.
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Table 1: Quantitative evaluation. We show that Vesselformer succesfully predicts edge attributes
such as radius information while predicting the graph. We achieve a high accuracy on the
radius without a significant performance drop in edge and node detection score. Further,
the Vesselmerger can efficiently produce an accurate graph from the patch graph for the
whole 3D volume.

Resolution Model
Graph Topology Node Det. Edge Det. Radius

SMD ↓ β0-error ↓ β1-error ↓ mAP ↑ mAR ↑ mAP ↑ mAR ↑ MAE ↓

Patch-level
U-net+heuristics 0.01982 0.3651 0.3577 18.94 29.81 17.88 27.63 N.A.
Relationformer 0.01107 0.0956 0.0934 78.51 84.34 78.10 82.15 N.A.

Vesselformer 0.01260 0.1018 0.0996 76.56 82.83 76.04 80.65 0.51

Volume-level
Voreen 0.03071 0.2955 0.2766 36.17 43.35 * * 1.79

Vesselformer+Vesselmerger 0.01381 0.2188 0.2054 72.32 80.11 72.19 76.24 0.52
* denotes missing score because of instability in metric computation.

For evaluation, we report the graph Wasserstein distance (SMD) and mean average precision
(mAP) and mean average recall (mAR) for node detection and edge detection. Furthermore, we
report Betti number error for topological consistency. We report relative error in % of Betti-0
(which count the number of connected components) and Betti-1 ( which count circular holes) for
the generated graph. For radius prediction, we report the mean-absolute error (MAE).

4.1. Main Results

We analyze our quantitative results both at two levels; first, at the patch-level (64 × 64 × 64), and
second, at the whole image level (300× 300× 600). For consistency with prior works, we keep the
same hyper-parameters and train/val/test split as reported by the authors in Relationformer paper. In
Table 1, we report various evaluation metrics on the test dataset. We find that our method extracts
the radius information jointly with the graph inference at an almost identical cost. Importantly,
this radius information can be helpful in numerous downstream tasks. Importantly, the additional
task does not deteriorate the performance of the base tasks of node prediction and edge prediction.
We attribute this favorable property to the increased expressive power of our network, especially
in terms of the proposed rad-token. Moreover, the performance on the whole 3D volume level is
satisfactory and shows globally accurate graph prediction.

Figure 5 shows qualitative results on the test set. The reference graph is depicted in the first
row, with their edges colored based on their radius values. The model predictions are plotted in the
second row. The model successfully predicts most of the nodes and edges in the scene. Furthermore,
the associated colormap depicts that the radius predictions are similar to the ground truth.

4.2. Ablation & Sensitivity Analysis

We introduce a special [rad]- token dedicated to predicting the radius information. The inclusion
of the extra token leads to slight computational overhead and raises questions regarding its necessity.
Here, we study whether a unique token is essential and ablate its optimal number.

Importance of the [rad]-token: To answer the first question, we train two models, one with
a [rad]- token and another without it. Table 2 shows their comparative analysis. The [rad]-
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Figure 5: Qualitative results on the test set. The first row shows the ground truth scene while predictions are
shown in the second row. Edges are colored based on radius information with the corresponding
colormap shown on the right.

token indeed improves the model performance (higher mAP, mAR, and lower SMD, MAE). The
mAP and mAR show a sharp drop if we omit the [rad]- token (Table 1). We argue that without
a [rad]- token, the onus of learning radius information falls on the [obj]- and [rln]-tokens.
This negatively impacts their ability to detect the nodes and edges. The inclusion of the [rad]-
token ensures [obj]- and [rln]- tokens can focus on the detection task while radius information
can be learned using the dedicated radius head.

Optimal number of [rad]- token: Second, we study the optimal [rad]- token number. We
trained two models with one and two [rad]- tokens, respectively (Table 1). In both cases, the
inclusion of the [rad]- token ensures no catastrophic deterioration in the detection performance.
However, the additional [rad]- token leads to a marginal performance drop. Since the additional
token leads to computation overhead with no performance gain, we use a single [rad]- token in
our final model.

Robustness of Vesselmerger: We delve into investigating the Vesselmerger algorithm in standalone
settings. For that, we synthetically generate patch graphs and add Gaussian noise to the normalized
node coordinates at the boundary of the patch. Table 3 captures that the Vesselmerger algorithm is
robust, up to moderate noise level, and hence is a suitable candidate to complement Vesselformer
for a complete 3D vessel graph.
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Table 2: Ablation of [rad]-token for Vesselformer. We observe that the absence of the [rad]-
token reduces performance while increasing its number does not improve performance.

Model # [rad]-token
Graph Topology Node Det. Edge Det. Radius

SMD ↓ β0-error ↓ β1-error ↓ mAP ↑ mAR ↑ mAP ↑ mAR ↑ MAE ↓

Vesselformer
0 0.01260 0.1025 0.1002 76.26 82.47 75.68 80.23 0.52
1 0.01260 0.1018 0.0996 76.56 82.83 76.04 80.65 0.51
2 0.01261 0.1021 0.0998 76.12 82.29 75.48 80.25 0.51

Table 3: Robustness analysis of Vesselmerger:. We synthetically inject noise of different level in
node co-ordinates and observe that Vesselmerger algorithm can tolerate perturbation.

Model Noise Level
Graph Node Det. Edge Det.

SMD ↓ mAP ↑ mAR ↑ mAP ↑ mAR ↑

Vesselmerger
σ = 0.1% 0.01104 94.43 98.75 90.78 93.70
σ = 0.2% 0.01275 92.23 96.57 88.34 90.86
σ = 0.5% 0.01534 86.42 90.42 82.43 86.43

5. Conclusion

In this paper, we addressed the critical topic of vessel graph extraction and provided an efficient
learning-based solution. We propose to jointly learn the radius information along with the nodes
and edges of the vessel graph. This strategy produces accurate radius prediction with minimal
increase in computation. Further, we propose an efficient algorithm to combine graphs from image
patches into a whole volume. In summary, we showed that a compact representation of vessels with
radius features could be learned with a simple model. We hope future research will strengthen this
direction by exploring applications on real large-scale data.
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Appendix A. Algorithm Details

Patch Graphs Grey Dilated Nodes Merged Graphs

Figure 6: Pictorial description of Vesselmerger algorithm of two neighboring patches (shown in different
colors). Note that the output grey-dilation after multiple iteration helps to identify node overlap
across patches. We merge nodes with significant overlap to a new node (shown in green).

Note that at max, we have eight different patches meeting at a coroner, requiring eight different
colors to separate them. Nodes lying at each patch’s surface (incl. corners and edges) are possible
candidates for merging with the similar counterpart of neighboring patches. To identify these candi-
dates, we use the grey dilation algorithm. In grey dilation, we operate on voxel space. The algorithm
initializes each node location with a distinct integer value. It places a sphere of unit radius centered
on the node location. We execute the algorithm for multiple iterations, and in each iteration, the
radius of this sphere is increased. This would lead to a high overlap between adjacent nodes. Next,
we compute IoU between the dilated spheres located in two neighboring patches. Finally, we merge
the two nodes if the overlap is above a certain threshold. Note that IoU between nodes located in
the same patch is not considered, and they do not get merged.

Notation Description

Mocc Occupancy matrix for grey dilation
wp patch size
τ IoU threshold
m total number of grey dilation iterations

mCn m choose n
U(.) Operator returning surface nodes

NG(.) Operator returning neighboring nodes

Table 4: Description of the notations used in Vesselmerger algorithm.
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Appendix B. Qualitative Result

PredictionReference

PredictionReference

Figure 7: Qualitative results on the volume-level graph extraction on the test set.

Figure 7 shows qualitative results on the test set. We are visualizing the whole graph, obtained
after stitching the patches together. The reference graph is depicted on the left. The edges are
colored based on their radius values. We have juxtaposed the ground truth and the model predic-
tions. The model successfully predicts most of the nodes and edges in the scene. Furthermore, the
associated colormap depicts that the radius predictions are similar to the ground truth.
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