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Abstract

Large Language Models (LLMs) can solve001
complex reasoning tasks by generating ratio-002
nales for their predictions. Distilling these capa-003
bilities into a smaller, compact model can facil-004
itate the creation of specialized, cost-effective005
models tailored for specific tasks. However,006
smaller models often face challenges in com-007
plex reasoning tasks and often deviate from the008
correct reasoning path. We show that LLMs009
can guide smaller models and bring them back010
to the correct reasoning path only if they inter-011
vene at the right time. We show that smaller012
models fail to reason primarily due to their diffi-013
culty in initiating the process, and that guiding014
them in the right direction can lead to a perfor-015
mance gain of over 100%. We explore different016
model sizes and evaluate the benefits of provid-017
ing guidance to improve reasoning in smaller018
models.019

1 Introduction020

Over the years, Large Language Models (LLMs)021

have improved their reasoning skills by explaining022

their intermediate thoughts (Wei et al., 2022). This023

allows LLMs to transfer intermediate knowledge to024

student models 1 to improve their reasoning skills;025

often referred to as knowledge distillation (Yuan026

et al., 2023; Magister et al., 2023; Shridhar et al.,027

2023b; Hsieh et al., 2023). While training student028

models can certainly improve their reasoning skills,029

there are instances where teacher intervention re-030

mains essential to guide the student model when it031

encounters uncertainty or confusion. This is similar032

to the situation in a classroom, where a student can033

acquire knowledge independently by learning from034

textbooks, but often benefits from the guidance of a035

teacher (Wood et al., 1976; Van de Pol et al., 2015).036

1We refer to smaller models as student models and larger
models as teachers. The distinction is not based on the number
of parameters, but rather on relative size, with smaller models
often referred to as students.

Question:
John buys 2 pairs of shoes for each
of his 3 children. They cost $60
each.
How much did he pay?

Teacher

2 pairs of shoes for 3 children =
4*3=12 shoes. Total amount is
12*60 = 720 shoes. 
The answer is 720.

Answer: Answer:

John paid 6*60=360.
The answer is 360.

John buy 2*3=6 pairs of shoes.

Student

John buy 2*3=6 
pairs of shoes.   

No
Guidance

Student

Figure 1: The First Step Advantage: Figure demon-
strating the effect of first step guidance from a teacher
on the student’s overall performance (right) versus no
guidance (left).

While teacher intervention can provide valuable 037

assistance to students, understanding when and how 038

to provide guidance plays a critical role. In gen- 039

eral, more guidance typically leads to a consistent 040

improvement in student performance (Saha et al., 041

2023), but the question arises: should guidance at 042

different stages be given equal importance? 043

Our observations, as shown in Figure 1, suggest 044

that for multi-step reasoning tasks, intervening at 045

the first step yields the most significant benefits, 046

with the effects diminishing at subsequent steps. 047

As expected, expert teachers (models with supe- 048

rior performance) tend to provide more effective 049

guidance, resulting in better student performance. 050
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On a mathematical dataset of multi-step word051

problems, we demonstrate the effectiveness of first052

step guidance on various combinations of teacher-053

student pairs. A consistent improvement in student054

performance was observed with first step guidance.055

We show that a smaller student model (LLaMA056

13B (Touvron et al., 2023)), when correctly guided057

at its first step, can achieve the same performance058

as a larger student model (LLaMA 70B) without059

any guidance. Furthermore, our results show a con-060

tinuous and upward improvement of the student061

model’s performance with expert guidance, with062

GPT-4 (OpenAI, 2023) as the teacher reaching a063

performance level similar to that of a human in-064

structor.065

2 Related Work066

Previous work has shown that it is possible to elicit067

reasoning abilities from LLMs through in-context068

learning (Wei et al., 2022; Zhou et al., 2022). A key069

recipe in most methods is to spread the reasoning070

process over multiple tokens, rather than expecting071

them to provide an immediate response token. One072

way is to provide the model with the intermediate073

steps, or chain of thought (CoT), that leads to the074

final answer (Wei et al., 2022; Kojima et al., 2023;075

Yang et al., 2023; Wang et al., 2023). In parallel, in-076

context learning has been used to teach the model077

how to break a problem down into smaller, easier078

sub-problems, and then solve those sub-problems079

that eventually lead to the final answer (Shridhar080

et al., 2022; Zhou et al., 2023).081

However, if the problem is misinterpreted, it082

can lead to a cascade of errors in subsequent steps.083

To counter this, several techniques have been pro-084

posed to intervene and correct intermediate steps085

(Welleck et al., 2022) or to provide feedback on086

their own generations, essentially “self-correcting”087

their own generations (Madaan et al., 2023; Shrid-088

har et al., 2023a). It is important to note that com-089

plex reasoning and self-correcting capabilities only090

emerge in very large language models. For smaller091

models, CoT follows a rather flat scaling curve092

(Wei et al., 2022). Our work presents an effec-093

tive way to transfer such reasoning capabilities into094

smaller models that does not require large scale pre-095

training, making it more accessible for researchers096

with limited compute.097

While the LLM’s ability to revise its own gener-098

ations may prove helpful in many cases, it some-099

times leads to worse outcomes upon refinement,100

requiring a “rolling-back” to the previous out- 101

put (Shridhar et al., 2023a). The “rolling-back” 102

dilemma can be avoided if we can know when to in- 103

tervene. (Saha et al., 2023) presented an approach 104

based on ToM (Kosinski, 2023; Kadavath et al., 105

2022), where a teacher model intervenes in a stu- 106

dent model only for harder questions by creating 107

an implicit mental model of the student’s under- 108

standing. In contrast, our work shows that it is not 109

necessary to intervene and help a student with the 110

entire solution. Rather, just starting correctly has 111

a significant impact on the student’s performance 112

and avoids the need for backtracking and correcting 113

mistakes, saving time and effort. 114

3 Experimental Design 115

Dataset We examine our intervention on multi- 116

step mathematical dataset : GSM8K (Cobbe et al., 117

2021). The dataset is a grade-school-level math 118

word problem dataset with a training set of 7473 119

samples and a test set of 1319 samples, each requir- 120

ing two to eight steps to solve. 121

Setup We used variants of LLaMA models 122

(LLaMA 7B, LLaMA 13B and LLaMA 70B) (Tou- 123

vron et al., 2023) and its variants (Mistral 7B 124

(Jiang et al., 2023) and MetaMath 7B and 13B (Yu 125

et al., 2023))as student models. On the other hand, 126

we used LLaMA 13B and LLaMA 70B as teach- 127

ers alongside ChatGPT (gpt-3.5-turbo) (Brown 128

et al., 2020) and GPT-4 (gpt-4) (OpenAI, 2023). 129

For pre-trained models as students in few-shot set- 130

tings, 4-shot demonstrations were provided, which 131

were chosen randomly from the train set. Fine- 132

tuned students were trained on the training set 133

with no modifications for 3 epochs. All models 134

were evaluated in the greedy approach (temp=0, 135

top p=1). Fine-tuning was performed on 1 node of 136

8 A100 GPUs. We report the accuracy (maj@1) on 137

the test set. 138

4 Results and Discussion 139

Early intervention is key Figure 2 compares the 140

effect of intervention by humans as teachers for 141

LLaMA 7B student model on the GSM8K dataset. 142

Intervention at the first step (in blue) proves to be 143

most beneficial with maximum gains over baseline 144

without any interventions (dotted line). The gains 145

go down when the intervention is done at “step 2” 146

(in orange) and intervening at later stages (“step 147

3” and beyond) leads to diminishing returns. This 148

is because students may have already internalized 149
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Student Teacher
Model Type No LLaMA 13B LLaMA 70B ChatGPT GPT-4 Human

LLaMA 7B Pre-Trained 10.53 14.86 19.48 21.00 23.27 22.74
LLaMA 7B Fine-Tuned 34.19 38.26 45.90 45.94 47.61 47.15

LLaMA 13B Pre-Trained 24.70 - 26.39 33.24 35.75 33.75
LLaMA 13B Fine-Tuned 46.24 - 55.34 59.28 60.50 61.86

LLaMA 70B Pre-Trained 58.90 - - 63.53 67.40 67.55
LLaMA 70B Fine-Tuned 63.30 - - 70.05 72.32 74.14

Mistral 7B Pre-Trained 40.25 - 46.17 48.82 49.50 50.34
MetaMath 7B Pre-Trained 62.69 - 61.48 66.94 69.52 65.95
MetaMath 13B Pre-Trained 67.85 - 66.79 71.41 75.51 73.00

Table 1: Accuracy comparison for different configurations of the student and the teacher models. No refers to no
intervention by any teacher. Best results are presented in bold.

Step 1 Step 2 Step 3 Step 4
Intervention Steps

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Ac
cu

ra
cy

47.19

39.19

32.19

29.19

Baseline

Figure 2: Accuracy of LLaMA 7B fine-tuned student
model on GSM8K dataset with correct intervention at
different steps by humans. The baseline is the repre-
sented by the dotted line with an accuracy of 34.19.

incorrect concepts or approaches, making it harder150

to correct and replace them with the correct ones.151

This underscores the necessity of early and accurate152

guidance.153

Starting right: first step to successful reasoning154

Table 1 demonstrates the usefulness of a teacher155

guiding a student with first-step guidance. LLaMA156

7B pre-trained model’s performance improves by157

40% (10.5 → 14.8) when a slightly larger model158

(LLaMA 13B) acts as a teacher to provide first-step159

guidance. The performance increases monotoni-160

cally with larger and expert models (10.5 → 19.5161

with LLaMA 70B as teacher and to 21.0 with Chat-162

GPT as teacher) and goes beyond 100% improve-163

ment with GPT-4 (10.5 → 23.2) or Human teachers164

(10.5 → 22.7). This demonstrates the importance165

of first-step guidance in reaching to the correct166

answer. Similar results are observed for LLaMA167

13B as a student where the performance goes from168

2

3

4

5

6

7

8
No Teacher
GPT-4 as Teacher

Figure 3: Accuracy comparison for No teacher vs GPT-
4 as teacher for LLaMA 7B fine-tuned model across
different steps for GSM8K dataset. 2-8 represents the
number of steps needed to solve the problem.

24.70 with no guidance to 35.75 with GPT-4 first 169

step guidance. The trend follows similarly for even 170

a relatively larger student model (LLaMA 70B) 171

where the performance goes up from 58.9 without 172

guidance to 67.4 with GPT-4 guidance. 173

Next, we fine-tune all the student models on the 174

training data to see if first step guidance can be 175

learned during training. Although fine-tuning im- 176

proves the baseline performance significantly, the 177

guidance still proved useful in boosting the per- 178

formance for all models. LLaMA 7B fine-tuned 179

model’s performance improves by 40% (34.1 → 180

47.6) with expert guidance from GPT-4 as the 181

teacher. A qualitative example is presented in Fig- 182

ure 4 where if LLaMA 7B model is guided to start 183

correctly, it will to the correct answer. The trend is 184
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Question Gene is sewing a quilt out of old souvenir t-shirts. He has one shirt from each vacation he has been on. Every shirt is
its own quilt block. Each row is made of blocks from a different year of vacations. He goes on four vacations a year and has been
vacationing since he was 23 years old. He is now 34. How many quilt blocks does he have in total?

No Guidance He has been on 4 vacations a year for 34 years so he has been on 4*34 = «4*34=136»136 vacations. Each vacation
is a quilt block so he has 136 quilt blocks. Each quilt block is one shirt so he has 136 shirts. The answer is 136. ✗

GPT4 Guidance Gene has been on 34 - 23 = «34-23=11»11 years of vacations, so he has 11 rows of blocks . Each row is
made of 4 blocks, so he has 11*4 = «11*4=44»44 blocks. The answer is 44. ✓

Figure 4: Example demonstrating the usefulness of first step guidance .

First Step Next Steps Fine-tuned CoT
Training Scheme

0

10

20

30

40

50

60

Ac
cu

ra
cy

- 40 points

Figure 5: Comparison of curiculum style training for
a 7B student model (first step training followed by
next steps training) vs fine-tuning (Fine-tuned CoT) on
GSM8K dataset.

similar for LLaMA 13B fine-tuned version with a185

gain of 30% with GPT-4 guidance (46.2 → 60.5)186

and LLaMA 70B goes up by 15% (63.3 → 72.3).187

Finally, we test the applicability of first-step188

guidance across better student models: Mistral 7B189

and MetaMath 7B and 13B. Mistral 7B achieves a190

performance boost of 25% with GPT-4 as teacher191

(40.25 → 49.50) while MetaMath 7B and 13B gain192

more than 10% each (62.69 → 69.52 and 67.85193

→ 75.51 respectively). In all the cases above, it194

is worth noting that the guidance of GPT-4 is very195

close to human’s guidance and in many cases sur-196

passes it. This demonstrates the capabilities of197

GPT-4 as an alternative to teachers in educational198

domains.199

Starting right helps even for longer reasoning200

chains Figure 3 demonstrates the performance of201

LLaMA 7B model with and without first step guid-202

ance from a teacher for different steps in GSM8K203

dataset. Across all steps (2 to 8), guidance im-204

proves the performance and suggests that starting205

with a solid foundation can help over longer con-206

text. However, the improvement is higher for prob-207

lems with 2 to 5 steps compared to 6 to 8, suggest- 208

ing that over a longer reasoning chain, the chances 209

of making mistakes increase with the increase in 210

the number of steps required to solve it. Nonethe- 211

less, starting right has a positive impact on longer 212

reasoning chains too. 213

Can smaller models be aligned to start better? 214

Each problem can be broken down into a first step 215

and the next consecutive steps, where the first step 216

can serve as a guidance for the consecutive steps. 217

We train the student model to first learn the initial 218

step and then fine-tune it further to learn the next 219

steps required to solve the problem. This two-step 220

training mechanism has similarity with curriculum 221

learning (Platanios et al., 2019; Xu et al., 2020) 222

where the simpler first step is learnt first, followed 223

by the subsequent more difficult steps. Figure 5 224

shows a drop of 40 points once the next steps are 225

learned and overall performance gets worse than 226

learning all steps at once in a fine-tuning style. 227

Since the first-step accuracy is close to 60%, only 228

3/5 samples get the correct guidance during the 229

next steps training and we suspect this might be the 230

reason for a lower overall performance. 231

5 Conclusion 232

Distilling reasoning capabilities in smaller models 233

is a challenging task due to their limited abilities 234

to learn complex reasoning strategies. To make 235

these skills more accessible to smaller models, 236

we present an effective way of first-step guidance, 237

where LLMs can guide smaller models in the right 238

direction to solve a reasoning task. On a multi-step 239

reasoning dataset, we show the importance of start- 240

ing right with a performance improvement of over 241

100%. Finally, our experiments reveal the qual- 242

ity of guidance which the monotonically increases 243

with the size of the expertise of the teacher model. 244
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6 Limitations245

Our work has been tested on one multi-step math-246

ematical reasoning dataset, and while the method247

can be extended to other reasoning datasets, we248

have not explicitly tested this in this work. LLMs249

in general are vulnerable to adversarial attacks and250

are often very sensitive to hyperparameter changes.251

We do not see any real-world application of our252

work.253
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